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Masses and axial currents of the doubly charmed baryons
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The chiral dynamics of the doubly heavy baryons is solely governed by the light quark. In this paper, we
have derived the chiral corrections to the mass of the doubly heavy baryons up to N3LO. The mass splitting
of 2., and Q. at the N?LO depends on one unknown low energy constant c;. By fitting the lattice masses
of =..(3520), we estimate the mass of Q... to be around 3.726 GeV. Moreover, we have also performed a
systematical analysis of the chiral corrections to the axial currents and axial charges of the doubly heavy
baryons. The chiral structure and analytical expressions will be very useful to the chiral extrapolations of
the future lattice QCD simulations of the doubly heavy baryons.
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I. INTRODUCTION

As one of the most important groups in the baryon
family, the doubly charmed baryons are composed of two
charmed quarks and one light quark (the doubly heavy
baryons =7, 2. and QF. with quark components ccu,
cced and ccs, respectively), which were predicted in the
quark model (see Ref. [1] for a detailed review). In the
past decades, there have been some experimental efforts
in the search of the doubly charmed baryons [2-5].
The SELEX collaboration announced the first observa-
tion of the doubly charmed baryon Z7.(3520) with the
mass M =3519+1MeV and width I' = 3 MeV [2], where
the observed decay mode is = — AfK~zt. Later,
=/.(3520) was confirmed by SELEX in the pD* K~ decay
channel with the mass 3518.7 £ 1.7 MeV [4]. Although
SELEX also reported =(.(3520), these results were not
confirmed by FOCUS [6], BABAR [7], Belle [8] and LHCb
collaborations [9].

The doubly charmed baryons have been extensively
studied with different theoretical approaches. The =,.. mass
was predicted to be 3.48~3.74 GeV in the quark model,
while the .. mass is estimated to be 3.59~3.86 GeV
[10-22]. The Lattice QCD groups also studied these
systems [23-27], where the predicted mass of =.. is
3.51~3.67 GeV and the mass of Q.. is 3.68~3.76 GeV.
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The mass splittings of baryons within the same multiplet
encode important information on their inner structure.
For example, the mass splittings of the light baryons were
reviewed in Refs. [28,29]. In Refs. [30,31], the mass
splitting of the singly heavy baryons was studied within
the framework of the chiral perturbation theory. In
Ref. [32], the authors investigated the mass splitting of
the doubly heavy baryons by considering the heavy diquark
symmetry. Besides the baryon mass, the axial current
and axial charge of the baryons are also very important
observables, which attract lots of attention [33-55].

The experimental search of the doubly charmed baryons
is full of challenges and opportunities. In this paper, we
adopt the chiral perturbation theory to calculate the chiral
corrections to the doubly charmed baryon masses and their
mass splittings, which will be helpful to further exper-
imental exploration of the doubly charmed baryons. Under
the same framework, we also study the chiral corrections to
the axial charge and axial current of the doubly charmed
baryons, which may be measured through the semileptonic
decays of the doubly charmed baryons in the future.

Chiral perturbation theory (yPT) is an elegant framework
to deal with the low energy process in hadron physics. With
the help of the chiral power counting scheme proposed
by Weinberg et al. [56,57], one can consider the chiral
corrections to the physical observables order by order.

In the baryon sector, the baryon mass does not vanish in
the chiral limit. This inherent mass scale breaks the naive
chiral power counting. To solve this issue, various schemes
were proposed such as the heavy baryon yPT, infrared
baryon yPT, and extended on-mass-shell method etc.
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In the heavy baryon yPT, the baryon is treated to be
extremely heavy and acts as a static source [54], which
allows us to take the nonrelativistic limit of the fully
relativistic theory and make expansion in powers of the
inverse baryon mass. For the case of infrared regularization,
the loop integral can be separated into infrared regular
part and infrared singular one [58,59], where the later
one conserves the Weinberg’s power counting rule. In the
extended on-mass-shell method, the power counting break-
ing terms are subtracted and the low energy constants are
redefined [60—63]. In our paper, we use the heavy baryon
xPT approach to investigate the chiral corrections to the
masses and axial currents of the doubly charmed baryons.

This paper is organized as follows. After the
Introduction, we introduce the chiral Lagrangians of the
doubly charmed baryons and its nonrelativistic reduction
in Sec. II. Then we present the calculation details of the
chiral corrections to the masses and axial currents of the
doubly charmed baryons and the corresponding numerical
results in Secs. III and IV respectively. This paper ends
with a summary in Sec. V. We collect the N3LO chiral
corrections to the masses and some lengthy expressions in
the appendix.

II. THE CHIRAL LAGRANGIANS OF THE
DOUBLY CHARMED BARYONS

In order to calculate the chiral corrections to the masses
and axial currents, we need to construct the chiral effective
Lagrangians of the doubly charmed baryons with the help
of chiral, parity and charge conjugation symmetries.
We first introduce the notations U and u to describe the
pseudoscalar meson field, which have the relation

P (x)
U=u?= =, 1
u* = exp <1 7y (1)
where ¢(x) has the definition

7+ \/%77 V2rt V2K*

b =| VI vk VI | )
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V2K V2K — AN

The doubly heavy baryon field y with spin % is a column
vector in the flavor space, i.e.,

e
Sh

— | =t
w=| EL [ (3)
+
QCC
=+ =+ +
where the quark contents of =/;", =/., and Q. are ccu,
ccd, and ccs, respectively.
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TABLE 1. The properties of the building blocks under the
SU(3), x SU(3)g (CH), parity (P) and charge conjugation (C)
transformations.

U u x B i Dy
CH v,UV] VruK' VeyVy VifRVi VofLV, KDy
P U+ MT ){T fL;w fR;w J/ODMV/
C uT ul ){T _( ;I;D T _( ﬁb)T CD;TV—/T
v l/_/ X+ f/:ttb u;l F;t
CH Ky @K' Ky.,K' KfLK' Ku,K'  KI¥K'
—OH KK
Py g e £ - -
c o oy'c A F(fm) W) =(T)"

In Table I, we show the transformation properties of the
building blocks, which include y. y+, fh,. f5. fins 14, T
D, and D,, with the definitions

X =2By(s +ip), (4)
xe=uyu" £uytu, (5)

R =0ur,—0yr, —ilr,. 1], (6)

fiw = 0uly, = 9,1, = i[l,. 1], (7)

fff,/ =u' ,’fyu +u ﬁDuT, (8)

w, = ilu' (0, — ir,)u —u(d, —il,)u'], 9)
r,= % [ (0, — ir,)u+u(d, —il,)u'], (10)
D, =8, +T,—iv), (11)
D,=8,-T,+iv), (12)

N
where r, = v, +a,, l, = v, — a,, and v, v,(, ),aﬂ, s, p are

external c-number fields. Considering the transformation
properties listed in Table I, the chiral Lagrangian of the
doubly heavy baryon can be constructed order by
order, i.e.,

£ :¢<ip_m+%y”y5uﬂ>w, (13)
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C
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LB = W{EIV”75<Z+>”/4 +727”75{Z+v y }
hy
+ s ) v (15)

LY = e irle ) (o )w + ey (row + e 2w
+ e R+ esw =) )y + ey (- )y
e (7 p Y+ esih p oy + -, (16)

where A = A — 1(A) and (A) denotes the trace of A in the
flavor space. In the above Lagrangians, ¢; (i =1, ...,9),
h; (j=1,...,3), and ¢, (k=1,...,8) are the effective
coupling constants. They are sometimes denoted as the low
energy constants (LECs).

Since the doubly heavy baryons are very heavy, we can
take the nonrelativistic limit of the fully relativistic theory
and expands the Lagrangian in the power of the inverse of
the doubly heavy baryon mass. The four-momentum of the
doubly heavy baryon can be written as

Py =mv, + 1, (17)

where v, is the four-velocity and [, the small off-shell
momentum, which satisfies v -/ < m. The baryon field
is decomposed into the light and heavy components
w = e"™(H + h), where #H = H, th = —h.

The generating functional for the relativistic theory reads

expiZly. . v.a.5.p] = [ ay[ap]ldu
x exp{i {S + / d*x(iny + l/‘/n)} }
(18)
where
s — / dxL. (19)

In the terms of the fields H and &, we can rewrite the
original Lagrangian
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L = HAH + hBH + Hy*By°h — hCh.  (20)
A, B and C in Eq. (20) can be expanded in series of terms

of different orders of ¢', where ¢ is the low energy
momentum,

A:A(1)+A(2)+"', (21)
BZB(l)+B(2)+"', (22)
C:C(1)+C(2)+"'. (23)

The expressions of A, BB, C are collected in the Appendix B.
With the replacement

1 .
R = 3 (14 0)e™"*p,
1 .
p= 5 (1 _ /{])elmvocn’
we have
ity +ym = RH + HR + ph + hp. (24)

With ' = h — C~'(BH + p) and after integrating out the
heavy degrees of freedom, the generating functional
becomes
expiZ[R,R,p,p,v,a,s, p|
= /[dH] [dH][du]A, expi[S’ + / d*x(RH + I:IR)],
(25)

where
S = /d4x1:1[.,4+ (yoByo)C'BIJH (26)

and A, is a constant. Then, one expands the matrix C~! in
terms of 1/m

1 _l(UD)—i-gASDM_ C(z)

= (2m)? 2m)?
iv- S, - u)?
S i 2

Finally, the nonrelativistic Lagrangians corresponding to
the action S’ can be expressed as

L= Ly + Loy T L+ L+ (28)

with £/

(i~ HTyH (i =1,2,3.4,...), where
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c c c C . c .
Ty = erlee) + 5 (0 wf) + es(o- ) + 5 0) + 502 + 285 Sl ] + ens = 280 Sif
. &
_HCo e qyipry o 2 . D)2 ng .D. _JA 2 30
9 5t S + 2 (S, DR =~ (s, D = (g (30)

9 9 ¢ v 12 ¢ v 12
Ty = Ml + haSi{e w} + haSi ) = 58, - D85 = v S fly = 258, - D(o4Sy = v*Si){f)
igacy v v e v v QH ) v v
=+ 16m2 (UMSU -V Sﬁ)[v : u’f;ru] 4m2 (U”Sv - v S;b) /juSv D+ 4m2 (UMSH - v Sﬁ)<f/ju>s1/ -D
i
—WSU'DU'DSV'D‘F“', (31)

Ty = er(r) ) + e (xa) + esWh i) + earti il +es(r-) (o) + e (x-) + er(F- A=) + esd- 7~
c2

CcgC
= s (VS5 = VS F (St = S0 [y = 25 (0185 = v SO f (S0 = PSP (f )
2
CcgC
o (onSh = S ) (1S = P SE)f iy = s (00— S ) (0% = ST
ng v v ng v v
(2m)3 (UMSU - v S}:})f}z + (2m)3 v’ (U”Sv -0 SI;)< ;:-/>
-2 - e < (SY — 0S¥ v - DS, - D — ) < (1S4 — v S8) (f5,)v - DS, - D
m
ng v
—723 70 S, - D+ LS, D{x.)S, D~ 1350 DISY. $i1£S, - D
1
—;ﬂs - DISH.S(f£)S, - D =58, D(v- DS, - D+ - (32)
where
Sh = %ysaf‘”vy. (33) P
// \\
. L
The above Lagrangians will be employed to calculate the (a) (b)
chiral correction to the mass and axial current of the doubly -
charmed baryons. / \\\
® &
III. THE CHIRAL CORRECTION TO THE MASS © ,(f)\
OF THE DOUBLY HEAVY BARYON Jp— / k'
’ \\ \ I
With the notations 7 = v - p and & = (p — mv)?, the full ,’ o LA
propagator of the doubly heavy baryon is written as @) )
G i £
= 1 ‘ .
v p—my—Zg(n,&) () (h)
iZy
= & ’ (34) FIG. 1. The Feynman diagrams which contribute to the self-
vep—m=ZyZp(n.§)

energy of doubly charmed baryon. The solid and dashed lines
denote the doubly charmed baryons and goldstone bosons. The
where 23(n, &) denotes the high order contributions to the  solid dot, circle-cross and black box denote the vertices from the

self-energy, which are from Figs. 1(a)-1(h). O(p?, p*, p*) Lagrangians respectively.
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The mass of the doubly charmed baryon is

m = my + X5(0,0). (35)
The renormalization constant reads
Zy = ; (36)
N1 —24(0.0)
with
0Xs(n,
5,(0,0) = 2Z801-9) (37)
M lueo=-00)

The chiral contribution to the self-energy up to next-to-
next-to-leading order (N*>L0) includes three pieces

a Fy 2
22) = _{251<Z> +2¢98i — _Sﬁsikﬂkv}’ (38)
m

PHYSICAL REVIEW D 91, 094030 (2015)

b ) [ dq | ga i
Xpp=IiC 228, - :
Bp =1 BP/(Zﬂ) [FPO 1 q}”'(k—Q)‘f’le
l 94
X ———F—— |—=—S5,"
42—M%+i€[ Fpo q]
cn_ g [v k BM2 —2(v - k,)?
_= - — v-
BP(4”FPO) P u

« [R n (1;’22 )] 2M2 — (v- kuﬂ)

M2 — (v- k)22 arccos <— ”A'f“) } (39)

¢ 1
) = (S (kS k). (40)
which correspond to Figs. 1(a)-1(c), respectively.
Sp=3y + > Zpp+ Iy (41)
P
with the subscripts B =Z" =25, Q% and

P =n"0 K*Y K% n. Fh, Fgo and F, are the decay
constants of z, K and #, which are 0.092, 0.112 and

TABLE II. The values of the coefficients (Cgb}{d/g))l/z, (Cgé) )1/2 C(ZB)P’ C(33)P’ Cig)P, and C(SB)P in Egs. (38)—(40) and (A1)—(A6).
(Cg)}{d/g))l/z T 70 T~ Kt K9 K° K~ n
= V2 1 0 V2 0 0 0 \/ig
=, 0 -1 NG 0 NG 0 0 €
QL 0 0 0 0 0 V2 V2 —2
1/2 + 0 - + 0 ) -
(Clir)” g g g K K K K "
s NG 1 0 NG 0 0 0 %
=t 0 -1 NG 0 NG 0 0 %
o, 0 0 0 0 0 NG NG -2
+ 0 - + 7 -
cy) T T p 3 K K° K° K n
=L/ /QL 2 2 2 2 2 2 2 2
+ 0 - + 0 20 -
CBBP T 2 /4 K K K K n
Ej}+ 4B0md 2B0(mu) 0 4Boms 0 0 %Bo(mu)
EZLC 0 ZB()(md) 4Bomu 0 0 %Bo(md)
Q. 0 0 0 0 4By(my) 4By(m,) %Bo(mé)
r + 0 - + 0 20 -
CiB)P T s T K K K K n
S 4Bym, 2By(m,,) 0 4Bym, 0 0 0 2By(m,)
Ej} 0 2Bo(md) 4Bomd 0 4B0(md) 0 0 %Bo(md)
Q. 0 0 0 0 0 4Bo(m,)  4By(m,) $Bo(m,)
r + 0 - + 0 0 -
CéB)P T Pa T K K K K n
Ej;‘r ._JCC/Q 4Bomu 2B()( + md) 4Bomd 4B()mu 4Bomd 4B0mx 4Bom5 %Bo(mu + mgy + 4mv)
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0.110 GeV, respectively. In addition, the coefficients cg’}l

are given in Table II.

We notice that there are three low energy constants cy,
c7, and g4 in Egs. (38)-(40). Among these LECs, ¢
appearing in the next-to-leading order Lagrangian can be
absorbed into the bare mass term. Thus, ¢; and g, are
the two unknown constants. Due to the absence of the
corresponding experimental information, we have to fix
these unknown constants based on the other theoretical
calculations. In Ref. [64], Hu and Mehen constructed
Lagrangian with the following form:

L = Tr[T}(iDg)pTs] = GTH[T4Ty5 - Apg) + -+ (42)

by considering the heavy diquark symmetry, where
Toip = \/E(E;iﬁ + \%Ea,yaéﬂ). In Eq. (42), the coupling
g = 0.6 is determined by fitting the D** width. Comparing
our effective Lagrangian with that in Eq. (42), we get
gs = g. In the following, we take g4 = 0.6.

The LEC c¢5 and bare mass my are still unknown. We try
to fix these two unknown constants by fitting the lattice
data with pion mass up to 0.4 GeV in Ref. [27].

The masses of =, are given for different m, and m, in
Ref. [27]. We assume only the bare mass (m,) depends on
the mass (m.) of the valence charm quark, and the
dependence respects the heavy quark expansion

my = mgy + 2m, + a/m. + O(1/m?2). (43)

The physical mass m, |, is tuned to reproduce the mass of
the D meson at the physical point in Ref. [27]:

My = 0.591 = 0.028 GeV. (44)

We give the fitted results with )(gof <1 in Table III
Generally speaking, it indicates the lattice data are overfitted
if a result with )(ﬁof < 1 could be obtained. One can fit the
lattice data well with any c; lying in the range (—6.0, 0.6)
from the table. Therefore the current lattice data of mz_ are
not enough to constrain ¢; yet. However, ¢; being around
—0.2 might be a real solution considering that the mass of
Q.. 18 3.68-3.76 GeV by lattice QCD groups [23-27].

We plot the best fitted results with supposing ¢; = —0.2
in Fig. 2. The best fitting needs m,=3.460 and a = —0.488
and predicts

mz, =3.6651000; GeV, mq_=3.72610053 GeV. (45)

We have also obtained the mass correction of the doubly
charmed baryon up to the next-next-next-leading order
(N*LO), which is collected in Appendix A. Unfortunately
there appear too many unknown LECs which cannot be
fixed by experimental or theoretical approaches. We are

PHYSICAL REVIEW D 91, 094030 (2015)

TABLE III.  Parameters for fitting the lattice data from Ref. [27]
and the physical masses of doubly charmed baryons with the
corresponding fitted parameters. The errors of the masses are

from the error of m|,,.

e g a Kot me,, ..

0.6 3314 0518 1.0  3710109%  3.045+00%
03 3363 0505 0.8 36901095 32977005
00 3450 —0510 07 3677005 35571005
—0.1 3472 —0509 0.6  3.672°00%5 364210095
~02 3460 0488 0.6  3.665°00% 372610093
~0.3 3517 0506 05 36611005  3.813100%
—04 3541 —0.506 05  3.655'00%  3.898+0%s
~0.5 3562 —0.503 04 36501005  3.983100%
—10 3552 -0427 04 36187009 44057008
—20 3900 -0.484 0.1 3567199 52611953
~40 4351 0458 04 3457700 6066100
—60 4801 —0431 16 33470009  g71100

unable to use the N3LO mass formula to compare with
the current experimental data. However, the chiral structure
and expression of the mass at the N*LO will be helpful
to the chiral extrapolation of the lattice data in the lattice
QCD simulation.

IV. THE CHIRAL CORRECTION
TO THE AXTAL CURRENT

In the following, we discuss the chiral correction to
the axial current of the doubly charmed baryon. Using
Lagrangian E’( ;) and [/(3) in Eq. (A1), we obtain the axial
current at the tree level:

=, =0.262 GeV = my =0.2025 GeV

/GeV

Zec

m

./ GeV

m=

PP B P R R N
0.6 0.7 0.5 0.6 0.7
me/GeV m./GeV

FIG. 2. The masses of =.. as a function of m, for different
masses of pion. The lattice data are from Ref. [27], and the solid
curves are our fitted results up to next to the leading order with
c7 = —0.2, my = 3.460, a = —0.488, and 5 ; = 0.6.
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Ak# — (9_E — a_ﬁ
o ol
| _ _
= EU”H(MTTku —uT*u" ) H + g HS (u"T*u + uT*u"\H + h HS) (¢ ) (u"T*u + uT*u" ) H
+ ho HSW 7, (' T u + uT*u™) YH + hs HS, (7 (u"T*u + uT*u"))H. (46)
We collect the diagrams contributing to the renormalization of the axial currents in Fig. 3.
The renormalized matrix element of A*# between the doubly heavy baryon states can be written as
(By|A*|B,) = < g2T5, 1= B (M (M2, Lz ), + e, )
d al =\ 9alaa (4nFpy)? \ 4 2 )72 B.P T BP)
+ (2T, + hZZ[ZXaiT{(d + 2T ia) + ha2(r o TF) + Zzilémm}ﬁas’éud- (47)
i P.b.c
In the above equations, we have
current __ g current current current current
h2 E() +Z<) +Z(> +2()
where
Zf‘ffem =0, (48)
ngg)rrent — O, (49)
curren gA k 1 2 v-k Mi’ 1 2 2
Feument — Cs 1 0ca0apT} . =210 -k)|-4——|R—= | X—5|1-2In— ) —— /M5 — (v-k
T bC{ k) [ 3277 < 3) " 82 u) an k)
—v-k ) ) 1 2 1 M3 vk o, 12
X arccos Mi) :| +[M[~)—<1}k) }[—4@ <R—§ +W 1—21117 +2]‘[2 [MP—('U k) ]
-v-k 1 1 2 1 M;
——| —2M% R-—Z)+—=In—L)}, 50
ACOS T 47:2} <32 2 < 3)+ 1622 " u > } (50)
current __ lgA M%) /,[2
Z(4) - 4F2 [ CPbLTahébd + 2CP(117T 50(16176 TchPabéac]( ﬂ) M2 (51)
p
I
which correspond to Fig. 3 [(a)—(d)], respectively. Since the The wave function renormalization constant is
doubly heavy baryons are very heavy, we do not take into  expressed as
account the small recoil corrections in the present paper.
The contribution from Fig. 3 [(a) and (b)] vanishes as > 302 M2 1
shown in Egs. (48) and (49). In the above equations, the Zypp=1- Cg’}lgAz{ P < R+1In 2P> +- Mz}
matrices Cj (P = 7, K, n) are defined as (4xF py) 4 H 2

C, =

S o =

0 0 0 2
O ) C]( - 0 O 2 ’
0 2 20

S O Wi
]

2
1
0

o wi—
wke O O
—~
W
\S]

S~—

(53)

We define the axial charge of the heavy baryon through
the matrix element

(By|A*|B,) = ghitaShug, (54)

where g2, is the axial charge.
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7 N 7 N
/ \ / \
[ any any \
o N
(a) (b)
N
’
VRN [ \
/ \ \ l
| Ja \ 7
A \
() (d)

FIG. 3. The diagrams contributing to the renormalization of
the axial current. The circle represents an insertion of the axial
current.

In Eq. (47), there exist three low energy constants Ay, &,
and /5. The LEC £ can be absorbed into the g, term. There
remain two unknown constants /1, and /5. At present, there
is not enough information to fix s, and h;. As a crude
approximation we simply parametrize h, and h; as
hy = hy = ﬁz, where A is the typical energy scale around
the mass of the doubly heavy baryons. Taking the typical
value A= +3.6 GeV, we obtain ¢.t2, =1.15 and

—cc —cc

g‘éﬁsm = 1.18. If only considering the tree level contri-
bution, we get gl_ﬁ2_+ = g‘iﬁ’f’m = 1.2. If A varies from 2 to

5 GeV, the range of glﬂz_+ and gﬁfw will be 1.16 — 1.14

and 1.35-1.14 respectlvely We also consider the case
hy3~—% And gL, and gﬁ’fm will be 1.12-1.14

—cc —cc —cc

and 0.86—1.07 respectively, when 4 is in the range 2-5 GeV.

V. SUMMARY

Although the doubly heavy baryons have not been
established experimentally, these systems are particularly
interesting. To a large extent, they are even simpler than the
light baryons such as nucleons where the interaction among
the three light quarks is very complicated. In contrast, the
presence of the two heavy quarks acts as a static color
source in the heavy quark limit. For example, the chiral
dynamics of the doubly heavy baryons is solely governed
by the light quark. We can gain valuable insights into the
light quark chiral behavior through the chiral perturbation
theory study of the doubly heavy baryons.

In this paper, we have constructed the chiral effective
Lagrangians describing the interactions of light mesons and
doubly charmed baryons. We further make the nonrelativ-
istic reduction and obtain the chiral Lagrangians up to
O(p*) in the heavy baryon limit. We have derived the chiral
corrections to the mass of the doubly heavy baryons up to
N?LO. Unfortunately there exist too many unknown low
energy constants. We are forced to perform the numerical
analysis at the N°LO. The mass splitting of =, and Q. at
the next-to-next-to-leading order depends on one unknown
low energy constant ¢;. By fitting the lattice data for =,
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from Ref. [27] and supposing ¢; = —0.2, we estimate the
mass of Q.. to be around 3.726 GeV.

Moreover, we have also performed a systematical
analysis of the chiral corrections to the axial currents
and axial charges of the doubly heavy baryons, which
may be measured through the semileptonic decays of the
heavy baryons in the future.

The chiral corrections to the mass of the doubly heavy
baryons have been derived up to N*°LO and the axial charge
to N?LO. The chiral structure and analytical expressions
will be very useful to the chiral extrapolations of the future
lattice QCD simulations of the doubly heavy baryons.

The exploration of the doubly charmed baryons is
still an important and intriguing research topic, which
can deepen our understanding of hadron spectrum and
nonperturbative QCD. We are looking forward to more
developments from both experimental and theoretical
studies. There is a very good chance that these doubly
charmed baryons will be observed at facilities such as
LHC and Bellell.
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APPENDIX A: THE N’LO CONTRIBUTION
TO THE MASS OF THE DOUBLY
CHARMED BARYON

We list the NLO chiral corrections to the mass of the
doubly charmed baryon, i.e.,

d4q (_) A

n)*" T2mF,""
i i ga

Sa

qu—Meriev-(k—qH—ie( )FO va
—c¥

iy 500 (5e) [+ (i) 13

+’U'kC21(’U'k,M2)}

d d) .
il = i

vy(_CIﬂqv + 2q1/k;4)

(A1)

from Fig. 1(d), where
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Carlo- kM) = {0 BI(0) + M2 = (1 K0, K}

1(0) = 1]‘6422 {R —i—ln(];ﬂ)] L Oom—4),

M? 1
J(0, ) :% {R+ln<ﬂ2> - 1] 2 M? — @” arccos <—Aa/)[> +0(n—4),

R =

P [In(4z) +1'(1) 4 1].

We also have the relation
e d
Sp =i, (A2)

where Z&;}, comes from Fig. s(e). The corrections from Figs. 1(f) and 1(g) are
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2F(2) 3BP 4F(2) 4BP 4F(2) 4BP 3F(2) SBP 2 _ MZ + ie

C7 f Cq f M 2 2 471'/12
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4 . .
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respectively, where

M? M?
Apy=—0u— | A——=], A5
o g/m 4 ( 307 ) ( )

and G; and J; (i =0, 1,2, 3) are defined in the Appendix of Ref. [29],
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corresponding to Fig. 1(h). Here iz =1, izr =2,
igr = 3. Some coefficients in the above expressions are
listed in Table II.

APPENDIX B: SOME EXPRESSIONS

The expressions of A, B(j and C( that appear in

Egs. (21)-(23) are
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