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I. INTRODUCTION

Three-particle productionplays an important role in hadron
physics. In the past, analysis of the three-pion spectrum led
to the discovery of several prominent meson resonances [1].
With the high-precision data already available—for example,
from the COMPASS Collaboration [2] and expected from
Jefferson Lab [3]—in the near future it will be possible to
further resolve the three-pion spectrum and identify new
resonances that do not necessarily fit the quark-model
template. Indeed, in the charmonium spectrum several can-
didates for nonquark model resonances have recently been
reported [4,5]. Several of these were observed in decays to
three-particle final states. A proper description of interactions
in the three-particle system is also required to advance lattice
gauge computations of scattering amplitudes [6–9].
Because of large production yields, hadron systems are

also an important laboratory for studies of weak interactions,
symmetry tests, and searches for physics beyond the
Standard Model [10,11]. Sensitivity to weak interactions
demands high precision in the determination of hadronic
amplitudes.Near threshold there are first-principle constraints
that can help in this process. These low-energy constraints
include, for example, chiral symmetry, partial-wave and
effective range expansions, andunitarity. In general, however,
it is impossible to construct a single analytical function that
describes a reaction amplitude in the entire range of kin-
ematical variables and satisfies all of the constraints imposed
by the relativistic S-matrix theory. Nevertheless, analyticity
is a powerful constraint that enables one to connect different
regions of the spectrum, e.g., constrain resonance parameters
by the behavior of the amplitude elsewhere, including both
the near-threshold and high-mass regions.

In this paper we focus on the analysis of three-pion
production at low energies, in particular from decays of
the light-vector isoscalar mesons, the ω and the ϕ. At low
energies, chiral perturbation theory (χPT) serves as a
powerful constraint on amplitudes involving the light
pseudoscalar mesons [12,13]. χPT has been applied to
the three-pion production from the η decays [14,15]. In the
case of ω=ϕ → 3π, χPT can be extended by including light
vector mesons as additional degrees of freedom [16–19].
In a perturbative study, germane to an effective field theory,
unitarity is only satisfied order by order in the loop
expansion. On the other hand, from the perspective of the
S-matrix theory, unitarity is the key feature that constrains
singularities of the reaction amplitude and therefore the
amplitude itself. For this reason there has been a lot of
interest in the application of dispersion relations to the low-
energy production of pseudoscalar mesons [20–25].
In the past, dispersive methods have been used in the

description of relativistic three-body decays [26–29]. For
example, the decay η → 3π [30–35] is of interest because it
is sensitive to isospin breaking, which in QCD originates
from the mass difference between the up and down quarks.
A dispersive analysis of ω decay was performed in
Ref. [36] and more recently in Ref. [37]. It is of interest
because it sheds light on the vector-mesons’ dominance and
the interplay between the QCD dynamics (which is
believed to be responsible for the vector-meson formation)
and its decay characteristics restricted by unitarity and long-
range interactions.
In relativistic S-matrix theory a function connecting four

external particles describes the reaction amplitudes of
all processes related by crossing, i.e., the three 2 → 2
scattering channels, and (if kinematically allowed) a decay
channel 1 → 3. Therefore, unitary constraints ought to be
considered in all physical channels connected by the same*danilkin@jlab.org
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analytical function. With the emphasis on unitarity, the
natural starting point for amplitude construction is the
partial-wave expansion. At low energies, it is expected that
only low partial waves are significant and therefore the
infinite partial-waves series can be truncated to a finite sum.
We refer to such an approximation as the isobar model [38].
The diagrams representing a truncated partial-wave series
(also known as the isobar decomposition) are shown in Fig. 1.
The implementation of unitarity on a truncated set of

partial waves leads to the so-called Khuri-Treiman (KT)
equations [26,27,39]. In the KT framework elastic unitarity
in the three crossed channels is used to determine the
discontinuity of partial waves, which are then reconstructed
using a Cauchy dispersion relation. Consequently, addi-
tional diagrams contribute to the amplitude; see Fig. 2.
Since, as discussed above, the model truncates the number
of partial waves, it is intrinsically restricted to low energies.
In other words, the high-energy behavior in the KT
framework is arbitrary. Mathematically, this translates into
an arbitrariness in choosing the boundary condition for
the solution of an integral equation, which follows from the
dispersion relation. It is therefore more appropriate to
consider the KT framework as a set of constraints on
partial-wave equations. Furthermore, above the threshold
of the production of inelastic channels the KT amplitudes
will couple to other open channels. Any scheme that tries to
reduce the sensitivity of the elastic KT equations to the
high-energy contributions in dispersion integrals should
therefore take into account the change in the analytical
properties of the partial-wave amplitudes above the inelas-
tic open channels. A novel implementation of this feature
within the KT framework is the main new ingredient of
the approach presented in this paper.
In previous works, in order to suppress sensitivity to the

unconstrained high-energy region, subtracted dispersion
relations were used [33,34,37]. Moreover, KT equations
depend on the elastic 2 → 2 scattering amplitudes. The
ππ → ππ amplitudes needed for an analysis of ω=ϕ decays
have been studied in Ref. [20]. These studies constrained
the amplitudes only up to certain center-of-mass energy
(somewhat above the K̄K threshold), and this adds further

uncertainty to the KT framework. For example, in pre-
vious analyses of the vector-meson decays the ππ phase
shift was extended beyond the elastic region with a
specific model [37]. In this paper we present an alternative
to the subtraction procedure, which not only suppresses
the high-energy contributions to the dispersive integrals,
but also takes into account the change in the analytical
properties induced by the opening of inelastic channels.
Specifically, we split the dispersive integral into elastic
and inelastic parts, and parametrize the latter in terms of
an appropriately chosen conformal variable.
The paper is organized as follows. In the next section

we summarize the derivation and main features of the KT
framework as applied to the vector-meson decays. The
discontinuity relation and the role that inelastic effects
play in choosing a suitable solution of the dispersive
relation are discussed in Secs. III and IV. The numerical
analysis of ω=ϕ → 3π is presented in Sec. VA. In Sec. V B
we consider the electromagnetic (EM) transition form
factors of ω=ϕ → π0γ� as a further application of our
formalism.Asummaryandoutlookarepresented inSec.VI.

II. PARTIAL-WAVE OR ISOBAR
DECOMPOSITION

The matrix element for the three-pion decay of a vector
particle is given in terms of a helicity amplitude Habc

λ ,

hπaðp1Þπbðp2Þπcðp3ÞjTjVðpV; λÞi
¼ ð2πÞ4δðpV − p1 − p2 − p3ÞHabc

λ : ð1Þ
Here pV and λ are the momentum and helicity of the vector
particle (V ¼ ω=ϕ in our case), p1, p2, and p3 are the
momenta of the outgoing pions with a; b, and c, denoted by
their Cartesian isospin indices. The Lorentz-invariant
Mandelstam variables are defined by s¼ðpV −p3Þ2,
t¼ðpV −p1Þ2, and u¼ðpV −p2Þ2, and satisfy the relation

sþ tþ u ¼ M2 þ 3m2
π: ð2Þ

The helicity amplitude Habc
λ can be expressed in terms of a

single scalar function of the Mandelstam variables, since
Lorentz and parity invariance imply that

Habc
λ ¼ iϵμναβϵμðpV; λÞpν

1p
α
2p

β
3

P1
abcffiffiffi
2

p Fðs; t; uÞ; ð3Þ

where P1
abc ¼ −iϵabc=

ffiffiffi
2

p
is the isospin factor correspond-

ing to the coupling of three isospin-1 pions to a state with

FIG. 1. Isobar decomposition.

FIG. 2. Crossed channel rescattering effects.
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total isospin 0. The invariant amplitude Fðs; t; uÞ satisfies
Mandelstam analyticity [40,41], which postulates that it is
an analytic function everywhere except for cuts required by
unitarity. The scalar function Fðs; t; uÞ is free from kin-
ematical singularities [42,43]. The latter appear in the
covariant factor in front of Fðs; t; uÞ in Eq. (3). Crossing
symmetry implies that the function Fðs; t; uÞ describes the
decay V → 3π and also the three Vπ → 2π scattering
channels. Since we are interested in a partial-wave decom-
position it is necessary to consider the helicity amplitude
Habc

λ first. In the physical region of s-channel scattering,
VðpV; λÞπcðp3̄Þ → πaðp1Þπbðp2Þ, the Mandelstam variable
s ¼ ðpV þ p3̄Þ2 ¼ ðpV − p3Þ2 corresponds to the square of
the center-of-mass energy and t ¼ ðpV − p1Þ2 is related to
the cosine of the s-channel scattering angle by

zs ¼ cos θs ¼
t − u

4pðsÞqðsÞ≡
t − u
kðsÞ ; ð4Þ

where

qðsÞ ¼ λ1=2ðm2
π; m2

π; sÞ
2

ffiffiffi
s

p ; pðsÞ ¼ λ1=2ðM2; m2
π; sÞ

2
ffiffiffi
s

p ð5Þ

are the magnitude of the relative momentum between the
outing pions in the s-channel center-of-mass frame and the
magnitude of the incoming pion’s momentum in the same
frame, respectively. λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2ðxyþ
yzþ xzÞ is the Källén triangle function. The s-channel
partial-wave decomposition is given by [44]

Habc
λ ¼ P1

abcffiffiffi
2

p
X

J¼1;3;…

ð2J þ 1ÞdJλ0ðθsÞfJλðsÞ; ð6Þ

where dJλ0ðθsÞ are the Wigner d-functions and we choose
the x − z plane as the reaction plane. Due to Bose
symmetry the sum over partial waves is restricted to odd
values of J and parity conservation implies that fJ0ðsÞ ¼ 0

and fJþ1ðsÞ ¼ −fJ−1ðsÞ≡ fJðsÞ. Therefore there is only
one independent helicity amplitude, which is consistent
with there being a single scalar function Fðs; t; uÞ describ-
ing the strong coupling between an isoscalar vector and
three pions. The relation between Habc

λ and Fðs; t; uÞ in
Eq. (3) enables the determination of the kinematical
singularities of the partial-wave amplitudes fJðsÞ.
Expressing the Wigner d-functions in terms of Legendre
polynomials (with a prime denoting a derivative),

dJ10ðθÞ ¼ −
sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þp P0

Jðcos θÞ; ð7Þ

and defining the reduced partial waves FJðsÞ by

FJðsÞ≡
ffiffiffi
2

p
ffiffiffi
s

p
pðsÞqðsÞ

2J þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þp fJðsÞ

ðpðsÞqðsÞÞJ−1 ; ð8Þ

the series in Eq. (6) becomes

Habcþ ¼ −P1
abc

ffiffiffiffi
ϕ

p
4

X
J¼1;3;…

ðpðsÞqðsÞÞJ−1P0
JðzsÞFJðsÞ; ð9Þ

where ϕ is the Lorentz-invariant Kibble function

ϕ ¼ ð2 ffiffiffi
s

p
sin θpðsÞqðsÞÞ2

¼ stu −m2
πðM2 −m2

πÞ2: ð10Þ
Finally, by comparing Eq. (9) with Eq. (3) one finds the
desired relation between the scalar amplitude Fðs; t; uÞ and
the reduced partial-wave amplitudes FJðsÞ,

Fðs; t; uÞ ¼
X

J¼1;3;…

ðpðsÞqðsÞÞJ−1P0
JðzsÞFJðsÞ: ð11Þ

The sum over partial waves runs over odd values of J and
the derivative of the Legendre polynomial is an even
polynomial in zs of order ðJ − 1Þ. Therefore the product
of the factors in front of FJðsÞ in Eq. (11) is a polynomial in
the s; t, and u variables and it is therefore free from
kinematical singularities. Since Fðs; t; uÞ has only dynami-
cal singularities this implies that the reduced partial waves
must also have only the dynamical singularities, and
therefore they can be expressed in terms of discontinuities
across unitary cuts. We note that the decomposition (11)
is different from that in Eq. (6) of Ref. [37], where only the
p-wave amplitude had its kinematical singularities removed.
We emphasize that in Eq. (11) the sum extends to infinity.

The sum converges in the s-channel physical region and it is
to be analytically continued to obtain amplitudes in the
physical regions of the other two scattering channels or the
decay channel. Since in Eq. (11) each term in the sum is a
polynomial in t and u, singularities of Fðs; t; uÞ in these
variables demanded by the t or u channel unitarity can only
emerge from the infinite number of terms in the sum. The
isobar approximation amounts to truncating the partial-wave
series at a finite value of J ¼ Jmax. In order to retain
dynamical singularities of Fðs; t; uÞ in all three variables,
in the isobar model the scalar amplitude is approximated by a
linear combination of truncated partial-wave series in the
three channels simultaneously,1 which yields

Fðs; t; uÞ ¼
XJmax

J¼1;3;…

ðpðsÞqðsÞÞJ−1P0
JðzsÞFJðsÞ

þ ðs → tÞ þ ðs → uÞ; ð12Þ
where, because of the Bose symmetry, the partial waves in
each channel are given by the same function FJðxÞ with

1In principle, the isobar decomposition should be written for
the full amplitude Habc

λ , but since the product of the isospin and
kinematic factors in Eq. (3) is symmetric under permutation of
pions we only need to symmetrize Fðs; t; uÞ.
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x ¼ s; t; u. The t and u channel scattering angles are
given by

zt ¼ cos θt ¼
s − u

4pðtÞqðtÞ ;

zu ¼ cos θu ¼
t − s

4pðuÞqðuÞ ; ð13Þ

respectively. The isobar model ansatz of Eq. (12) satisfies
crossing symmetry and the single-variable dispersion rela-
tion. The value of Jmax should be determined by comparing
with the experimental data. Note that for large Jmax the
model becomes unreliable since, as discussed above, the
truncation of a partial-wave series introduces an incorrect
dependence on the cross-channel energy variable, i.e., at
J ¼ Jmax the s-channel series behaves as ðt − uÞJmax−1. We
also note that in general the representation of the full
amplitude as a sum of functions that are singular in one
variable at a time follows from the Mandelstam double
spectral representation (the opposite is not true). To prove
this, one has to assume two-body unitarity and truncate the
partial-wave expansion of the amplitude. For ππ scattering a
similar decomposition [45–47] was shown to be true up to
next-to-next-to-leading order in χPT.
The isobar model helicity amplitude can therefore be

written as

Habc
λ ¼ iϵμναβϵμðpV; λÞpνþpα

−p
β
0

P1
abcffiffiffi
2

p
XJmax

J¼1;3;…

ð ~PlðzsÞFJðsÞ

þ ~PJðztÞFJðtÞ þ ~PJðzuÞFJðuÞÞ; ð14Þ

where we defined ~PJðzxÞ≡ ðpðxÞqðxÞÞJ−1P0
JðzxÞ with

x ¼ s; t; u. This expression coincides with the expression
used in Ref. [37] for J ¼ 1. The three diagrams in Fig. 1
represent individual partial waves in the s, t, and u channels.

III. TWO-PARTICLE DISCONTINUITY
RELATION

We constrain the reduced partial waves by imposing
elastic unitarity. Because of Bose symmetry it is sufficient
to consider the constraint in a single channel, e.g., the s
channel. At fixed t and s in the s-channel physical region,
the discontinuity

Disc Fðs; t; uÞ ¼ 1

2i
ðFðsþ iϵ; t; uÞ − Fðs − iϵ; t; uÞÞ

is computed by taking the partial-wave projection of the
unitarity relation for the helicity amplitude,

DiscHabc
λ ðpVp3̄ → p1p2Þ

¼ 1

4

Z
dΦt�aba0b0 ðq10q20 → p1p2Þ

×Ha0b0c
λ ðpVp3̄ → q10q20Þ; ð15Þ

where taba
0b0 is the isospin-1 pion-pion scattering ampli-

tude. The integral extends over the two-body ππ phase
space. The partial-wave expansion for the ππ → ππ scat-
tering amplitude is given by

taba
0b0 ¼ 32π

X
J

ð2J þ 1ÞPJðcos θÞP1
aba0b0tJðsÞ; ð16Þ

where the isospin-1 projection operator is

P1
aba0b0 ¼

1

2
ðδaa0δbb0 − δab0δba0 Þ: ð17Þ

We consider only the elastic two-particle unitarity since the
KT model is restricted to low energies.
Using Eqs. (15) and (16), one obtains the expression for

the discontinuity of the s-channel partial waves,

Disc FJðsÞ ¼ ρðsÞt�JðsÞ
�
FJðsÞ þ 2

ð2J þ 1Þ
JðJ þ 1Þ

XJmax

J0¼1;3;…

×
Z

1

−1

dzs
2

ϕ

4

~PJðzsÞ
sðpðsÞqðsÞÞ2J

~PJ0 ðztÞFJ0 ðtÞ
�
;

ρðsÞ ¼ ð1 − 4m2
π=sÞ1=2: ð18Þ

The first term on the right-hand side originates from the
s-channel partial-wave expansion and is therefore diagonal
in J. The second-term sums the s-channel projection of
the t- and u-channel partial-wave series and isobars, and it
mixes s-channel partial waves. In the following we con-
sider only the P waves, i.e., we take Jmax ¼ 1, since in the
kinematical region in s; t; u corresponding to the ω=ϕ
decays the spin-3 and higher partial waves are expected to
be insignificant. Thus in the analysis that follows we use

Disc FðsÞ ¼ ρðsÞt�ðsÞðFðsÞ þ F̂ðsÞÞ;

F̂ðsÞ ¼ 3

Z þ1

−1

dzs
2

ð1 − z2sÞFðtðs; zsÞÞ; ð19Þ

and, for real s,

FðsÞ ¼ 1

π

Z
∞

4m2
π

ds0
DiscFðs0Þ
s0 − s − iϵ

; ð20Þ

where FðsÞ≡ F1ðsÞ, tðsÞ≡ t1ðsÞ, ρðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

π=s
p

is the phase space factor, and the dependence on t under
the integral should be expressed in terms of s and zs
using Eq. (4). The result in Eq. (19) is consistent with
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Refs. [37,39]. We note that Eq. (19) is exact in the elastic
region, while for higher energies one has to incorporate
inelastic contributions. Also, Eq. (19) was derived in the
physical region of the s channel, which corresponds to
s ≥ ðM þmπÞ2 and jzsj ≤ 1. To obtain FðsÞ in the decay
region 4m2

π ≤ s ≤ ðM −mπÞ2 the right-hand side of
Eq. (19) has to be analytically continued in s. Analytical
continuation of the direct-channel contribution is well
known. However, analytical continuation of the exchange
contribution is more difficult and was extensively studied
in Refs. [27,30]. If the integration over zs is replaced by
an integration over t, by using Eq. (4) the exchange
contribution becomes

F̂ðsÞ ¼ 3

kðsÞ
Z

tþðsÞ

t−ðsÞ
dtð1 − z2sðs; tÞÞFðtÞ; ð21Þ

with

t�ðsÞ ¼ M2 þ 3m2
π − s

2
� kðsÞ

2
: ð22Þ

In the s channel the limits of integration t�ðsÞ lie on the
negative real axis (labeled as region IV in Fig. 3) and do not
overlap with the cut of the integrand extending over the
positive real axis above t ¼ 4m2

π . As shown in Ref. [30],
analytical continuation to the decay region requires that the
integration is deformed to follow a path that does not cross
the unitarity cut of FðtÞ for t ≥ 4m2

π, as shown in Fig. 3. It is
worth noting that once kinematical singularities have been
removed, the t dependence induced by the partial-wave
projection, the factor ð1 − z2sðt; sÞÞ in Eq. (21) does not
have singularities in t. In the decay region, DiscFðsÞ is a
complex function of swith singularities arising from cuts in

the barrier factor kðsÞ, cf. Eq. (4). Guided by the analysis of
the triangle diagram in perturbation theory, the proper
determination of the singularities in kðsÞ for s ≥ 4m2

π was
shown in Ref. [27] and the right analytical structure of
kðsÞ is

kðsÞ ¼
8<
:

þκðsÞ; 4m2
π ≤ s ≤ ðM −mπÞ2;

iκðsÞ; ðM −mπÞ2 ≤ s ≤ ðM þmπÞ2;
−κðsÞ; ðM þmπÞ2 ≤ s < þ∞;

κðsÞ ¼ 1

s
jλðm2

π; m2
π; sÞλðM2; m2

π; sÞj1=2: ð23Þ

In the next section we discuss solutions of Eq. (19).

IV. SOLUTION STRATEGIES

From the discontinuity (19) one can reconstruct the
amplitude using the dispersion relation (20). For practical
reasons, however, it is useful to represent the amplitude
FðsÞ as a product of two functions,

FðsÞ ¼ ΩðsÞGðsÞ; ð24Þ

where the function ΩðsÞ satisfies the following unitarity
relation for s ≥ sπ ¼ 4m2

π:

DiscΩðsÞ ¼ ρðsÞt�ðsÞΩðsÞ þ inelastic θðs > siÞ; ð25Þ

where the first term on the right-hand side represents the
elastic contribution. The advantage of the representation in
Eq. (24) is that one can absorb the homogeneous part
[cf. the first term on the right-hand side of Eq. (19)] into
ΩðsÞ, leaving the contribution from the cross channel in

FIG. 3 (color online). Left: Integration contour. The analytical continuation from the scattering region to the decay region is made by
adding a positive infinitesimal imaginary part to the vector-meson mass: M2 → M2 þ iϵ [27]. Right: Part of the Mandelstam plane,
where the decay and s-channel scattering regions are shown.
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GðsÞ. Since FðsÞ and ΩðsÞ have only unitary right-hand
cuts, the function GðsÞ should also have the right-hand
cuts. Combining Eqs. (19), (24), and (25), we obtain the
following discontinuity relation for GðsÞ:

Disc GðsÞ ¼ ρðsÞt�ðsÞ
Ω�ðsÞ F̂ðsÞ þ inelastic θðs > siÞ; ð26Þ

where the last term absorbs inelastic contributions starting
with a threshold at s ¼ si. The dispersion relation for GðsÞ
is given by

GðsÞ ¼
Z

∞

sπ

ds0

π

DiscGðs0Þ
s0 − s

; ð27Þ

where we split the integral into two parts,
Z

∞

sπ

¼
Z

si

sπ

þ
Z

∞

si

: ð28Þ

The first part is determined entirely by elastic scattering,
while the second part takes into account inelastic effects.
The inelastic contribution is described by an analytical
function on the s-plane cut along the real axis above s ¼ si.
It is largely unknown and often parametrized through an
expansion in a conformal variable which maps the right-
hand cut in the complex s plane onto the unit disk. Such a
mapping is known as a convenient representation of
functions on a cut plane, with the known analytical
properties [48]

ΣðsÞ ¼
X∞
i¼0

aiωiðsÞ: ð29Þ

The variable

ωðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
si − sE

p − ffiffiffiffiffiffiffiffiffiffiffi
si − s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
si − sE

p þ ffiffiffiffiffiffiffiffiffiffiffi
si − s

p ð30Þ

maps the cut plane onto the unit disk. Strictly speaking, the
first possible inelastic contributions in the I ¼ 1, P-wave
ππ → ππ and ωðϕÞπ → ππ reactions originates from the 4π
channel. However, at low energies they are known to be
weak and the parameter si ¼ 1 GeV is identified with the
point where inelastic contributions are expected to become
relevant. The expansion point sE should lie below the cut
and we define sE ¼ 0. The conformal mapping technique
was successfully applied in other descriptions of two-to-
two amplitudes; e.g., in Refs. [49–51] it was used to take
into account the contributions from the more distant left-
hand cuts. However, to the best of our knowledge the
conformal mapping technique has never been used before
in the context of the KT equations.
With the inelastic contributions parametrized by the

function ΣðsÞ, the integral equation for the KT amplitude
takes the form

FðsÞ ¼ ΩðsÞ
�
1

π

Z
si

sπ

ds0
ρðs0Þt�ðs0Þ
Ω�ðs0Þ

F̂ðs0Þ
s0 − s

þ ΣðsÞ
�
: ð31Þ

This is an alternative to the standard way which employs
subtractions to reduce the sensitivity of the dispersive
integral to the high-energy region [37]. The problem with
subtractions is twofold. First, the dispersive integrals—
including the computation of ΩðsÞ—run over inelastic
regions, while the dispersion relation contains only the
elastic contributions. Furthermore, subtracting an analytical
function of s does not account for the change in the
analytical behavior of the amplitudes due to the opening of
inelastic channels.
In Eq. (31) there is no need for subtractions in the

dispersive integral since it is restricted to the elastic region,
which is the only part of the right-hand cut controlled by
elastic unitarity. The unknown, inelastic contributions are
parametrized by ΣðsÞ, and are to be determined by comparing
with the experimental data, or other theoretical approaches
that treat inelastic channels explicitly. Moreover, with the
dispersive integral restricted to a finite interval over s there
are uncontrollably large contributions from higher-partial
waves, which otherwise require more and more subtractions.
Besides FðsÞ, the problem with the determination of

inelastic contributions also affects the computation ofΩðsÞ.
The unitarity condition in Eq. (25) does not determine it
above the inelastic threshold s ¼ si. Therefore, we seek its
solution given in terms of the Omnès function [52,53] taken
only over the elastic region

ΩelðsÞ≡ exp

�
s
π

Z
si

sπ

ds0

s0
δðs0Þ
s0 − s

�
; ð32Þ

where δðsÞ is the isospin-1, P-wave ππ phase shift. Because
the upper limit is finite, the function ΩelðsÞ has a zero at
s ¼ si [54],

Ωelðs → siÞ ∼ js − sijαðsÞ; ð33Þ

where αðsÞ ¼ δðsÞ=π. The zero can be removed by defining

ΩelðsÞ → ΩðsÞ ¼ ðsi − sÞ−αðsiÞΩelðsÞ: ð34Þ

The factor in front of ΩelðsÞ has only the inelastic cut and
therefore in the elastic region ΩðsÞ [just like ΩelðsÞ]
satisfies two-body unitarity relation. In Fig. 4 we plot
ΩelðsÞ and ΩðsÞ and compare them with the standard
representation obtained by integrating the elastic phase
shift to infinity,

Ω0ðsÞ ¼ exp

�
s
π

Z
∞

sπ

ds0

s0
δðs0Þ
s0 − s

�
: ð35Þ

In Ω0, following Ref. [37], the phase shift is assumed to
approach a constant at infinity, δðs → ∞Þ → π. This is

I. V. DANILKIN et al. PHYSICAL REVIEW D 91, 094029 (2015)

094029-6



obtained by smoothly matching to the low-energy para-
metrization form Ref. [20] at s ¼ 1.3 GeV. We remark that
Eq. (34) is equivalent to Eq. (35) when the phase shift is set
to a constant value equal to δðsiÞ for s ≥ si.
Finally, we note that the upper limit in the integral of

Eq. (31) also induces an artificial singularity at s ¼ si. This
singularity originates from absorbing any contribution to
the dispersive integral over the energy range s ≥ si into the
function ΣðsÞ. This singularity is eliminated by adding to
the dispersive integral in Eq. (31) the term

−
1

π

ρðsiÞt�ðsiÞF̂ðsiÞ
Ω�ðsiÞ

log

�
si − s
si − sπ

�
; ð36Þ

which cancels the logðsi − sÞ singularity of the integral as
s → si. This is the correct way of regulating this singularity
since the added term is a function with an inelastic cut only,
i.e., it can be absorbed into the function ΣðsÞ in Eq. (31).
The scale in the denominator of the log is chosen to have a
negligible effect at s ¼ sπ .
In summary, in Eq. (31) ΩðsÞ is given on the right-hand

side of Eq. (34). The expression in Eq. (36) is added to the
integral inside the parentheses of Eq. (31) and ΣðsÞ is
represented by Eq. (30). As discussed before, these changes
do not affect elastic unitarity.
We wish to remark that if we knew the discontinuity

relation of the amplitude not only at low energies as in
Eq. (19) but for all energies, then using the analytical
properties of the amplitude we could reconstruct the
solution everywhere up to a polynomial. However, there
are inelastic channel contributions that force us either to
introduce the extra subtractions in order to suppress the
unknown high-energy region or cut off the integral and
parametrize the inelastic contribution by a conformal

mapping technique. As discussed earlier in this section,
the latter enables the amplitude to retain the analytical
properties expected in the presence of inelasticities.

V. NUMERICAL RESULTS

A. ω=ϕ → 3π

We solve the integral equation in Eq. (31) by numerical
iteration.2 The convergence is fast, typically after three to
four iterations, and no significant variations in the solution
are observed. From the amplitude, it is straightforward to
compute the Dalitz plot distribution, the partial decay, and
the total 3π decay widths [1],

d2Γ
dsdt

¼ 1

ð2πÞ3
1

32M3

1

3
Pðs; tÞjFðs; t; uÞj2; ð37Þ

where Pðs; tÞ ¼ ϕðs; tÞ=4 is the kinematic factor discussed
in Sec. II. In the computations of the Dalitz plot that follow,
the conformal expansion in Eq. (29) is truncated at zeroth
order, i.e., only a constant term is kept and this is the only
free parameter of the model. It is fixed to reproduce the
measured 3π decay widths for ω and ϕ, which are Γexp

ω→3π ¼
7.57 MeV and Γexp

ϕ→3π ¼ 0.65 MeV, respectively [1]. Since
the integral equation is linear in FðsÞ, the one parameter

FIG. 4 (color online). Real and imaginary parts of ΩelðsÞ in Eq. (32) (dot dashed), Ω0ðsÞ in Eq. (35) (dashed), and ΩðsÞ in Eq. (34)
(solid).

2Note that the double integral in Eq. (31) [F̂ðsÞ is given by a
contour integral over t as shown in Eq. (19)] can be inverted using
the Pasquier method [28,55]. In this method the order of the s and
t integrations is reversed, with the latter deformed onto a real axis
that can be calculated analytically or numerically only once. This
leads to a single-variable integral equation for F̂ðsÞ with a kernel
that depends on the input two-body scattering amplitude. This is
an equivalent method for solving the KT equation which has its
advantages and disadvantages [56].
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that is fitted is responsible for the overall normalization,
while the Dalitz plot distribution is only affected by higher-
order terms in ΣðsÞ.
In Fig. 5 we show the solution of the integral equa-

tion (31) together with the invariant mass distribution. The
significance of the three-body effects, given by the cross-
channel terms, is accessed by keeping or eliminating F̂
from the discontinuity relation. In either case ΣðsÞ is
represented by a constant which is fitted to reproduce
the decay width. As can be seen in Fig. 5 the effect of the
crossed channels for ω → 3π is less significant than for
ϕ → 3π. In both cases, the invariant mass distributions are
quite similar. The three-body effects are more pronounced
for the Dalitz plot distributions, to which we turn next.
In Fig. 6 we show the Dalitz plot distribution in terms of

Lorentz-invariant dimensionless parameters,

x ¼
ffiffiffi
3

p

Q
ðT1 − T2Þ ¼

ffiffiffi
3

p ðt − uÞ
2MðM − 3mπÞ

;

y ¼ 3T3

Q
− 1 ¼ 3ðsc − sÞ

2MðM − 3mπÞ
: ð38Þ

Here Ti is the kinetic energy of the ith pion in the three-
particle rest frame and, using the isospin-averaged pion
mass, Q ¼ M − 3mπ and sc ¼ 1

3
ðM2 þ 3m2

πÞ represents
the location of the center of the Mandelstam triangle.
The Dalitz plot distribution is symmetric under the x ↔ −x
reflection as a consequence of the t ↔ u symmetry. For ω

decays it is convenient to parametrize the Dalitz plot
distribution in terms of a polynomial expansion in x and
y around the center of the plot. We follow the procedure
outlined in Ref. [37] and introduce polar variables,

x ¼ ffiffiffi
z

p
cosϑ; y ¼ ffiffiffi

z
p

sin ϑ; ð39Þ

and fit the polynomial expansion

jFparðz; ϑÞj2 ¼ jNj2ð1þ 2αzþ 2βz3=2 sinð3ϑÞ þ 2γz2

þ 2δz5=2 sinð3ϑÞ þOðz3ÞÞ ð40Þ

to our matrix element. In Eq. (40) N is the overall
normalization constant. To find the Dalitz plot parameters
we minimize

χ̄2 ¼
Z
D

dzdϑ
ND

�
Pðz; ϑÞ2ðjFparðz; ϑÞj2 − jFðz;ϑÞj2Þ

Pð0; 0Þ2jNj2
�

2

;

ND ¼
Z
D
dzdϑ; ð41Þ

where the integration range (D) is limited by the Dalitz plot.
The results are summarized in Table I. In Table I we
observe a non-negligible deviation between the Dalitz plot
parameters with and without three-body effects. In par-
ticular, the three-body effects result in a decrease of the
intensity by approximately 5% at the boundary of the Dalitz
plot and an increase by approximately 2% in the center.

FIG. 5 (color online). Left and middle: Solutions of Eq. (31) with (solid curves) and without (dashed curves) three-body effects.
Dotted lines indicate the kinematically allowed region. Right: Single differential decay rate dΓ=ds.
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A similar, but even more significant effect is observed for
ϕ → 3π, where the Dalitz plot intensity decreases at the
boundary by 42% and increases by 6% in the central area.
In Table I we also compare our results with other theoretical
calculations from Refs. [19] and [37]. We find our Dalitz
plot parameters to be quite similar to Ref. [37]. We recall
that in Ref. [37] the dispersive integral was extended to
infinity, and in order to make that integral convergent at
least one subtraction was required. In our case the unsub-
tracted dispersive integral is always finite and the number
of parameters is determined by Eq. (29). From the other
side, our results in general are smaller than the ones given
in Ref. [19]. The latter calculation was based on a chiral

Lagrangian modified by the explicit inclusion of light
vector mesons [18]. In Ref. [18] the unknown coupling
constants of the Lagrangian were obtained from the decay
properties of the vector mesons [57]. To this extent, the
result of Ref. [19] provides a good estimate for the decay
width, while in the present analysis the decay width was
used to fix the normalization. The shortcoming of the
approach in Ref. [19] is that it does not fully comply with
unitarity. Though the two-body partial waves were uni-
tarized, the crossed-channel effects were not included.
On the experimental side, the situation is as follows.

The measurements of ϕ → 3π were performed by the
KLOE [58] and CMD-2 [59] collaborations. As for ω

FIG. 6 (color online). The Dalitz plots for ω → 3π (left) and ϕ → 3π (right) decays. The distributions are divided by the p-wave phase
space P and normalized to 1 at x ¼ y ¼ 0. This is a parameter-free result, because we kept only one term in the conformal expansion
(29) which is responsible for the overall normalization. See main text for details.

TABLE I. Dalitz Plot parameters and
ffiffiffiffiffi
χ̄2

p
of the polynomial parametrization (40) for ω → 3π. In addition to our results we also show

selected results from Niecknig et al. [37] (a dispersive study with incorporated crossed-channel effects) and Terschlusen et al. [19] (a
Lagrangian-based study with pion-pion rescattering effects).

α × 103 β × 103 γ × 103 δ × 103
ffiffiffiffiffi
χ̄2

p
× 103

This paper (F̂ ¼ 0) 136 � � � � � � � � � 3.5
This paper (full) 94 � � � � � � � � � 3.2
Niecknig et al. [37] 84…96 � � � � � � � � � 0.9…1.1
Terschlusen et al. [19] 202 � � � � � � � � � 6.6

This paper (F̂ ¼ 0) 125 30 � � � � � � 0.74
This paper (full) 84 28 � � � � � � 0.35
Niecknig et al.[37] 74…84 24…28 � � � � � � 0.052…0.078
Terschlusen et al. [19] 190 54 � � � � � � 2.1

This paper (F̂ ¼ 0) 113 27 24 � � � 0.1
This paper (full) 80 27 8 � � � 0.24
Niecknig et al. [37] 73…81 24…28 3…6 � � � 0.038…0.047
Terschlusen et al. [19] 172 43 50 � � � 0.4

This paper (F̂ ¼ 0) 114 24 20 6 0.005
This paper (full) 83 22 1 14 0.079
Niecknig et al. [37] 74…83 21…24 0…2 7…8 0.012…0.011
Terschlusen et al. [19] 174 35 43 20 0.1
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decay, we expect new data from the CLAS12, WASA at
COSY, and KLOE collaborations. Since the main purpose
of the present paper is to outline a novel theoretical scheme,
we postpone a comprehensive data analysis to the future
and for now only consider the application to EM transition
form factors of ω=ϕ. In particular, the transition ω → πγ� is
of interest since the existing data in the time-like region
seems to be incompatible with the vector-meson dominance
(VMD) model [60,61].

B. ω=ϕ → πγ�

In this section we discuss the EM transition form factors
of the ω and ϕ mesons. The Dalitz decay of the vector
mesons into a pion and a lepton pair,

hπ0ðp0ÞlþðpþÞl−ðp−ÞjTjVðpV; λÞi
¼ ð2πÞ4δðpV − p0 − pþ − p−ÞHVπ; ð42Þ

can be described by the following amplitude [62]:

HVπ ¼ ϵμðpV;λÞfVπðsÞϵμναβpν
0q

α ie
2

s
ūðp−; λ−Þγβυðpþ; λþÞ;

ð43Þ

which describes the product of the hadronic current, the
photon propagator, and the lepton current. In addition to a
kinematical factor, the hadron current is given in terms of
the form factor fVπðsÞ. In Eq. (43) q is the momentum of
the virtual photon with invariant mass s¼q2¼ðpþþp−Þ2
and ū, υ stand for Dirac spinors of the two leptons. The
single differential decay rate normalized by the real photon
decay width is given by ΓV→πγ, and can be written as

1

ΓV→πγ

dΓ
ds

¼ e2

12π2
jFVπðsÞj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
l

s

r �
1þ 2m2

l

s

�

×
1

s

��
1þ s

M2 −m2

�
2

−
4M2s

ðM2 −m2Þ2
�
3=2

;

ð44Þ

where e ¼ 0.303 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
4παem

p
is the electric charge, ml is

the lepton mass,

ΓV→πγ ¼
e2ðM2 −m2

πÞ3
96πM3

jfVπð0Þj2; ð45Þ

and FVπðsÞ is the hadronic form factor normalized to unity
at the photon point s ¼ 0,

FVπðsÞ ¼
fVπðsÞ
fVπð0Þ

: ð46Þ

In the elastic approximation, illustrated in Fig. 7, the
discontinuity of the EM transition form factors across the

ππ cut [63] is proportional to the V → 3π decay amplitude
[see Eq. (3)] and the pion vector form factor FπðsÞ,

DiscfVπðsÞ ¼
ρ3ðsÞs
128π

F�
πðsÞ

Z
1

−1
dz0ð1 − z02ÞFðs; t0; u0Þ:

ð47Þ

The dispersion relation for the form factor can therefore be
written as

fVπðsÞ ¼
Z

si

sπ

ds0

π

DiscfVπðs0Þ
s0 − s

þ ~ΣðsÞ;

~ΣðsÞ ¼
X∞
i¼0

biωiðsÞ; ð48Þ

where we separated the elastic and inelastic contributions in
a similar fashion as for the V → 3π amplitude. The inelastic
contribution is defined by a map of the s-plane cut above
s ¼ si and is thus given by the same function ωðsÞ,
cf. Eq. (30). However, the coefficients bi specify the form
factor and are different from those in Eq. (29). We remove
the unphysical discontinuity at s ¼ si using the procedure
outlined in the previous section, cf. Eq. (36). As for the pion
vector form factor, we employ the parametrization that was
used by the Belle Collaboration [64], which we refer to as
FBelleðsÞ. However, in order to satisfy the Watson theorem
[65], we modify FBelleðsÞ and for the vector form factor use
FπðsÞ ¼ jFBellej expðiδðsÞÞ, where δ is the ππ P-wave phase
shift taken from Ref. [20]. We have checked that the effect
of this modification on the description of the experimental
data is negligible in the energy range s ¼ ½sπ; si�. We stress
that—thanks to the separation of the elastic and inelastic
contributions of fVπðsÞ—there is no need for additional
assumptions regarding the behavior of the ππ phase shift
beyond the elastic region, in contrast to Ref. [66].
Recently, the NA60 Collaboration [60,61] reported a new

measurement of the electromagnetic transition form factor
from the decay ω → π0μþμ−. This process is interesting,
because the most common approach, namely VMD [67],

FVMDðsÞ ¼
m2

ρ

m2
ρ − s − i

ffiffiffi
s

p
ΓðsÞ ; ð49Þ

FIG. 7. Schematic representation of the discontinuity for the
electromagnetic transition form factor.
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dramatically fails to reproduce the data. Note that in the case
of ϕ → πγ� the rho-meson pole occurs in the physical
region, and therefore we included the width in the denom-
inator of Eq. (49),

ΓðsÞ ¼ Γρ

�
pπðsÞ
pπðm2

ρÞ
�

3m2
ρ

s
; ð50Þ

where pπ is the pion momentum in the rho-meson center-
of-mass frame and Γρ ¼ 150 MeV. This change is not
important for ω → πγ� decay, where the narrow-width
approximation works very well.
In the following, we will compare our results with VMD

(49), Schneider et al. [66] and Terschlusen et al. [18].
In Ref. [66] the dispersive analysis of three-pion decays of
ω and ϕ mesons was extended to EM transition form
factors. Similarly to ω=ϕ → 3π analyses, the dispersive
integral was extended to infinite energies and inelastic
contributions were suppressed by subtractions. The ππ
p-wave phase shift was assumed to have asymptotic
behavior of δðs → ∞Þ ¼ π. In the analysis of Ref. [18]
the chiral Lagrangian with vector mesons [17–19] was used.
The ω → π0γ� EM transition form factors are shown in

Fig. 8 together with the differential ω → π0eþe− and
ω → π0μþμ− decay rates. The various lines illustrate the
effect of higher-order terms in the expansion of the inelastic

contribution in terms of ωðsÞ [Eq. (48)]. The b0 ¼ −0.194
parameter is determined by comparing with the real-photon
decay width Γexp

ω→π0γ
¼ 0.703 MeV [1], while the other bi≥1

parameters were obtained from fitting the EM form-factor
data. As can be seen in Fig. 8, keeping only one term in the
conformal expansion already gives a reasonable descrip-
tion. It improves the slope of the VMD curve towards the
data with χ2=d:o:f: ⋍ 2.5, compared to χ2=d:o:f: ⋍ 4.6
using the VMD model. The quality of the data description
is similar to that of Ref. [66] and somewhat worse when
compared to Ref. [18], which corresponds to χ2=d:o:f: ⋍
1.8. In Fig. 8 we also show the single-differential decay
rates of ω → π0eþe− and ω → π0μþμ−. The kinematic
factors suppress the large invariant mass region and there-
fore the branching ratios agree very well with the exper-
imental values [1],

Bthðω → π0eþe−Þ ¼ 7.8 × 10−4;

Bexpðω → π0eþe−Þ ¼ ð7.7� 0.6Þ × 10−4; ð51Þ

and

Bthðω → π0μþμ−Þ ¼ 0.96 × 10−4;

Bexpðω → π0μþμ−Þ ¼ ð1.3� 0.4Þ × 10−4: ð52Þ

FIG. 8 (color online). The electromagnetic form factor for ω → π0γ� (left), the differential decay rate ω → π0eþe− (top right), and the
differential decay rate ω → π0eþe− (bottom right). Data for the form factor is taken from Ref. [60], while the single-differential decay
rates were calculated using Eq. (44). The dotted line is the VMDmodel (49), while the solid, dash-dotted, and dashed lines correspond to
a truncation in the expansion (48) at zeroth, first, and second order, respectively.
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Since the experimental data are not very precise, we
decided to estimate the coefficients bi of Eq. (48) by
matching our amplitude to χPT with vector mesons [18] at
s ¼ 0. We remark that the expansion coefficients bi can be
uniquely determined by the first i derivatives of ~ΣðsÞ at the
expansion point s ¼ sE ¼ 0 [see Eq. (30)]. We find the
following results,

b0 b1 χ2=d:o:f

Data fit (only b1) −0.194 4.96 2.4
Matching to χPT with VM −0.148 9.33 2.4

which improve but do not resolve the disagreement
between the data and our description for the last few data
points (dot-dashed curve in Fig. 8). As a phenomenological
test we decided to add one more term in the conformal
expansion and all together fit b1 and b2 to the NA60 data
(dashed curve in Fig. 8). The resulting parameters are
b1 ¼ −23.7 and b2 ¼ 484.4 with χ2=d:o:f: ⋍ 1.3. The fit
indicates a significant change in the parameter b1 (even a
different sign). The variation of fit parameters is consistent
with the strong rise of the form factor, which is modeled,
throughωðsÞ, by a singularity at the inelastic threshold. It is
doubtful, however, that this would be the correct explan-
ation. An independent measurement of the ω and ϕ form
factors should help resolve this puzzle.

In the elastic region the discontinuity is exact up to
uncertainties in the pion-pion amplitude. For the inelastic
region we use a parametrization that we fit to the data. One
can contemplate a study of the theoretical uncertainties, for
example, by using different forms of the conformal map-
ping. We checked that changing the expansion point in
Eq. (30) to s ¼ 4m2

π produces negligible effects. Another
question pertains to the criteria for choosing the number of
terms in the expansion and possible constraints on the
conformal coefficients. Since we are seeking a description
of the data in the decay region, the energies are always
smaller than si, which should guarantee good convergence
of the conformal expansion. For example, at the origin
ωðs ¼ 0Þ ¼ 0, and at the edges of the decay region ωðs ¼
ðMω −mπÞ2Þ ¼ 0.133 and ωðs ¼ ðMϕ −mπÞ2Þ ¼ 0.358.
Therefore, a few terms in the expansion produce reasonable
results. The possible estimations on the size of the
conformal coefficients can come, for example, from χPT
at low energies or other phenomenological analyses, e.g.,
that include explicit coupled channels. We find, for
example, that in the fit with three terms in the conformal
expansion the values of the parameters are consistent with
the results of Ref. [68].
Figure 9 shows the results for the ϕ-meson decays. Since

there are no experimental measurements, we keep only one
term in the conformal expansion (48) which is fixed by the

FIG. 9 (color online). The electromagnetic form factor for ϕ → π0γ� (left), the differential decay rate ϕ → π0eþe− (top right), and the
differential decay rate ϕ → π0eþe− (bottom right). The dotted line is the VMD approach (49), the solid line corresponds to a truncation
in the expansion (48) at zeroth order, and the dashed line is the same as the solid line but without three-body effects.
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experimental real-photon decay width, Γexp
ϕ→π0γ

¼ 5.41 keV

[1]. For the branching ratio, it then leads to

Bthðϕ → π0eþe−Þ ¼ 1.45 × 10−5; ð53Þ
which compares favorably with the experimental value [1] of

Bexpðϕ → π0eþe−Þ ¼ ð1.12� 0.28Þ × 10−5: ð54Þ
The predicted branching ratio to muons is

Bthðϕ → π0μþμ−Þ ¼ 3.9 × 10−6: ð55Þ

Finally, in Fig. 9 we show the sensitivity of the ϕ form factor
to the three-body effects in ω → 3π decay. We confirm the
findings of Ref. [66], namely that there is an enhancement at
the two-pion threshold due to cross-channel rescattering
effects. As another theoretical study we refer to Ref. [69],
where the EM form factor in the resonance region was
parametrized by a sum of the vector propagators weighted by
the corresponding coupling constants.
We emphasize that our approach is restricted to low

energies. It can however be matched onto a particular high-
energy model by imposing additional constraints on the
coefficients of conformal mapping.

VI. CONCLUSIONS

In this paper we have analyzed three-pion decays and
electromagnetic form factors of ω=ϕ within a dispersive
formalism that is based on the isobar decomposition and
subenergy unitarity. The important input is the P-wave ππ
scattering amplitude, which is available from Ref. [20]. By
means of the dispersion relation we separated the contri-
bution from the elastic and inelastic channels. The latter
was parametrized by a series in a suitable conformal variable
and the coefficients of this expansion play the role of the
subtraction constants. When the partial-wave expansion is
truncated, constraints from Regge theory on the high-energy
behavior are missing. In this case partial-wave dispersion
relations do not have unique solutions as they depend on the
assumed asymptotic behavior. We have presented an alter-
native method for incorporating three-body effects that
alleviates some of the deficiencies when dealing with
inelastic contributions to partial-wave dispersion relations.

The unknowns are parametrized though a conformal expan-
sion with coefficients that can either be fitted to the data or
determined by comparing with other theoretical studies, e.g.,
lattice QCD and effective field theory based studies. To
properly incorporate the high-energy behavior, however, it is
necessary to build in aspects of the Regge theory, which we
leave for future investigations.
We presented the single-differential and Dalitz plot

distributions, where we found non-negligible three-body
effects. We also found our results to be similar to those of
Ref. [37], where a standard subtraction procedure was
applied. As a straightforward application of the three-body
amplitude we studied electromagnetic form factors for ω=ϕ
mesons. The results improve on the simple VMD model;
however, our theoretical analysis and the other studies
[18,66] predict the EM transition form factor for ω → πγ�

to be smaller at s ¼ ðMω −mπÞ2 than that measured by the
NA60 Collaboration. To shed more light on the intrinsic
dynamics of hadrons at low energies, the experimental
analysis of the Okubo-Zweig-Iizuka-suppressed decay
ϕ → π0lþl− is highly desirable. The shape of the latter
is predicted within our framework.
As a next step we plan to perform the data analysis of the

upcoming ω → 3π JLab g12 data. Note that the same
method can be applied to treat D- and B-meson three-body
decays. Another prospect is the hadronic light-by-light
contribution to the anomalous magnetic moment of the
muon [70], where ω=ϕ → πγ� serve as input ingredients to
the pion transition form factor Fπ0γ�γ� and γ�γ� → ππ
partial waves.
All the material, including the codes are available in an

interactive form in Ref. [71].
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