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We present the first study of the cusp effect (the movement of resonant poles due to the proximity of
multiparticle thresholds) caused by the creation of diquark-antidiquark pairs. The cusp profile for such
states is obtained from constituent counting rules. We compare the effectiveness of diquark cusps in moving
resonant poles with that from a phenomenological form commonly used for meson-pair creation and find
that mesons tend to be more effective at lower energies (e.g., the KK̄ threshold), while diquarks tend to be
more effective at the charm [Xð3872Þ] scales and above.

DOI: 10.1103/PhysRevD.91.094025 PACS numbers: 14.40.Rt, 12.39.Mk, 12.38.-t, 14.40.Pq

I. INTRODUCTION

One of the most important discoveries of the past year in
hadron physics was the experimental confirmation by
LHCb [1] of a new type of hadron joining the q̄q mesons
and qqq baryons—the tetraquark (q̄qq̄q) resonance
Zþ
c ð4430Þ. In fact, this state is just one of an ever-growing

menagerie of hadrons now believed to be tetraquarks, all of
which have been observed since the 2003 discovery by
Belle [2] of an unusually narrow charmoniumlike state, the
Xð3872Þ. However, until the discovery of charged states
(now called Zc), one could not be certain that the Xð3872Þ
was not just an unusual conventional charmonium state or a
hybrid c̄cg; and until the observation of a phase δ increase
by π

2
radians in the complex scattering amplitude in which

Zc is produced [1], one could not be certain that the states
are true resonances as opposed to, say, kinematical reflec-
tions of t-channel exchanges. There now seems to be little
doubt that the Zþ

c ð4430Þ is a tetraquark resonance with
JP ¼ 1þ quantum numbers and valence quark structure
c̄cd̄u. In addition, all indications suggest that the charge-
zero Xð3872Þ is a JP ¼ 1þ c̄cq̄q state, where q̄q is some
linear combination of ūu and d̄d.
But waiting for the final confirmation of the tetraquark

label did not preclude early speculation on the composition
and structure of such states. The initial interpretation—and
still the most prevalent one—is that the tetraquarks are
dimeson molecules, bound together by color van der
Waals-type forces (see Ref. [3] for a recent review). This
interpretation is suggested by the proximity of the mass of
several of the states to the corresponding two-meson
thresholds. For example, mXð3872Þ −mD�0 −mD0 ¼
−0.11� 0.21 MeV. However, several other tetraquark
candidates lie just above such thresholds—clearly mud-
dling the simple bound-state interpretation—and several
others lie nowhere near any two-meson thresholds.
Furthermore, the substantial prompt production cross

section for the Xð3872Þ at colliders seems to be incom-
patible with the state being solely composed of loosely
bound meson pairs [4,5]—even taking into account a
substantial modification due to final-state interactions
[6,7]. Another well-known interpretation is hadrocharmo-
nium [8], in which an ordinary charmonium state lies at the
core of a light-quark cloud, although the cohesiveness of
such states, and the extent to which they mix with conven-
tional charmonium states, is unclear.
In this work, we employ yet another noteworthy inter-

pretation for the tetraquark states, that of a diquark-
antidiquark (δ-δ̄) bound-state pair. Originally proposed
for charmoniumlike tetraquarks in Ref. [9], the diquark
picture has the advantage of possessing a much richer color
dynamics (the diquarks necessarily being color nonsing-
lets), but it also has the potential drawback of producing
many more tetraquark states than are currently observed.
However, if one assumes that the dominant interactions are
due to spin-spin couplings within each diquark, one can
obtain a rather satisfactory accounting of the presently
known tetraquark candidates [10].
One may wonder why the component quarks in a δ-δ̄

bound state do not immediately rearrange themselves into
color-singlet q̄q pairs, returning one to the molecular
picture. Indeed, the strength of the color force between
quarks (or antiquarks) in SU(3)-color representations
R1 and R2 coupling to a representation R is proportional
to the combination of quadratic Casimirs given by
C2ðRÞ − C2ðR1Þ − C2ðR2Þ. The only attractive channels
are the q̄q singlet (R1 ¼ 3̄, R2 ¼ 3, R ¼ 1) and the qq
antitriplet (R1 ¼ R2 ¼ 3, R ¼ 3̄), with the former being
twice as strong as the latter.
Rather than treating the tetraquark as a metastable δ-δ̄

bound state, we proposed in Ref. [11] a new paradigm, in
which the tetraquarks are the quantized modes of a color
flux tube stretched between a rapidly separating δ (color-3̄)
and δ̄ (color-3) pair. This picture naturally explains why
many, but not all, of the tetraquarks lie near hadron
thresholds (energies at which the color string is allowed
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to break); for example, the state Xð4632Þ lies only slightly
higher than the lightest charmed-baryon Λþ

c Λ̄
−
c threshold at

4573 MeV, and it decays dominantly to this baryon pair, as
is explained by the fragmentation of the flux tube to a light
q̄q pair. The widths of the states below this threshold are
not especially large, because they hadronize by wave
function overlaps with the mesons formed from quarks
in δ̄ and antiquarks in the δ, which in turn can achieve a
substantial separation (over 1 fm) if sufficient initial kinetic
energy is imparted to the system, as in a B-meson decay.
Evidence for this large separation is apparent in the decay
of the Zcð4430Þ, which greatly favors coupling to ψð2SÞπ
rather than J=ψπ [12]—even though the charmonium states
have the same JPC ¼ 1−− quantum numbers and there is
smaller phase space for the heavier (and spatially much
larger) ψð2SÞ.
This paper presents the first dynamical study of the δ-δ̄

tetraquark picture, using the well-known constituent count-
ing rules [13–23], which determine the falloff scaling of
hard exclusive processes in the high-energy regime. In
essence, the counting rules predict that the cross sections,
or equivalently, the form factors for processes at high
values of Mandelstam s at fixed θcm, fall off as a power of s
directly determined by the total number (incoming plus
outgoing) of fundamental constituents participating in the
hard subprocess. Here we are interested in comparing the
effects of δ-δ̄ state production with that due to meson-
meson states on the masses of tetraquark resonances
coupled to them, using dispersion relation techniques. In
another paper to appear [24], we will directly discuss the
phenomenological uses of the cross-section scalings
themselves.
The method to be used is the well-known cusp effect, in

which the presence of thresholds for the opening of on-shell
states coupled to resonances creates a modification to the
self-energy function that tends to drag the bare resonant
pole mass toward the threshold. The basic idea appears to
have been known since the early 1960s but was first
presented in its current form in the mid 1990s [25] and
first applied to the new heavy exotics in 2008 [26].
Furthermore, recent calculations [27] show that these states
cannot just be cusps (although ones in the BB̄ system might
be [28,29]); the presence of real resonances is required. In
this paper we compare the effectiveness of this dragging
effect due to the presence of both δ-δ̄ and two-meson
thresholds and find first that the potential amount of
shifting of resonant poles decreases for heavier-quark
systems (KK̄ vs DD̄� vs BB̄�) and second that the δ-δ̄
states become more effective at pole dragging than two-
meson states for the DD̄� and BB̄� thresholds associated
with the new heavy exotic resonances. Since δ is not a color
singlet, using a δ-δ̄ threshold in a QCD dispersion relation
(where “on shell” usually means not only that the particles
are not virtual but also asymptotically free) must be
interpreted with some care; for the purposes of this

calculation, we assert that the substantial δ-δ̄ separation
advocated in Ref. [11] creates states that are in a sense
“almost” free and therefore possess an on-shell threshold.
This paper is organized as follows. In Sec. II we briefly

review the meaning and origin of the cusp effect and
establish the mathematical formalism used for its imple-
mentation, with some details relegated to the Appendix. In
Sec. III we address in greater detail the issue of whether
diquark pairs truly produce physically meaningful thresh-
olds. Section IV presents a brief overview of the constituent
counting rules used to establish the large-energy scaling of
the δ-δ̄ form factor. In Sec. V we describe the algebraic
results for both the mesonic and diquark forms and present
our numerical results in Sec. VI. In Sec. VII we summarize
and indicate future directions.

II. CUSP EFFECT

The cusp effect has a rather straightforward origin in the
analyticity of the self-energy functions ΠðsÞ that appear in
the propagator of resonant or bound states and source the
creation of their decay products. Closely following notation
introduced in Refs. [25,26], we start with the propagator
denominator

P−1
αβ ðsÞ ¼ ðM2

0;α − sÞδαβ − Παβ; ð1Þ

where the indices α; β label resonances that can mix; for
simplicity, in this work we assume only unmixed propa-
gating states and henceforth suppress this index. The sign
of ΠðsÞ is chosen to match that appearing in the majority of
quantum field theory texts (e.g., Ref. [30]); when positive,
it is seen to correspond to an attractive interaction.
ΠðsÞ is analytic everywhere in the complex s plane

except for cuts (or poles) along the positive real s axis that
result from the opening of on-shell channels, which we
label by i. Consider explicitly the creation of such
two-particle states of masses m1;i, m2;i via the form factors
FiðsÞ, conventionally normalized to unity at threshold,
sth;i ≡ ðm1;i þm2;iÞ2. Defining the (dimensionful)
coupling constant to state i as gi, one has

ImΠðsÞ ¼
X
i

g2i ρiðsÞF2
i ðsÞθðs − sth;iÞ; ð2Þ

and ρi is the two-body phase-space factor given in terms of
the c.m. momentum ki or the Källén function λ by

ρiðsÞ≡ 2kiffiffiffi
s

p ¼ λ
1
2ðs;m2

1;i; m
2
2;iÞ

s
: ð3Þ

Defining sth;1 as the lowest threshold (and therefore
the cut extending to s ¼ ∞ starting at the branch point
sth;1 overlaps all others), one may apply Cauchy’s theorem
to a contour that goes around this cut, obtaining the
standard unsubtracted dispersion relation,
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ReΠðsÞ ¼ 1

π
P
Z

∞

sth;1

ds0
ImΠðs0Þ
s0 − s

; ð4Þ

where P indicates the standard Cauchy principal value
prescription. For reasons to be discussed below, we find it
useful to use the once-subtracted form (at s ¼ 0) of Eq. (4):

ReΠðsÞ ¼ ReΠð0Þ þ s
π
P
Z

∞

sth;1

ds0

s0
ImΠðs0Þ
s0 − s

: ð5Þ

One notes immediately from Eqs. (2) and (3) that Im
ΠðsÞ is zero on the real s axis for s < sth;1 and positive for
s > sth;1. One further sees from Eq. (4) or (5) that the
integrand in Re ΠðsÞ is positive for all s < sth;1 since s0 −
s > 0 in the entire integration range and therefore acts as an
attractive interaction. As shown below, explicit functional
forms for FðsÞ give rise to a positive Re ΠðsÞ that reaches a
peak, or cusp, at sth;1 and falls off in either direction,
remaining always positive for s < sth;1 but generally
passing through the axis (and effectively creating a poten-
tial barrier) for some value of s > sth;1. This effective
attraction acts to pull the pole position of the propagator
Eq. (1) toward sth;1, a synchronization of the resonance with
a threshold (although in Sec. VI we see some interesting
exceptions to this expectation).
In the bulk of this work, for simplicity we specialize to

the equal-mass case m1;i ¼ m2;i ≡mi, which is rather
closely satisfied for the cases of experimental interest.
Full expressions analogous to the ones appearing in the text
below are presented in the Appendix, where it is seen that
the relevant expansion parameter is

ϵ≡
�
m1;i −m2;i

m1;i þm2;i

�
2

: ð6Þ

For Xð3872Þ, with m1;i ¼ mD0 and m2;i ¼ mD̄�0 , one finds
ϵ ¼ 1.35 × 10−3. In the equal-mass case,

ρiðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
i

s

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

sthi
s

r
; ð7Þ

and its analytic continuation for s < sth;i ¼ 4m2
i is

viðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

i

s
− 1

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sth;i
s

− 1

r
: ð8Þ

To illustrate the cusp explicitly, let us consider the special
case FiðsÞ ¼ 1 described in Ref. [26]. This particular
choice is unphysical because unitarity and perturbative
QCD require real hadronic form factors to fall off at large s,
but it is an interesting toy model for cases in which the
dispersion relation is dominated by the form factor near
threshold. It is also interesting because the dispersion
integrals can be carried out explicitly; the nonvanishing

large-s behavior of FiðsÞ requires one to use the once-
subtracted form Eq. (5) to obtain finite results at finite s.
Allowing the constant Re Πið0Þ ¼ − 2

π to renormalize the
pole mass M0 in the propagator Eq. (1), one finds

ReΠiðsÞ
g2i

¼ ρi
π
ln
1 − ρi
1þ ρi

¼ −
2ρi
π

tanh−1ρi; s ≥ sth;i;

¼ −vi þ
2vi
π

tan−1vi; s < sth;i: ð9Þ

Using Eqs. (7) and (8), note that the tan−1 and tanh−1 terms
are analytic continuations of the same function of s in
different regimes; the only unmatched term is −vi, which is
induced by analyticity of ΠðsÞ and the discontinuity of Im
Πiðsth;iÞ. In Fig. 1, we plot Eq. (9) [and ImΠiðsth;iÞ=g2i ] as a
function of s=sth;i and see that the below-threshold term−vi
is responsible for the cusp.
Cusp behavior also appears for more realistic choices of

form factor FiðsÞ, although the dispersion relation integra-
tions must often be carried out numerically. Two features of
the integrals hamper the convergence of numerical calcu-
lations: First, the integration range stretches to s ¼ ∞, and,
second, the denominator factor s0 − s produces a logarith-
mic singularity when s > sth;i. A simple change of variable
cures the first problem; noting from Eq. (7) that s ∈
½sth;i;∞Þ maps to ρi ∈ ½0; 1Þ, one defines the integration
variable ρ0i analogously to Eq. (7), but with s → s0. Then
one finds the unsubtracted relation Eq. (4) to become

FIG. 1 (color online). The threshold cusp in Re ΠiðsÞ=g2i
(green, solid) and corresponding Im ΠiðsÞ=g2i (red, dashed) for
form factor FiðsÞ ¼ 1, as given by Eq. (9). s is expressed in units
of s=sth;i, and Re ΠiðsÞ=g2i is shifted to equal 1 at s ¼ sth;i.
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ReΠiðsÞ
g2i

¼ 2

π

sth;i
s

P
Z

1

0

dρ0i
ρ02i

1 − ρ02i

1

ρ02i − ρ2i
F2
i ðs0Þ; ð10Þ

where [inverting Eq. (7)] s0 ¼ sth;i=ð1 − ρ02i Þ. In fact, the
once-subtracted relation Eq. (5) becomes even simpler:

1

g2i
½ReΠiðsÞ − ReΠið0Þ� ¼

2

π
P
Z

1

0

dρ0i
ρ02i

ρ02i − ρ2i
F2
i ðs0Þ:

ð11Þ

Since, as discussed above, one expects Re ΠiðsÞ → 0 as
s → ∞ for physical FiðsÞ, no information is lost by using
the once-subtracted and functionally simpler form Eq. (11).
The logarithmic singularity does not arise for s < sth;i;
since ρ2i ¼ −v2i according to Eqs. (7) and (8), one may
rewrite the integrand factor in Eq. (11) for s < sth;i as the
nonsingular form

ρ02i
ρ02i − ρ2i

→ 1 −
v2i

ρ02i þ v2i
: ð12Þ

The logarithmic singularity for s ≥ sth;i is readily handled
via an integration by parts on the 1=ðs0 − sÞ factor in
Eq. (5), followed by conversion to the integration variable
ρ0. One obtains

1

g2i
½ReΠiðsÞ−ReΠið0Þ�

¼ −
1

π

Z
1

0

dρ0i

�
F2
i ðs0Þ þ

2sth;iρ02i
ð1− ρ02i Þ2

dF2
i ðs0Þ
ds0

�
ln
jρ02i − ρ2i j
1− ρ2i

:

ð13Þ

The singularity at ρi ¼ ρ0i remains, but now it is integrable
for any smooth F2

i ðsÞ that asymptotes to zero as s → ∞.
Moreover, the nonlogarithmic part of this integral is
just the exact differential d½ρiðs0ÞF2

i ðs0Þ�, the argument of
which vanishes at s0 ¼ sth;i and also at s0 ¼ ∞ if F2

i ðs0Þ
falls off faster than 1=ρiðs0Þ; in such a case, the
(ρ0i-independent) term 1 − ρ2i in the logarithm may
also be deleted. Since the function obtained from
Eq. (5), i.e., the explicit left-hand side of (11) or (13), is
central to our analysis, let us henceforth abbreviate it
as πiðsÞ≡ ½ReΠiðsÞ − ReΠið0Þ�=g2i .

III. DO DIQUARK PAIRS HAVE THRESHOLDS?

Before proceeding, one must address the issue men-
tioned in the Introduction of whether a δ state, being
colored, really possesses a well-defined mass and therefore
whether the δ-δ̄ state really possesses a well-defined
threshold. Strictly speaking, the quoted masses of colored
particles like quarks depend upon the choice of renorm-
alization scheme and therefore do not carry the same status

of being observables as do meson masses. Nevertheless,
quark masses are extracted using a variety of methods
(quark models, lattice gauge theory, sum rules, etc.), and
the numerical values thus obtained are bestowed with some
degree of physical significance.
An elegant discussion of such issues appears in the classic

text by Georgi [31] (Sec. 3.2); he considers a universe in
which the strong coupling constant αs is as small as αEM but
confinement still occurs. The scale ΛQCD then becomes
extremely large (≃1020 cm), and for all practical purposes,
quarks would be just as visible in experiments as electrons
and would possess easily determined quantum numbers
such as mass. Georgi then continues the analysis by
increasing ΛQCD toward its physical Oð250 MeVÞ value
and argues that not until ΛQCD ≃ αsmq (including the
running value of αs) do quarks become inseparable from
their hadrons, and hence hidden from view.
We take this lesson as our touchstone, that substantial

physical separation implies identifiability as particles with
well-characterized masses, even in the presence of confine-
ment. The color dynamics allows diquarks to form as
bound states, and kinematics permits them to separate a
distance before being forced to hadronize. The salient
question then becomes: How far is far enough, before the
diquarks can reasonably be said to appear as identifiable
particles possessing a well-defined mass threshold? We
argue that this event occurs when the δ-δ̄ state can no longer
be mistaken for one in which the diquark wave functions
have substantial wave function overlap. Of course, the size
of diquark wave functions is not at all a known quantity, but
we can obtain a reasonable estimate by considering the size
of mesons with analogous quark content. That is, instead of
cu and c̄d̄ diquarks, we consider D mesons. Again, meson
radii are not directly observable quantities, and the precise
nature of the falloff of their wave functions with r is
unknown, but at least in this case some calculations have
been performed. For example, Ref. [32] calculates the
electromagnetic charge radius of the Dþ to be 0.43 fm,
rather smaller than charge radii of the unflavored mesons,
due to the presence of the heavy c quark. One may expect
the diquarks to be slightly larger because the initial color
attraction between the quark components is smaller; how-
ever, the true size is dominated by some combination of
nonperturbative gluodynamics and the heavy quark mass,
so we expect the diquarks to be not much larger. We take
from this result that 1 fm is not an unreasonable estimate for
the onset of significant separation between the diquarks,
and hence the identification of a well-defined diquark mass
and pair-production threshold. Again, an important ingre-
dient in this estimate appears to be the presence of heavy
quarks, which might very well be related to the reason why
exotics have first become clearly visible in the charm
system.
Furthermore, as first pointed out in Ref. [25], the cusp

effect treatment of the previous section holds at full strength
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[as in Eq. (3)] only for thresholds of particles in a relative s
wave. Only certain δ-δ̄ states will fall into this category, in
precisely the same way that the conventional cusp effect is
most prominent for thresholds of mesons produced in a
relative s wave.
Avery interesting question is how the diquark thresholds

disappear if their separation is insufficient to prevent a large
wave function overlap. We speculate that these thresholds
gradually dissolve into correlations between the couplings
to meson pairs to which the exotics preferentially decay,
and such correlations would create a smeared “cusp” that
would gradually disappear for smaller and smaller diquark
separations. The exact separation at which such a structure
first appears, and hence the assumption that a viable
diquark cusp effect is supportable, is very much open to
debate, but we believe 1 fm is a reasonable estimate. The
diquark cusps studied in this paper are of course based upon
an idealized picture of this behavior.

IV. CONSTITUENT COUNTING RULES

In this section we present a brief summary of the
constituent counting rules developed over a number of
years following the advent of perturbative QCD (pQCD)
[13–23]. They reflect the underlying conformal features
and scale invariance of the QCD coupling. More recently,
they were derived nonperturbatively by Polchinski and
Strassler [33] using AdS/QCD. A more thorough peda-
gogical introduction, particularly with an eye toward
discerning exotic hadronic structure, is presented in
Ref. [34]; here, we present an abridged discussion iden-
tifying the central points leading to the correct counting. In
Ref. [35], the same authors show how to use the large-s
scaling behavior to study the underlying generalized parton
distributions and distribution amplitudes entering into these
processes.
The constituent counting rules for large-angle scattering

processes (i.e., those in which no kinematical variable is
small due to the near collinearity of any particles) at high
c.m. energy

ffiffiffi
s

p
originate from a remarkably simple source:

Each of the individual constituents being scattered must be
redirected through a finite angle by a large momentum
transfer. In this limit, all constituent masses are negligible,
and all three Mandelstam variables s, t, and u≃ −s − t are
large, so that one may express all dimensionful quantities in
powers of s and dimensionless coefficients as functions of
t=s. In the pQCD picture, these deflections are accom-
plished through hard gluon exchanges; if leptons are
included, then hard electroweak boson exchanges also
appear. In the case of AdS/QCD, the counting rules reflect
the twist dimension of the interpolating field at short
distances.
For the moment, let us consider processes in which the

constituents are all fermions. Then, assuming that each of
the n ¼ nin þ nout constituents shares a finite fraction of the
total s, the leading-order Feynman diagrams require a

minimum of n
2
− 1 hard gauge boson exchanges and a

minimum of n
2
− 2 internal constituent propagators. These

features supply factors of 1=s
n
2
−1 and 1=

ffiffiffi
s

p ðn
2
−1Þ to the

invariant amplitude M, respectively. Noting that each
external constituent fermion field carries a spinor normali-
zation scaling as s

1
4, one sees that all of the fermion scaling

factors cancel except for an overall factor s. In total,

M ∝ 1=s
n
2
−2: ð14Þ

Assuming a conventional scattering process in which the
constituents combine into two initial and two final particles,
the cross section is given by

dσ
dt

¼ 1

16πs2
jMj2 ≡ 1

sn−2
f

�
t
s

�
; ð15Þ

where f has the appropriate mass dimension (M2n−8) to
match that (M−4) of the left-hand side but does not itself
scale as a power of s; its dimensionful factors are
essentially the amplitudes describing the binding of the
constituents into the composite states, i.e., decay constants.
Each external gauge boson introduced (e.g., turning an

electroproduction process into photoproduction) removes
two external fermion lines [∼ð ffiffiffi

s
p Þ2] and one hard gauge

boson propagator (∼1=s), leaving the form of the scaling
formula for M and dσ=dt invariant.
Hadronic form factors in the large-s regime can be

studied analogously. For example, according to Eq. (14),
the electromagnetic (or any other current-produced) form
factor FXðsÞ appearing in the pair-production amplitudeM
for tetraquark states X scales as

FXðsÞ →
1

s
1
2
ð1þ1þ4þ4Þ−2 ¼

1

s3
: ð16Þ

While the origin of 1=s factors via hard exchanges is
natural and simple, one may worry about technical com-
plications in real perturbative QCD that disrupt the simple
counting. These effects include the running of αsðsÞ, the
renormalization-group scaling of the constituent distribu-
tion amplitudes [36,37], the presence of Sudakov loga-
rithms [38–40], “pinch” singularities due to the vanishing
of internal gluon propagators [41], and endpoint singular-
ities occurring in configurations where some of the con-
stituents do not share an Oð1Þ fraction of the hard scale s
[42]. However, it is believed that the net result of these
effects is not sufficiently severe as to change the leading s
power scaling for exclusive processes.

V. MESONIC VS DIQUARK FORM FACTORS

The discussion of the previous section shows that the
pair-production form factor FiðsÞ for a state with n
constituents in the high-s regime scales as 1=sn−1. Of
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course, this scaling is not expected to hold in the low-s
region, particularly since confinement physics is not
taken into account in this fundamentally perturbative
approach.

A. Meson form factors

In the case of pair creation of conventional mesons, an
exponential form is traditionally favored by phenomeno-
logical fits to data. For example, for KK̄ production,
Ref. [26] uses F2

i ¼ expð−k2i R2=3Þ, where R ¼ 0.6 fm,
while for BB̄� production, Ref. [29] uses F2

i ¼ expð−s=β2i Þ
(once the coupling constant gi is removed) and studies the
choices βi ¼ 0.4, 0.5, and 0.7 GeV. To put these choices on
a common footing, note from Eqs. (3) and (7) that ki ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − sth;i

p
and that the form in Ref. [29] can be normalized

to unity at threshold by multiplying F2
i by a constant,

F2
i ¼ exp½−ðs − sth;iÞ=β2i �. Then the exponential form may

be written as

F2
i ðsÞ ¼ exp

�
−

μiρ
2
i

1 − ρ2i

�
; ð17Þ

where

μi ¼
sth;iR2

12
¼ sth;i

β2i
; ð18Þ

so that μi ¼ 0.738 for Ref. [26] and R ¼ 0.6 fm
corresponds to βi ¼ 1.14 GeV. If ki from Eq. (3) is
identified with the nonrelativistic momentum jkij, then
one may compute the normalized nonrelativistic matter
density ρðrÞ (not to be confused with ρi) as its Fourier
transform,

ρðrÞ ¼ 1

ð2πℏÞ3
Z

d3ke−ik·r=ℏFðk2Þ; ð19Þ

giving in this case a Gaussian form:

ρðrÞ ¼
�

3

4πR2

�3
2

exp

�
−
3r2

4R2

�
: ð20Þ

Inserting Eq. (17) into Eq. (11) leads to integrals for
πiðsÞ that do not appear to be expressible in closed form
except at special values of s. That the subtraction is
performed at s ¼ 0, and hence that πið0Þ ¼ 0, is guaranteed
by noting that s ¼ 0 in Eq. (8) corresponds to
v2i ¼ −ρ2i ¼ ∞. In terms of the Kummer (confluent
hypergeometric) function Uða; b; zÞ, the function πiðsÞ
and its slope π0iðsÞ can be computed at a few key
values of s:

πið0Þ ¼ 0; π0ið0Þ ¼
1

2
ffiffiffi
π

p
sth;i

U
�3
2
; 0; μ

�
;

πiðsth;iÞ ¼
1ffiffiffi
π

p U
�1
2
; 0; μ

�
; π0iðs−th;iÞ ¼ ∞;

πið∞Þ ¼ −
1

2
ffiffiffi
π

p U
�3
2
; 1; μ

�
; π0ið∞Þ ¼ 0: ð21Þ

These values can also be written as somewhat more
complicated expressions in terms of the modified Bessel
functions K0 and K1. Note especially the cusp π0ðs−th;iÞ ¼
∞ (approaching from s < sth;i), which follows directly
from Eq. (11) for any F2

i ðsÞ that is smooth at s ¼ sth;i
(ρi ¼ 0). The slope π0ðsþth;iÞ (approaching from s > sth;i),
on the other hand, is generally finite (and negative) due to
the smoothing effect of the principal-value prescription
in Eq. (11).
It is important to note that a form factor F2

i ðsÞ expo-
nential in s cannot truly represent the full physical
amplitude [43] in the entire complex s plane, since it
produces an essential singularity for large s in some
directions. Such behavior in dispersion relations would
lead, for example, to a violation of causality. For our
purposes, however, one may suppose that the behavior of
F2
i ðsÞ remains numerically close to the exponential form

along a substantial portion of the real s axis but that the
exact form contains a functional dependence in s (for
example, the power-law falloff predicted by quark-counting
rules) that restores the proper analytic behavior for all
complex values of s.

B. Diquark form factors

The discussion of Sec. IV shows that the tetraquark form
factor FðsÞ at large s scales as 1=s3 due to the exchange of
hard gluons needed to maintain the integrity of the
exclusive tetraquark state. Indeed, the true scaling is
½αsðsÞ=s�3; however, the large-s scaling of αs is logarithmic
and therefore varies slowly compared to the power-law
behavior, and henceforth is neglected.
The corresponding large-s behavior was not used for the

mesonic case because one expects the four quarks produced
at any low or intermediate s immediately to confine into
two hadrons; the only color interactions between the two
mesons are then the “color van der Waals” forces repre-
sented by final-state interactions. In the model of Ref. [11],
however, the (colored) diquarks separate a significant
distance before they are forced to hadronize, and so the
fundamental color forces can be expected to remain active
at much lower values of s than for the meson case. Since the
natural scale at which the high-s scaling should become
significant is given by the diquark mass

ffiffiffiffiffiffiffi
sth;i

p ¼ 2mδ, we
model the diquark form factor by
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FiðsÞ ¼
�
sth;i
s

�
3

; ð22Þ

which of course is properly normalized, Fiðsth;iÞ ¼ 1.
Using Eqs. (3) and (19), the matter density associated with
this form factor is

ρðrÞ ¼ 1

32πr3C

�
1þ r

rC

�
e−r=rC ; ð23Þ

where rC is the diquark Compton wavelength 1=mδ.
In this case, the integrals in πiðsÞ can be performed in

closed form. First, for s > sth;i, one finds

πiðsÞ ¼
1

π

	
−ρið1 − ρ2i Þ6 ln

�
1þ ρi
1 − ρi

�
þ 2048

3003

− 2ρ2i

�
793

231
−
667

63
ρ2i þ

562

35
ρ4i

−
66

5
ρ6i þ

17

3
ρ8i − ρ10i

�

: ð24Þ

In the s < sth;i case, we define [using Eq. (8)] the parameter

γi ≡ s
sth;i

¼ 1

1þ v2i
; ð25Þ

which varies from 0 → 1 as s increases from 0 → sth;i. One
then computes

πiðsÞ ¼
1

πγ6i

	
−

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γi
γi

s �
π

2
− tan−1

� 1
2
− γiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γið1 − γiÞ
p ��

þ 2

�
1 −

1

3
γi −

2

15
γ2i −

8

105
γ3i −

16

315
γ4i −

128

3465
γ5i

−
256

9009
γ6i

�

: ð26Þ

These precise forms are not terribly illuminating in their
own right, but they can be used to compute various limits
for purposes of comparison with the mesonic case. For
example, Eq. (26) appears to have a very strong singularity
at γi ¼ 0 (s ¼ 0), but the complicated polynomial in γi has
precisely the right form to cancel all the terms in the
expansion of the tan−1 expression in powers of γi to the
same order to give πið0Þ ¼ 0, and furthermore to give a
finite value at γi ¼ 1 (s ¼ sth;i) that matches the one from
Eq. (24) at ρi ¼ 0, but with a derivative from below that is
infinite. In comparison with Eq. (21),

πið0Þ ¼ 0; π0ið0Þ ¼
2048

45045πsth;i
;

πiðsth;iÞ ¼
2048

3003π
; π0iðs−th;iÞ ¼ ∞;

πið∞Þ ¼ −
512

9009π
; π0ið∞Þ ¼ 0: ð27Þ

VI. NUMERICAL RESULTS

In this section we present explicit numerical comparisons
of the effects of threshold cusps due to mesons compared to
those due to δ-δ̄ pairs. But first, we make a few comments
about how best to present and interpret these effects.
While it is rather suggestive to describe the attractive

cusp in ReΠiðsÞ at s ¼ sth;i as a potential well that attracts a
bare pole to the threshold, it is important not to be overly
seduced by the analogy with a configuration-space poten-
tial well, which always attracts a particle to the vicinity of
its minimum. The intuition one develops for the cusp effect
needs to be more nuanced. In fact, the entire portion of the
cusp over which Re ΠiðsÞ is positive and appreciable in
magnitude provides a source of attraction for the pole. For
example, even if the bare pole mass sits exactly at
M0 ¼ ffiffiffiffiffiffiffi

sth;i
p

, the cusp can drive the pole mass to a value
slightly larger than

ffiffiffiffiffiffiffi
sth;i

p
; such an effect is visible in the

results in Table II of Ref. [26].
The corrected pole mass Mpole is the pole of the propa-

gator, i.e., the zero of Eq. (1). As the physical resonance pole
first appears on the second Riemann sheet, one must take
care to choose the sign corresponding to the correct branch
in the self-energy functionΠiðsÞ. The effect of the threshold
cusp on the position of a pole can then be described
succinctly in terms of the dimensionless ratios M0=

ffiffiffiffiffiffiffi
sth;i

p
and Mpole=

ffiffiffiffiffiffiffi
sth;i

p
. In light of the observation that the whole

profile of the cusp is active in dragging M0 to Mpole, one
expects that the cusp is most effective in dragging the pole if
either the coupling gi to the opening threshold is large or the
cusp functionReΠiðsÞ is broad in s. The question ofwhether
the mesonic or diquark threshold cusp is more effective in
pole dragging thus comes down to these two criteria.
To exhibit the effectiveness of the cusp numerically, we

first superimpose two plots in Fig. 2. The first is a sample
(diquark) cusp πiðsÞ with gi ¼ 0.370 GeV andffiffiffiffiffiffiffi
sth;i

p ¼ 3.872 GeV, which uses the abscissa x≡ s=sth;i.
Its peak is normalized at threshold (x ¼ 1) to match that of
the second plot, which uses the abscissa x≡M0=

ffiffiffiffiffiffiffi
sth;i

p
and

an ordinate that gives a measure of the effectiveness of the
cusp in dragging the pole, chosen to be

y≡Mpole −M0ffiffiffiffiffiffiffi
sth;i

p : ð28Þ

The pole-dragging function y very closely follows the
shape of the cusp but does not precisely match it.
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Qualitatively, this result means that the cusp does indeed
attract the pole over a significant range of M0=

ffiffiffiffiffiffiffi
sth;i

p
. To

consider the effect more carefully, we characterize regions
of the plot:
(1) M0ffiffiffiffiffi

sth;i
p < Mpoleffiffiffiffiffi

sth;i
p < 1: attraction of below-threshold pole

toward sth;i;
(2) M0ffiffiffiffiffi

sth;i
p < 1 < Mpoleffiffiffiffiffi

sth;i
p : attraction of below-threshold pole

past sth;i;
(3) 1 < M0ffiffiffiffiffi

sth;i
p < Mpoleffiffiffiffiffi

sth;i
p : repulsion of above-threshold pole

from sth;i;
(4) 1 < Mpoleffiffiffiffiffi

sth;i
p < M0ffiffiffiffiffi

sth;i
p : attraction of above-threshold pole

toward sth;i.
The other two possibilities, i.e., repulsion of a below-
threshold pole from sth;i and attraction of an above-
threshold pole past sth;i, do not occur for cusp functions
of the types considered here. The interesting possibility
(Region 2) mentioned above, of the cusp causing a below-
threshold pole to overshoot threshold, is represented in
Fig. 2 as the sliver of the plot between the line 1 − x and the
vertical line x ¼ M0=

ffiffiffiffiffiffiffi
sth;i

p ¼ 1. At these input values, the
peak of the pole-dragging function y lies slightly below
the peak of the cusp function (at x ¼ 1) but still above the
dividing line 1 − x, so that Region 2 has a finite extent.
Equally interesting is Region 3, between the lines x ¼ 1

and where y ¼ 0, in which the bare pole M0 lies near
threshold but is repelled by it nonetheless. Both of these
effects are caused by the continuing attraction (to larger s
values) of the cusp beyond sth;i. From Fig. 2, one sees that
the most effective dragging of the pole (the maximum of y)
falls very close to the dividing line y ¼ 1 − x, which is the
point where Mpole ¼ ffiffiffiffiffiffiffi

sth;i
p

.
We now turn to a direct comparison between the pole-

dragging efficiency of diquark and mesonic cusps, which
are chosen to have the same value of sth;i. Of course, the
presence of a cusplike structure not coinciding with a
known mesonic threshold could suggest the presence of a
distinct diquark threshold, possibly mixed with a δ-δ̄
resonance as discussed here, or even a heretofore unknown
q̄q resonance; and even in the case that a meson and
diquark threshold coincide or overlap, the shape of their
combined effect would be distinct from that of a meson
threshold alone. For the diquark form, the only free
parameters are the coupling constant gi and the bare pole
mass as a multiple of threshold, M0=

ffiffiffiffiffiffiffi
sth;i

p
. The mesonic

cusp, on the other hand, contains the additional free
parameter βi indicative of a typical hadronic scale, which
should assume roughly the same ≈0.5–1.0 GeV value for
any hadronic system; alternately, it can be expressed
[Eq. (18)] as the dimensionless combination μi, which
changes from system to system depending on the value
of sth;i.
In Fig. 3 we compare the pole-dragging effectiveness

parameter y of Eq. (28) as a function of x≡M0=
ffiffiffiffiffiffiffi
sth;i

p
for

the choice
ffiffiffiffiffiffiffi
sth;i

p ¼ mD0 þmD�0 ¼ 3.872 GeV relevant to
the Xð3872Þ. The diquark pole-dragging plot is identical to
that in Fig. 2 (it is the dashed curve there), where it
corresponds to gi;diquark ¼ 0.370 GeV. The mesonic pole-
dragging plots are presented for several values of βi. Since,
as discussed below, the values of gi;diquark are chosen to
scale with gi;meson so that the diquark and mesonic cusp
functions have the same height in each case, and since the
absolute height of each mesonic pole-dragging curve
changes with βi, one should really view Fig. 3 as a family
of plots: a diquark and a mesonic curve for each value
of βi. The diquark plots inherit βi dependence only through
this scaling. The diquark and mesonic plots give the
indicated value of y only for βi ¼ 1 GeV (where
gi;meson ¼ 0.474 GeV), and both would be proportionally
larger (smaller) for βi > 1 GeV (< 1 GeV). However, for
fixed

ffiffiffiffiffiffiffi
sth;i

p
the diquark curves have a fixed shape and

hence are scaled to the single (solid) curve in Fig. 3, while
the mesonic curves become broader as βi grows. They
increase monotonically in width (and hence in pole-
dragging effectiveness) as a function of βi, achieving near
parity with the diquark curve at βi ¼ 1.7 GeV. However,
such a large value seems inconsistent with that expected
from ordinary hadronic matter; if one limits to, e.g., values
βi ¼ 1.1 GeV or less, then the mesonic curves are much

FIG. 2 (color online). A sample threshold cusp (solid, green)
using the diquark form presented in Sec. V B, plotted as a
function of x≡ ffiffiffiffiffiffiffiffiffiffiffiffi

s=sth;i
p

. Its peak normalization is chosen to
match that of the overlaid (dashed, red) pole-dragging effect of
this cusp, y≡ ðMpole −M0Þ= ffiffiffiffiffiffiffi

sth;i
p

, with gi ¼ 0.370 GeV andffiffiffiffiffiffiffi
sth;i

p ¼ 3.872 GeV, and plotted as a function of a second
abscissa x≡M0=

ffiffiffiffiffiffiffi
sth;i

p
. Also plotted is the line y ¼ 1 − x≡ 1 −

M0=
ffiffiffiffiffiffiffi
sth;i

p
(dotted, blue) dividing Regions 1 and 2, as defined in

the text.
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narrower than the diquark ones scaled to the same height,
and hence mesonic thresholds do not drag resonant poles as
effectively as diquark thresholds.
However, this very interesting result is also dependent

upon the absolute size sth;i of the threshold. One expects the
same range of βi values to occur due to hadronic confine-
ment physics, but the mesonic plots depend upon the
dimensionless combination μi of Eq. (18). In the case of the
KK̄ threshold studied in Ref. [26],

ffiffiffiffiffiffiffi
sth;i

p ¼ 0.991 GeV,
while for the studies of Zb states in Ref. [29], the threshold
is

ffiffiffiffiffiffiffi
sth;i

p ¼ mB þmB� ¼ 10.604 GeV.
One must also take into account the chosen size for the

coupling constant gi. In Fig. 3, the same cusp function peak
value is used for both diquark and meson forms. Of course,
no diquark pair production coupling constant has ever been
measured experimentally; however, as noted in the
Introduction, the fundamental strength of the color inter-
action between a qq pair forming a 3̄ is fully half as strong
as that between a q̄q pair forming a 1, so it is reasonable to
take the diquark and meson gi values to be comparable in
size. In the plot captions, gi;meson is the given numerical
value, and gi;diquark is derived from normalizing the peak of
its cusp function to match that of the mesonic form; this
ratio is computed using the values of πiðsth;iÞ in Eqs. (21)
and (27).

Furthermore, the coupling gi corresponds to the creation
of hadrons containing heavy quarks of speciesQ (s for KK̄,
c for DD̄�, b for BB̄�) and therefore is proportional to the
decay constant fQ, which is known from heavy-quark
effective theory to scale in terms of the heavy-quark mass
mQ as 1= ffiffiffiffiffiffiffimQ

p . In turn, the relevant thresholds scale asffiffiffiffiffiffiffi
sth;i

p ∼mQ, so that gi ∼ ðsth;iÞ−1=4. The means by which all
given coupling constants gi;meson are given is therefore

g2i ¼ g2KK̄

ffiffiffiffiffiffiffiffiffiffiffi
sth;KK̄
sth;i

r
; ð29Þ

with g2KK̄ ¼ 0.875 GeV2, an example given in Ref. [26].
Clearly, one may dispute treating the s quark as heavy, the
accuracy of using

ffiffiffiffiffiffiffi
sth;i

p
in place of mQ, or indeed

the scaling of diquark and meson cusp functions to have
the same peak height. However, all of these issues may be
adjusted to match one’s prejudices by including appropri-
ately chosenOð1Þ correction coefficients. Our prescriptions
are designed to make direct comparisons between the forms
as clear as possible.
In Figs. 4, 5, and 6, we compare the pole-dragging

effectiveness parameter y obtained for diquark thresholds,
alongside the mesonic form with the KK̄, DD̄�, and BB̄�
thresholds, respectively, each with βi ¼ 1.0 GeV. One sees
that the KK̄ mesonic curve is much wider than the diquark
curve, while the DD̄� and BB̄� mesonic curves are much

FIG. 3 (color online). Comparison of the effectiveness of pole
dragging by cusps [y of Eq. (28)] as a function of x≡M0=

ffiffiffiffiffiffiffi
sth;i

p
,

as created by diquark (solid, green) and meson (dashed, red)
thresholds. The values of βi (in GeV) corresponding to the
mesonic plots, in increasing width of the profile (or darkness of
the shading), are 0.5, 0.8, 1.1, 1.4, and 1.7. The mesonic plots are
scaled to the same cusp height, in the manner discussed in
the text.

FIG. 4 (color online). Comparison of the effectiveness of pole
dragging by cusps [y of Eq. (28)] as a function of x≡M0=

ffiffiffiffiffiffiffi
sth;i

p
,

from the diquark cusp (solid, green) and from the mesonic
cusp (dashed, red) chosen to have βi ¼ 1.0 GeV. Here,ffiffiffiffiffiffiffi
sth;i

p ¼ 0.991 GeV, and gi;diquark ¼ 1.348 GeV, while gi;meson ¼
0.935 GeV to give the diquark and meson cusp functions the
same height.
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narrower. We infer that the presence of a δ-δ̄ threshold is
more effective in dragging a resonant pole for heavy-quark
systems, and the two-meson threshold is more effective in
dragging a resonant pole for light-quark systems.

But several other interesting results follow from Figs. 4,
5, and 6. First, the maximum height of the pole-dragging
function y is much larger in the KK̄ case than in theDD̄� or
BB̄� cases, for either diquark or mesonic forms. Even
taking into account the larger value of

ffiffiffiffiffiffiffi
sth;i

p
for the latter

cases, the absolute size of the maximal pole dragging is
larger for the lighter cases; to wit, the numbers are about
200, 4.3, and 0.2 MeV, respectively. Some, but not all, of
this decreased effectiveness can be attributed to the
decrease of gi via heavy-quark scaling given by
Eq. (29). Indeed, for a fixed value of s th;i, the relative
size of the pole-dragging effect y is found empirically to
scale approximately as g2i ; clearly, the magnitude of

ffiffiffiffiffiffiffi
sth;i

p
matters as well. In a related effect, the location of the peak
in y travels a greater distance from threshold for lighter
systems, and it is somewhat larger for the mesonic than the
diquark effect, even when the cusp functions themselves
have the same peak height. However, one should not
conclude from these facts that the cusp effect is intrinsically
less effective for heavy-quark systems; indeed, a number of
the mass splittings between heavy hadrons scale as 1=mQ,
so a full analysis would require one to take into account
values of M0 that lie naturally closer to

ffiffiffiffiffiffiffi
sth;i

p
.

VII. DISCUSSION AND CONCLUSIONS

We have performed the first analysis of the cusp effect due
to the opening of diquark-antidiquark thresholds by using
constituent counting rules to model their production form
factor. We directly compared our results to those obtained
from employing a frequently used phenomenologically
based meson form factor and found that the magnitude of
the pole-dragging effect is greater in both relative and
absolute terms for lighter systems (KK̄ vs DD̄� or BB̄�).
We also found that the effect due to mesonic cusps is larger
than that due to diquark cusps for theKK̄ threshold,while the
diquark cusp effect is stronger for DD̄� or BB̄� thresholds.
This calculation is of course an idealization, in that only

one threshold is present in each example; in reality, several
thresholds, each with its own strength and contributing with
different signs (due to the different Riemann sheets) are
simultaneously present, and all contribute to the total effect.
Furthermore, this calculation assumes, for maximum clarity
of comparison, that the coupling constants for the diquark and
mesonic cases give cusp functions of the same height and that
the coupling constants scale with the thresholds according to
expectations from heavy-quark effective theory. Any of these
approximations can be relaxed in a more detailed analysis.
The central conclusion, however, is that, if δ-δ̄ states

exist in the spectrum of QCD, then the opening of their
production thresholds produces measurable shifts in the
masses of resonances, which must be taken into account in
precisely the same way as shifts appearing due to the
opening of meson production thresholds. The cusp effect
appears to promise a rich source of new physical effects.

FIG. 6 (color online). As in Fig. 4, except withffiffiffiffiffiffiffi
sth;i

p ¼ 10.604 GeV, and gi;diquark ¼ 0.136 GeV, while
gi;meson ¼ 0.286 GeV to give the diquark and meson cusp
functions the same height.

FIG. 5 (color online). As in Fig. 4, except withffiffiffiffiffiffiffi
sth;i

p ¼ 3.872 GeV, and gi;diquark ¼ 0.370 GeV, while gi;meson ¼
0.474 GeV to give the diquark and meson cusp functions the
same height. This case can be compared directly to that with
β ¼ 1 GeV in Fig. 3.
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APPENDIX: EXPRESSIONS FOR UNEQUAL
MASSES

In the case m1;i ≠ m2;i, let us define

m≡ 1

2
ðm1;i þm2;iÞ;

δ≡ 1

2
ðm1;i −m2;iÞ;

ϵ≡ δ2

m2
ðA1Þ

and henceforth suppress the index i. Note that sth;i ¼ 4m2.
The kinematical variables are, in analog to Eqs. (3) and (7),

ρ ¼ 2kffiffiffi
s

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

4m2

s

��
1 −

4δ2

s

�s
; ðA2Þ

and its inverse reads

s ¼ 2m2

1 − ρ2
ð1þ ϵÞð1þ hÞ; ðA3Þ

written in terms of the auxiliary variable

h≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4ϵð1 − ρ2Þ
ð1þ ϵÞ2

s
; ðA4Þ

which equals 1 in the equal-mass case ϵ ¼ 0. Analogous
primed forms hold for s → s0.
Then the generalization of Eq. (11) becomes

πðsÞ ¼ 1

π
P
Z

1

0

dρ0
ρ02

h0
F2ðs0Þ

ð1−ρ2
1þh −

1−ρ02
1þh0 Þ

; ðA5Þ

and that of Eq. (13) is

πðsÞ¼−
1

π

Z
1

0

dρ0
�
F2ðs0Þþ4m2ρ02ð1þϵÞð1þh0Þ

ð1−ρ02Þ2h0
dF2ðs0Þ
ds0

�

×ln

����ð1−ρ2Þ−ð1−ρ02Þ 1þh
1þh0

����: ðA6Þ
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