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We present an analytic next-to-leading-order QCD calculation of the partonic cross sections for single-
inclusive lepton production in hadronic collisions, when the lepton originates from the decay of an
intermediate electroweak boson and is produced at high transverse momentum. In particular, we consider
the case of incoming longitudinally polarized protons for which parity-violating single-spin asymmetries
arise that are exploited in the W boson program at RHIC to constrain the proton’s helicity parton
distributions. Our calculation enables a very fast and efficient numerical computation of the relevant spin
asymmetries at RHIC, which is an important ingredient for the inclusion of RHIC data in a global analysis
of nucleon helicity structure. We confirm the validity of our calculation by comparing it with an existing
code that treats the next-to-leading-order cross sections entirely numerically by Monte Carlo integration
techniques. We also provide new comparisons of the present RHIC data with results for some of the sets of
polarized parton distributions available in the literature.
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I. INTRODUCTION

The W physics program at RHIC [1] is dedicated to
providing new insights into the helicity structure of the
proton. It exploits the violation of parity in the weak
interactions, which gives rise to single-longitudinal spin
asymmetries in proton-proton collisions. The main focus
is on the production of W bosons, identified by their
subsequent decay into a lepton pair. The charged lepton (or
antilepton) is observed. From the corresponding cross
sections for the various helicity settings ðþþÞ; ðþ−Þ;
ð−þÞ; ð−−Þ of the two incoming protons one defines the
spin asymmetry

AW�
L ≡ dσþþ þ dσþ− − ðdσ−þ þ dσ−−Þ

dσþþ þ dσþ− þ dσ−þ þ dσ−−
≡ dΔσ

dσ
: ð1Þ

As one can see, one takes the difference of cross sections
for positive and negative helicities of one proton, while
summing over the polarizations of the other. The STAR
Collaboration at RHIC published rather extensive and
precise data on AW�

L last year [2], and new precise mid-
rapidity data from PHENIX have just appeared [3]. Earlier
measurements were reported by both PHENIX [4] and
STAR [5]. Data sets with even higher statistics and kin-
ematic coverage are expected in the near future. Typically,
the data are presented at fixed rapidity of the charged lepton,
which by convention is counted as positive in the forward
direction of the polarized proton.
It has long been recognized [6,7] that AW�

L offers
excellent sensitivity to the individual helicity parton dis-
tributions Δu;Δū;Δd;Δd̄ of the nucleon, where

Δfðx;Q2Þ≡ fþðx;Q2Þ − f−ðx;Q2Þ; ð2Þ

with fþ (f−) denoting the distribution of parton f with
positive (negative) helicity in a parent proton with positive
helicity. The distributions are functions of the longitudinal
momentum fraction x of the parton and of a “resolution”
scale Q. Information on Δu;Δū;Δd;Δd̄ is also accessible
in (semi-inclusive) deep-inelastic lepton scattering (DIS)
[8–12]. The key advantages ofW boson production are that
(i) it is characterized by momentum scales of the order of
the W mass which are much higher than those presently
relevant in DIS and hence deeper in the perturbative
domain, (ii) it does not rely on the knowledge of hadronic
fragmentation functions, thanks to its clean leptonic final
state. In any case, information from the W program at
RHIC is complementary to that from DIS.
The main concept behind the RHICmeasurements can be

easily summarized: ForW− production, taking into consid-
eration only the dominant ūd → W− subprocess, the spin-
dependent cross section in the numerator of the asymmetry
in Eq. (1) is found to be proportional to the combination

Δūðx1Þdðx2Þð1 − cos θÞ2 − Δdðx1Þūðx2Þð1þ cos θÞ2;
ð3Þ

where for simplicity we have not written out the straight-
forward convolutions over the parton momentum frac-
tions. θ is the polar angle of the negatively charged decay
lepton in the partonic center-of-mass system, with θ > 0
in the forward direction of the polarized parton. In the
backward region of the lepton, one has x2 ≫ x1 and
θ≫π=2, so that the first term in Eq. (3) strongly
dominates. Since the denominator of AL is proportional
to ūðx1Þdðx2Þð1−cosθÞ2þdðx1Þūðx2Þð1þcosθÞ2, the asym-
metry then provides a clean probe of Δūðx1Þ=ūðx1Þ at
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medium values of x1. By similar reasoning, in the forward
lepton region the second term in Eq. (3) dominates, giving
access to −Δdðx1Þ=dðx1Þ at relatively high x1.
For Wþ production, within the same approximation, the

spin-dependent cross section is proportional to

Δd̄ðx1Þuðx2Þð1þ cos θÞ2 − Δuðx1Þd̄ðx2Þð1 − cos θÞ2:
ð4Þ

Here the distinction of the two contributions by considering
backward or forward lepton scattering angles is less clear-
cut than in the case of W− because of the reversal of the
factors ð1� cos θÞ2 relative to (3), which always sup-
presses the dominant combination of parton distributions.
Therefore, both terms in (4) will compete. Nonetheless, the
Wþ measurements at RHIC are of course of great value in
the context of a global analysis of the helicity distributions.
Given the importance of AW�

L for constraining nucleon
helicity structure, there has been a lot of activity on the
calculation of higher-order QCD corrections to the relevant
spin-dependent cross sections. Closed analytic expressions
for next-to-leading-order (NLO) corrections to polarizedW
boson production were derived in Refs. [13,14], with
extensions to all-order resummations in [15,16]. In these
papers, direct observation of the W boson and its kinemat-
ics was assumed, which simplifies the calculation consid-
erably but is not really applicable to the measurements at
RHIC. The proper lepton decay kinematics was taken into
account in three further studies [17–19]. The first two of
these include the contributions by intermediate Z bosons
and photons as well, which may also give rise to charged
leptons and may provide a background to the lepton signal
from W boson decay when the detectors are not hermetic.
Reference [17] additionally derives and implements the
resummation of large logarithms in the transverse momen-
tum of the intermediate W boson.
In the calculations [17–19] the NLO corrections were

obtained numerically in the context of a Monte Carlo
integration routine. The resulting computer codes are very
flexible in the sense that kinematic cuts on lepton or recoil
jet variables can be easily implemented. Those from
Refs. [17,18] are known as RHICBOS and CHE, respec-
tively, and have found wide use in comparisons to RHIC
data. On the other hand, the Monte Carlo integration based
codes are rather demanding in terms of CPU time. This
becomes a significant drawback when onewants to perform
a global analysis of the helicity distributions from the RHIC
data [10,11,20]. Such an analysis typically requires many
thousands of computations of the spin asymmetry. Clearly,
a fast and stable evaluation at NLO is highly desirable in
this context.
In this paper, we derive analytic expressions for the NLO

spin-dependent partonic cross sections for electroweak
boson production, including their leptonic decay. More
precisely, we consider the cross sections directly as

single-inclusive lepton ones, ~pp → l�X, where transverse
momentum and rapidity of the charged lepton are observed,
precisely as is the case at RHIC. We note that a corre-
sponding calculation in the unpolarized case was presented
a long time ago [21]. We present a new program that
produces NLO results for the single-spin asymmetries
relevant at RHIC and outruns the Monte Carlo based codes
by about 2 orders of magnitude in CPU time. We also
include the background reactions involving Z bosons and
photons. We expect our program to become a useful tool for
global analyses of RHIC data based on Mellin-moment
[10,11,22] or neural-network [20] techniques. We also use
our new code to present comparisons of the present RHIC
data to NLO predictions for a variety of sets of helicity
parton distributions.
In Sec. II we discuss the technical details of our NLO

calculation. Section III presents our phenomenological
results, where we also perform comparisons with the
CHE code of [18]. Finally, we conclude in Sec. IV.

II. NEXT-TO-LEADING-ORDER CALCULATION

A. Framework and outline of the NLO calculation

We consider the single-inclusive process ~pp → lþ X,
where l denotes the charged lepton (or antilepton) resulting
from production and decay of a W boson. As discussed in
the Introduction, charged leptons can of course also be
produced by an intermediate photon or a Z boson which,
subject to the experimental selection criteria, gives rise to a
background. We hence perform all our calculations also for
γ and Z production and γZ interference. For the sake of
simplicity we will, however, present details of our calcu-
lation and explicit results only for the most interesting W
boson case, and just highlight a few features specifically
relevant for intermediate γ and Z.
We denote the momenta of the incoming protons and the

produced charged lepton by PA; PB; pl, respectively. Using
factorization [23], we write the polarized hadronic cross
section dΔσ which appears in the numerator of Eq. (1) in
terms of convolution integrals of polarized and unpolarized
parton distributions Δfaðxa; μFÞ, fbðxb; μFÞ and the per-
turbative hard-scattering partonic cross sections dΔσ̂ab:

dΔσ ¼
X
a;b

Z
dxadxbΔfaðxa; μFÞfbðxb; μFÞ

× dΔσ̂abðxaPA; xbPB; pl; μR; μFÞ; ð5Þ

where

dΔσ̂ab ≡ 1

4
½dσ̂þþ þ dσ̂þ− − ðdσ̂−þ þ dσ̂−−Þ�: ð6Þ

The superscripts on the right refer to parton helicities, so
that the helicities of the second parton b are summed over,
while the helicity difference is taken for parton a. The sum
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in Eq. (5) runs over quarks, antiquarks and the gluon, and
the parton distributions are evaluated at the factorization
scale μF. The partonic cross sections also depend on a
renormalization scale μR. The fractions of the parent
hadrons’ momenta carried by the scattering partons are
denoted by xa and xb. An analogous expression for the
unpolarized cross section dσ appearing in the denominator
of Eq. (1) is obtained by using only unpolarized parton
distributions and the corresponding unpolarized partonic
cross sections, defined by averaging over the helicities of
both incoming partons.
Due to the pure V − A structure of the Wqq̄0 vertex, and

because of conservation of quark helicity at the vertex, the
spin-dependent partonic cross section for an incoming
polarized quark is just the negative of the corresponding
unpolarized cross section, while for an incoming polarized
antiquark it is the same as the unpolarized one:

dΔσ̂qb ¼ −dσ̂qb ðb ¼ q̄0; gÞ;
dΔσ̂q̄b ¼ dσ̂q̄b ðb ¼ q0; gÞ: ð7Þ

Note that no such relation occurs for incoming polarized
gluons. In the case of γ and/or Z exchange, relations (7) do
not hold.
We now introduce the variables

S≡ðPAþPBÞ2; T≡ðPA−plÞ2; U≡ðPB−plÞ2; ð8Þ

and

V ≡ 1þ T
S
; W ≡ −U

Sþ T
: ð9Þ

The lepton’s transverse momentum pT and its center-of-
mass system rapidity η are related to these variables by

V ¼ 1 −
pTffiffiffi
S

p e−η; VW ¼ pTffiffiffi
S

p eη: ð10Þ

We furthermore introduce the partonic variables corre-
sponding to Eqs. (8) and (9):

s≡ ðpa þ pbÞ2; t≡ ðpa − plÞ2; u≡ ðpb − plÞ2;
v≡ 1þ t

s
; w≡ −u

sþ t
; ð11Þ

so that from pa ¼ xaPA, pb ¼ xbPB we have

xa ¼
VW
vw

; xb ¼
1 − V
1 − v

: ð12Þ

Writing out Eq. (5) explicitly to OðαsÞ in the strong
coupling constant, we now obtain

d2Δσ
dpTdη

¼ 2

pT

X
a;b

Z
V

VW
dv

Z
1

VW=v
dwxaΔfaðxa;μFÞxbfbðxb;μFÞ

×

�
dΔσ̂ð0Þab ðs;vÞ

dv
δð1−wÞ

þαsðμRÞ
2π

dΔσ̂ð1Þab ðs;v;w;μF;μRÞ
dvdw

�
; ð13Þ

where the dΔσ̂ð0Þab represent the leading-order (LO) con-

tributions and the dΔσ̂ð1Þab the NLO ones.
The only LO partonic process is qq̄0 → W → lνl anni-

hilation, whose Feynman diagram is shown in Fig. 1(a).
For the NLO correction we have to include the 2 → 3
real-gluon emission diagrams as well as the virtual correc-
tions to the Born cross section. In addition, quark-
gluon scattering contributes here as well as a new channel.
Some of the relevant NLO Feynman diagrams are shown in
Figs. 1(b)–1(d).
For our calculations, we work with a general (axial)

vector structure for the Wqq̄0-vertex of the form

Vμ
q ¼ −i

gW
2

ffiffiffi
2

p Uqq0γ
μðvq − aqγ5Þ; ð14Þ

where Uqq0 is the appropriate Cabibbo-Kobayashi-
Maskawa matrix element and gW the fundamental weak
charge. Likewise, we use a corresponding expression for
the Wlνl-vertex, with vector and axial coefficients vl and
al (and, of course, with Uqq0 ¼ 1). Using such general
vertices will help us to keep better track of the couplings in
the NLO calculation and to obtain an understanding of the
underlying structure. Also, it allows us to extend our
calculation to the case of γ or Z boson exchange (for γZ
interference one needs to introduce an even more general
vertex structure that allows different couplings in the
amplitude and its complex conjugate). The case of a W
boson is recovered by setting vq¼aq¼1 and vl ¼ al ¼ 1.
As is very well known, various types of singularities

appear at intermediate stages of the NLO calculation. To

(a) (b)

(c) (d)

FIG. 1. Feynman diagrams for heavy gauge boson production:
(a) leading order, (b) NLO virtual correction, (c) NLO real
emission, (d) NLO qg scattering. Crossed diagrams are not
shown.
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treat these, we choose dimensional regularization with d ¼
4 − 2ε dimensions. This means that we have to deal with
subtleties that occur in Dirac traces involving γ5 or in the
presence of the Levi-Civita tensor ϵμνρσ when d ≠ 4. γ5
appears in the Wqq̄0-vertex [see (14)] and also acts as
projection operator onto definite helicity states of incom-
ing quarks or antiquarks. Likewise, the Levi-Civita
tensor projects onto gluon helicity states. We adopt
the ’t Hooft, Veltman, Breitenlohner, Maison (HVBM)
scheme of [24,25], which basically recognizes the four-
dimensional nature of γ5 and ϵμνρσ, separating the usual
four space-time dimensions from the additional d − 4 ¼
−2ε spatial ones. Technically, we compute Dirac traces
using the TRACER package of [26]. We also follow
Refs. [27,28] to use a symmetrized version of the
W-fermion vertex.
Because of the distinction between four- and ðd − 4Þ-

dimensional subspaces in the HVBM scheme, the squared
matrix elements for the partonic processes will contain
regular d-dimensional scalar products of the external
momenta, but also additionally ðd − 4Þ-dimensional ones.
The latter have to be properly taken into account when the
phase space integration is performed. As it turns out, for the
unpolarized cross sections all such additional terms are
either absent or integrate to zero, i.e. are ofOðεÞ after phase
space integration. However, in the polarized case, they do
contribute, and in fact a finite additional subtraction is
required in the procedure of factorization of collinear
singularities in order to maintain relations such as (7)
beyond LO. The deeper reason for this is that the γ5 and
ϵμνρσ definitions of [24,25], although algebraically consis-
tent, cause violation of helicity conservation at fermion-
boson vertices, which has to be corrected for. Since this is
very well established in the literature (see, for example,
Refs. [29–31]) we shall not go into any further detail here
but only mention the salient features when they become
relevant in the course of the calculation.

B. Born-level cross section

Thanks to (7), we can easily develop the calculations of
the unpolarized and polarized cross sections in parallel.
Up to the subtleties just mentioned, it is sufficient to
present details only for the unpolarized case. The lowest-
order contribution to the cross section comes from the
2 → 2 scattering process qq̄0 → lνl. The diagram is
shown in Fig. 1(a). As before, we use l for the observed
charged lepton, regardless of its charge. We shall see
below that it is possible to formulate a partonic cross
section in this generic way, despite the fact that the
“lepton” can be either a particle or an antiparticle. We
also always refer to the corresponding neutrino or anti-
neutrino as the “neutrino” and denote it by νl. Since it
remains unobserved, we integrate over its phase space.
This leads to an overall factor δð1 − wÞ for the Born cross
section, so that

d2σ̂ð0Þqq̄0

dvdw
¼

dσ̂ð0Þqq̄0

dv
δð1 − wÞ; ð15Þ

as we have anticipated in (13). Using the general vertex
structure given in Eq. (14), we find that two combinations
of the couplings appear in the expression for the cross
section, which are given by

C1 ¼ ðv2q þ a2qÞða2l þ v2lÞ þ 4aqalvqvl;

C2 ¼ ðv2q þ a2qÞða2l þ v2lÞ − 4aqalvqvl: ð16Þ

We recall that in the case of an exchanged W� boson, we
have vq ¼ aq ¼ vl ¼ al ¼ 1 and hence always C1 ¼ 8

and C2 ¼ 0. However, it is useful to keep C2 in the
calculation as it allows us to easily switch between W−

and Wþ production. The reason for this becomes clear
when we write down the unpolarized Born cross section:

dσ̂ð0Þqq̄0

dv
¼ jUqq0 j2s

8πNc

�
GFM2

Wffiffiffi
2

p
�

2 C1ð1−vÞ2þC2v2

ðs−M2
WÞ2þΓ2

WM
2
W
; ð17Þ

where Nc ¼ 3, GF ¼ ffiffiffi
2

p
g2W=ð8M2

WÞ is the Fermi constant,
andMW and ΓW are theW boson mass and decay width. Let
us consider now the partonic channel ud̄ → eþνe. For this
indeed Eq. (17) provides the correct cross section when
C1 ¼ 8 and C2 ¼ 0. In this way the cross section is
proportional to ð1 − vÞ2, as required by the V − A structure
of the interaction and angular momentum conservation.
For dū → e−ν̄e, on the other hand, the cross section has
to be proportional to v2, rather than ð1 − vÞ2. This is
immediately realized by interchanging C1 and C2 in
Eq. (17), and subsequently setting again C1 ¼ 8 and
C2 ¼ 0. Equivalently, and even more simply, we can just
choose in (17) C1 ¼ 8; C2 ¼ 0 for ud̄ → eþνe and C1 ¼
0; C2 ¼ 8 for dū → e−ν̄e to obtain the correct cross sections.
We note that the cross sections for the reactions d̄u → eþνe
and ūd → e−ν̄e can be obtained by simple “crossing” t↔ u,
or v↔ 1 − v. Again this may also be achieved byC1 ↔C2.
All these considerations also hold at NLO, where the cross
section still depends only on the two combinations C1

and C2.
The denominator in Eq. (17) represents the standard

Breit-Wigner form of the propagator. One often also uses
the form (see [32])

1

ðs −M2
WÞ2 þ Γ2

Ws
2=M2

W
; ð18Þ

which may be obtained from the one given in (17) by the
simple rescalings M2

W → M2
W=ð1þ Γ2

W=M
2
WÞ, ΓWMW →

ΓWMW=ð1þ Γ2
W=M

2
WÞ and multiplication of the cross

section by 1=ð1þ Γ2
W=M

2
WÞ. This also holds at NLO.

The numerical difference between these two forms of
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the propagator is very small and is negligible for our
purposes.

C. Real 2 → 3 corrections

At NLO, we first consider the 2 → 3 real-gluon emission
process qq̄0 → lðνlgÞ, where the gluon and the neutrino
remain unobserved. One of the two relevant Feynman
diagrams is shown in Fig. 1(c). All external particles can be
considered as massless, so that the kinematics and the
phase space are as usual for single-inclusive calculations.
The three-particle phase space in 4 − 2ε dimensions may be
written as [29,31]

d2Φ3

dvdw
¼ s
ð4πÞ4Γð1−2εÞ

�
4π

s

�
2ε

v1−2εð1−vÞ−εw−εð1−wÞ−ε

×
Z

π

0

dθ1

Z
π

0

dθ2 sin1−2ε θ1 sin−2ε θ2

×
1

Bð1=2;−εÞ
Z

1

0

dzffiffiffiffiffiffiffiffiffiffi
1− z

p z−ð1þεÞ; ð19Þ

where v and w have been defined in Eq. (11) and where θ1
and θ2 are the polar and azimuthal angles of the neutrino in
the rest frame of the neutrino-gluon pair. The integration
variable z is specific to the treatment of γ5 and ϵμνρσ in the
HVBM scheme. It is given by z≡ 4k̂2=ðs23 sin2 θ1 sin2 θ2Þ,
where s23 ¼ svð1 − wÞ and k̂2 is the square of the (d − 4)-
dimensional parts of the neutrino and gluon momenta,
which are the same in the adopted frame. It is thus the only
(d − 4)-dimensional invariant in the calculation [29,31].
Note that the z-integral cancels against the beta function in
the last line of (19) for all terms in the squared matrix
element that have no dependence on k̂2.
Since the lepton pair is produced via an intermediate W

boson, a propagator with the momentum pl þ pνl of theW
boson appears in the amplitude for the process. As a result,
the squared matrix element jMj2 contains the overall factor

1

ðs12 −M2
WÞ2 þ Γ2

WM
2
W
; ð20Þ

with the leptons’ pair mass squared:

s12 ≡ ðpl þ pνlÞ2: ð21Þ

s12 is a function of the angles θ1 and θ2. Since the neutrino
is not observed, the propagator will be subject to integration
over the phase space. We write it in the following way:

1

ðs12 −M2
WÞ2 þ g2

¼ 1

2ig

�
1

s12 −M2
W − ig

−
1

s12 −M2
W þ ig

�
; ð22Þ

where g≡ ΓWMW . After this partial fractioning, there are
only terms in jMj2 with at most one power of s12 in the
denominator, either 1=ðs12−M2

W−igÞ or 1=ðs12−M2
WþigÞ.

They are usually accompanied by other Mandelstam
variables that also depend on θ1 and θ2. The ensuing terms
may be readily integrated using the integrals

Iðk;nÞ ¼
Z

π

0

dθ1

Z
π

0

dθ2 sin1−2ε θ1 sin−2ε θ2

×
1

ðaþ b cos θ1ÞkðAþ B cos θ1 þ C sin θ1 cos θ2Þn
ð23Þ

tabulated in the Appendix of Ref. [33]. The results contain
logarithms of various complex arguments which may be
combined to produce manifestly real results. This pro-
cedure is rather tedious; we have performed numerous
numerical checks to ensure its correctness. For terms with
dependence on k̂2 the z integration in (19) is still trivial.
The result may then be further integrated using (23).
The additional power of sin2 θ1 sin2 θ2 arising from the
z-integral can be easily accommodated by shifting ε →
ε − 1 in (23).
After integration over phase space the result for the real-

gluon emission contribution contains singularities in 1=ε.
These occur whenever we have a term in jMj2 with at least
a factor of 1=t3 or 1=u3, where

t3 ¼ ðpq − pgÞ2; u3 ¼ ðpq̄0 − pgÞ2: ð24Þ

The poles arise when the gluon becomes collinear with the
incoming particles, and/or when it becomes soft. The
collinear singularities arise directly in the angular integra-
tions. A soft singularity is equivalent to the invariant mass
squared of the two unobserved particles becoming small,
i.e. s23 ¼ svð1 − wÞ → 0, or equivalently w → 1. To make
also the soft divergences manifest, we use the standard
expansion

ð1 − wÞ−1−ε ¼ −
1

ε
δð1 − wÞ þ 1

ð1 − wÞþ
− ε

�
logð1 − wÞ

1 − w

�
þ
þOðε2Þ; ð25Þ

where the “plus” distributions are defined as usual by

Z
1

0

dwfðwÞ½gðwÞ�þ ¼
Z

1

0

dw½fðwÞ − fð1Þ�gðwÞ: ð26Þ

The final expression contains quadratic (1=ε2) poles as well
as single (1=ε) ones. We note that due to the finite width ΓW
of the W boson, final-state singularities never occur.
The NLO contributions associated with qg → lνq0

scattering at NLO ([Fig. 1(d)] can be integrated in the
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same way as described above. They develop only single
poles in 1=ε since soft singularities are absent here.

D. Virtual correction and factorization of
collinear singularities

At NLO, the interference of the virtual diagrams [see
for example Fig. 1(b)] with the Born diagram contributes.
As may be inferred from [27,34], the first-order virtual
corrections only modify the basic qq̄0W vertex by a
multiplicative factor of the form 1þOðαsÞ. Therefore,
when computing the interference with the Born diagram,
the result will be twice the Born cross section multiplied by
this factor. In our notation, we have from [34]

dσ̂ð1Þ;virtqq̄0

dvdw
¼ CF

dσ̂ð0Þ;εqq̄0

dv
δð1 − wÞ

�
−

2

ε2
−
3

ε
− 8þ π2

�

×

�
4πμ2

s

�
ε Γð1þ εÞΓ2ð1 − εÞ

Γð1 − 2εÞ ; ð27Þ

where CF ¼ 4=3. It is important to take into account here
that the Born cross section is to be computed in 4 − 2ε
dimensions, where it is given by

dσ̂ð0Þ;εqq̄0

dv
¼ jUqq0 j2s

8πNc

�
GFM2

Wffiffiffi
2

p
�

2
�
4π

s

�
ε ðvð1 − vÞÞ−ε

Γð1 − εÞ

×
C1ð1 − vÞ2 þ C2v2 − C3ε

ðs −M2
WÞ2 þ Γ2M2

W
: ð28Þ

Compared to the four-dimensional expression (17) a new
combination of the vector and axial vertex factors appears:

C3 ¼ ðal − vlÞ2ðaq − vqÞ2: ð29Þ

As it turns out, this combination appears also in the
real-emission contribution and in the factorization sub-
traction discussed below, in such a way that the final result
for the NLO correction only contains the combinations C1

and C2 given in (16). We furthermore note that the spin-
dependent Born cross section in 4 − 2ε dimensions with an

incoming polarized quark, dΔσ̂ð0Þ;εqq̄0 =dv, is the negative of

dΔσ̂ð0Þ;εqq̄0 =dv in (28), but with C3 ¼ 0. This violation at
order OðεÞ of the relations in (7) and hence of helicity
conservation is typical of intermediate results in the HVBM
scheme [29,31].
Adding the real and virtual contributions, the double

poles in ε cancel. We are left with single poles associated
with collinear gluon emission. According to the factoriza-
tion theorem, these may be absorbed into the parton
distribution functions by a suitable subtraction which we
perform in the MS scheme. This introduces dependence on
a factorization scale μF. In the upper row of Fig. 2, one of
the two initial-state collinear situations for the 2 → 3 qq̄0

channel is shown. Here, the variable x denotes the
momentum fraction of the incoming quark after radiating
a gluon. The required subtraction is of the form

∼ 1
εPqq ⊗ dσ̂ð0Þ;εqq̄0 , where Pqq is a LO Altarelli-Parisi split-

ting function [35] and dσ̂ð0Þ;εqq̄0 again the Born cross section
for the process qq̄0 → lνl computed in 4 − 2ε dimensions.
More precisely, in the case of the contribution shown in the
upper part of Fig. 2, in the unpolarized case, we have to
subtract the term

1

vs

dσ̂ð1Þ;factqq̄0

dvdw
¼

Z
1

0

dx
dσ̂ð0Þ;εqq̄0 ðxs; xt; u; εÞ

dv

×Hqqðx; μFÞδðxðsþ tÞ þ uÞ; ð30Þ

where the MS scheme is defined by

Hqqðx;μFÞ¼
�
−
1

ε
þ γE− log4π

��
μ2F
s

�−ε
PqqðxÞ; ð31Þ

with γE the Euler constant and with

PqqðxÞ ¼ CF

�
1þ x2

ð1 − xÞþ
þ 3

2
δð1 − xÞ

�
: ð32Þ

Standard MS factorization requires the splitting function
to be computed in four dimensions. After the collinear
subtractions have been performed, we end up with the final
NLO result in the MS scheme.
If the incoming quark is polarized, the subtraction is

similar, but with two crucial differences: First, one needs
the spin-dependent Born cross section in 4 − 2ε dimen-
sions, given as discussed above by the negative of the
unpolarized one in (28) but with C3 ¼ 0. In addition, as
discussed in Refs. [29–31], in order to correct for violation
of helicity conservation in the HVBM scheme, one needs to
use the splitting function

FIG. 2. (Upper row) Representative initial-state collinear con-
tribution for the qq̄0 channel. (Lower row) Factorization of the
final-state collinear singularity which is necessary for the process
with an intermediate photon.
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ΔPqqðxÞ ¼ CF

�
1þ x2

ð1 − xÞþ
þ 3

2
δð1 − xÞ þ 4εð1 − xÞ

�

ð33Þ

in the factorization subtraction. With these differences
taken into account, the final spin-dependent NLO partonic
cross sections respect the relations in (7), as they should.
As already mentioned, in the case of an exchangedW or

Z boson one does not encounter any final-state singular-
ities. Effectively, the widths of the bosons act as regulators
here. On the other hand, for an intermediate photon—
which presents one of the backgrounds—a final-state
singularity would occur if the leptons were massless, when
the photon goes on its mass shell. Keeping a finite lepton
mass is well beyond the scope of this work and is also not
necessary since the pure-photon contribution is in any case
rather small. Also, because of parity conservation, it is only
present in the unpolarized cross section and not in the
single-spin one. The artificial singularity that one encoun-
ters in this channel for massless leptons may be avoided for
instance by imposing a cut on the invariant mass of the
outgoing lepton pair [18], or it may simply be subtracted in,
say, the MS scheme. Effectively, the latter approach, which
we adopt here, introduces a (QED) photon-to-lepton
fragmentation function [36]. The diagrammatic situation
for the final-state collinear splitting is shown in the lower
row of Fig. 2. The subtraction to be performed is given by

1

sv

dσ̂ð1Þ;photon fact
qq̄0

dvdw
¼ −

Z
1

0

dx
dσ̂ð0Þqq̄→γgðs; t=x; u=x; εÞ

dv

×Hlγðx; μFÞδ
�
sþ tþ u

x

�
; ð34Þ

where dσ̂qq̄→γg denotes the Born-level cross section for the
process qq̄ → γg in d ¼ 4 − 2ε dimensions, and where

Hlγðx; μFÞ ¼
�
−
1

ε
þ γE − ln 4π

�
PlγðxÞ

�
s
μ2F

�
ε

; ð35Þ

with PlγðxÞ the appropriate γ → l splitting function.
Including the thus defined subtraction renders the full
NLO cross section finite. We stress again that the pure-
photon contribution is small, except at large lepton rap-
idities. It can in fact be vetoed experimentally because it is
characterized by two charged leptons that almost coalesce.
We also note that the γZ interference contribution does not
produce any final-state singularities even for massless
leptons.
Finally, for qg scattering, there are no virtual corrections

at OðαsÞ. To obtain the finite cross section for these
partonic channels, one therefore only needs the appropriate
subtractions for the initial-state collinear singularities.

E. Final results

Our final analytical NLO expressions for the processes
qq̄0 → lX, qg → lX through W boson exchange are
presented in the Appendix. We briefly summarize a few
features of the result for the qq̄0 → lX channel. First of
all, it contains the usual distributions in ð1 − wÞ, which
dominate the cross section at w → 1. These multiply the
Born cross section:

d2σ̂ð1Þqq̄0

dvdw
≈

w→1 dσ̂ð0Þqq̄0

dv
CF

�
8

�
logð1 − wÞ

1 − w

�
þ
−

4AðvÞ
ð1 − wÞþ

þ BðvÞδð1 − wÞ
�
; ð36Þ

where the coefficients AðvÞ; BðvÞ may be found from
Eq. (A4) in the Appendix. The terms with plus distributions
represent the well-known threshold logarithms for the
process that arise when the incoming partons have suffi-
cient energy to just produce the observed final state, so that
any substantial gluon radiation is kinematically inhibited.
The other terms in the NLO result have a more

complicated structure. The integration of terms containing
(20) gives rise to three different types of denominators. We
write them by introducing the function

PðzÞ≡ zs2

ðzs −M2
WÞ2 þ Γ2

WM
2
W
: ð37Þ

We then encounter the terms

Pi ≡ PðziÞ ði ¼ 1; 2; 3Þ; ð38Þ

where

z1 ¼ 1; z2 ¼ w; z3 ¼
1 − v
1 − vw

: ð39Þ

Evidently, P1 essentially just corresponds to the propagator
in the Born cross section. The other two propagators are
similar and reduce to P1 in the limit w → 1.
In addition to the new propagators arising at NLO, we

also find several logarithms of the propagator terms. The
logarithms that occur are

log

�ðws −M2
WÞ2 þ Γ2

WM
2
W

M4
W þ Γ2

WM
2
W

�
;

log

�ð 1−v
1−vw s −M2

WÞ2 þ Γ2
WM

2
W

M4
W þ Γ2

WM
2
W

�
;

log

�ðð1 − vþ vwÞs −M2
WÞ2 þ Γ2

WM
2
W

M4
W þ Γ2

WM
2
W

�
: ð40Þ

As seen in Eq. (A1), they are accompanied by inverse
tangent functions resulting from the imaginary parts of the
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arguments of the logarithms arising in phase space inte-
gration. All these terms are multiplied by simple functions
of v and w and by one of the three types of propagators
given above. The result for the channel qg → lX does not
contain threshold distributions but does have logarithms of
the type in Eq. (40); see the Appendix for further details.

III. PHENOMENOLOGICAL RESULTS

We start with the unpolarized cross section for pp
scattering at RHIC at

ffiffiffi
S

p ¼ 510 GeV. Figure 3 shows
our LO (dashed lines) and NLO (solid lines) results for the
cross section dσ=dpT for lþ and l− production through
intermediate W bosons. We have integrated over jηj ≤ 1 in
the charged lepton’s rapidity. We have used the NLO parton
distributions of [37] and the renormalization and factori-
zation scales μR ¼ μF ¼ pT . Our adopted values for the W
mass and width are MW ¼ 80.398 GeV, ΓW ¼ 2.141 GeV
(later we will also use MZ ¼ 91.187 GeV and ΓZ ¼
2.49 GeV for the Z boson).
Clearly, the NLO corrections are significant everywhere.

They have moderate size below and around the Jacobian
peak at pT ≈MW=2 and become very large well above the
peak. A close inspection of the results in Fig. 3 reveals a
hint of a “shoulder” in the NLO cross sections just above
pT ¼ MW=2. This shoulder is a true feature of the NLO
results. It comes about in two ways: First, the qq̄0 channel
itself has nontrivial structure here. Near pT ¼ MW=2, there
is a complicated interplay between positive contributions
by terms with distributions in ð1 − wÞ (“plus distributions”
or δ function) in Eq. (A4), and contributions by subleading
terms in ð1 − wÞ, among them the terms involving the
functions J and K, which are negative around pT ∼MW=2
and become positive just below and above the Jacobian
peak. This means that the qq̄0 channel is sensitive to the

exact mix of positive and negative contributions. Secondly,
the qg process makes a negative contribution below and
around pT ¼ MW=2 and then becomes positive. This
intricate interplay of the various contributions is also the
reason why the height of the peak is reduced at NLO as
compared to LO. We note that for increasing energy

ffiffiffi
S

p
the

shoulder becomes even more pronounced and in fact
quickly turns into a double-peaked structure at NLO; see
also [38]. This at first sight surprising feature is a
manifestation of the well-established fact [39] that the
region around the Jacobian peak cannot be controlled
within a fixed-order calculation. Among other things, it
is sensitive to small transverse momenta qT of the inter-
mediate W boson. There are large double-logarithmic
corrections to the qT-distribution of W bosons at low qT,
which need to be taken into account to all orders if one
wants to address this region [40]. Such a resummation is
incorporated in the RHICBOS code [17]. These issues
become relevant for precision determinations of the mass of
the W boson from the lepton’s pT spectrum near the
Jacobian peak [41]. For RHIC, they are not really relevant
since, if one is interested in determining polarized parton
distributions, there is no need to focus on the region around
the Jacobian peak. Rather, it is advisable to integrate over a
sizable range in pT , so that the Jacobian peak region
constitutes only a rather small part of the cross section, and
to study the distribution of the charged lepton in rapidity.
This is the strategy adopted by the RHIC experiments. We
will therefore consider only lepton rapidity distributions in
the remainder of this paper. We plan to present a more
detailed analysis of the region around the Jacobian peak in
future work.
In order to check the validity of our analytical results and

their numerical evaluation, we have performed extensive
comparisons to high-statistics runs of the NLO code CHE
presented in Ref. [18], both for the unpolarized and for the
polarized case. We have found excellent agreement. A
representative example is given in Fig. 4, where we show
the spin-dependent cross sections for lþ production at
RHIC, throughWþ boson exchange (left panel) and for the
background channels, Z-boson exchange and γZ interfer-
ence (right panel; the pure-photon channel does not
contribute to the spin-dependent cross section). Both our
analytical (solid lines) and the CHE (histograms) results are
shown. We have followed [18] to use the polarized parton
distributions of [11] (referred to as DSSV08) and the
unpolarized ones of [42] which were also the baseline
set in the DSSV08 global analysis. Furthermore, the figure
is for

ffiffiffi
S

p ¼ 500 GeV, and the transverse momentum of the
observed charged lepton has been integrated over the range
of 20 < pT < 60 GeV. As in [18] we have chosen the
renormalization and factorization scales as μR ¼ μF ≡ μ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þM2

W

p
=2 and assumed nf ¼ 4 active quark flavors. In

Fig. 4 the error bars of the results shown for CHE correspond

FIG. 3 (color online). LO (dashed lines) and NLO (solid lines)
cross sections at RHIC (

ffiffiffi
S

p ¼ 510 GeV) for lþ and l−-
production through W� boson exchange.
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to numerical integration uncertainties. The uncertainties in
our new numerical calculation are smaller than the widths
of the lines. Since our results are largely analytical whereas
the code of [18] is based on a standard Monte Carlo
integration with numerical cancellation of singularities, our
new code produces the results shown in about 2 orders of
magnitude less time. Of course, Monte Carlo based codes
are more flexible in general, allowing the implementation
of various additional kinematical cuts and observables if
necessary.
We now turn to the spin asymmetries AL which are the

quantities of primary interest in RHIC’s W physics pro-
gram. Figure 5 shows our NLO results at

ffiffiffi
S

p ¼ 510 GeV
as functions of η. The cross sections have been integrated
over pT ≥ 30 GeV, as appropriate for comparison to the
PHENIX data [3,4]. We have now used the new set of

polarized parton distributions of Ref. [10] (referred to as
DSSV14). This set primarily contains updated information
on the nucleon’s spin-dependent gluon distribution, which
is less relevant for weak boson production. However, it is
also based on new results from inclusive and semi-inclusive
lepton scattering [9], so that it offers new information on
the quark and antiquark helicity distributions as well. We
use the unpolarized parton distributions of [37]. The solid
lines in the figure show our results for charged-lepton
production via W decay for the scale choice μ ¼ MW=2,
while the dotted and dot-dashed lines correspond to the
choices μ ¼ pT and μ ¼ MW , respectively. One can see that
the scale dependence of the asymmetries is extremely
weak, which is one of the reasons whyW boson production
at RHIC is an excellent and theoretically well-controlled
probe of nucleon spin structure. In Fig. 5 we also

FIG. 4 (color online). Comparison of our analytical results with the corresponding ones from CHE [18] for the polarized cross sections
Δσ for lþ production through Wþ decay (left panel) and through intermediate Z or γ. We have considered here pp collisions atffiffiffi
S

p ¼ 500 GeV and have integrated over 20 ≤ pT ≤ 60 GeV. As in [18] the parton distributions have been chosen from Refs. [11,42].

FIG. 5 (color online). Single-spin asymmetries Al�
L for negatively (left panel) and positively (right panel) charged leptons as functions

of rapidity at
ffiffiffi
S

p ¼ 510 GeV. We have integrated over the range pT ≥ 30 GeV. The solid lines show the results when the lepton
originates exclusively fromW bosons, at the scale μ ¼ MW=2. The dotted and dot-dashed lines correspond to the scale choices μ ¼ pT
and μ ¼ MW , respectively (note that the lines for the various scales are almost indistinguishable). For the dashed lines the background
from exchanged Z bosons and photons has been included, using the scale μ ¼ MW=2. Finally, the long-dashed lines show the spin
asymmetries for Z bosons and photons alone, without the W boson contributions, this time for 25 < pT < 50 GeV. We have used the
DSSV14 polarized parton distributions [11] and the unpolarized ones of [37].
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investigate the impact of the “background” presented by Z
and γ exchange. The dashed lines show the NLO results for
the scale μ ¼ MW=2, now including the Z and photon
contributions. As is known from previous studies [17,18],
the background channels dilute the spin asymmetries some-
what, which is mostly due to the increase of the unpolarized
cross section in the denominator of the asymmetry. We note
that the STAR experiment at RHIC is able to identify and
subtract this background, using data as well as Monte Carlo
estimates, so that the data can be directly compared to
calculations based on only intermediate W bosons. For
comparisons to PHENIX data, the Z=γ background needs to
be included. Figure 5 also shows the spin asymmetries for Z
and γ exchange alone, in this case integrated over 25 <
pT < 50 GeV corresponding to conditions in STAR [2].
Using our newNLOcode,we finally compare in Fig. 6 the

results for various sets of spin-dependent parton distribu-
tions to the published STAR [2] and PHENIX [3] spin
asymmetry data taken at

ffiffiffi
S

p ¼ 510 GeV. The STAR AW
L

data have been presented for various η, sampled over the
range 25 < pT < 50 GeV, of lepton transverse momenta,
and our theoretical results shown are adapted to these
conditions. We note that for PHENIX the cut on transverse
momentum is different,pT > 30GeV, and the asymmetry is
for electrons or positrons and hence includes the contribu-
tions from photons and Z bosons, as we just discussed.
These are, however, relatively small effects (see Fig. [5]), so
we show the PHENIX data point along with our results and
the STAR points. In view of the results shown in Fig. 5 the
scale choice hardly matters; we use μR ¼ μF ¼ MW=2.
The sets of spin-dependent parton distributions we use
are from [10,11] (DSSV08 and DSSV14), from [20]
(NNPDFpol1.1), as well as the “statistical” parton

distributions of [43,44] and a much earlier set [45] known
as the “GRSV valence scenario.” From the figure we draw
the following observations:
(a) All sets describe the Wþ asymmetry data rather well.

The main reason for this is that the spin asymmetry is
largely driven by the polarized up quark distribution
which is relatively well constrained by DIS data and
hence similar in all sets.

(b) Among the various sets, NNPDFpol1.1 is the only one
for which the STAR data were already included in the
analysis, constraining the light sea quark helicity
distributions. As a result, the data are quite well
described by the set, especially when one includes
the corresponding uncertainty estimates [20] that we
do not show here. Note, however, that information
from semi-inclusive lepton scattering is not included
in the NNPDFpol1.1 set.

(c) At η ≤ 0, the two DSSV sets show W− asymmetries
that are below the data. Since the DSSV14 set contains
the latest information available from (semi-inclusive)
DIS, this hints at the interesting possibility of a tension
between the DIS and RHIC data, the latter favoring a
larger Δū distribution (see also the discussion in [20]).
It has to be emphasized, however, that we do not
display here any uncertainties for the DSSV set; as
shown in [2,11], the main DSSV08 uncertainty band is
such that it just about touches the lower end of the
error bars of the data points. In this sense, it is
premature to draw any conclusions regarding such a
tension. Clearly, it will be interesting to follow up on
this issue in the context of a new global analysis,
especially when additional experimental information
becomes available.

(d) In the framework of the statistical parton distributions,
the helicity distributions are obtained along with the
unpolarized ones and depend on only very few
parameters to be determined from data. As one can
see from Fig. 6 (and as discussed in [44]), the model
describes the RHIC data quite well.

(e) The GRSV valence scenario of [45] describes the W−

asymmetry data strikingly well. The main distinctive
features for this set are assumptions about the breaking
of SU(3) in the relations between nucleon spin
structure and hyperon β-decays, and the ansatz [46]

Δd̄ðx;Q2
0Þ

Δūðx;Q2
0Þ

¼ Δuðx;Q2
0Þ

Δdðx;Q2
0Þ

ð41Þ

at a low initial scale Q0. Since Δu and Δd are known
to have opposite signs, the latter ansatz forces the ratio
Δd̄=Δū to be negative. This requirement, along with
the condition Δūþ Δd̄ < 0 imposed by the DIS data
and the assumptions about SU(3) breaking, is realized
in this model by a fairly large positive Δū distribution
and a negative (and even larger in absolute value) Δd̄
one. Evidently, the STAR data prefer such a sizable

FIG. 6 (color online). Comparisons of NLO results for AW�
L for

various sets of helicity parton distributions [10,11,20,43,45] to
the STAR data [2] taken at

ffiffiffi
S

p ¼ 510 GeV and to the PHENIX
mid-rapidity points for electrons/positrons with jηj ≤ 0.35 [3].
The cut 25 < pT < 50 GeV has been applied on the lepton’s
transverse momentum. Note that the PHENIX points are for pT >
30 GeV and includes the contributions from photons and Z
bosons. We have chosen the scales μR ¼ μF ¼ MW=2.
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positive Δū. We note that one of the sets of Ref. [47]
has a similar Δū distribution and hence describes the
W− asymmetry data similarly well [18]. It will be
interesting to see whether also the large negativeΔd̄ of
[45] is realized; unfortunately, the Δd̄ contribution to
the Wþ asymmetry is typically overwhelmed by the
Δu one. Note that a negative Δd̄ pulls the Wþ
asymmetry to more negative values [see (4) in the
Introduction], which may explain why the GRSV
valence scenario shows the most negative asymmetry
of all the sets at η ≤ 0. Needless to say, the GRSV
valence scenario has not been confronted with the
latest (semi-inclusive) DIS data.

IV. CONCLUSIONS

We have presented a new analytical NLO calculation of
the partonic cross sections for single-inclusive lepton
production at RHIC, when the lepton originates from the
decay of an intermediate electroweak boson, especially aW
boson. Our numerical code based on analytical phase space
integration is much faster than existing Monte Carlo
integration based codes. In this way, we hope that our
code will be a valuable tool for future global analyses of the
proton’s helicity parton distributions that include the new
high-precision data for AW

L asymmetries obtained at RHIC.
Our results may also be useful to obtain insights into the
analytical structure of the partonic cross sections, for
example in terms of their threshold logarithms or their
behavior in the vicinity of the Jacobian peak.
We have also presented new comparisons of the latest

RHIC data with the NLO predictions for some of the sets of
polarized parton distributions available in the literature. In
line with observations in the earlier literature we have found

that the data prefer a rather sizable positive Δū helicity
distribution in the proton.
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APPENDIX: ANALYTICAL NLO RESULTS

In this Appendix, we present some of our explicit NLO
results. We first consider the qq̄0 channel when an
intermediate W− boson is produced (for example through
dū scattering), for which effectively C1 ¼ 0; C2 ¼ 8 in
(16) [see discussion after Eq. (17)]. We define the
functions

KðzÞ≡ arctan

�
ΓWMW

zs −M2
W

�
þ π Θ ðM2

W − zsÞ;

JðzÞ≡ log

�ðzs −M2
WÞ2 þ Γ2

WM
2
W

M4
W þ Γ2

WM
2
W

�
−
2MW

ΓW
KðzÞ; ðA1Þ

with the usual (Heaviside) step function. In addition to
the values z1¼1;z2¼w;z3¼ð1−vÞ=ð1−vwÞ of Eq. (39),
we introduce

z0 ¼ 0; z4 ¼ 1 − vþ vw; ðA2Þ
and we set

Ji ≡ JðziÞ; Ki ≡ KðziÞ: ðA3Þ
We then find for production of a W−:

sd2σ̂ð1Þqq̄0

dvdw
¼ jUqq0 j2

πNc

�
GFM2

Wffiffiffi
2

p
�

2

CF

�
v2P1

�
2ð1þ w2Þ

�
logð1 − wÞ

1 − w

�
þ
− 2 logð1 − vwÞPqqðwÞ

CF

þ
�
π2 − 8þ

�
3

2
þ 2 logð1 − vÞ

�
log

1 − v
v

�
δð1 − wÞ þ 1þ w2

1 − w
ðJ0 − J2 − J3 þ J4 þ κðK0 − K2 − K3 þ K4ÞÞ

�

−
v
2

�
J0 − 2J3 þ J4

1 − vw
−

J0 − J4
1 − vþ vw

�
þ v2

�
P2

�
ð1þ w2Þ

�
logð1 − wÞ

1 − w

�
þ
−
PqqðwÞ
CF

log

�
μ2F
vs

�
þ 1 − w

−
1

2

1þ w2

1 − w

�
J0 − 2J2 þ J4 þ

κ

w
ðK0 − 2K2 þ K4Þ

���
þ v3w2

1 − vw

�
v → 1 − vw;w →

1 − v
1 − vw

��
; ðA4Þ

with the splitting function Pqq of Eq. (32), and with

κ ≡ 2MWðΓ2
W þM2

WÞ
ΓWs

: ðA5Þ

Note that despite appearance the expression is perfectly
well regularized at w ¼ 1.

By applying crossing one obtains the corresponding
cross section for q̄0q → W−g. Crossing is achieved by
changing v → 1 − vw, w → ð1 − vÞ=ð1 − vwÞ and multi-
plying the result by the Jacobian v=ð1 − vwÞ. We do not
give the crossed result explicitly here.
Writing the NLO partonic qq̄0 cross section for general

C1 and C2 in the form
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C1dσ̂
ð1Þ
1 þ C2dσ̂

ð1Þ
2 ; ðA6Þ

we find that dσ̂ð1Þ2 ¼ ½dσ̂ð1Þ1 �crossed. Since the result for Wþ

production is obtained in our calculations by setting
C1 ¼ 8; C2 ¼ 0 (see Sec. II B), we thus have

dσ̂ð1Þqq̄0→Wþg ¼ 8dσ̂ð1Þ1 ¼ dσ̂ð1Þq̄q0→W−g;

dσ̂ð1Þq̄0q→Wþg ¼ 8½dσ̂ð1Þ1 �crossed ¼ dσ̂ð1Þq0q̄→W−g: ðA7Þ

We remind the reader that the W� cross section for a
polarized incoming quark differs just by a sign from the
corresponding unpolarized one [see Eq. (7)] while that for
an incoming polarized antiquark involves no sign change.
The cross sections for intermediate Z bosons may be
constructed from (A6), using (A4) and its crossed variant
and inserting the appropriate coupling factors C1 and C2 in
each case.
Secondly, we also present the result for the channel gq̄ →

W−q̄0 in the unpolarized and the polarized case:

sd2σ̂ð1Þgq̄

dvdw
¼ TRjUqq0 j2

πNc

�
GFM2

Wffiffiffi
2

p
�

2

v2P2

�
2ð1 − wÞw − PqgðwÞ

×

�
J0 − 2J2 þ J4 þ

κ

w
ðK0 − 2K2 þ K4Þ þ 2 log

�
μ2F

vð1 − wÞs
���

;

sd2Δσ̂ð1Þgq̄

dvdw
¼ −

TRjUqq0 j2
πNc

�
GFM2

Wffiffiffi
2

p
�

2

v2P2

�
2ð1 − wÞ − ΔPqgðwÞ

×

�
J0 − 2J2 þ J4 þ

κ

w
ðK0 − 2K2 þ K4Þ þ 2 log

�
μ2F

vð1 − wÞs
���

; ðA8Þ

where TR ¼ 1=2 and

PqgðxÞ ¼
1

2
ðx2 þ ð1 − xÞ2Þ;

ΔPqgðxÞ ¼
1

2
ð2x − 1Þ: ðA9Þ

We note that the terms in square brackets have a similar structure as the penultimate one in (A4). Finally, for qg → W−q0
we find

sd2σ̂ð1Þqg

dvdw
¼ TRjUqq0 j2

πNc

�
GFM2

Wffiffiffi
2

p
�

2
�

v
1 − vw

�
2M2

W

s
ðJ0 − 2J3 þ J4 þ ~κðK0 − 2K3 þ K4ÞÞ

þ P3v2w2

�
2ð1 − ~wÞ ~w − Pqgð ~wÞ

�
J0 − 2J3 þ J4 þ

κ

~w
ðK0 − 2K3 þ K4Þ þ 2 log

�
μ2F

vð1 − wÞs
���

− ðJ0 − 2J3 þ J4Þ
1 − v − vwþ 2v2w − v2w2

1 − vw
−
ð1þ vwÞð1 − 2vþ vwÞ

1 − vw

�

þ v
ð1 − vþ vwÞ2

�
−
M2

W

s
ðJ0 − J4 þ ~κðK0 − K4ÞÞ

1 − 3vþ 2v2 þ 4vw − 3v2wþ v2w2

1 − vþ vw

þ 1

2
ðJ0 − J4Þð1 − vÞð1 − 2vþ 2vwÞ − vð1 − v − 2wþ vwÞ

��
; ðA10Þ

where

~w≡ 1 − v
1 − vw

¼ z3; ðA11Þ
and

~κ ≡ Γ2
W þM2

W

ΓWMW
: ðA12Þ

The corresponding spin-dependent cross section for an incoming polarized quark again just differs by a sign; see (7).
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