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A key problem in making precise perturbative QCD (pQCD) predictions is how to set the
renormalization scale of the running coupling unambiguously at each finite order. The elimination of
the uncertainty in setting the renormalization scale in pQCD will greatly increase the precision of collider
tests of the Standard Model and the sensitivity to new phenomena. Renormalization group invariance
requires that predictions for observables must also be independent on the choice of the renormalization
scheme. The well-known Brodsky-Lepage-Mackenzie (BLM) approach cannot be easily extended beyond
next-to-next-to-leading order of pQCD. Several suggestions have been proposed to extend the BLM
approach to all orders. In this paper we discuss two distinct methods. One is based on the “Principle of
Maximum Conformality” (PMC), which provides a systematic all-orders method to eliminate the scale and
scheme ambiguities of pQCD. The PMC extends the BLM procedure to all orders using renormalization
group methods; as an outcome, it significantly improves the pQCD convergence by eliminating renormalon
divergences. An alternative method is the “sequential extended BLM” (seBLM) approach, which has been
primarily designed to improve the convergence of pQCD series. The seBLM, as originally proposed,
introduces auxiliary fields and follows the pattern of the β0-expansion to fix the renormalization scale.
However, the seBLM requires a recomputation of pQCD amplitudes including the auxiliary fields; due to
the limited availability of calculations using these auxiliary fields, the seBLM has only been applied to a
few processes at low orders. In order to avoid the complications of adding extra fields, we propose a
modified version of seBLM which allows us to apply this method to higher orders. We then perform
detailed numerical comparisons of the two alternative scale-setting approaches by investigating their
predictions for the annihilation cross section ratio Reþe− at four-loop order in pQCD.
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I. INTRODUCTION

Renormalization group (RG) invariance is a central
principle of quantum field theories: there cannot be any
renormalization scheme or renormalization scale ambiguity
in the predictions for physical observables. However, this
principle is typically violated if one uses conventional scale-
setting methods in QCD due to the unavoidable truncation of
the perturbative QCD (pQCD) series. Thus, a key problem in
making precise pQCD predictions is how to set the

renormalization scale of the running coupling properly at
each perturbative order without introducing any unphysical
dependence on the choice of renormalization scheme. The
elimination of the uncertainty in setting the renormalization
scale in pQCD will greatly increase the precision of collider
tests of the Standard Model and the sensitivity to new
phenomena. A review of the QCD renormalization scale-
setting problem can be found in Ref. [1].
One of the earliest approaches to solve the scale-setting

problem in pQCD is known today as the Brodsky-Lepage-
Mackenzie (BLM) approach, suggested by Brodsky,
Lepage and Mackenzie in Ref. [2]. The BLM approach
was inspired by its counterpart in Abelian quantum
electrodynamics (QED)—the Gell Mann-Low scheme
[3]. In QED, only vacuum-polarization insertions
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contribute to coupling constant renormalization. In the
BLM work, the optimal scales for the running coupling in
non-Abelian theory are set at each order in analogy to QED
by absorbing all of the contributions of the β-function of the
process into the running coupling. In the BLM procedure,
the nf contributions of fermion loops were used to identify
the leading fβig-terms. However this identification is only
effective up to next-to-leading order (NLO). The BLM
method was later extended to next-to-next-to-leading order
(NNLO) by Brodsky and Lu [4], who also observed that
the BLM predictions are independent of the choice of
the scheme if one relates observables to each other via
commensurate scale relations. However, this method can-
not be unambiguously extended to pQCD series at very
high orders, and thus an extra procedure to distinguish the
fβig-terms in a pQCD series is required.
A proposed extension of BLM is a method called

“sequential extended BLM” (seBLM) [5]. The purpose
of seBLM is to optimize the pQCD convergence. In order
to accomplish this, a “large β0-approximation” [6–8], with
slight modifications, is adopted to deal with the pQCD
series. (Here β0 denotes the first perturbative coefficient of
the running coupling β-function.) However, the seBLM
does not distinguish whether the nf-terms in a pQCD
expansion are in fact related to the renormalization group
(RG) β-function, and thus all nf-terms are rearranged into
fβig-terms. Subsequently the fβig-terms are resummed
into the running coupling following the scheme of the
β0-expansion. Due to ambiguities in determining the
coefficients of the fβig-terms at higher orders, new colored
fields are introduced to fix the seBLM scales. A detailed
review of the seBLM procedures will be given in this paper;
we will also point out several shortcomings of the seBLM
method, which constrains its current applicability.
If one can unambiguously identify all of the fβig-terms

in a pQCD expansion, then they can be systematically
eliminated by shifting and thus setting the renormalization
scale at each order in pQCD. The remaining pQCD series
will then match the terms of the corresponding “conformal”
series with β ¼ 0. This is the main idea behind the
“Principle of Maximum Conformality (PMC)” [9–15].
The PMC explains why the BLM method works so
successfully at the NLO level, and it can be applied for
any high-energy processes up to any order [14]. For some
recent N3LO and N4LO examples see Refs. [16–20].
When one applies PMC scale setting, the scales of the

running coupling in the pQCD series are shifted such that
all contributions related to the β-function are resummed and
only the coefficients which are RG invariant remain. These
coefficients are called the “conformal series” since they are
identical to the coefficients obtained if the β function were
zero. The resulting PMC predictions are thus scheme
independent—predictions under different schemes only
differ by the appropriate shift of the renormalization scale.
Thus the PMC numerical prediction is insensitive to the

scheme choice. The PMC predictions also have the
property that any residual scale dependence on the choice
of (initial) renormalization scale is highly suppressed, even
for low-order predictions. The scheme independence of the
PMC predictions is also confirmed by commensurate scale
relations. An all-order demonstration of commensurate
scale relations in pQCD can be found in Refs. [1,15].
The PMC thus obeys standard RG invariance and satisfies
all RG properties [21]. Furthermore, the pQCD conver-
gence of pQCD series is improved due to the elimination of
divergent ðn!βni αns Þ-renormalon terms.
Two ways to identify the nonconformal fβig-terms and

to implement the PMC have been suggested. One method is
based on the PMC-BLM correspondence (PMC-I) [9,12],
and the other more recent method is a theoretical improve-
ment based on the Rδ-scheme (PMC-II) [14,15]. Both of
these methods satisfy RG invariance, but they resum the
pQCD series in different steps. We have shown that PMC-I
and PMC-II are numerically equivalent by comparing
several high-energy processes up to the four-loop level
[19,22]. A systematic demonstration of this equivalence
will appear soon [23]. In the following, we will adopt
PMC-II for the discussions and simply call it PMC.
Recently, an approximate comparison of PMC and

seBLM was published by Kataev and Mikhailov [24];
they concluded that the PMC method is “questionable.”
However, we have found that their conclusions were based
on a misunderstanding and a misuse of the PMC. It is
clearly important to clarify these issues so that any misuse
of the PMC method will be avoided. In this paper, we will
analyze Reþe− up to four-loop level, making a detailed
comparison of the PMC and seBLM predictions. Since the
seBLM is currently not applicable at the N3LO level and
beyond, we will suggest a new method for extending it to
higher orders, based on lessons from the PMC. We will
refer to this modified seBLM as “MseBLM.”
The remaining parts of this paper are organized as

follows: In Sec. II, we will present a mini-review of the
BLM-like scale-setting methods, BLM, PMC and seBLM.
The main features of these BLM-like methods will be
discussed, and an overview of the differences between the
PMC and seBLM procedures will then be presented. We
will show that the PMC and seBLM methods have some
common features; in particular, the PMC and the seBLM
β-patterns are exactly the same. We will also present
MseBLM in this section. In Sec. III, we will present
numerical results for Reþe− up to the four-loop level to
provide a detailed comparison of the PMC, seBLM and
MseBLM predictions. Sec. IV is reserved for a summary
and conclusions. Two appendices provide further computa-
tional details for seBLM.

II. BLM-LIKE SCALE SETTINGS

Consider the nth-order pQCD approximant ϱn for a
typical physical observable ϱ,
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ϱn ¼ r0apðμÞ þ
Xn
i¼1

riðμÞapþiðμÞ; ð1Þ

where a ¼ αs=4π and μ stands for the initial choice of
scale. The coefficient r0 is the tree-level result, p is the
power of the coupling associated with the tree-level term,
and riðμÞ is the coefficient of the ith-loop correction.
In conventional scale-setting treatments, the renormali-

zation scale is fixed to an initial guessed value which is
usually taken as a typical momentum flow of the process. If
one uses this method, the prediction is scheme dependent.
Furthermore, the scheme and scale dependence of the
coefficient riðμÞ and the coupling constant do not exactly
cancel at any fixed order, leading to well-known
ambiguities. In contrast, the BLM, PMC and seBLM
scale-setting methods improve the pQCD predictions by
eliminating such scheme and scale ambiguities.

A. Basic arguments of BLM

The renormalization scale for the running coupling is
unambiguously set in QED by summing all vacuum
polarization contributions, both proper and improper, into
the photon propagator. Thus αðtÞ ¼ αð0Þ

1−ΠðtÞ in the Gell
Mann-Low scheme [3], where t is the virtuality of the
exchanged photon and ΠðtÞ sums all nf fermion loop
contributions. The running of the QED effective coupling
is due to vacuum polarization alone—only vacuum-
polarization insertions contribute to the effective coupling
[3]. Following this observation, Brodsky, Lepage and
Mackenzie pointed out that the nf-dependence of the
pQCD series can also be used at low orders as a guide
to identify the β0 and β1 terms and thus set the scale of the
pQCD prediction up to N2LO [2]. This simple and
straightforward nf method can be applied to processes
that do not involve the three- or four-gluon couplings at
leading order. The BLM method also ensures that the
pQCD predictions analytically continue at Nc → 0 cor-
rectly to Abelian theory [25].
We will take the NLO pQCD prediction for a typical

single-scale physical observable ϱ1 to illustrate the BLM
procedure. At NLO level, the pQCD prediction can be
reexpanded as

ϱ1 ¼ r0apðμÞ½1þ ðAnf þ BÞaðμÞ�: ð2Þ

The nf-term is due to light quark vacuum-polarization
insertions. Any initial scale choice and any renormalization
scheme, including dimensional regularization, can be used
for the prediction. The coefficients A and B are in general
different under different schemes; however, the BLM
prediction ϱ1 is unchanged for any choice of scheme
due to commensurate scale relations [4].
All of the nf-terms can be resummed into the running

coupling with the help of the one-loop αs-running coupling

aðμBLMÞ ¼
aðμÞ

1þ β0aðμÞ ln ðμ2BLM=μ2Þ
; ð3Þ

where β0 ¼ 11 − 2nf=3. One then obtains

ϱ1 ¼ r0apðμBLMÞ½1þ r�1aðμBLMÞ�; ð4Þ

where μBLM ¼ μ expð3A=pÞ and r�1 ¼ 33
2
Aþ B. The BLM

scale μBLM is thus determined solely by A. The term 33A=2
in r�1 serves to remove those contributions which renorm-
alize the running coupling, and the resulting aðμBLMÞ is the
predicted value of the running coupling. Equation (3)
indicates that the BLM coupling aðμBLMÞ, and thus the
BLM prediction ϱ1, is independent of the initial scale μ, as
is readily checked.
This approach of using the nf-terms as a guide to resum

the series through the RG equation of αs cannot be
unambiguously extended to higher orders. One reason is
that the nf-series and the fβig-series are not a priori one-to-
one. Another issue is that nf-terms appear at higher orders
from loops which are ultraviolet finite but are not asso-
ciated with the β-function of the running coupling. Thus
reactions with multigluon couplings are more difficult to
analyze using BLM because quark loops appear in high-
order corrections to the multigluon vertex as well as in the
propagator insertions [26]. Scale setting for the BFKL
Pomeron intercept provides such an example [27,28].
Thus, it is necessary to modify BLM at higher orders. We

will discuss two suggestions, PMC and seBLM. We shall
first present an overview of those two suggestions, and then
present the PMC and seBLM features and their conse-
quences sequentially. In this discussion we will ignore
quark mass terms and their renormalization.

B. An overview of PMC and seBLM

The purposes of PMC and seBLM are different.
The PMC is designed to solve the renormalization scheme
and scale ambiguities, whereas the seBLM is designed to
improve the pQCD convergence. Both the PMC and
seBLM utilize the fβig-series to achieve these goals,
rather than the simpler nf-terms. In the case of processes
where the fβig-terms for the quark anomalous dimension
and the QCD β-function are entangled with each other,
extra steps have to be taken to distinguish those
fβig-terms [16].
When one applies the PMC or seBLM, two steps are

needed to fix the renormalization scale. The first step in
both cases is to fix the β-pattern at each perturbative order
and determine the coefficients of all fβig-terms in the
β-pattern. However, PMC and seBLM use quite different
methods to accomplish this step:

(i) The PMC observes that the β-pattern at each order
originates from a specific pattern and superposition of
the fβig-terms coming from all the lower-order

SETTING THE RENORMALIZATION SCALE IN … PHYSICAL REVIEW D 91, 094028 (2015)

094028-3



αs-factors, due to its running behavior. The running
behaviors are governed by the fundamental RG
equation, and one can thus identify the β-pattern
up to all orders without any ambiguities. As we shall
discuss below, this procedure can be carried out
systematically by generalizing the definition of MS
dimensional regularization to include extra subtrac-
tion terms δj¼1;2;…. The coefficients of δm¼1;2;…

j¼1;2;… then
isolate the fβig-terms to a particular αs-order [14,15].
The coefficients of the fβig-terms at each order can

also be determined from the nf-power series at the
same order, which are calculated under a certain
renormalization scheme, such as the MS-scheme
[29]. The expressions for the β0;1;2;3 as a function
of nf in the MS-scheme can be found in Refs. [30–
38]. There is a subtlety regarding nf-terms that are
unrelated to the αs-renormalization, which must be
kept unchanged when applying the PMC. Special

degeneracy relations among different order terms
ensure the exact one-to-one correspondence between
the nf-terms and the fβig-terms at the same order, so
that all fβig-coefficients can be unambiguously fixed
up to all orders [14]. It has been demonstrated that the
degeneracy relations are not specific to dimensional
regularization schemes, but are general features of
perturbation theory [15].

(ii) The seBLM fixes the β-pattern by identifying the
equivalent β0-powers of the fβig-terms via the
relation βi ∼ βiþ1

0 . All of the possible fβig-terms,
whose equivalent β0-powers are equal or less than
the maximum β0-power of the considered order,
form the β-pattern at each order. In fact the seBLM
β-pattern is the same as the PMC one. According to
the RG equation, the running coupling at different
scales are related by the following displacement
equation:

aðμ2Þ ¼ aðμ1Þ − β0 ln

�
μ22
μ21

�
a2ðμ1Þ þ

�
β20ln

2

�
μ22
μ21

�
− β1 ln

�
μ22
μ21

��
a3ðμ1Þ

þ
�
−β30ln3

�
μ22
μ21

�
þ 5

2
β0β1ln2

�
μ22
μ21

�
− β2 ln

�
μ22
μ21

��
a4ðμ1Þ þOða5Þ; ð5Þ

where μ1 and μ2 are two arbitrary scales. At each order, the
equivalent β0-powers are the same for all fβig-terms. For
example, at order a4, β2 ∼ β0β1 ∼ β30. Because the maxi-
mum β0-power at each order is the same for PMC and
seBLM, the superposition of the αs-displacement from all
lower orders, which is used in PMC, will, as we will see,
result in the β-pattern of seBLM. From this point of view,
the PMC provides the underlying principle for the seBLM
β-pattern.
The seBLM coefficients of the fβig-terms are also

determined from the known nf-power series, but in a quite
different way than the PMC: At the NLO level, only the
β0-term needs to be determined, and it can be directly fixed
by the n1f-term. At the NNLO level, the β20-term can be
fixed by the n2f-term, but the β1- and β0-terms cannot be
unambiguously fixed by the n1f-term alone, since both β0
and β1 are linear functions of n1f. To solve this problem, the
seBLM method introduces ~ng multiplets of fermions in
the adjoint representation of the color group, resembling
the gluino of supersymmetric Yang-Mills theory (which
makes part of the minimal supersymmetric standard model,
MSSM). The coefficients for the β1- and β0-terms are thus
fixed by recalculating pQCD series with ~ng gluinos and by
using the resulting n1f- and ~n1g-terms. The gluinos are
introduced as a technical device to fix the fβig-coefficients;
however this procedure introduces process-dependent

complex calculations into higher-order QCD corrections.
Thus in order to apply the seBLM, the pQCD corrections
need to be recomputed with the new fields in order to
extract the ~ng-dependence. At present, the ~ng-dependent
βi-function is known to three-loops; i.e., up to β2, and only
the Adler D-function has been calculated with ~ng-depend-
ence up to NNLO level. Thus seBLM can only be applied at
this time up to NNLO for D-function-derived processes,
such as Reþe− and the Bjorken polarized sum rule [24].
For the second step, one needs to find the correct way to

resum the relevant fβig-terms, determined from the first

step, into the running coupling. The PMC and the seBLM

take quite different paths:
(i) The PMC notes that only those fβig-terms which are

related with the renormalization of the running
coupling should be absorbed into the running
coupling. They are eliminated through the RG
equation, and the resultant PMC scales are functions
of the running coupling and are in general different
for different orders. One can choose any initial
renormalization scale to do the pQCD calculation
as long as its value is large enough to ensure pQCD
applicability. The final resummed result, however,
has no or very small residual dependence on the
choice of the initial renormalization scales.

(ii) The seBLM treats all the fβig-terms on equal
footing without distinguishing whether they should
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be incorporated into the renormalization of the
running coupling. The seBLM scales are obtained
by adopting the large β0-approximation [7,8]; i.e.
using the equivalent β0-powers for the fβig-terms as
a guide. The highest β0-powers are eliminated first,
then the one-order-lower β0-terms, and so on. Thus
the seBLM scales are effective scales, and one
cannot a priori decide whether they will lead to
the optimal behavior of the running coupling. In fact,
one finds that the seBLM convergence is not as
expected, even for the quantity Reþe−. Thus an extra
treatment, called x-BLM, to further improve the
seBLM pQCD convergence was suggested in the
original seBLM paper [5].

C. PMC scale setting

PMC scale setting provides the underlying principle for
BLM, a procedure that can be unambiguously applied to
any order [1,14,15]. The PMC utilizes the identified fβig-
terms and the RG equation to determine the value of the
running coupling at each order and thus the “physical”
scales of the process. At the NLO level, one only requires
the β0-term; absorbing the β0-term into the scale of the

running coupling is equivalent to eliminate the n1f-term,
which explains why BLM works so well at the NLO level.
A key step is to identify the β-terms in the pQCD

prediction, thus distinguishing the “nonconformal” versus
the conformal β-independent terms. To do this, the PMC
introduces a generalized dimensional renormalization
scheme, the Rδ-scheme, where an arbitrary constant −δ
is subtracted in addition to the standard subtraction
ðln 4π − γEÞ used in the MS-scheme. The δ-subtraction
defines an infinite set of MS-like schemes. The PMC scales
for different Rδ-schemes, e.g. Rδ1- and Rδ2-schemes, differ
only by a factor eðδ1−δ2Þ=2. This scale relation ensures the
scheme independence of pQCD predictions among differ-
ent schemes. Moreover, the scale displacement between
couplings in any Rδ-scheme reveals all the fβig-terms
pertaining to a specific order [14,15]. By collecting all of
the fβig-terms that occur at a given order, one can identify
the β-pattern of the RG, and thus compute each PMC scale
order by order,
According to PMC scale setting, the explicit β-pattern at

each order for the pQCD prediction of the observable ϱ can
be written as

ϱn ¼ r0;0 þ r1;0aðμÞ þ ½r2;0 þ β0r2;1�a2ðμÞ þ ½r3;0 þ β1r2;1 þ 2β0r3;1 þ β20r3;2�a3ðμÞ

þ ½r4;0 þ β2r2;1 þ 2β1r3;1 þ
5

2
β1β0r3;2 þ 3β0r4;1 þ 3β20r4;2 þ β30r4;3�a4ðμÞ þ � � � ; ð6Þ

where the ri;0 are the conformal coefficients, while ri;j≠0 are the ones related to the running coupling renormalization. The
degeneracy relations among the nonconformal coefficients at different orders are implicitly adopted. The β-pattern fixed by
Eq. (6) at each order is dictated by the RG equation. It is thus natural to call such a β-pattern the RG-β-pattern. It is noted
that the RG-β-pattern is determined from a superposition of displacements in the running couplings at each order; thus only
those fβig-terms which determine the correct running behavior of the coupling are kept. There are cases where the
coefficients ri;j are exactly zero for the fβig-terms; i.e. there are “missing” fβig-terms in specific processes. This only
indicates that those terms have no contributions to the renormalization of the running coupling. This explains why in
Ref. [24], what the authors refer to as the“correct PMC,” is actually an invalid procedure. Since the authors [24] transform
all nf-terms into fβig-terms which brings unrelated fβig-terms into the RG-β-pattern, thus explicitly breaking the PMC
procedure.
Using PMC scale setting, which follows the pattern dictated by the RG, all lower-order running couplings can be

resummed into effective couplings akðQkÞ as

rk;0akðμÞ þ rk;0kak−1ðμÞβðaÞfRk;1 þ Δð1Þ
k ðaÞRk;2 þ � � � þ Δðn−1Þ

k ðaÞRk;ng ¼ rk;0akðQkÞ; ð7Þ

where βðaÞ ¼ −a2ðμÞP∞
i¼0 βia

iðμÞ and Qk is the PMC scale at ak-order, given by

ln
Q2

k

μ2
¼ Rk;1 þ Δð1Þ

k ðaÞRk;2 þ Δð2Þ
k ðaÞRk;3 þ � � �

1þ Δð1Þ
k ðaÞRk;1 þ ðΔð1Þ

k ðaÞÞ2ðRk;2 − R2
k;1Þ þ Δð2Þ

k ðaÞR2
k;1 þ � � �

; ð8Þ

Rk;j ¼ ð−1Þj rkþj;j

rk;0
; ð9Þ

Δð1Þ
k ðaÞ ¼ 1

2!

�∂β
∂aþ ðk − 1Þ β

a

�
; Δð2Þ

k ðaÞ ¼ 1

3!

�
β
∂2β

∂a2 þ
�∂β
∂a

�
2

þ 3ðk − 1Þ β
a
∂β
∂aþ ðk − 1Þðk − 2Þ β

2

a2

�
� � � : ð10Þ
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This shows that the PMC scales are in general different at
different orders, as in QED. This is clear since the β-terms
which control the behavior of the running coupling and the
physical scales which set the virtuality of the propagators,
as well as the number of effective flavors nf, are usually
different at each order.
The final pQCD PMC prediction for ϱ then reads

ϱn ¼ r0;0 þ r1;0aðQ1Þ þ r2;0a2ðQ2Þ
þ r3;0a3ðQ3Þ þ r4;0a4ðQ4Þ þ � � � : ð11Þ

At the four-loop level,Q4 remains unknown, since we need
to know the five-loop coefficient r5;1 to fix its value. This
leads to some minor residual scale dependence, suppressed
by the highest power in a. A practical choice of Q4 is Q3.
As shown by Eq. (8), the PMC scales themselves are
perturbative series, which also introduce residual scale

dependence; however, this dependence is highly sup-
pressed, even for lower-order analyses. Since the non-
conformal contributions are absorbed into the scales, the
PMC predictions have optimal pQCD convergence due to
the elimination of divergent renormalon terms. More details
and the properties of PMC may be found in Refs. [9–15]
and in a recent short review in Ref. [22].

D. seBLM and its modified version MseBLM

As mentioned in the Introduction, seBLM can only be
applied at present to AdlerD-function-derived processes up
to three-loops [24,39–41]. In this subsection, we will take
the three-loop pQCD prediction of a physical observable ϱ
to illustrate the seBLM procedure. Following Eq. (1), the
pQCD prediction ϱn for ϱ up to three-loop level can be
written as

ϱn ¼ r0 þ r1ðaðμÞ þ r2a2ðμÞ þ r3a3ðμÞ þ � � �Þ
¼ r0 þ r1ðaðμÞ þ ðβ0 · r2½1� þ r2½0�Þa2ðμÞ þ ðβ20 · r3½2� þ β1 · r3½0; 1� þ β0 · r3½1� þ r3½0�Þa3ðμÞ þ � � �Þ; ð12Þ

where r0 is free of strong interactions, and for convenience,
an overall factor r1 is factored out of the pQCD corrections.
The β-pattern at each order in the second line is suggested
in Ref. [5]. The first argument n0 of the coefficients
rn½n0; n1; � � �� corresponds to the β0-power, whereas the
second one n1 corresponds to the β1-power, etc. We have
omitted the arguments of the fβig-coefficients for brevity.
In order to shorten the notation even further: if all the
arguments of the coefficient rn½…; m; 0;…; 0� to the right
of the index m are equal to zero, then we will omit those
zero arguments for simplicity and write instead simply
rn½…; m�. The coefficient rn½n0; n1;…� is usually scale
dependent through terms dependent on lnQ2=μ2, where Q
stands for the typical momentum flow of the process.
The seBLM β-pattern, shown in Eq. (12), is fixed by

using the relation, βi ∼ βiþ1
0 . By counting the equivalent

β0-powers for all the possible fβig-terms, the β-pattern is
determined by following the decrement of the equivalent
β0-powers. For example: At the N2LO level, we have only
β10; at the N3LO level, we have β20, β1 ∼ β20 and β0; at the
N4LO level, we have β30, β2 ∼ β30, β1β0 ∼ β30, β

2
0, β1 ∼ β20,

β0; at the N5LO level, we have β40, β3 ∼ β40, β2β0 ∼ β40,
β21 ∼ β40, β1β

2
0 ∼ β40, β30, β2 ∼ β30, β1β0 ∼ β30, β20, β1 ∼ β20,

β0; etc.
A diagrammatic illustration of the seBLM β-pattern can

be motivated by the αs-corrections to the photon polariza-
tion operator Π [5]. It is based on the fact that the
βi-functions emerge together with certain αs-powers; i.e.,
ðβ0aÞ; ðβ1a2Þ;…; ðβiaiþ1Þ; at a fixed αs-order, all possible
combinations of βi-functions can thus be enumerated.

Figure 1 shows the α3s-corrections to the gluon polarization
operator Π, in which the diagrams for the coefficients r3½0�,
r3½1�, r3½2� and r3½0; 1� are presented. Another explanation
of the seBLM β-pattern can be based on an analysis of the
Casimir structures of the Adler D-function; see Ref. [24].
Those two explanations for the seBLM β-pattern are
illuminating; however, they cannot explain why such
β-pattern would be applicable to all high-energy processes.
Note that the seBLM β-pattern is the same as the PMC RG-
β-pattern. As has been discussed in Sec. II B, the PMC
provides the underlying reason for the seBLM β-pattern.

1. Determination of seBLM fβig-coefficients
In practice, the seBLM fβig-coefficients rn½n0; n1;…�

are fixed by using the full nf-power series at the same order
without distinguishing whether those nf-terms pertain to

FIG. 1 (color online). Diagrammatic illustration for the
β-pattern of the α3s -correction contributing to the photon polari-
zation operator Π [5], following the relation βi ∼ βiþ1

0 : (a) dia-
grams without any intrinsic renormalization contributions to
r3½0�; (b) diagrams contributing to the β0-term r3½1�; (c) diagrams
contributing to the β20-term r3½2�; (d) diagrams contributing to the
β1-term r3½0; 1�. The ellipses denote other diagrams with the
gluon/vertex renormalization.
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the RG β-function. As we have noted, this is the underlying
reason why the seBLM differs from the PMC.
At the two-loop level, the β0-coefficient r2½1� can be

fixed by the linear nf-term c2;1nf in the two-loop nf-power
series

r2 ¼ c2;1nf þ c2;0; ð13Þ

where the expansion coefficients c2;0 and c2;1 for the case of
Adler D-function can be found in Ref. [42].
At the three-loop level, the β20-coefficient r3½2� can be

fixed by the squared n2f-term c3;2n2f; however, the β0 and β1
coefficients r3½1� and r3½0; 1� cannot be unambiguously
fixed by a single linear nf-term c3;1nf in the third-order
nf-power series

r3 ¼ c3;2n2f þ c3;1nf þ c3;0; ð14Þ

where the expansion coefficients c3;0, c3;1 and c3;2 for the
case of Adler D-function can be found in Ref. [42].
To solve this problem, the seBLM method requires the

recalculation of the process with the help of multiplets of
strongly interacting MSSM gluinos. The purpose of intro-
ducing such MSSM gluinos is to determine the
fβig-coefficients from the nf- and ~ng- power series; in
the final step, one can set ~ng to zero in order to obtain the
numerical predictions of seBLM for pQCD.
By recalculating the pQCD series with ~ng gluinos, the

third-order coefficient changes to

~r3 ¼ c3;5 ~ngnf þ c3;4 ~n2g þ c3;3 ~ng þ c3;2n2f þ c3;1nf þ c3;0:

ð15Þ

The coefficients β0 and β1 with MSSM gluinos are linear
functions of n1f and ~n1g [43], thus the fβ0; β1g-coefficients
r3½1� and r3½0; 1� can be fixed by c3;3 and c3;1. Note that the
β-series has only four independent coefficients, whereas
the nf and ~ng series given above have six expansion
coefficients. Thus not all of the cij coefficients are
independent. We can in fact find two relations among
c3;5, c3;4 and c3;2; i.e.

c23;5 ¼ 4c3;2 · c3;4 and 4T2
Rc3;4 ¼ C2

Ac3;2;

which agree with the analytic results derived in Ref. [42].
Thus, the β20-coefficients r3½2� can be fixed by c3;5 or c3;4 or
by c3;2.
These seBLM procedures can be extended to all orders.

For example, the seBLM β-pattern at the four-loop level
can be written as

β30 · r4½3� þ β0β1 · r4½1; 1� þ β2 · r4½0; 0; 1� þ β20 · r4½2�
þ β1 · r4½0; 1� þ β0 · r4½1� þ r4½0�: ð16Þ

The pQCD nf-power series at the four-loop level can be
written as

r4 ¼ c4;3n3f þ c4;2n2f þ c4;1nf þ c4;0: ð17Þ

Again it cannot fix all the fβig-coefficients. By recalculat-
ing r4 with ~ng gluinos, the fourth-order coefficient
changes to

~r4 ¼ c4;9 ~ngn2f þ c4;8 ~n2gnf þ c4;7 ~ngnf þ c4;6 ~n3g þ c4;5 ~n2g þ c4;4 ~ng þ c4;3n3f þ c4;2n2f þ c4;1nf þ c4;0: ð18Þ

The fβ0; β1g-coefficients r4½1� and r4½0; 1� can be fixed
by c4;4 and c4;1; the fβ0β1; β2; β20g-coefficients r4½1; 1�,
r4½0; 0; 1� and r4½2� can be fixed by c4;7, c4;5 and c4;2. The
β-series (16) has seven independent coefficients, whereas
the nf and ~ng series (18) have ten expansion coefficients.
Thus there are three constraints which constrain the cij
coefficients at this level. Using the equivalence of (16) and
(18), we obtain

9c4;3 · c4;6 ¼ c4;8 · c4;9;

C3
Ac4;3 ¼ 8T3

Rc4;6;

2TRc4;8 ¼ CAc4;9:

Thus, only one of c4;9, c4;8, c4;6 and c4;3 is independent; it
can be used to fix the β30-coefficient r4½3�. At present, the

fourth-order coefficient ~r4 is not available for any observ-
able; the general relations given above can be used as a
cross-check on ~r4 when it is calculated in the future and as a
self-consistency check on the seBLM idea.
The ~ng-related coefficients are process dependent. One

requires the ~ng-dependent calculation in order to fix all the
fβig-coefficients. This unavoidably introduces extra loop
calculations into the already complex higher-order QCD
corrections. Due to the present limited knowledge of the
~ng-dependent fβig-expression and the ~ng-dependent pQCD
series, the seBLM can only be applied to deal with Adler
D-function-derived processes, which is now only known at
the three-loop level. For future usage, we present the
seBLM coefficients rk½l; m;…� at the scale μ ¼ Q for
the Adler D-function in Appendix A, where Q stands for
the measured physical scale.
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2. Determination of the seBLM scales

After fixing the β-pattern and the fβig-coefficients for a process, the large β0-approximation can be adopted with a slight
alteration to analyze the pQCD series. This first step can be done at any order. As an explanation and for the subsequent use
of MseBLM, we will present a four-loop analysis of the pQCD series. Up to four-loop level, the pQCD approximant ϱn can
be formally written as

ϱn ¼ r0 þ r1½aðμÞ þ ðβ0 · r2½1� þ r2½0�Þa2ðμÞ þ ðβ20 · r3½2� þ β1 · r3½0; 1� þ β0 · r3½1� þ r3½0�Þa3ðμÞ
þ ðβ30 · r4½3� þ β0β1 · r4½1; 1� þ β2 · r4½0; 0; 1� þ β20 · r4½2� þ β1 · r4½0; 1� þ β0 · r4½1� þ r4½0�Þa4ðμÞ þ � � ��; ð19Þ

We note that in Ref. [24], the elimination of
fβig-terms starts with the so-called RG-invariant
ϱnjμ¼Q. This is not a strict condition since the fixed-
order pQCD approximate ϱnjμ¼Q obtained using con-
ventional scale setting cannot be a RG invariant. Here,
we keep μ arbitrary; its value only needs to be large
enough to ensure a pQCD calculation. The key idea of
seBLM is to use the relation βi ∼ βiþ1

0 in order to

rearrange all the terms at the same order following the
equivalent β0-powers, and then to eliminate the
fβig-terms sequentially.
The first step is to set the scale Q1 at the NLO level,

which is determined by eliminating all the fβig-terms with
highest equivalent β0-power at each perturbative order; i.e.
by absorbing all the underlined terms of Eq. (19) into the
running coupling:

ϱ0n¼ r0þr1aðQ1Þð1þr2½0�aðQ1Þþðβ0 · gr3½1�þr3½0�Þa2ðQ1Þþðβ20 · gr4½2�þβ1 · gr4½0;1�þβ0 · gr4½1�þr4½0�Þa3ðQ1Þþ���Þ;
ð20Þ

where the tilde symbol means its value differs from the untilded one. The seBLM scale Q1 satisfies

ln
μ2

Q2
1

¼ Δ1;0 þ Δ1;1ðβ0 · aðQ1ÞÞ þ Δ1;2ðβ0 · aðQ1ÞÞ2 þ � � � ; ð21Þ

where Δ1;0, Δ1;1 and Δ1;2 are used to eliminate the underlined terms of Eq. (19) at the N2LO, N3LO and N4LO levels,
respectively.
The second step is to set the scale Q2 at the N2LO level, which is determined by absorbing the doubly underlined terms

into the running coupling

ϱ00n ¼ r0 þ r1aðQ1Þð1þ aðQ2Þðr2½0� þ r3½0�aðQ2Þ þ ðβ0 · ggr4½1� þ r4½0�Þa2ðQ2Þ þ � � �ÞÞ: ð22Þ

The seBLM scale Q2 satisfies

ln
Q2

1

Q2
2

¼ Δ2;0 þ Δ2;1ðβ0aðQ2ÞÞ þ � � � ; ð23Þ

where Δ2;0 and Δ2;1 are used to eliminate the doubly underlined terms of Eq. (20) at the N3LO and N4LO levels,
respectively.
The third step is to set the scale Q3 at the N3LO level, which is derived by absorbing the triply underlined terms of

Eq. (22) into the running coupling

ϱ000n ¼ r0 þ r1aðQ1Þð1þ aðQ2Þðr2½0� þ r3½0�aðQ3Þ þ r4½0�a2ðQ3Þ þ � � �ÞÞ: ð24Þ

Equation (24) is the final seBLM predictions for the pQCD
approximant ϱn, in which the seBLM scale Q3 satisfies

ln
Q2

2

Q2
3

¼ Δ3;0 þ � � � ; ð25Þ

whereΔ3;0 is used to eliminate the triply underlined terms of
Eq. (22) at the N4LO level. As with the PMC, residual scale
dependence remains due to unknown high-order fβig-terms.
For definiteness, we will also adopt Q4 ¼ Q3 to perform

the seBLM predictions. The expressions for all the Δi;j
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coefficients can be found in Appendix B. In the above
derivation, we have adopted the equivalent β0-powers [24]
to deal with the fβig-series at each order. We have checked
that one can directly replace all βi by ciβ

iþ1
0 to do the scale

setting, and obtain exactly the same seBLM predictions.

3. MseBLM

As already discussed, the seBLM has some weak points
which constrain its applicability. In particular, all nf-terms
are eliminated by the seBLM method without distinguish-
ing whether those nf-terms pertain to the RG β-function.
The seBLM procedure has been illustrated by comparing
the conformal symmetry limit of QED and QCD for the
case of the AdlerD-function. That is, by taking the Abelian
Nc → 0 limit of the SUðNcÞ group parameters, such as
CF ¼ 1, CA ¼ 0, TF ¼ 1, fabc ¼ 1 and dabcF ¼ 1, together
with the condition nf ¼ 0, the seBLM gets the same
perturbative series for the D-function as that of “quenched
QED” (QED with nf ¼ 0). Since the quenched QED leads
to a conformal series [44], it is thus concluded that the
seBLM pQCD series is also conformal in this case [45].
However, this argument, being based on the Abelian limit,
is not valid in general; in particular, it is invalid for high-
order pQCD predictions, because by taking the Abelian
limit of the QCD series, all the three-gluon and four-gluon
couplings are absent [44] many of which also contain
conformal contributions.
Let us discuss these issues based on the RG point-

of-view: RG invariance states that a physical quantity must
be independent of the renormalization scale and scheme
[46–49]. In general, an anomalous dimension must also be
introduced to ensure the RG invariance [29–33], such as in
the case of the Adler D-function. As mentioned in the
Introduction, RG invariance is broken at fixed order,
leading to well-known residual renormalization scale and
scheme ambiguities. If one requires a fixed-order predic-
tion to satisfy RG invariance, as suggested by Stevenson
[50–52] (called local RG-invariance [22]), one can derive
an “optimal scale” and even an “optimal scheme” of a
process by using the extended RG equations. This is the
method of the Principal of Minimum Sensitivity (PMS).
However, since the standard (global) RG invariance is
broken, the PMS predictions do not satisfy basic RG
properties [21], and its pQCD convergence is accidental.
In addition, it fails to achieve the correct prediction of
higher-order contributions when one only knows the NLO
correction [53]. This limitation also explains why the
predicted PMS scale for the NLO three-jet production

via eþe−-annihilation does not yield the correct physical
behavior for low eþe− collision energy [54,55]. A detailed
comparison of the PMS and the PMC can be found
in Ref. [53].
We find that not distinguishing the nf-terms is in some

sense equivalent to using local RG invariance to set the
renormalization scales. More explicitly, Eqs. (2.12)–(2.16)
and (2.22) in Ref. [45] agree with the PMS scale equation.
Thus seBLM will in principle meet the same problems of
PMS. By eliminating the nf-terms in the anomalous
dimension function simultaneously with the nf-terms for
renormalizing the running coupling, the seBLM may
achieve effective scale of the process for improving
pQCD convergence, but it cannot determine the correct
behavior of the running coupling.
On the other hand, the β-pattern and correct

fβig-coefficients using the RG equation and the standard
RG invariance are correctly determined using the PMC. A
central goal of seBLM is to improve the pQCD conver-
gence; we can retain this goal by a modification which will
improve its applicability; i.e., we can use the PMC method
to determine the fβig-coefficients to replace the seBLM
method, while keeping the seBLM procedures for elimi-
nating the β-terms. We will call this modified method
MseBLM. The MseBLM inherits the main seBLM proper-
ties, but it avoids the introduction of extra MSSM gluinos,
thus making it applicable to any process and to any order.
In distinction to seBLM, the MseBLM takes the same

β-pattern and the same fβig-coefficients as those of PMC.
It should however only absorb those nf-terms which
correctly determine the behavior into the coupling constant;
thus the coefficients for the fβig-terms are different from
the seBLM ones. We shall show that the correct fβig-terms
are not only needed for achieving the optimal running
coupling, but they are also important for improving pQCD
convergence. This partly explains why the seBLM and
PMC predictions listed in Ref. [24] behave quite
differently.1

E. Formulas for the Adler D-Function

It should be emphasized that the anomalous dimension
function which appears in the Adler D-function has no
relation to the αs-renormalization of the process; it needs to
be separately kept fixed during PMC scale setting in order
to obtain the correct αs-running behavior [15]. The
fβig-terms that should be absorbed into the running
coupling in the Adler D-function can be written as

DðaÞ ¼ 12π2
�
γðaÞ − βðaÞ d

da
ΠðaÞ

�
¼

�X
f

q2f

�
dRDNSðaÞ þ

�X
f
qf

�
2

DSðaÞ ð26Þ

1Note that due to the misunderstanding of the PMC procedures, the PMC predictions in Ref. [24] are incorrect.
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DNSðaÞ ¼ 1þ 4aþ ð12γNS2 þ 3β0ΠNS
1 Þa2 þ ð48γNS3 þ 3β1ΠNS

1 þ 24β0ΠNS
2 Þa3

þ ð192γNS4 þ 3β2ΠNS
1 þ 24β1ΠNS

2 þ 144β0ΠNS
3 Þa4 ð27Þ

DSðaÞ ¼ 48γS3a
3 þ ð192γS4 þ 144β0ΠS

3Þa4 þ � � � ; ð28Þ

where qf stands for the electric charge of the active flavors.
The superscripts “NS” and “S” denote the nonsinglet and
singlet parts. dR ¼ Nc in the fundamental representation

of the SUðNcÞ group. γðNÞSi and ΠðNÞS
j can be found in

Ref. [56]. There are no β20-terms at the three-loop level, but
they are present in the anomalous dimension γNS3 and γS3 and
are unrelated to αs-renormalization.2 The β-pattern is
different from the seBLM one [24], in which the
fβig-terms from the anomalous dimensions are incorrectly
included in order to obtain the β-pattern. In the following,
we shall show that the correct β-pattern together with
correct fβig-term coefficients are essential for the correct
pQCD prediction.

F. Formulas for Reþe−

The ratio of eþe− annihilation into hadron over muon
pairs Reþe− provides one of the most precise tests of pQCD.
The measured observable RðQÞ is defined as

Reþe−ðQÞ ¼ σðeþe− → hadronsÞ
σðeþe− → μþμ−Þ ¼ 3

X
f

q2fð1þ RðQÞÞ;

ð29Þ

where Q ¼ ffiffiffi
s

p ¼ ECM stands for the eþe−-collision
energy at which it is measured. The timelike Reþe− is
related to the Adler D-function through the equation

Reþe−ðsÞ ¼
1

2πi

Z
−sþiϵ

−s−iϵ

Dðq2Þ
q2

dq2: ð30Þ

The pQCD approximation for the R-ratio RðQÞ is

RnðQ; μÞ ¼
Xn
i¼1

CiðQ; μÞaiðμÞ; ð31Þ

where a ¼ αs=4π. Using the Adler D-function, we can
obtain the four-loop pQCD approximant R4ðQÞ, with the
initial coefficients of the explicit PMC or MseBLM
β-pattern at the scale μ ¼ Q given by [57]

C1 ¼ 3γNS1 ¼ 4; ð32Þ

C2 ¼ 12γNS2 þ 3β0ΠNS
1 ; ð33Þ

C3 ¼ 48

�
γNS3 þ ðPfqfÞ2

3
P

fq
2
f

γS3

�
þ 24β0ΠNS

2

þ 3β1ΠNS
1 − ðπβ0Þ2γNS1 ð34Þ

and

C4 ¼ 192

�
γNS4 þ ðPfqfÞ2

3
P

fq
2
f

γS4

�
þ 3β2ΠNS

1

þ 24β1ΠNS
2 þ 144

�
ΠNS

3 þ ðPfqfÞ2
3
P

fq
2
f

ΠS
3

�
β0

− 12ðπβ0Þ2γNS2 −
5

2
π2β0β1γ

NS
1 − 3π2β30ΠNS

1 : ð35Þ

The coefficients Ci at other scales can be obtained via the
scale displacement relation (5).
Following the standard procedures for seBLM,

MseBLM and PMC, one can achieve the predictions under
various scale-setting approaches. The resulting pQCD
approximation for the R-ratio is

RnðQ; μÞ ¼
Xn
i¼1

~CSSi ðQÞaiðQSS
i ðQ; μÞÞ; ð36Þ

where ~CSSi ðQÞ are free of fβig-terms and free of initial scale
choice. Here the QSS

i are the effective scales for each scale-
setting approach where SS stands for seBLM, MseBLM
and PMC, respectively.

III. NUMERICAL RESULTS FOR Reþe−

In order to obtain numerical predictions for Rn, the QCD
parameters will be fixed using αsðMZÞ ¼ 0.1185� 0.0006
[58]. To be consistent, we shall adopt the nth-loop
αs-running to do the calculation, and the ΛMS is determined
by using the nth-loop αs-running determined from the RG

equation. For example, we obtain Λ
ðnf¼5Þ
MS

¼ 214 MeV for
R4 by using the four-loop αs-running. It is found that the
residual scale dependence for all scale settings are highly
suppressed; if not specially stated, we will take the initial
scale μ≡Q. For definiteness, we will set Q ¼ 31.6 GeV
[59] to do our analysis.

2For the anomalous dimension itself, one may need to apply
the PMC to achieve a better pQCD prediction, which however is
out of the scope of the present paper.
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A. A comparison of three-loop R3

The seBLM stops at the N2LO QCD corrections. After
applying PMC or seBLM, we can fix two PMC or seBLM
scales from the known fβig-terms, which are

QPMC
1 ¼ 40.84 GeV; QPMC

2 ¼ 29.79 GeV; ð37Þ

QseBLM
1 ¼ 24.38 GeV; QseBLM

2 ¼ 2.52 × 10−35 GeV:

ð38Þ

It is seen that the PMC scales are physically reasonably,
whereas the seBLM scale QseBLM

2 is far from the pQCD
domain, making the final pQCD prediction unreliable. This
was already observed by Refs. [5,24], which also indicates
the importance of the correct determination of fβig-terms.
We present the final coefficients ~Cn with n ¼ ð1; 2; 3Þ after
applying conventional (Conv.), PMC and seBLM scale
settings in Table I. One finds ~Cn ≡ Cn for the conventional
scale setting. After applying PMC, the coefficients ~Cn are
the scheme-independent conformal terms. After applying
the seBLM, the coefficients ~Cn are the remaining terms by
eliminating all nf-terms. As shown by Table I, after

applying the PMC, the third-order coefficient ~C3 is much
smaller than the conventional one; in contrast, after
applying the seBLM, the third-order coefficient ~C3 is even
larger than the conventional one. We point out that a
comparison of the PMC and seBLM coefficients and scales
after finishing only the first step of the procedures, as was
done in Ref. [24], is inconsistent.
We present the separate contributions from the one-loop

(LO), two-loop (NLO) or three-loop (N2LO) QCD con-
tribution to R3 under PMC, seBLM and conventional
scale settings in Table II. Due to the elimination of
divergent renormalon terms, the PMC pQCD convergence
is better than that of conventional scale setting, i.e.
jRLO

3;PMCj ≫ jRNLO
3;PMCj ≫ jRN2LO

3;PMCj.
The seBLM is designed to improve the pQCD con-

vergence by applying the large β0-approximation.
However, the seBLM pQCD convergence for Reþe−

becomes even worse than the conventional one, and—
since it involves an unreasonable small scale QseBLM

2 —the
seBLM pQCD prediction is questionable. To cure this
problem, a seBLM alteration, i.e. the x-BLM [5] or

equivalently the one-scale seBLM [24], has been sug-
gested. Such an alteration requires an overall modification
of the total pQCD prediction by directly requiring the
N2LO-term ~C3 to be zero; i.e. ~CxBLM1 ¼ 4, ~CxBLM2 ¼ 1.333
and ~CxBLM3 ¼ 0. This treatment makes the pQCD prediction
more reliable as shown by Table II. However, it breaks the
expected pQCD convergence since the high-order terms
~CxBLMi≥4 are in general nonzero. Moreover, it cannot improve
the seBLM applicability due to the introducing of auxiliary
fields, which also stops at the N2LO level.
In the following, we shall adopt MseBLM, as an

alteration of seBLM, to do a four-loop estimation.

B. A comparison of four-loop R4

We first present an overview of how QCD loop correc-
tions affect the pQCD estimates. Numerical results for Rn
(n ≤ 4) under conventional scale setting (Conv.), PMC and
MseBLM are presented in Table III. To show how the
theoretical prediction changes as more-and-more loop
corrections are included, we define a ratio:

κn ¼
Rnþ1 − Rn

Rn
; ð39Þ

where n ¼ ð1; 2; 3Þ. This ratio indicates how the “known”
lower-order estimate is affected by a “newly” available
higher-order correction. At the one-loop level, we have no
information to set the scale for R1, so we take its scale as Q
and we obtain R1ðQÞ ¼ 0.04454 for all scale settings.
Table III shows that one can achieve acceptable pQCD
predictions with increasing loop corrections from all scale

TABLE III. Numerical results for Rn and κn up to four-loop
level under conventional scale setting (Conv.), PMC and
MseBLM. The value of R1 ¼ 0.04454 is the same for all scale
settings. Q ¼ 31.6 GeV.

R2 R3 R4 κ1 κ2 κ3

Conv. 0.04785 0.04666 0.04635 7.4% −2.5% −0.7%
PMC 0.04767 0.04667 0.04637 7.0% −2.1% −0.6%
MseBLM 0.04767 0.04654 0.04640 7.0% −2.4% −0.3%

TABLE II. Each QCD loop’s contribution to R3 under con-
ventional (Conv.), PMC and seBLM scale settings. The Total
column stands for the sum of all those loop corrections. The
xBLM results are also presented. Three-loop αs-running is
adopted. Q ¼ 31.6 GeV.

LO NLO N2LO Total

Conv. 0.04497 0.00285 −0.00116 0.04666
PMC 0.04296 0.00380 −0.00009 0.04667
seBLM 0.04721 � � � � � � � � �
xBLM 0.04622 0.00018 0 0.04640

TABLE I. Final expansion coefficients ~Cn for R3 after applying
conventional (Conv.), PMC and seBLM scale settings. Three-
loop αs-running is adopted. Q ¼ 31.6 GeV.

~C1 ~C2 ~C3

Conv. 4 22.548 −819.496
PMC 4 29.444 −64.248
seBLM 4 1.333 −2.298 × 103
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settings. The κn values for all scale settings behave very
similarly. The ratio jκ3j for each scale setting is smaller than
1% up to the four-loop level, indicating that the four-loop
pQCD predictions for RðQÞ are sufficiently precise.
Next, we present a comparison of pQCD convergence

assuming various scale settings in Table IV. The standard
pQCD convergence under conventional scale setting is due
to the αs-power suppression alone. The PMC andMseBLM
pQCD series follow the pattern of the standard pQCD
series, but are more convergent. As shown in Table V, after
applying PMC and MseBLM, the divergent renormalon
terms are eliminated and we get much smaller expansion
coefficients ~Cn at higher orders. The MseBLM and PMC
have the same coefficients ~Cn. This explains why a more
convergent pQCD series can be achieved for both PMC and
MseBLM.
It is important to find the correct β-pattern of a process.

The PMC respects RG invariance and improves the
perturbative series by absorbing all β-terms governed by
the RG equation into the running coupling. The PMC
eliminates the factorial growth of the renormalon non-
conformal series, determines the optimal scales of the
process, and thus yields more precise pQCD predictions.
The MseBLM adopts the same β-pattern as that of PMC,
and as shown by Tables III and IV, its predictions are close
to those of PMC. There are slight differences for the
pQCD series due to different way of absorbing the
fβig-terms into the running coupling; i.e. in contrast to
the PMC, the MseBLM absorbs the fβig-terms via the large
β0-approximation.
We have presented the PMC and MseBLM scales for R4

in Table VI; one finds different effective running couplings
at each order. Following the procedures in Sec. II, the PMC

and MseBLM scales are themselves given as perturbative
series. The differences between the PMC and MseBLM
scales are suppressed by the accuracy of the approximation
βi ∼ βiþ1

0 and αs-suppression. The scale differences are
formally suppressed by the inverse of equivalent
β0-powers. In the case of the PMC and MseBLM scales
with the highest equivalent β0-power, we find a smaller
scale difference. This qualitatively explains why the PMC
and MseBLM scale differences become larger at higher
orders. In the case of the LO scale Q1, it has the highest
equivalent β0-power and thus the scale difference is the
smallest. More explicitly, we have

ΔQ1 < ΔQ2 < ΔQ3; ð40Þ

where ΔQi ¼ jQPMC
i −QMseBLM

i j.
Finally, we compare the predictive power of PMC and

MseBLM. We adopt the conservative procedure suggested
by Ref. [22] to predict the “unknown” high-order pQCD
corrections; i.e., we identify the perturbative uncertainty
with the last known order. Thus the unknown high-order
pQCD correction is taken as ð�j ~Cnanþ1jMAXÞ for Rn, where
j ~Cnanþ1j is calculated by varying μ ∈ ½Q=2; 2Q�, and the
symbol “MAX” stands for the maximum j ~Cnanþ1j within
this scale region. The error estimates for conventional,
PMC and MseBLM scale settings are displayed in Fig. 2. It
shows that both the PMC and MseBLM errors are smaller
than those assuming conventional scale setting. The PMC
and MseBLM errors tend to shrink much more rapidly with

TABLE VI. The determined PMC and MseBLM scales for R4.
Four-loop αs-running is adopted. Q ¼ 31.6 GeV.

Q1 Q2 Q3

PMC 41.23 GeV 36.91 GeV 171.43 GeV
MseBLM 41.03 GeV 33.61 GeV 7.23 TeV

0.04

0.045

0.05

0.055
Conv.

PMC

MseBLM

FIG. 2 (color online). Results for Rn (n ¼ 2; 3; 4) together with
their errors ð�j ~Cnanþ1jMAXÞ at Q ¼ 31.6 GeV. The big dots, the
squares and the diamonds are for conventional scale setting
(Conv.), PMC and MseBLM, respectively.

TABLE IV. The LO, NLO, N2LO and N3LO loop contributions
for the approximant R4 assuming conventional scale setting
(Conv.), PMC, seBLM and MseBLM. The Total column stands
for the sum of all of those loop corrections. Four-loop αs-running
is adopted. Q ¼ 31.6 GeV.

LO NLO N2LO N3LO Total

Conv. 0.04499 0.00285 −0.00117 −0.00033 0.04634
PMC 0.04290 0.00352 −0.00004 −0.00002 0.04636
MseBLM 0.04294 0.00352 −0.00004 −0.00001 0.04641

TABLE V. Final expansion coefficients ~Cn for R4 after applying
the PMC and MseBLM. The expansion coefficients for conven-
tional scale setting are also presented as a comparison. Four-loop
αs-running is adopted. Q ¼ 31.6 GeV.

~C1 ~C2 ~C3 ~C4

PMC 4 29.444 −64.248 −2.813 × 103

MseBLM 4 29.444 −64.248 −2.813 × 103

Conv. 4 22.548 −819.496 −2.059 × 104
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the increment of pQCD order, consistent with the pQCD
convergence shown by Table IV.

IV. SUMMARY

In this paper, we have presented a detailed comparison of
PMC and seBLM scale settings. Both of these methods are
BLM-like approaches with the purpose of extending BLM
up to all orders.
The PMC provides the underlying principle for BLM,

which sets the optimal scale for any QCD processes up to
all orders via a systematic and process-independent way.
Following the superposition of the RG-displacement equa-
tion, the PMC also provides a direct explanation for the
seBLM β-pattern. The fβig-terms are then eliminated by
the PMC by absorbing them into the renormalization scales
consistent with the RG equation.
Predictions for physical observables should be indepen-

dent of the choice of the schemes or theoretical conven-
tions. The PMC respects RG invariance, and the final
expression is scheme and scale independent at each finite
order. There is a small residual scale dependence due to
unknown higher-order fβig-terms which is highly sup-
pressed even for low-order predictions. The PMC improves
pQCD convergence due to elimination of divergent renor-
malon terms. The PMC can also be applied to processes
with multiple physical scales; e.g., ϒð1SÞ leptonic decays
[20]. The effective number of flavors nf is set correctly at
each order of perturbation theory. The PMC is consistent
with the standard scale-setting procedure of Gell Mann and
Low in the Abelian limit.
The seBLM is designed to improve the pQCD con-

vergence, but it cannot be regarded as a solution for solving
renormalization scheme-and-scale ambiguities. All of the
seBLM scales are consistent with a ðβ0 · aÞ-power series,
and the large β0-approximation. It sets the β-pattern
approximately via the relation, βi ∼ βiþ1

0 , and the
fβig-coefficients are fixed by introducing extra MSSM
gluinos. The predictions of the seBLM method strongly
depend on the knowledge of ~ng-dependent pQCD series
and ~ng-dependent β-functions. At present, the seBLM is
only applicable to Adler D-function involved processes,
and it can only be applied to the three-loop level. However,
in contradiction to its main goal, we find that the pQCD
convergence of seBLM is questionable, as shown by its
application to Reþe− .
In order to cure the seBLM shortcomings, we have

suggested a modification, called MseBLM, by borrowing
the PMC idea to set the fβig-coefficients, while keeping the
large β0 approximation to deal with the β-series. It does not
require the introduction of extra MSSM gluinos into pQCD
calculations. The MseBLM inherits the seBLM properties
and makes it applicable to any order. By taking the four-
loop calculation of Reþe− as an example, we have shown
that the MseBLM and PMC predictions are numerically

consistent; thus more precise pQCD approximation and a
more convergent pQCD series for Reþe− can be achieved for
both the PMC and the MseBLM. This emphasizes the
importance of the correct knowledge of the β-pattern and
the fβig-coefficients.
In conclusion, the modified seBLM—the MseBLM—

provides a practical approach for improving the convergence
of pQCD predictions. When more QCD loop terms are
considered, it can achieve precise predictions consistent with
those of the PMC. However, the PMC has a rigorous
theoretical foundation, satisfying all self-consistency con-
ditions from RG invariance. It thus eliminates an unneces-
sary systematic error for high precision pQCD predictions,
and it can be widely applied to high-energy processes.
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APPENDIX A: THE fβig-COEFFICIENTS
FOR THE ADLER D-FUNCTION

Following the standard seBLM procedures, we obtain
the fβig-coefficients rk½l; m;…� for the Adler D-function
up to three-loop level. At the scale μ ¼ Q, we have

r1 ¼ 3CF ¼ 4 ðA1Þ

r2½1� ¼
11

2
− 4ζ3 ≈ 0.691772 ðA2Þ

r2½0� ¼
CA

3
−
CF

2
¼ 1

3
ðA3Þ

r3½2� ¼
302

9
−
76

3
ζ3 ≈ 3.10345 ðA4Þ

r3½0; 1� ¼
101

12
− 8ζ3 ≈ −1.19979 ðA5Þ

r3½1� ¼ CA

�
−
3

4
þ 80

3
ζ3 −

40

3
ζ5

�
− CFð18þ 52ζ3 − 80ζ5Þ ≈ 55.7005 ðA6Þ

r3½0� ¼
1

36
ð523C2

A þ 852CACF − 414C2
FÞ

− 72C2
Aζ3 þ

5

24

�
176

3
− 128ζ3

� ðPfqfÞ2
3ðPfq

2
fÞ

≈ −573.9607 − 19.8326
ðPfqfÞ2
3ðPfq

2
fÞ
; ðA7Þ
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whereCA ¼ 3 andCF ¼ 4=3 for the SUfð3Þ-group. These coefficients can be derived from Ref. [42]. There is a typo for the
coefficient r3½1� in Refs. [5,24]; i.e., the term þ3=4 there should be corrected to −3=4. The fβig-coefficients rk½l; m;…� at
other scales can be obtained from the above values via the scale displacement relation (5).

APPENDIX B: THE Δi;j EXPRESSIONS UP TO FOUR-LOOP LEVEL

Δ1;0 ¼ r2½1� ðB1Þ

Δ1;1 ¼ −c1r2½1� þ c1r3½0; 1� − r2½1�2 þ r3½2� ðB2Þ

Δ1;2 ¼
1

2
ð2c21r2½1� − 2c21r3½0; 1� þ 3c1r2½1�2 − 6c1r2½1�r3½0; 1� − 2c1r3½2�

þ 2c1r4½1; 1� − 2c2r2½1� þ 2c2r4½0; 0; 1� þ 4r2½1�3 − 6r2½1�r3½2� þ 2r4½3�Þ ðB3Þ

Δ2;0 ¼
r3½1� − 2r2½0�r2½1�

r2½0�
ðB4Þ

Δ2;1 ¼
2c1r2½0�2r2½1� − 2c1r2½0�2r3½0; 1� − c1r2½0�r3½1� þ c1r2½0�r4½0; 1� þ r2½0�2r2½1�2

r2½0�2

þ −2r2½0�2r3½2� þ r2½0�r2½1�r3½1� þ r2½0�r4½2� − r3½1�2
r2½0�2

ðB5Þ

Δ3;0 ¼
r2½0�r2½1�r3½0� þ r2½0�r4½1� − 2r3½0�r3½1�

r2½0�r3½0�
; ðB6Þ

where ci is defined via the relation βi ¼ ciβ
iþ1
0 .

As an application, we adopt these Δi;j coefficients to study the renormalization scale dependence. For convenience, we
first separate the Q-dependence from the β-coefficient rk½l; m;…�, where Q stands for the typical scale of the process or at
which it is measured.

r1ðμÞ ¼ r1; ðB7Þ

r2ðμÞ ¼ r2½0� þ β0

�
r2½1� þ ln

μ2

Q2

�
; ðB8Þ

r3ðμÞ ¼ r3½0� þ β0

�
r3½1� þ 2r2½0� ln

μ2

Q2

�
þ β1

�
r3½0; 1� þ ln

μ2

Q2

�
þ β20

�
r3½2� þ 2r2½1� ln

μ2

Q2
þ ln2

μ2

Q2

�
; ðB9Þ

r4ðμÞ ¼ r4½0� þ β20

�
3r2½0�ln2

μ2

Q2
þ 3r3½1� ln

μ2

Q2
þ r4½2�

�
þ β1

�
r4½0; 1� þ 2r2½0� ln

μ2

Q2

�

þ 1

2
β0β1

�
2r4½1; 1� þ ð4r2½1� þ 6r3½0; 1�Þ ln

μ2

Q2
þ 5ln2

μ2

Q2

�
þ β0

�
r4½1� þ 3r3½0� ln

μ2

Q2

�

þ β30

�
r4½3� þ 3r3½2� ln

μ2

Q2
þ 3r2½1�ln2

μ2

Q2
þ ln3

μ2

Q2

�
þ β2

�
r4½0; 0; 1� þ ln

μ2

Q2

�
: ðB10Þ

We have implicitly taken rk½l; m;…� ¼ rk½l; m;…�jμ¼Q. For processes with several typical scales, the condition is
more involved but can be done via a similar way. We can read off the scale-dependent fβig-coefficients rk½l; m;…�,
which are

r2½1� → r2½1� þ ln
μ2

Q2
ðB11Þ
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r3½1� → r3½1� þ 2r2½0� ln
μ2

Q2
ðB12Þ

r3½0; 1� → r3½0; 1� þ ln
μ2

Q2
ðB13Þ

r3½2� → r3½2� þ 2r2½1� ln
μ2

Q2
þ ln2

μ2

Q2
ðB14Þ

r4½2� → 3r2½0�ln2
μ2

Q2
þ 3r3½1� ln

μ2

Q2
þ r4½2� ðB15Þ

r4½0; 1� → r4½0; 1� þ 2r2½0� ln
μ2

Q2
ðB16Þ

r4½1; 1� → r4½1; 1� þ ð2r2½1� þ 3r3½0; 1�Þ ln
μ2

Q2
þ 5

2
ln2

μ2

Q2

ðB17Þ

r4½1� → r4½1� þ 3r3½0� ln
μ2

Q2
ðB18Þ

r4½3� → r4½3� þ 3r3½2� ln
μ2

Q2
þ 3r2½1�ln2

μ2

Q2
þ ln3

μ2

Q2

ðB19Þ

r4½0; 0; 1� → r4½0; 0; 1� þ ln
μ2

Q2
: ðB20Þ

Substituting them into Δi;j, we find that, except for

Δ1;0 ¼ r2½1� þ ln μ2

Q2, all other Δi;j coefficients are free of μ-

dependence. For Eq. (21), we obtain

ln
Q2

Q2
1

¼ r2½1� þ Δ1;1ðβ0 · aðQ1ÞÞ þ Δ1;2ðβ0 · aðQ1ÞÞ2:

This shows that Q1, and thus all the high-order seBLM
scales, as indicated by Eqs. (23) and (25), should be
independent of the initial choice of scale. This property
is ensured by the local RG invariance mentioned in the
body of the text.

[1] X. G. Wu, S. J. Brodsky, and M. Mojaza, Prog. Part. Nucl.
Phys. 72, 44 (2013).

[2] S. J. Brodsky, G. P. Lepage, and P. B. Mackenzie, Phys. Rev.
D 28, 228 (1983).

[3] M. Gell-Mann and F. E. Low, Phys. Rev. 95, 1300 (1954).
[4] S. J. Brodsky and H. J. Lu, Phys. Rev. D 51, 3652 (1995).
[5] S. V. Mikhailov, J. High Energy Phys. 06 (2007) 009.
[6] M. Beneke and V. M. Braun, Phys. Lett. B 348, 513 (1995).
[7] M. Neubert, Phys. Rev. D 51, 5924 (1995).
[8] M. Beneke, Phys. Rep. 317, 1 (1999).
[9] S. J. Brodsky and X. G. Wu, Phys. Rev. D 85, 034038

(2012).
[10] S. J. Brodsky and X. G. Wu, Phys. Rev. D 85, 114040

(2012).
[11] S. J. Brodsky and X. G. Wu, Phys. Rev. D 86, 014021

(2012).
[12] S. J. Brodsky and X. G. Wu, Phys. Rev. Lett. 109, 042002

(2012).
[13] S. J. Brodsky and L. D. Giustino, Phys. Rev. D 86, 085026

(2012).
[14] M. Mojaza, S. J. Brodsky, and X. G. Wu, Phys. Rev. Lett.

110, 192001 (2013).
[15] S. J. Brodsky, M. Mojaza, and X. G. Wu, Phys. Rev. D 89,

014027 (2014).
[16] S. Q. Wang, X. G. Wu, X. C. Zheng, G. Chen, and J. M.

Shen, J. Phys. G 41, 075010 (2014).
[17] S. Q. Wang, X. G. Wu, J. M. Shen, H. Y. Han, and Y. Ma,

Phys. Rev. D 89, 116001 (2014).

[18] S. Q. Wang, X. G. Wu, and S. J. Brodsky, Phys. Rev. D 90,
037503 (2014).

[19] S. Q. Wang, X. G. Wu, X. C. Zheng, J. M. Shen, and Q. L.
Zhang, Eur. Phys. J. C 74, 2825 (2014).

[20] J. M. Shen, X. G. Wu, H. H. Ma, H. Y. Bi, and S. Q. Wang,
arXiv:1501.04688.

[21] S. J. Brodsky and X. G. Wu, Phys. Rev. D 86, 054018
(2012).

[22] X. G. Wu, Y. Ma, S. Q. Wang, H. B. Fu, H. H. Ma,
S. J. Brodsky, and M. Mojaza, arXiv:1405.3196.

[23] H. Y. Bi, X. G. Wu, Y. Ma, H. H. Ma, S. J. Brodsky, and M.
Mojaza (to be published).

[24] A. L. Kataev and S. V. Mikhailov, Phys. Rev. D 91, 014007
(2015).

[25] S. J. Brodsky and P. Huet, Phys. Lett. B 417, 145
(1998).

[26] M. Binger and S. J. Brodsky, Phys. Rev. D 74, 054016
(2006).

[27] S. J. Brodsky, V. S. Fadin, V. T. Kim, L. N. Lipatov, and
G. B. Pivovarov, JETP Lett. 70, 155 (1999).

[28] X. C. Zheng, X. G. Wu, S. Q. Wang, J. M. Shen, and Q. L.
Zhang, J. High Energy Phys. 10 (2013) 117.

[29] W. A. Bardeen, A. J. Buras, D. W. Duke, and T. Muta,
Phys. Rev. D 18, 3998 (1978).

[30] H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).
[31] D. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343

(1973).
[32] H. D. Politzer, Phys. Rep. 14, 129 (1974).

SETTING THE RENORMALIZATION SCALE IN … PHYSICAL REVIEW D 91, 094028 (2015)

094028-15

http://dx.doi.org/10.1016/j.ppnp.2013.06.001
http://dx.doi.org/10.1016/j.ppnp.2013.06.001
http://dx.doi.org/10.1103/PhysRevD.28.228
http://dx.doi.org/10.1103/PhysRevD.28.228
http://dx.doi.org/10.1103/PhysRev.95.1300
http://dx.doi.org/10.1103/PhysRevD.51.3652
http://dx.doi.org/10.1088/1126-6708/2007/06/009
http://dx.doi.org/10.1016/0370-2693(95)00184-M
http://dx.doi.org/10.1103/PhysRevD.51.5924
http://dx.doi.org/10.1016/S0370-1573(98)00130-6
http://dx.doi.org/10.1103/PhysRevD.85.034038
http://dx.doi.org/10.1103/PhysRevD.85.034038
http://dx.doi.org/10.1103/PhysRevD.85.114040
http://dx.doi.org/10.1103/PhysRevD.85.114040
http://dx.doi.org/10.1103/PhysRevD.86.014021
http://dx.doi.org/10.1103/PhysRevD.86.014021
http://dx.doi.org/10.1103/PhysRevLett.109.042002
http://dx.doi.org/10.1103/PhysRevLett.109.042002
http://dx.doi.org/10.1103/PhysRevD.86.085026
http://dx.doi.org/10.1103/PhysRevD.86.085026
http://dx.doi.org/10.1103/PhysRevLett.110.192001
http://dx.doi.org/10.1103/PhysRevLett.110.192001
http://dx.doi.org/10.1103/PhysRevD.89.014027
http://dx.doi.org/10.1103/PhysRevD.89.014027
http://dx.doi.org/10.1088/0954-3899/41/7/075010
http://dx.doi.org/10.1103/PhysRevD.89.116001
http://dx.doi.org/10.1103/PhysRevD.90.037503
http://dx.doi.org/10.1103/PhysRevD.90.037503
http://dx.doi.org/10.1140/epjc/s10052-014-2825-3
http://arXiv.org/abs/1501.04688
http://dx.doi.org/10.1103/PhysRevD.86.054018
http://dx.doi.org/10.1103/PhysRevD.86.054018
http://arXiv.org/abs/1405.3196
http://dx.doi.org/10.1103/PhysRevD.91.014007
http://dx.doi.org/10.1103/PhysRevD.91.014007
http://dx.doi.org/10.1016/S0370-2693(97)01209-4
http://dx.doi.org/10.1016/S0370-2693(97)01209-4
http://dx.doi.org/10.1103/PhysRevD.74.054016
http://dx.doi.org/10.1103/PhysRevD.74.054016
http://dx.doi.org/10.1134/1.568145
http://dx.doi.org/10.1007/JHEP10(2013)117
http://dx.doi.org/10.1103/PhysRevD.18.3998
http://dx.doi.org/10.1103/PhysRevLett.30.1346
http://dx.doi.org/10.1103/PhysRevLett.30.1343
http://dx.doi.org/10.1103/PhysRevLett.30.1343
http://dx.doi.org/10.1016/0370-1573(74)90014-3


[33] D. J. Gross and F. Wilczek, Phys. Rev. D 8, 3633 (1973); 9,
980 (1974).

[34] O. V. Tarasov, A. A. Vladimirov, and A. Yu. Zharkov,
Phys. Lett. 93B, 429 (1980).

[35] S. A. Larin and J. A. M. Vermaseren, Phys. Lett. B 303, 334
(1993).

[36] T. van Ritbergen, J. A. M. Vermaseren, and S. A. Larin,
Phys. Lett. B 400, 379 (1997).

[37] K. G. Chetykin, Nucl. Phys. B710, 499 (2005).
[38] M. Czakon, Nucl. Phys. B710, 485 (2005).
[39] A. L. Kataev and S. V. Mikhailov, Theor. Math. Phys. 170,

139 (2012).
[40] A. L. Kataev and S. V. Mikhailov, Proc. Sci., QFTHEP2010

(2010) 014 [arXiv:1104.5598].
[41] A. L. Kataev and S. V. Mikhailov, arXiv:1410.0554.
[42] K. G. Chetyrkin, Phys. Lett. B 391, 402 (1997).
[43] L. Clavelli, P. W. Coulter, and L. R. Surguladze, Phys. Rev.

D 55, 4268 (1997).
[44] P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, Proc. Sci.,

RADCOR2007 (2007) 023 [arXiv:0810.4048].

[45] A. L. Kataev, J. High Energy Phys. 02 (2014) 092.
[46] N. N. Bogoliubov and D. V. Shirkov, Dokl. Akad. Nauk

SSSR 103, 391 (1955).
[47] A. Peterman, Phys. Rep. 53, 157 (1979).
[48] C. G. Callan, Phys. Rev. D 2, 1541 (1970).
[49] K. Symanzik, Commun. Math. Phys. 18, 227 (1970).
[50] P. M. Stevenson, Phys. Lett. 100B, 61 (1981).
[51] P. M. Stevenson, Phys. Rev. D 23, 2916 (1981).
[52] P. M. Stevenson, Nucl. Phys. B868, 38 (2013).
[53] Y. Ma, X. G. Wu, H. H. Ma, and H. Y. Han, Phys. Rev. D 91,

034006 (2015).
[54] G. Kramer and B. Lampe, Z. Phys. C 39, 101 (1988).
[55] G. Kramer and B. Lampe, Z. Phys. A 339, 189 (1991).
[56] P. A. Baikov, K. G. Chetyrkin, J. H. Kühn, and J. Rittinger,

J. High Energy Phys. 07 (2012) 017.
[57] P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, Phys. Rev.

Lett. 101, 012002 (2008).
[58] K. A. Olive et al. (Particle Data Group), Chin. Phys. C 38,

090001 (2014).
[59] R. Marshall, Z. Phys. C 43, 595 (1989).

MA et al. PHYSICAL REVIEW D 91, 094028 (2015)

094028-16

http://dx.doi.org/10.1103/PhysRevD.8.3633
http://dx.doi.org/10.1103/PhysRevD.9.980
http://dx.doi.org/10.1103/PhysRevD.9.980
http://dx.doi.org/10.1016/0370-2693(80)90358-5
http://dx.doi.org/10.1016/0370-2693(93)91441-O
http://dx.doi.org/10.1016/0370-2693(93)91441-O
http://dx.doi.org/10.1016/S0370-2693(97)00370-5
http://dx.doi.org/10.1016/j.nuclphysb.2005.01.011
http://dx.doi.org/10.1016/j.nuclphysb.2005.01.012
http://dx.doi.org/10.1007/s11232-012-0016-7
http://dx.doi.org/10.1007/s11232-012-0016-7
http://arXiv.org/abs/1104.5598
http://arXiv.org/abs/1410.0554
http://dx.doi.org/10.1016/S0370-2693(96)01478-5
http://dx.doi.org/10.1103/PhysRevD.55.4268
http://dx.doi.org/10.1103/PhysRevD.55.4268
http://arXiv.org/abs/0810.4048
http://dx.doi.org/10.1007/JHEP02(2014)092
http://dx.doi.org/10.1016/0370-1573(79)90014-0
http://dx.doi.org/10.1103/PhysRevD.2.1541
http://dx.doi.org/10.1007/BF01649434
http://dx.doi.org/10.1016/0370-2693(81)90287-2
http://dx.doi.org/10.1103/PhysRevD.23.2916
http://dx.doi.org/10.1016/j.nuclphysb.2012.11.005
http://dx.doi.org/10.1103/PhysRevD.91.034006
http://dx.doi.org/10.1103/PhysRevD.91.034006
http://dx.doi.org/10.1007/BF01560397
http://dx.doi.org/10.1007/BF01282948
http://dx.doi.org/10.1007/JHEP07(2012)017
http://dx.doi.org/10.1103/PhysRevLett.101.012002
http://dx.doi.org/10.1103/PhysRevLett.101.012002
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1007/BF01550938

