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We present a global fit for αsðmZÞ, analyzing the available C-parameter data measured at center-of-mass
energies between Q ¼ 35 and 207 GeV. The experimental data is compared to a N3LL0 þOðα3sÞ þ Ω1

theoretical prediction (up to the missing four-loop cusp anomalous dimension), which includes power
corrections coming from a field-theoretical nonperturbative soft function. The dominant hadronic
parameter is its first moment Ω1, which is defined in a scheme which eliminates the OðΛQCDÞ renormalon
ambiguity. The resummation region plays a dominant role in the C-parameter spectrum, and in this region a
fit for αsðmZÞ andΩ1 is sufficient. We find αsðmZÞ ¼ 0.1123� 0.0015 andΩ1 ¼ 0.421� 0.063 GeV with
χ2=d:o:f: ¼ 0.988 for 404 bins of data. These results agree with the prediction of universality for Ω1

between thrust and C-parameter within 1-σ.

DOI: 10.1103/PhysRevD.91.094018 PACS numbers: 12.38.Bx, 12.38.−t, 12.38.Cy

I. INTRODUCTION

In order to study quantum chromodynamics (QCD)
accurately in the high-energy regime, it is useful to exploit
the wealth of data from previous eþe− colliders such as
LEP. Here the final states coming from the underlying
partons created in the collisions appear as boosted and
collimated groups of hadrons known as jets. Event shapes
have proven to be very successful to study these collisions
quantitatively. They combine the energy and momenta of
all of the measured hadrons into an infrared- and collinear-
safe parameter which describes the geometric properties of
the whole event by a single variable distribution. Due to
their global nature event shapes have nice theoretical
properties, making it possible to obtain very accurate
theoretical predictions using QCD. Most eþe− event-shape
variables quantify how well the event resembles the
situation of two narrow back-to-back jets, called dijets,
by vanishing in this limit. Because the dijet limit involves
restrictions that only allow collinear and soft degrees of
freedom for the final-state radiation, such QCD predictions
involve a number of theoretical aspects that go beyond the
calculation of higher-order perturbative loop corrections.
These include factorization, to systematically account for
perturbative and nonperturbative contributions, and the
resummation of large logarithmic corrections by renorm-
alization group evolution (RGE). Comparisons of predic-
tions for event shapes with experimental data thus provide
nontrivial tests of the dynamics of QCD.
Due to the high sensitivity of event shapes to jets induced

by gluon radiation they are an excellent tool to measure the
strong coupling αs. For more inclusive hadronic cross
sections (like eþe− → hadrons) the αs dependence is

subleading because it only occurs in corrections to a
leading-order term, while for event shapes the αs depend-
ence is a leading-order effect. For this reason, the study of
event shapes for determining αs has a long history in the
literature (see the review [1] and the workshop proceedings
[2]), including recent analyses which include higher-order
resummation and corrections up to Oðα3sÞ [3–12].
Several previous high-precision studies which deter-

mined αsðmZÞ [4,5,9–11] focused on the event shape called
thrust [13],

τ ¼ 1 − T ¼ min
~n

�
1 −

P
ij~n · ~pijP
jj~pjj

�
; ð1Þ

where ~n is called the thrust axis and it follows from the
above equation that 0 ≤ τ ≤ 1=2. Another event shape,
known as C-parameter [14,15], can be written as

C ¼ 3

2

P
i;jj~pijj~pjjsin2θij
ðPij~pijÞ2

; ð2Þ

where θij gives the angle between particles i and j. It is
straightforward to show that 0 ≤ C ≤ 1. In a previous paper
[12] we computed the C-parameter distribution with a
resummation of large logarithms at next-to-next-to-next-to-
leading log prime (N3LL0) accuracy, including fixed-order
terms up to Oðα3sÞ and hadronization effects using a field-
theoretical nonperturbative soft function. These results
were achieved by using the soft-collinear effective theory
(SCET) [16–20]. Our results for C are valid in all three of
the peak, tail, and far-tail regions of the distribution, and are
the most accurate predictions available in the literature,
having a perturbative uncertainty of ≃2.5% at Q ¼ mZ for
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the region relevant for αsðmZÞ and Ω1 fits. The same
accuracy was previously achieved for thrust, where the
remaining perturbative uncertainty in the τ distribution is
≃ 2% in this region [9]. In this paper we make use of these
new C-parameter theoretical results to carry out a global
fit to all available data, comparing the results with the
analogous global fit for thrust [9] where appropriate.
Since both τ and C vanish in the dijet limit, it is

worthwhile to contrast them in order to anticipate
differences that will appear in the analysis. Differences
between C and τ include the following.
(a) Calculating τ requires identifying the thrust axis with a

minimization procedure, while C does not involve a
minimization.

(b) τ has a single sum over particles while C has a
double sum.

(c) The size of the nonperturbative region, where the
entire shape function is important, is larger for C
compared to τ due to an enhancement by a factor
of 3π=2.

(d) The resummation region for C is larger than that for
thrust since the logarithms appear as lnðC=6Þ com-
pared to lnðτÞ, which increases the range of C values
that are useful for αs fits.

(e) Fixed-order predictions for the thrust cross section
are smooth across the threshold where nonplanar
events first contribute, τ ¼ 1=3, while the fixed-order
C-parameter cross section has an integrable singularity
at this threshold, Cshoulder ¼ 3=4. The singularity for C
comes from the fact that the leading-order distribution
is not continuous at C ¼ Cshoulder. (The C-distribution
can be made smooth here using leading log resum-
mation [21].)

A key similarity is that in the dijet limit (C; τ ≪ 1) the
partonic cross sections for thrust andC-parameter are related
up to next-to-leading log (NLL) by using τ ¼ C=6 [22]. This
relation quantifies several qualitative relations between
C and τ in the dijet region.
Recent higher-order event-shape analyses [4,9–11,11]

have found values of αsðmZÞ significantly lower than the
world average of αsðmZÞ ¼ 0.1185� 0.0006 [23], which is
dominated by the lattice QCD determination [24]. One
result that gave a lower value was the determination carried
out for thrust at N3LL0 þOðα3sÞ in Ref. [9],1which is also
consistent with analyses at N2LLþOðα3sÞ [11,25] which
consider the resummation of logs at one lower order. In

Ref. [26] a framework for a numerical code with N2LL
precision for many eþe− event shapes was found, which
could also be utilized for αs fits in the future. In Ref. [9] it
was pointed out that including a proper fit to power
corrections for thrust causes a significant negative shift
to the value obtained for αsðmZÞ, and this was also
confirmed by subsequent analyses [11]. Recent results
for αsðmZÞ from τ decays [27], deep inelastic scattering
(DIS) data [28], the static potential for quarks [29], as well
as global parton distribution function (PDF) fits [30,31]
also find values below the world average. With the new
analysis we present here, we provide another event-shape
determination of αsðmZÞ with a high level of precision. We
will also simultaneously examine the leading power cor-
rection to the distribution, which should be universal
between thrust and C-parameter.
This paper is organized as follows. In Sec. II we review

the theoretical calculation of the C-parameter cross section,
presented in more detail in Ref. [12]. The details on the
experimental data and fit procedure used in our analysis
are given in Secs. III and IV. In Sec. V we present the
results of our fit for αsðmZÞ and the first moment of the
nonperturbative soft function, Ω1. Fits which include
hadron-mass effects are discussed in Sec. V E. In
Sec. VI we make predictions for the peak and far-tail
regions of the distribution, which are not used in our fit, and
compare those regions to experimental data. The univer-
sality of Ω1 is discussed in Sec VII, where we compare our
results with the previous fit done using thrust in Ref. [9].
Finally, Sec. VIII contains our conclusions. We also include
three appendices. The first, Appendix A, contains the
formulas needed to calculate the profile functions; the
second, Appendix B, contains results that support our
choice for the definition of the renormalon free Ω1

parameter to use for C; and the third compares fit results
for thrust with our profiles and those from Ref. [9].

II. THEORY REVIEW

Until a few years ago, the theoretical uncertainties
related to perturbative contributions as well as hadronic
power corrections were still larger than the experimental
uncertainties. The situation on the theory side has dramati-
cally changed with the calculation of Oðα3sÞ corrections
[3,7,32–35], and the pioneering use of SCET to obtain
higher-order perturbative corrections in Ref. [5], and to
obtain accurate predictions for the full spectrum and a
precision description of power corrections in Ref. [9]. In
this section we review the theoretical work behind our
calculation of dσ=dC, presented in Ref. [12].
SCET separates the physics occurring at the different

energy and momentum scales relevant to the underlying
jets whose properties are characterized by an event shape.
For the C-parameter distribution the relevant scales are:
(i) the hard scale μH, which is related to the production
of partons at short distances and is of the order of the

1Note that results at N3LL require the currently unknown QCD
four-loop cusp anomalous dimension, but conservative estimates
show that this has a negligible impact on the perturbative
uncertainties. Results at N3LL0 also technically require the
unknown three-loop nonlogarithmic constants for the jet and
soft functions which are also varied when determining our
uncertainties, but these parameters turn out to only impact the
peak region which is outside the range of our αsðmZÞ fits in the
resummation region.
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center-of-mass energy Q; (ii) the jet scale μJ ∼Q
ffiffiffiffiffiffiffiffiffi
C=6

p
,

which governs the formation and evolution of the jets; and
(iii) the soft scale μS ∼QC=6, which is the scale of large-
angle soft radiation. All three scales are widely separated in
the dijet region C ≪ 1, where most of the events occur and
where the distribution is maximal. There is one function
associated to each one of these scales in the factorization
theorem that describes the dominant contribution of the
C-parameter distribution in the dijet limit: (i) the hard
function H (the modulus squared of the QCD-to-SCET
matching coefficient), which is common to all dijet event-
shape factorization theorems; (ii) the jet function Jτ (given
by matrix elements of quark fields with collinear Wilson
lines), which is common for C-parameter [12], thrust [9]
and heavy jet mass (ρ) [8]; and (iii) the soft function SeC
(defined by a vacuum matrix element of purely soft Wilson
lines), which in general depends on the specific form of
the event shape. Whereas the former two are perturbative
(μH; μJ ≫ ΛQCD), permitting the calculation of the hard and
jet functions as an expansion in powers of αs, the soft
function has perturbative corrections (μS ≫ ΛQCD) as well
as nonperturbative contributions that need to be accounted
for (μS ≳ ΛQCD). Renormalization evolution between the
three scales μH, μJ, and μS sums up large logarithms to all
orders in perturbation theory. It turns out that the soft
function anomalous dimension for C and τ are identical
[12], providing a connection between these two event
shapes at every order of perturbation theory. Only correc-
tions related to nonlogarithmic terms in their soft functions,
and the associated towers of logarithms, differ between
C and τ.
The soft function can be further factorized into a partonic

soft function ŜeC, calculable in perturbation theory, and a
nonperturbative shape function FC, which has to be
obtained from fits to data. In the strict modified minimal
subtraction (MS) scheme this factorization was achieved
in Refs. [36,37]. (Analytic power corrections for the
C-parameter distributions have also been studied in other
schemes and frameworks; see e.g. Refs. [38–40].)
The treatment of hadronic power corrections greatly

simplifies in the tail of the distribution, defined by
QC ≫ 3πΛQCD, where the shape function can be expanded
in an operator product expansion (OPE). Here the leading
power correction is parametrized byΩC

1 , the first moment of
the shape function. The main effect of this leading power
correction is a shift of the cross section, dσ̂ðCÞ →
dσ̂ðC −ΩC

1 =QÞ. Interestingly, this matrix element is related
to the corresponding one in thrust by

Ωτ
1

2
¼ ΩC

1

3π
≡ Ω1: ð3Þ

This relation was first derived using dispersive models with
a single soft-gluon approximation in Ref. [40]. The equality
can actually be derived to all orders in QCD just using

quantum field theory [41], but ignoring hadron-mass effects
[42]. These hadron-mass effects can also be formulated
purely with quantum field theory operators [43]. Although
they may in general give large corrections, hadron-mass
effects turn out to violate Eq. (3) at only the 2% level,
which is well below the 15% level determination of Ω1 that
we will achieve here. When presenting the results of our
fits, we parametrize the power correction using Ω1 defined
in Eq. (3) to ease comparison with our previous analysis
which determined this Ω1 based on thrust [9,10].

A. Factorized cross section formula

In order to understand the perturbative components of
the C-parameter cross section we make use of the
C-parameter factorization formula. To make the connection
to thrust simpler we will often use functions defined with
the variable eC ¼ C=6. For the perturbative cross section we
find [12]

1

σ0

dσ̂s
dC

¼ Q
6
HðQ; μÞ

Z
dsJτðs; μÞSeC

�
QC
6

−
s
Q
; μ

�
: ð4Þ

Here Jτ is the thrust jet function, obtained by the con-
volution of the two hemisphere jet functions, Jτ ¼ J ⊗ J.
Jτ describes the collinear radiation in the direction of the
two jets. Its definition and expression up to Oðα3sÞ [44–46]
can be found in Refs. [5,9]. The three-loop nonlogarithmic
coefficient of this jet function, j3, is not known, and we
vary it in our scans. The anomalous dimension of Jτ is
known at three loops, and can be obtained from Ref. [47].
The hard factor H contains short-distance QCD effects

and is obtained from the Wilson coefficient of the QCD-
SCET matching of the vector and axial-vector currents. The
hard function is the same for all event shapes for massless
quarks, and its expression up to Oðα3sÞ [48–52,52–54], can
be found in Ref. [9]. The full anomalous dimension of H is
known at three loops, Oðα3sÞ [49,51,55].
The soft function SeC describes wide-angle soft radiation

between the two jets. It is defined as

SeCðl; μÞ ¼ 1

NC
h0jtrYT

nYnδ

�
l −

QĈ
6

�
Y†
nY�

nj0i; ð5Þ

where Ĉ is an operator whose eigenvalues on physical
states correspond to the value of C-parameter for that state:
ĈjXi ¼ CðXÞjXi. Since the hard and jet functions are the
same as for thrust, the anomalous dimension of the soft
function has to coincide with the anomalous dimension of
the thrust soft function. Hence one only needs to determine
the nonlogarithmic terms of the C-parameter soft function.
In Ref. [12] we computed it analytically at one loop,

seC1 ¼ −π2CF=6, and used EVENT2 to numerically determine

the two-loop nonlogarithmic coefficient seC2 , with the result
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seC2 ¼ −43.2� 1.0: ð6Þ

The three-loop nonlogarithmic coefficient of theC-parameter

soft function, seC3 , is currently not known, and we estimate it
with a Padé approximation, assigning a very conservative
uncertainty. We vary this constant in our scan analysis. The

precise definitions of j3 and seC2 as well as seC3 can be found in
Eqs. (A10) and (A12) of Ref. [12], respectively.
In Eq. (4) the hard, jet and soft functions are evaluated at

a common scale μ. If fixed-order expressions are used for
these functions, then there is no scale choice that simulta-
neously minimizes the logarithms for these three functions.
One can instead renormalization-group evolve from μ to the
respective scales μH ∼Q, μJ ∼Q

ffiffiffiffiffiffiffiffiffi
C=6

p
and μS ∼QC=6 at

which the logs in each of H, Jτ, and SeC are minimized, and
only use fixed-order expressions for these functions at these
scales. In this way, large logs of ratios of the scales are
summed up in the renormalization group evolution kernels
UH, Uτ

J, and Uτ
S:

1

σ0

dσ̂s
dC

¼ Q
6
HðQ; μHÞUHðQ; μH; μÞ

×
Z

dsds0Jτðs; μJÞUτ
Jðs − s0; μ; μJÞ

×
Z

dkUτ
Sðk; μ; μSÞSeC

�
QC
6

−
s
Q
− k; μS

�
: ð7Þ

The evolution kernels UH, Uτ
J and Uτ

S resum the large
logarithms, lnðC=6Þ, and explicit expressions can be found
in Ref. [12]. The only unknown piece in our resummation
of logarithms at N3LL order is the small contribution from
the four-loop cusp anomalous dimension, Γcusp

3 , which we
estimate using a Padé approximation and conservatively
vary in our analysis.
While Eq. (7) gives the part of the cross section that

is singular and nonintegrable as C → 0, we also need to
include the integrable or nonsingular contribution. This can
be written as

1

σ0

dσ̂ns
dC

¼ αsðμnsÞ
2π

f1ðCÞ

þ
�
αsðμnsÞ
2π

�
2
�
f2ðCÞ þ β0 ln

�
μns
Q

�
f1ðCÞ

�

þ
�
αsðμnsÞ
2π

�
3
�
f3ðCÞ þ 2β0 ln

�
μns
Q

�
f2ðCÞ

þ
�
β1
2
ln

�
μns
Q

�
þ β20ln

2

�
μns
Q

��
f1ðCÞ

�
þOðα4sÞ: ð8Þ

The functions f1ðCÞ, f2ðCÞ, and f3ðCÞ were determined
in Ref. [12] using the fixed-order results at Oðα1;2;3s Þ

[3,7,32–35,56–59]. The nonsingular cross section
dσ̂ns=dC is independent of the renormalization scale μ
order by order, and therefore we evaluate these pieces at the
nonsingular scale μns, and vary this scale to estimate higher-
order perturbative nonsingular corrections. The scale varia-
tion of μns will be discussed further in Sec. II B.
The full partonic cross section is then given by

1

σ0

dσ̂
dC

¼ 1

σ0

dσ̂s
dC

þ 1

σ0

dσ̂ns
dC

: ð9Þ

Nonperturbative effects are included by convolving Eq. (9)
with a shape function:

1

σ0

dσ
dC

¼
Z

dp
1

σ0

dσ̂
dC

�
C −

p
Q

�
FCðpÞ: ð10Þ

One important property of this shape function is that its first
moment encodes the leading power correction to our cross
section. In the MS scheme this moment is given by

ΩC
1 ≡

Z
dk kFCðkÞ: ð11Þ

Up to the normalization factors shown in Eq. (3) we expect
approximate universality between the Ω1 for C-parameter
and thrust. For the calculation of the cross section, the
shape function is expanded in a complete basis of functions
obtained by an appropriate infinite-range mapping of the
Legendre polynomials [37], with the coefficients chosen
to maintain the first moment. For further details on the
implementation of the shape function for C-parameter see
Ref. [12]. We remove anOðΛQCDÞ renormalon by using the
Rgap scheme [60,61], which introduces a subtraction scale
R into our formula, as well as the gap parameter Δ and the
perturbative scheme-change gap parameter δðR; μSÞ. Here,
δðR; μSÞ is given by a perturbative series in αsðμSÞ whose
mass dimension is set by an overall factor of R, and which
also contains lnðμS=RÞ factors. The convolution with the
shape function now becomes,

dσ
dC

¼
Z

dpe−3π
δðR;μsÞ

Q
∂∂C dσ̂
dC

�
C −

p
Q

�
× FCðp − 3πΔðR; μSÞÞ: ð12Þ

The final component of our cross section is properly
accounting for hadron-mass effects following Ref. [43].
Hadron-mass effects induce an additional series of large
perturbative logarithms which start at NLL,
αks lnkðμS=ΛQCDÞ, and also break the exact universality
between ΩC

1 and Ωτ
1 given in Eq. (3). These effects are

accounted for by including dependence on the transverse
velocity, r≡ p⊥ffiffiffiffiffiffiffiffiffiffiffiffi

p2⊥þm2
H

p , in the nonperturbative matrix ele-

ments (here, mH gives the nonzero hadron mass). In
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particular, in the Rgap scheme the first moment of the shape
function is actually given by

Z
dk kFCðk − 3πΔðR; μSÞÞ ¼ ΩC

1 ðR; μSÞ

¼ 3π

Z
1

0

drgCðrÞΩ1ðR; μS; rÞ:

ð13Þ

In the MS scheme the definition accounting for hadron-
mass effects is the same as Eq. (13), but one sets Δ ¼ 0
and removes R as an argument for these parameters.
Accounting for both the MS running due to hadron masses
and the R-evolution running in the Rgap scheme, the
evolution of the integrand on the right-hand side of
Eq. (13) is given by,

gCðrÞΩ1ðR; μ; rÞ ¼ gCðrÞ
�
αsðμÞ
αsðμΔÞ

�
γ̂1ðrÞ

Ω1ðRΔ; μΔ; rÞ

þ ΔdiffðRΔ; R; μΔ; μ; rÞ; ð14Þ

where RΔ and μΔ give the initial scales where the function
Ω1ðRΔ; μΔ; rÞ is defined. The perturbative evolution kernel
Δdiff gives the R and μ running for each value of r. The
function gC encodes the event-shape dependence of the
hadron-mass effects and γ̂1 gives the solution to the one-
loop RGE for Ω1 with hadron masses derived in Ref. [43].
Since the two- and three-loop r-dependent anomalous
dimensions are unknown, we do not treat the logs generated
by hadron-mass effects to the same level of precision.
When hadron-mass effects are accounted for we always
sum the associated logarithms at NLL. An analogous
formula to Eq. (14) also holds for the thrust parameter Ωτ

1.
Combining all of these elements gives the complete cross

section. Note that we can resum to any order up to N3LL0
and can choose to include or leave out the shape function,
renormalon subtraction and hadron-mass effects. This
flexibility allows us to see how the analysis changes when
we take into account each of these additional physical
considerations and enables us to test how robust the fits are
to various changes in the theoretical treatment.

B. Profile functions

In order to smoothly transition between the nonpertur-
bative, resummation, and fixed-order regions we make use
of profile functions μiðCÞ for the renormalization scales μH,
μJðCÞ, μSðCÞ, RðCÞ, and μnsðCÞ. In the three C regions, the
requirements on the scales which properly deal with large
logarithms, nonperturbative effects, and the cancellations
between singular and nonsingular contributions in the
fixed-order region are

1Þ nonperturbative∶ C≲ 3πΛQCD

μH ∼Q; μJ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛQCDQ

q
; μS ∼ R ∼ ΛQCD;

2Þ resummation∶ 3πΛQCD ≪ C < 0.75

μH ∼Q; μJ ∼Q

ffiffiffiffi
C
6

r
; μS ∼ R ∼

QC
6

≫ ΛQCD;

3Þ fixed order∶ C > 0.75

μns ¼ μH ¼ μJ ¼ μS ¼ R ∼Q ≫ ΛQCD: ð15Þ

In addition we take the fixed-order nonsingular scale
μns ∼ μH in the nonperturbative and resummation regions.
Our profile functions μiðCÞ satisfy these constraints,
and provide continuous and smooth transitions between
these C regions. The resummed perturbative cross section
is independent of Oð1Þ variations in all renormalization
scales order by order in the logarithmic resummation.
Therefore the dependence on parameters appearing in
the profile functions gets systematically smaller as we
go to higher orders, and their variation provides us with a
method of assessing perturbative uncertainties.
For the hard renormalization scale we use the

C-independent formula

μH ¼ eHQ; ð16Þ
where eH is a parameter that we vary from 0.5 to 2 in order
to account for theory uncertainties.
The soft scale has different functional dependence in

the three regions of Eq. (15), and hence depends on the
following parameters:

μS ¼ μSðC; μ0; rs; μH; t0; t1; t2; tsÞ: ð17Þ
Here, μ0 controls the intercept of the soft scale at C ¼ 0, t0
is near the boundary of the purely nonperturbative
region and t1 controls the end of this transition, where
the resummation region begins. The transition from
nonperturbative to perturbative is Q dependent, so we
use the Q-independent parameters n0 ≡ t0Q=ð1 GeVÞ and
n1 ≡ t1Q=ð1 GeVÞ. In the resummation region the param-
eter rs determines the slope of the soft scale relative to the
canonical resummation region scaling, with μS¼rsμHC=6.
The parameter t2 controls where the transition occurs
between the resummation and fixed-order regions and ts
sets the value of C where the renormalization scales all
become equal as required in the fixed-order region. For the
jet scale we have the dependence

μJ ¼ μJðμH; μSðCÞ; eJÞ; ð18Þ

where eJ is a parameter that is varied in our theory scans
to slightly modify the natural relation between the scales.
The exact functional form for μS and μJ in Eqs. (17) and
(18) is given in Appendix A.
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To avoid large logarithms in the soft function subtrac-
tions δ, the scale RðCÞ is chosen to be the same as μSðCÞ in
the resummation and fixed-order regions. In the nonper-
turbative region we need RðCÞ < μSðCÞ to obtain an
OðαsÞ subtraction that stabilizes the soft function in this
region (removing unphysical negative dips that appear in
the MS scheme). This introduces an additional parameter
R0 ≡ RðC ¼ 0Þ. Therefore we have

R ¼ RðμSðCÞ; R0Þ: ð19Þ

The exact functional form for R is also given in
Appendix A.
For the nonsingular scale μns, we use the variations

μnsðCÞ ¼

8>><
>>:

1
2
½μHðCÞ þ μJðCÞ�; ns ¼ 1;

μH; ns ¼ 0;
1
2
½3μHðCÞ − μJðCÞ�; ns ¼ −1.

ð20Þ

Here the three choices vary μns in a manner that allows it to
have some independence from μH in the resummation and
nonperturbative regions, while still being equal μH in the
fixed-order region (where μJ ¼ μH). These variations of μns
probe the higher-order fixed-order uncertainty in the non-
singular cross section contribution. In the fixed-order
region the variation of μH alone precisely reproduces the
standard fixed-order scale variation.
The details of the variations of the profile function

parameters used to assess uncertainties are given in
Table I. The plot in Fig. 1 shows how the scales vary
with the changes to our C-parameter profile parameters.
The vertical arrow on the hard scale indicates the overall
up/down variation, which causes a variation to all the
scales. Also shown (as gray dashed lines) are plots of the
canonical soft scaleQC=6 and canonical jet scaleQ

ffiffiffiffiffiffiffiffiffi
C=6

p
.

In the resummation region, these correspond fairly well
with the profile functions, indicating that in this region our
analysis will avoid large logarithms. As discussed in detail
in Ref. [12], to improve the convergence of theC-parameter
cross sections we take rs ¼ 2 as our default slope param-
eter, explaining why our soft and jet scales are larger than
the canonical values in Fig. 1 (by a factor that does not
induce further large logs). In the analysis of Sec. V, we will
see how varying each of these profile parameters affects our
final fit results.
For the numerical analyses carried out in this work we

have created within our collaboration two completely
independent codes. One code within MATHEMATICA [62]
implements the theoretical expressions exactly as given in
Ref. [12], and another code is based on theoretical formulas
in Fourier space and realized as a fast FORTRAN [63]
code suitable for parallelized runs on computer clusters.
These two codes agree for the C-parameter distribution
at the level of 10−6.

We will also repeat the thrust fits of Ref. [9], implement-
ing the same type of profile functions used here. These
profiles have several advantages over those in Ref. [9],
including a free variable for the slope, a flat nonperturbative
region, and parameters whose impact is much more
confined to one of the three regions in Eq. (15). For the
thrust profiles we redefine rs → 6rs, which eliminates the
factors of 6 in Eqs. (A1) and (A4). This way, the canonical

TABLE I. C-parameter theory parameters relevant for estimat-
ing the theory uncertainty, their default values and range of values
used for the theory scan during the fit procedure. The last four
parameters control the statistical errors induced by fit functions
used in the nonsingular terms atOðα2sÞ (ϵlow2 and ϵhigh2 ) and Oðα3sÞ
(ϵlow3 and ϵhigh3 ) in the region below (ϵlow2 and ϵlow3 ) and above (ϵhigh2

and ϵhigh3 ) the shoulder; see Sec. V of Ref. [12].

Parameter Default value Range of values

μ0 1.1 GeV � � �
R0 0.7 GeV � � �
n0 12 10 to 16
n1 25 22 to 28
t2 0.67 0.64 to 0.7
ts 0.83 0.8 to 0.86
rs 2 1.78 to 2.26
eJ 0 −0.5 to 0.5
eH 1 0.5 to 2.0
ns 0 −1, 0, 1
Γcusp
3

1553.06 −1553.06 to þ4659.18

s ~C
2

−43.2 −44.2 to −42.2
j3 0 −3000 to þ3000

s ~C
3

0 −500 to þ500

ϵlow2
0 −1, 0, 1

ϵhigh2
0 −1, 0, 1

ϵlow3
0 −1, 0, 1

ϵhigh3
0 −1, 0, 1

FIG. 1 (color online). Bands for the profile functions for the
renormalization scales μH, μJðCÞ, μSðCÞ when varying the profile
parameters.
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choice of slope is rs ¼ 1 for both C-parameter and thrust.
We use rs ¼ 2 as our default for thrust as well, again to
improve the perturbative convergence, as discussed in
Ref. [12]. The profile parameters for thrust and their
variations are summarized in Table II. These choices create
profiles that are very similar to those used in Ref. [9]. The
new fit results for thrust are fully compatible with those of
Ref. [9] in the resummation region used for the αs fits.
Additionally, they give a better description in the non-
perturbative region which is outside of our fit range.

C. Hadron-mass effects

In Ref. [43] it was shown that hadron-mass effects, apart
from breaking the universality properties of the leading
power correction for various event shapes, also induce a
nontrivial running. Since these are single logarithms, they
start at NLL order. In Ref. [43] the corresponding leading
anomalous dimension was determined, which yields the
NLL resummation of larger logs between the scales μS and
ΛQCD for a large set of event shapes. The pieces necessary
for a higher-order resummation have not yet been com-
puted. One might be worried that accounting for only the
NLL running for Ω1 in an expression as accurate as N3LL
in cross-section logs could be inadequate, or that it could
leave significant perturbative uncertainties. However, one
should recall that the hadronic parameter Ω1 itself is a
correction, and hence it is valid to account for the related
resummation with less precision. In this section we show
that theΩ1 evolution at NLL order suffices for the precision
of our N3LL0 þOðα3sÞ analysis. Indeed, it turns out that the
effect of the hadron-mass running on the fit outcome is very
small as compared to other uncertainties, and therefore can
be safely neglected.

For our C-parameter analysis the implementation of
hadron-mass running effects has been explained at length
in Ref. [12], and we only summarize here the most relevant
aspects needed to understand the fit results. In the MS
scheme the leading power correction can be written as an
integral of a universal hadron function, Ω1ðμ; rÞ, common
to all event shapes

Ωe
1ðμÞ ¼ ce

Z
1

0

dr geðrÞΩ1ðμ; rÞ; ð21Þ

where r is the transverse velocity, e denotes a specific event
shape, ce is a calculable normalization factor, and geðrÞ is
an event-shape-dependent function encoding the hadron-
mass effects. The functions geðrÞ are known analytically,
and specific examples can be found in Ref. [43]. For
C-parameter cC ¼ 3π, while for thrust cτ ¼ 2. For the
simple case of the MS scheme the running between the
initial reference scale μ0 where the universal hadron
function is specified, and the soft scale μS, is given at
leading order by

Ω1ðμS; rÞ ¼ Ω1ðμ0; rÞ
�
αsðμSÞ
αsðμ0Þ

�
γ̂1ðrÞ

; ð22Þ

with γ̂1ðrÞ ¼ 2CA
β0

lnð1 − r2Þ. The corresponding evolution
formula for the Rgap scheme is considerably more com-
plex, as shown by the form displayed in Eq. (14) above.
Ensuring that the renormalon is not reintroduced by the
renormalization group evolution requires an additional
evolution in the scale R, so ΔdiffðRΔ; R; μΔ; μ; rÞ contains
evolution in both the μ and R scales. Also here we have two
reference scales μΔ and RΔ to specify the initial parameter
Ω1ðRΔ; μΔ; rÞ. The full formula forΔdiff is given in Eq. (67)
of Ref. [12].
Note that the renormalization group evolution is a

function of r and takes place independently for each r,
but the required result for C-parameter or thrust requires
an integral over r. Due to this integration the functional
form that we assume for the initial condition Ω1ðr; μ0Þ
or Ω1ðRΔ; μΔ; rÞ gets entangled with the perturbative
resummation.
With current constraints on the r dependence, and with

the lack of even more precise experimental data to probe
this issue, a model-independent formulation (like a com-
plete functional basis for the r dependence at the reference
scales, RΔ and μΔ) is not feasible. To implement this
running we have therefore tested several models for the r
dependence in Ref. [12], and found that generically the
experimental data is sensitive to the normalization which
specifies Ω1, but not to the detailed form used for the r
dependence as long as it satisfies several reasonable
constraints. Therefore for the fits performed here we simply
adopt the default form from Ref. [12],

TABLE II. Thrust theory parameters relevant for estimating the
theory uncertainty, their default values and range of values used
for the theory scan during the fit procedure. The last two
parameters control the statistical errors induced by fit functions
used in the nonsingular terms at Oðα2sÞ (ϵ2) and Oðα3sÞ (ϵ3); see
Sec. E of Ref. [9].

Parameter Default value Range of values

μ0 1.1 GeV � � �
R0 0.7 GeV � � �
n0 2 1.5 to 2.5
n1 10 8.5 to 11.5
t2 0.25 0.225 to 0.275
ts 0.4 0.375 to 0.425
rs 2 1.77 to 2.26
eJ 0 −1.5 to 1.5
eH 1 0.5 to 2.0
ns 0 −1, 0, 1
j3 0 −3000 to þ3000
sτ3 0 −500 to þ500

ϵ2 0 −1, 0, 1
ϵ3 0 −1, 0, 1
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Ω1ðRΔ; μΔ; rÞ ¼ ½aðRΔ; μΔÞfaðrÞ þ bðRΔ; μΔÞfbðrÞ�2;
faðrÞ ¼ 3.510e−

r2

1−r2 ;

fbðrÞ ¼ 13.585e−
2r2

1−r2 − 21.687e−
4r2

1−r2 : ð23Þ

This model ensures that Ω1ðRΔ; μΔ; rÞ is always
positive definite and smoothly goes to zero at the r ¼ 1
endpoint (where the ratio of the hadron mass to pT
goes to zero). The functions fa;b form an orthonormal
basis upon integration with gCðrÞ, which yields the follow-
ing relation:

ΩC
1 ðRΔ; μΔÞ ¼ 3π½aðRΔ; μΔÞ2 þ bðRΔ; μΔÞ2�; ð24Þ

which determines the normalization. We also define

θðRΔ; μΔÞ≡ arctan

�
bðRΔ; μΔÞ
aðRΔ; μΔÞ

�
; ð25Þ

which was chosen to have an effect orthogonal to the more
relevant parameterΩC

1 ðRΔ; μΔÞ. By examining our ability to
simultaneouslymeasureΩC

1 ðRΔ; μΔÞ and θðRΔ; μΔÞwehave
ameans to test for the impact that the initial r dependence has
on our fits. As we can see in Fig. 2, our model captures
different behavior for the r dependence ofΩ1ðRΔ; μΔ; rÞ by
choosing different values of θðRΔ; μΔÞ. Over the interval
r ∈ ½0; 1�, all the curves in this figure are normalized so that
they integrate to 1.

III. EXPERIMENTAL DATA

Data on the C-parameter cross section are given by
several experiments for a range of Q from 35 to 207 GeV.
We use data from ALEPH2 with Q¼f91.2;133;161;172;
183;189;200;206gGeV [64], DELPHI with Q ¼ f45; 66;

76; 89.5; 91.2; 93; 133; 161; 172; 183; 189; 192; 196; 200;
202; 205; 207g GeV [65–68], JADEwithQ¼f35;44gGeV
[69], L3 with Q ¼ f91.2; 130.1; 136.1; 161.3; 172.3;
182.8; 188.6; 194.4; 200.2; 206.2g GeV [70,71], OPAL
with Q ¼ f91; 133; 177; 197g GeV [72], and SLD with
Q ¼ 91.2 GeV [73]. As each of these data sets is given
in binned form, our cross section in Eq. (12) is integrated
over each bin before being compared to the data. The default
range onC used in fitting the data is 25 GeV=Q ≤ C ≤ 0.7.
A lower limit of 25 GeV=Q eliminates the peak region
where higher nonperturbative moments ΩC

n>1 become
important. The upper limit is chosen to be 0.7 in order to
avoid the far-tail region as well as the Sudakov shoulder at
C ¼ 0.75. Any bin that contains one of the endpoints of our
range (C ¼ 25 GeV=Q or 0.7) is included if more than half
of that bin lies within the range. Using the default range and
data sets gives a total of 404 bins. As a further test of the
stability of our analysis, both thisC-parameter range and the
selection of data sets is varied in the numerical analysis
contained in Sec. V.
In our fitting procedure, we consider both the statistical

and systematic experimental uncertainties. The statistical
uncertainties can be treated as independent between bins.
The systematic experimental uncertainties come from
various sources and full documentation of their correlations
are not available, so dealing with them in our χ2 analysis is
more complicated, and we have to use a correlation model.
For this purpose we follow the LEP QCD Working Group
[64,72] and use the minimal overlap model. Within one
C-parameter data set, which consists of variousC-parameter
bins at one Q value for one experiment, we take for the bin
i, bin j off-diagonal entry of the experimental covariance
matrix ½minðΔsys

i ;Δsys
j Þ�2. Here Δsys

i;j are the quoted sys-
tematic uncertainties of the bins i and j. Within each data
set, this model implies a positive correlation of systematic
uncertainties. In addition to this default model choice, we
also do the fits assuming uncorrelated systematic uncer-
tainties, in order to test whether the minimal overlap model
introduces any bias. See Sec. V B for more details on the
correlation matrix.

IV. FIT PROCEDURE

In order to accurately determine both αsðmZÞ and the
leading power correction in the same fit, it is important to
perform a global analysis, that is, simultaneously fitting
C-spectra for awide range of center-of-mass energiesQ. For
each Q, effects on the cross sections induced by changes in
αsðmZÞ can be partly compensated by changes in Ω1,
resulting in a fairly strong degeneracy. This is resolved by

FIG. 2 (color online). Plots of the r dependence of
gCðrÞΩ1ðRΔ; μΔ; rÞ for different values of θðRΔ; μΔÞ. We normal-
ize toΩC

1 ðRΔ; μΔÞ, since it is simply anoverallmultiplicative factor.

2The ALEPH data set with Q ¼ 91.2 GeV has two systematic
uncertainties for each bin. The second of these uncertainties is
treated as correlated while the first one is treated as an
uncorrelated uncertainty and simply added in quadrature to the
statistical uncertainty.
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the global fit, just as in the thrust analysis ofRef. [9]. Figure 3
shows the difference between the theoretical prediction for
the cross section at three different values ofQ, when αsðmZÞ
orΩ1 arevariedby�0.001and�0.05 GeV, respectively. It is
clear that the potential degeneracy in these parameters is
broken by having data at multipleQ values. In Fig. 3 we also
vary the higher-order power correction parameterΩC

2 , which

clearly has a much smaller effect than the dominant power
correction parameter Ω1.
To carry out a fit to the experimental data we fix the

profile and theory parameters to the values shown in
Table I. The default values are used for our primary theory
cross section. We integrate the resulting theoretical dis-
tribution over the same C-parameter bins as those available
experimentally, and construct a χ2 function with the
uncorrelated statistical experimental uncertainties and cor-
related systematic uncertainties. This χ2 is a function of
αsðmZÞ and Ω1, and is very accurately described by a
quadratic near its global minimum, which therefore deter-
mines the central values and experimental uncertainties.
The value of Ω1 and its associated uncertainties encode the
dominant hadronization effect as well as the dominant
residual uncertainty from hadronization.
To obtain the perturbative theoretical uncertainty we

consider the range of values shown for the theory parameters
in Table I. Treating each of these as a flat distribution, we
randomly generate values for each of these parameters and
then repeat the fit described abovewith the new χ2 function.
This random sampling and fit is then repeated 500 times.We
then construct theminimumellipse that fully contains all 500
of the central-fit values by first creating the convex envelope
that contains all of these points within it. Then, we find the
equation for the ellipse that best fits the points on the
envelope, with the additional restrictions that all values lie
within the ellipse and its center is the average of the
maximum and minimum values in each direction. This
ellipse determines the perturbative theoretical uncertainty,
which turns out to be the dominant uncertainty in our fit
results. In our final results the perturbative and experimental
uncertainties are added in quadrature. This procedure is
similar to that discussed in the Appendix of Ref. [10].

V. RESULTS

In this section we discuss the results from our global
analysis. We split the presentation into several subsections.
In Sec. VAwe discuss the impact that resummation and the
inclusion of power corrections have on the fit results. In
Sec. V B we present the analysis which yields the pertur-
bative uncertainty in detail, cross-checking our method by
analyzing the order-by-order convergence. We also analyze
the impact of removing the renormalon. In Sec. V C we
discuss the experimental uncertainties obtained from the fit.
Section VD discusses the impact that varying the theory
parameters one by one has on the best-fit points, allowing
us to determine which parameters dominate the theoretical
uncertainty. The impact of hadron-mass resummation is
discussed in detail in Sec. V E. We examine the effects of
changing the default data set in Sec. V F. The final fit
results are collected in Sec. VG. When indicating the
perturbative precision, and whether or not the power
correction Ω1 is included and at what level of precision,
we use the following notation:

(a)

(b)

(c)

FIG. 3 (color online). Difference between the default cross
section and the cross section varying only one parameter. We vary
αsðmZÞ by�0.001 (solid red), 2Ω1 by�0.1 (dashed blue) andΩC

2

by �0.5 (dotted green). The three plots correspond
to three different center-of-mass energies: (a) Q ¼ 35 GeV,
(b) Q ¼ 91.2 GeV, (c) Q ¼ 206 GeV.
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OðαksÞ fixed order up toOðαksÞ;
NkLL0 þOðαksÞ perturbative resummation;

NkLL0 þOðαksÞ þΩ1 MSscheme forΩ1;

NkLL0 þOðαksÞ þΩ1ðR; μÞ Rgap scheme forΩ1;

NkLL0 þOðαksÞ þΩ1ðR; μ; rÞ Rgap schemewith

hadronmasses forΩ1:

A. Impact of resummation and power corrections

In Fig. 4 we show αsðmZÞ extracted from fits to the tail of
the C-parameter distribution including sequential improve-
ments to the treatment of perturbative and nonperturbative
components of our code, using the highest perturbative
accuracy at each stage. The sequence from left to right
shows the fit results using Oðα3sÞ fixed-order results only,
adding N3LL resummation, adding the Ω1 power correc-
tion, adding renormalon subtractions and using the Rgap
power correction parameter Ω1ðRΔ; μΔÞ, and adding
hadron-mass effects. These same results together with
the corresponding χ2=d:o:f: are also collected in
Table III. The fit with only fixed-order Oðα3sÞ results has
a relatively large χ2=d:o:f: and also its central value has the
largest value of αsðmZÞ. Including the resummation of large
logarithms decreases the central αsðmZÞ by 8% and also
decreases the perturbative uncertainty by∼50%. Due to this
smaller perturbative uncertainty it becomes clear that the
theoretical cross section has a different slope than the
data, which can be seen, for example, at Q ¼ mZ for
0.27 < C < 0.35. This leads to the increase in the χ2=d:o:f:
for the “N3LL0 no power corr.” fit, and makes it quite
obvious that power corrections are needed.When the power
correction parameter Ω1 is included in the fit, shown by the

third entry in Table III and the result just to the right of the
vertical dashed line in Fig. 4, the χ2=d:o:f: becomes 1.004
and this issue is resolved. Furthermore, a reduction by
∼50% is achieved for the perturbative uncertainty in
αsðmZÞ. This reduction makes sense since some of the
perturbative uncertainty of the cross section is now
absorbed in Ω1, and a much better fit is achieved for
any of the variations associated to estimating higher-order
corrections. The addition of Ω1 also caused the fit value of
αsðmZÞ to drop by another 8%, consistent with our expect-
ations for the impact of power corrections and the estimate
made in Ref. [12]. Note that the error bars of the first two
purely perturbative determinations, shown on the left-hand
side of the vertical thick dashed line in Fig. 4 and in the last
two entries in Table III, do not include the ∼8% uncer-
tainties associated with the lack of power corrections.
The remaining corrections we consider are the use of the

R-scheme forΩ1which includes the renormalon subtractions,

FIG. 4 (color online). The evolution of the value of αsðmZÞ adding components of the calculation. An additional ∼8% uncertainty from not
including power corrections is not included in the two left points.

TABLE III. Comparison of C-parameter tail fit results for
analyses when we add various components of the theoretical
result (from the bottom to top). The first parentheses gives the
theory uncertainty, and the second is the experimental and
hadronic uncertainties added in quadrature for the first three
rows, and experimental uncertainty for the last two rows.

αsðmZÞ χ2=d:o:f:

N3LL0 þ hadron 0.1119(13)(06) 0.991
N3LL0 with Ω1ðR; μÞ 0.1123(14)(06) 0.988
N3LL0 with Ω1 0.1117(16)(06) 1.004
N3LL0 no power corr. 0.1219(28)(02) 2.091
Oðα3sÞ fixed order
no power corr.

0.1317(52)(03) 1.486
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and the inclusion of the log-resummation effects associated to
thehadron-masseffects.Bothof thesecorrectionshavea fairly
small impact on the determination of αsðmZÞ, shifting the
central valuebyþ0.5%and−0.3% respectively. Sinceadding
the −0.3% shift from the hadron-mass corrections in quad-
rature with the ≃1.2% perturbative uncertainty does not
change the overall uncertainty we will use the R-scheme
determination for ourmain result. This avoids theneed to fully

discuss the extra fit parameter θðRΔ; μΔÞ that appears when
hadron masses are included. Further discussion of the
experimental uncertainties and the perturbative uncertainty
from the random scan are given below in Secs. V B and VD,
and a more detailed discussion of the impact of hadron-mass
resummation is given below in Sec. V E.
The values of Ω1 obtained from the fits discussed above

can be directly compared to the Ω1 power correction

(a) (b)

(c) (d)

FIG. 5 (color online). The first two panels show the distribution of best-fit points in the αsðmZÞ-2Ω1 and αsðmZÞ-2Ω1 planes. Panel
(a) shows results including perturbation theory, resummation of large logs, the soft nonperturbative function andΩ1 defined in the Rgap
schemewith renormalon subtractions. Panel (b) shows the results as in panel (a), butwithΩ1 defined in theMS schemewithout renormalon
subtractions. In both panels the dashed lines corresponds to an ellipse fit to the contour of the best-fit points to determine the theoretical
uncertainty. The respective total (experimentalþ theoretical) 39% C.L. standard uncertainty ellipses are displayed (solid lines), which
correspond to 1-σ (68% C.L.) for either one-dimensional projection. The big points represent the central values in the random scan for
αsðmZÞ and 2Ω1. Likewise, the two panels at the bottom show the distribution of best-fit points in the αsðmZÞ-χ2=d:o:f: plane. Panel
(c) shows the χ2=d:o:f: values of the points given in panel (a), whereas panel (b) shows the χ2=d:o:f: values of the points given in panel (b).
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obtained from the thrust distribution. Values for Ω1 from
the C-parameter fits are given below in Secs. V B and VD
and the comparison with thrust is considered in Sec. VII.

B. Perturbative uncertainty from the scan

To examine the robustness of our method of determining
the perturbative uncertainty by the random scan, we
consider the convergence and overlap of the results at
different perturbative orders. Figure 5 shows the spread of
best-fit values at NLL0, N2LL0 and N3LL0. The upper left
panel, Fig. 5(a), shows results from fits performed in the
Rgap scheme, which implements a renormalon subtraction
for Ω1, and the upper right panel, Fig. 5(b), shows results
in the MS scheme without renormalon subtractions. Each
point in the plot represents the outcome of a single fit, and
different colors correspond to different orders in perturba-
tion theory. Not unexpectedly, fits in the Rgap scheme
show generally smaller theory uncertainties.
In order to estimate correlations induced by theoretical

uncertainties, each ellipse in the αs-2Ω1 plane is con-
structed following the procedure discussed in Sec. IV. Each
theory ellipse constructed in this manner is interpreted as
an estimate for the 1-σ theoretical uncertainty ellipse for
each individual parameter (39% confidence for the two
parameters), and is represented by a dashed ellipse in
Fig. 5. The solid lines represent the combined (theoretical
plus experimental) standard uncertainty ellipses at 39%
confidence for two parameters, obtained by adding the
theoretical and experimental error matrices from the indi-
vidual ellipses, where the experimental ellipse corresponds
to Δχ2 ¼ 1. Figure 5 clearly shows a substantial reduction
of the perturbative uncertainties when increasing the
resummation accuracy, and given that they are 39%
confidence regions for two parameters, also show good
overlap between the results at different orders.
The results for αsðmZÞ and Ω1 from the theory scan at

different perturbative orders are collected in Tables IV
and V. Central values here are determined from the average
of the maximal and minimal values of the theory scan, and
are very close to the central values obtained when running
with our default parameters. The quoted perturbative
uncertainties are one-parameter uncertainties.
In Table III above we also present αsðmZÞ results

with no power corrections and either using resummation

or fixed-order perturbative results. Without power correc-
tions there is no fit forΩ1, so we take the central value to be
the average of the maximum and minimum value of αsðmZÞ
that comes from our parameter scan. Our estimate of the
uncertainty is given by the difference between our result
and the maximum fit value. For the fixed-order case, since
there is only one renormalization scale, we know that the

uncertainties from our parameter variation for eH, seC2 , ϵlow2

and ϵlow3 are uncorrelated. So, we take the fit value for
αsðmZÞwith the default parameters as our result and add the
uncertainties from variations of these parameter in quad-
rature to give the total uncertainty.
An additional attractive result of our fits is that the

experimental data is better described when increasing the
order of the resummation and fixed-order terms. This can
be seen by looking at the minimal χ2=d:o:f: values for the
best-fit points, which are shown in Fig. 5. In Figs. 5(c) and
5(d) we show the distribution of χ2min=d:o:f: values for the
various αsðmZÞ best-fit points. Figure 5(c) displays the
results in the Rgap scheme, whereas Fig. 5(d) shows
the results in the MS scheme. In both cases we find that
the χ2min values systematically decrease with increasing
perturbative order. The highest-order analysis in the MS
scheme leads to χ2min=d:o:f: values around unity and thus
provides an adequate description of the whole data set;
however, one also observes that accounting for the renor-
malon subtraction in the Rgap scheme leads to a substan-
tially improved theoretical description having χ2min=d:o:f:
values below unity essentially for all points in the random
scan. Computing the average of the χ2min values we find at
N3LL0 order for the Rgap and MS schemes 0.988 and
1.004, respectively (where the spread of values is smaller in
the Rgap scheme). Likewise for N2LL0 we find 1.00 and
1.02, and for NLL0 we find 1.09 and 1.14. These results
show the excellent description of the experimental data
for various center-of-mass energies. They also validate the
smaller theoretical uncertainties obtained for αs and Ω1 at
N2LL0 and N3LL0 orders in the Rgap scheme.

C. Experimental fit uncertainty

Next we discuss in more detail the experimental uncer-
tainty in αsðmZÞ and the hadronization parameter Ω1 as

TABLE IV. Central values for αsðmZÞ at various orders with
theory uncertainties from the parameter scan (first value in
parentheses), and experimental and hadronic uncertainty added
in quadrature (second value in parentheses). The bold N3LL0
value is our final result.

Order αsðmZÞ (with Ω1) αsðmZÞ [with Ω1ðRΔ; μΔÞ]
NLL0 0.1071(60)(05) 0.1059(62)(05)
N2LL0 0.1102(32)(06) 0.1100(33)(06)
N3LL0 (full) 0.1117(16)(06) 0.1123ð14Þð06Þ

TABLE V. Central values for Ω1 at the reference scales RΔ ¼
μΔ ¼ 2 GeV and for Ω1 and at various orders. The parentheses
show first the theory uncertainties from the parameter scan, and
second the experimental plus the uncertainty due to the imprecise
determination of αs (added in quadrature). The bold N3LL0 value
is our final result.

Order Ω1 [GeV] Ω1ðRΔ; μΔÞ [GeV]
NLL0 0.533(154)(18) 0.582(134)(16)
N2LL0 0.443(119)(19) 0.457(83)(19)
N3LL0 (full) 0.384(91)(20) 0.421ð60Þð20Þ
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well as the combination with the perturbative uncertainty
done to obtain the total uncertainty.
Results are depicted in Fig. 6 for our highest-order fit

including resummation, power corrections and renormalon
subtractions. The inner green dotted ellipse, blue dashed
ellipse, and solid red ellipse represent the Δχ2 ¼ 1 uncer-
tainty ellipses for the experimental, theoretical, and
combined theoretical and experimental uncertainties respec-
tively. These ellipses correspond to the one-dimensional
projectionof theuncertainties onto eitherαsðmZÞorΩ1 (39%
confidence ellipse for two parameters). The correlation
matrix of the experimental, theory, and total uncertainty
ellipses are (for i, j ¼ αs, 2Ω1),

Vij ¼
� σ2αs 2σαsσΩ1

ραΩ

2σαsσΩ1
ραΩ 4σ2Ω1

�
;

Vexp
ij ¼

�
4.18ð52Þ · 10−7 −0.24ð5Þ · 10−4 GeV

−0.24ð5Þ · 10−4 GeV 1.60ð47Þ · 10−3 GeV2

�
;

V theo
ij ¼

�
1.93 · 10−6 −0.27 · 10−4 GeV

−0.27 · 10−4 GeV 1.45 · 10−2 GeV2

�
;

V tot
ij ¼

�
2.35ð5Þ · 10−6 −0.51ð5Þ · 10−4 GeV

−0.51ð5Þ · 10−4 GeV 1.61ð5Þ · 10−2 GeV2

�
:

ð26Þ

Note that the theoretical uncertainties dominate by a signifi-
cant amount. The experimental correlation coefficient is
significant and reads

ρexpαΩ ¼ −0.93ð15Þ: ð27Þ

The theory correlation coefficient is small, ρtheoαΩ ¼ −0.16,
and since these uncertainties dominate it reduces the corre-
lation coefficient for the total uncertainty to

ρtotalαΩ ¼ −0.26ð2Þ: ð28Þ

InbothEqs. (27)and(28) thenumbers inparentheses indicate
a � range that captures all values obtained from the theory
scan. The correlation exhibited by the green dotted exper-
imental uncertainty ellipse in Fig. 6 is given by the line
describing the semimajor axis

Ω1

30.84 GeV
¼ 0.1257 − αsðmZÞ: ð29Þ

Note that extrapolating this correlation to the extreme case
where we neglect the nonperturbative corrections (Ω1 ¼ 0)
gives αsðmZÞ → 0.1257 which is consistent with the
0.1219� 0.0028 result of our fit without power corrections
in Table III.
From Vexp

ij in Eq. (26) it is possible to extract the
experimental uncertainty for αsðmZÞ and the uncertainty
due to the imprecise determination of Ω1,

σexpαs ¼ σαs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ2αΩ

q
¼ 0.0002;

σΩ1
αs ¼ σαs jραΩj ¼ 0.0006; ð30Þ

and to extract the experimental uncertainty for Ω1 and its
uncertainty due to the imprecise determination of αsðmZÞ,

σexpΩ1
¼ σΩ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ2αΩ

q
¼ 0.014 GeV;

σαsΩ1
¼ σΩ1

jραΩj ¼ 0.037 GeV: ð31Þ

The projections of the outer solid ellipse in Fig. 6 show
the total uncertainty in our final one-parameter results
obtained from V tot

ij , which are quoted below in Eq. (34).

D. Individual theory scan errors

To gain further insight into our theoretical precision
and in order to estimate the dominant source for theory
uncertainty from missing higher-order terms, we look at the
size of the theory uncertainties caused by the individual
variation of each one of the theory parameters included in
our random scan. In Fig. 7 two bar charts are shown with
these results for αsðmZÞ (left panel) and Ω1ðRΔ; μΔÞ (right
panel) for fits corresponding to our best theoretical setup
(with N3LL0 accuracy and in the Rgap scheme). The dark
blue bars correspond to the result of the fit with an upward

FIG. 6 (color online). Experimental Δχ2 ¼ 1 standard uncer-
tainty ellipse (dotted green) at N3LL0 accuracy with renormalon
subtractions, in theαs-2Ω1 plane.The dashedblue ellipse represents
the theory uncertainty which is obtained by fitting an ellipse to the
contourof thedistributionof thebest-fitpoints.Thisellipseshouldbe
interpreted as the 1-σ theory uncertainty for one parameter (39%
confidence for two parameters). The solid red ellipse represents the
total (combined experimental and perturbative) uncertainty ellipse.
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variation of the given parameter from Table I, while the
light green bars correspond to the fit result from the
downward variation in Table I. Here we vary a single
parameter keeping the rest fixed at their default values. We
do not show parameters that have a negligibly small impact
in the fit region, e.g. ϵhigh2 and ϵhigh3 , which only have an
effect on the cross section to the right of the shoulder, or n0,
which only affects the cross section in the nonperturbative
region.
We see that the dominant theory uncertainties are related

to variations of the profile functions (eH; rs; eJ; t2), where
eH is the largest source of uncertainty, and is particularly
dominant for Ω1. The second most important uncertainty
comes from rs for αs and t2 for Ω1, and eJ also has a
significant effect on both parameters.
As expected, the parameters associated to the transitions

on the sides of our fit region, n1 and ts, hardly matter. The
renormalization scale parameter ns for the nonsingular
partonic distribution dσ̂ns=dC also causes a very small
uncertainty since the nonsingular terms are always domi-
nated by the singular terms in our fit region. The uncer-
tainties related to the numerical uncertainties of the

perturbative constants (seC2 , seC3 , j3) as well as the numerical
uncertainties in the extraction of the nonsingular distribu-
tion for small C values, (ϵlow2 , ϵlow3 ) are—with the possible
exception of j3—much smaller and do not play an
important role. The uncertainty related to the unknown
four-loop contribution to the cusp anomalous dimension is
always negligible. Adding quadratically the symmetrized
individual uncertainties shown in Fig. 7, we find 0.0007 for

αs and 0.05 GeV for Ω1. This is about one half of the
theoretical uncertainty we have obtained by the theory
parameter scan for αs (or five sixths for Ω1), demonstrating
that incorporating correlated variations through the theory
parameter scan represents a more realistic method to
estimate the theory uncertainty.

E. Effects of Ω1 hadron-mass resummation

The fit results presented in the previous two sections
ignored the small hadron-mass effects. These effects are
analyzed in greater detail in this section. We again perform
500 fits for a theory setup which includes N3LL0 accuracy
and a power correction in the Rgap scheme, but this time it
also includes hadron-mass-induced running.
Since the impact of hadron-mass effects is small, one

finds that the experimental data in the tail of the distribution
is not accurate enough to fit for θðRΔ; μΔÞ in Eq. (25), in
addition to αsðmZÞ and Ω1ðRΔ; μΔÞ. This is especially true
because it enters as a small modification to the power
correction, which by itself is not the dominant term.
Indeed, fitting for aðRΔ; μΔÞ and bðRΔ; μΔÞ as defined in
Eq. (23) gives a strongly correlated determination of
these two parameters. The dominant hadronic parameter
ΩC

1 ðRΔ; μΔÞ, which governs the normalization, is still as
accurately determined from data as the Ω1 in Table V.
However, the orthogonal parameter θðRΔ; μΔÞ is only
determined with very large statistical uncertainties. As
discussed in Ref. [12], the specific value of θðRΔ; μΔÞ
has a very small impact on the cross section, which is
consistent with the inability to accurately fit for it.

FIG. 7 (color online). Variations of the best-fit values for αsðmZÞ and Ω1 from up (dark blue) and down (light green) variations for the
theory parameters according to Table I. We do not display those parameters which do not affect the fit region (ϵhigh2 , ϵhigh3 , μ0, R0, n0).
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The results of our fit including hadron-mass effects are

αsðmZÞ ¼ 0.1119� 0.0006expþhad � 0.0013pert;

Ω1ðRΔ; μΔÞ ¼ 0.411� 0.018expþαs � 0.052pert GeV: ð32Þ

Note that the meaning of Ω1ðRΔ; μΔÞ here is different from
the case in which hadron-mass running effects are ignored
because there are extra evolution effects needed to translate
this value to that used in the cross section at a given value
of C, compared to the no-hadron-mass case.
In Fig. 8 we compare the outcome of the 500 fits at N3LL0

in the Rgap scheme. Results with hadron-mass effects give
the red ellipse on the left, and those without hadron-mass
effects give the blue ellipse on the right. (The latter ellipse is
the same as the one discussed above in Sec.V B.) The effects
of hadron masses on αsðmZÞ are to decrease its central value
by 0.3% and reduce the percent perturbative uncertainty by
0.1%. Given that the total perturbative uncertainties are
1.2%, these effects are not statistically significant. When
studying the effect on Ω1 one has to keep in mind that its
meaning changes when hadron-mass effects are included.
Ignoring this fact we observe that hadron masses shift the
central value downwards by 2.4%, and reduce the percent
theoretical uncertainty by 1.6%. Again, given that the
perturbative uncertainty for Ω1 is 14%, this shift is not
significant.
Since the theory uncertainties become slightly smaller

when hadron-mass effects are incorporated, one could use
this setup as our default. However we take a more
conservative approach and consider the 0.3% shift on
the central value as an additional source of uncertainty,

to be added in quadrature to the hadronization uncertainty
already discussed in Sec. V B. This increases the value of
the hadronization uncertainty from 0.0006 to 0.0007, and
does not affect the total αs uncertainty. The main reason we
adopt this more conservative approach is that, while well
motivated, the ansatz that we take in Eq. (23) is not model
independent. We believe that this ansatz serves as a good
estimate of what the numerical effect of hadron masses are,
but should likely not be used for the central fit until further
theoretical insight on the form of Ω1ðrÞ is gained. We do
not add an additional uncertainty to Ω1 since hadron-mass
effects change its meaning and uncertainties for Ω1 are
large enough that these effects are negligible.
In Appendix B we also consider fits performed using the

Rgap schemewithC-parameter gap subtractions, rather than
our default Rgap scheme with thrust gap subtractions. The
two results are fully compatible. As discussed in Ref. [12]
the thrust gap subtractions give better perturbative conver-
gence, and hence are used for our default cross section.

F. Data set dependence

In this section we discuss how much our results depend
on the data set choice. Our default global data set accounts
for all experimental bins for Q ≥ 35 GeV in the intervals
½Cmin; Cmax� ¼ ½25=Q; 0.7� (more details are given in
Sec. III). The upper limit in this range is motivated by
the fact that we do not want to include data too close to the
shoulder, since we do not anticipate having the optimal
theoretical description of this region. The lower limit avoids
including data too close to the nonperturbative region,
which is near the cross section peak for Q ¼ mZ, since we
by default only include the leading power correction Ω1 in
the OPE of the shape function. To consider the impact of
this data set choice we can vary the upper and lower limits
used to select the data.
In Fig. 9 the best fits and the respective total

experimentalþ theory 68% C.L. uncertainty ellipses (for
two parameters) are shown for global data sets based on
different choices of data ranges. The result for our
default global data set is given in red, with a thicker,
dashed ellipse. In the caption of Fig. 9 the data ranges and
the number of bins are specified for each one of the plotted
ellipses.
Interestingly all uncertainty ellipses have very similar

correlation and are lined up approximately along the line

Ω1

41.26 GeV
¼ 0.1221 − αsðmZÞ: ð33Þ

As expected, the results of our fits depend only weakly on
the C range and the size of the global data sets, as shown in
Fig. 9. The size and tilt of the total uncertainty ellipses is
very similar for all data sets (with the exception of
½22=Q; 0.7�, which clearly includes too much peak data).
Since the centers and the sizes of the uncertainty ellipses

FIG. 8 (color online). Comparison of fits to the C-parameter tail
distribution with theory prediction which include/ignore hadron-
mass effects (in red/blue). Although a direct comparison of αs
values is possible, one has to keep in mind that Ω1ðμΔ; RΔÞ has a
different meaning once hadron-mass running effects are included.
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are fully statistically compatible at the 1-σ level, this
indicates that our theory uncertainty estimate at N3LL0
really reflects the accuracy at which we are capable of
describing the different regions of the spectrum. Therefore
a possible additional uncertainty that one could consider
due to the arbitrariness of the data set choice is actually
already represented in our final uncertainty estimates.

G. Final results

As our final result for αsðmZÞ and Ω1, obtained at N3LL0
order in the Rgap scheme for Ω1ðRΔ; μΔÞ, we get

αsðmZÞ ¼ 0.1123� 0.0002exp

� 0.0007hadr � 0.0014pert;

Ω1ðRΔ; μΔÞ ¼ 0.421� 0.007exp

� 0.019αsðmZÞ � 0.060pert GeV; ð34Þ

where RΔ ¼ μΔ ¼ 2 GeV and we quote individual 1-σ
uncertainties for each parameter. Here χ2=d:o:f: ¼ 0.99.
Equation (34) is the main result of this work.
Equation (34) accounts for the effect of hadron-mass

running through an additional (essentially negligible)

uncertainty. Also, it neglects QED and finite bottom-mass
corrections, which were found to be small effects in the
corresponding thrust analysis of Ref. [9].
Given that we treat the correlation of the systematic

experimental uncertainties in the minimal overlap model, it
is useful to examine the results obtained when assuming
that all systematic experimental uncertainties are uncorre-
lated. At N3LL0 order in the Rgap scheme the results that
are analogous to Eq. (34) read αsðmZÞ ¼ 0.1123�
0.0002exp � 0.0007hadr � 0.0012pert and Ω1ðRΔ; μΔÞ ¼
0.412� 0.007exp � 0.022αs � 0.061pert GeV with a com-
bined correlation coefficient of ρtotalαΩ ¼ −0.091. The results
are compatible with Eq. (34), indicating that the ignorance
of the precise correlation of the systematic experimental
uncertainties barely affects the outcome of the fit.
In Fig. 10 we show the theoretical fit for the C-parameter

distribution in the tail region, at a center-of-mass energy
corresponding to the Z-pole. We use the best-fit values
given in Eq. (34). The band corresponds to the perturbative
uncertainty as determined by the scan. The fit result is
shown in comparison with experimental data from
DELPHI, ALEPH, OPAL, L3 and SLD. Good agreement
is observed for this spectrum, as well as for spectra at other
center-of-mass values.

VI. PEAK AND FAR-TAIL PREDICTIONS

Even though our fits were performed in the resummation
region which is dominated by tail data, our theoretical
results also apply for the peak and far-tail regions. As an
additional validation for the results of our global analysis in
the tail region, we use the best-fit values obtained for αs and
Ω1 to make predictions in the peak and the far-tail regions
where the corresponding data was not included in the fit.

FIG. 10 (color online). C-parameter distribution at N3LL0 order
for Q ¼ mZ showing the fit result for the values for αsðmZÞ and
Ω1. The blue band corresponds to the theory uncertainty as
described in Sec. V B. Experimental data is also shown.

FIG. 9 (color online). Global fit results for different choices of
data set, using our best theory setup at N3LL0 with power
corrections in the Rgap scheme. Considering the central values
from left to right, the data sets read ½Cmin; Cmax� of bins:
½29=Q; 0.7�371, ½22=Q; 0.75�453, ½23=Q; 0.7�417, ½0.24; 0.75�403,
½24=Q; 0.7�409, ½25=Q; 0.7�404 (default), ½25=Q; 0.6�322,
½25=Q; 0.75�430, ½27=Q; 0.7�386, ½25=Q; 0.65�349, ½22=Q; 0.7�427.
We accept bins which are at least 50% inside these fit regions.
The ellipses correspond to total 1-σ uncertainties
(experimentalþ theory) for two variables (αs and Ω1), which
are suitable for a direct comparison of the outcome of two-
parameter fits. The center of the ellipses are also shown.
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Predictions from our full N3LL0 code in the Rgap scheme
for the C-parameter cross section at the Z-pole in the peak
region are shown in Fig. 11. The nice agreement within
theoretical uncertainties (blue band) with the precise data
from DELPHI, ALEPH, OPAL, L3, and SLD indicates that
the value of Ω1 obtained from the fit to the tail region is the
dominant nonperturbative effect in the peak. The small
deviations between the theory band and the experimental
data can be explained due to the fact that the peak is also
sensitive to higher-order power corrections ΩC

k≥2, which
have not been tuned to reproduce the peak data in our
analysis.
In Fig. 12 we compare predictions from our full N3LL0

code in the Rgap scheme to the accurate DELPHI, ALEPH,
L3, and SLD data atQ ¼ mZ in the far-tail region.

3 We find
excellent agreement with the data within the theoretical
uncertainties (blue band). The key feature of our theoretical
prediction that matters most in the far-tail region is the
merging of the renormalization scales toward μS ¼ μJ ¼
μH at C ∼ 0.75 in the profile functions. This is a necessary
condition for the cancellations between singular and non-
singular terms in the cross section to occur above the
shoulder region.4 At Q ¼ mZ the theoretical cross section

presented here obtains accurate predictions in the region
both below and above the shoulder that agree with the data.
Our analysis does not include the fullOðαksΛQCD=QÞ power
corrections (for k < 4), since they are not part of our master
formula. Nevertheless, and in analogy with what was found
in the case of thrust, agreement with the experimental data
seems to indicate that these missing power corrections may
be smaller than naively expected.

VII. UNIVERSALITY AND COMPARISON
TO THRUST

An additional prediction of our theoretical formalism is
the universality of Ω1 between the thrust and C-parameter
event shapes. Therefore, a nontrivial test of our formalism
can be made by comparing our result for Ω1 with the
determination from the earlier fits of the thrust tail
distributions in Ref. [9] and the first moment of the thrust
distribution in Ref. [10].
Since we have updated our profiles for thrust, it is

expected that the outcome of the αs andΩ1 determination is
slightly (within theoretical uncertainties) different from that
of Ref. [9]. We also have updated our code to match that of
Ref. [10] (higher statistics for the two-loop nonsingular
cross sections and using the exact result for the two-loop
soft function nonlogarithmic constant). In addition we have
corrected the systematic uncertainty for the ALEPH data,
Q ¼ 91.2 GeV of Ref. [64].5 When we compare thrust and
C-parameter we neglect bottom-mass and QED effects in

FIG. 11 (color online). C-parameter distribution below the fit
region, shown at N3LL0 order for Q ¼ mZ using the best-fit
values for αsðmZÞ andΩ1. Again the blue band corresponds to the
theory uncertainty and error bars are used for experimental data.

FIG. 12 (color online). C-parameter distribution above the fit
range, shown at N3LL0 order forQ ¼ mZ using the best-fit values
for αsðmZÞ andΩ1. Again the blue band corresponds to the theory
uncertainty and the error bars are used for experimental data.

3The OPAL data was excluded from the plot because its bins
are rather coarse in this region, making it a bad approximation of
the differential cross section.

4It is worth mentioning that in the far-tail region we employ the
MS scheme for Ω1, since the subtractions implemented in the
Rgap scheme clash with the partonic shoulder singularity,
resulting in an unnatural behavior of the cross section around
C ¼ 0.75. The transition between the Rgap and MS schemes is
performed smoothly, by means of a hybrid scheme which
interpolates between the two in a continuous way. This hybrid
scheme has been discussed at length in Ref. [12].

5In Ref. [9] we assumed that two quoted uncertainties where
asymmetric uncertainties, but it turns out they are two sources of
systematic uncertainties that need to be added in quadrature. This
has no significant effect on the results of Ref. [9].
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both event shapes. In this setup, we find an updated result
for thrust:

αsðmZÞ ¼ 0.1134� 0.0002exp

� 0.0005hadr � 0.0011pert;

Ω1ðRΔ; μΔÞ ¼ 0.329� 0.009exp

� 0.021αsðmZÞ � 0.060pert GeV: ð35Þ
For completeness we also quote an updated thrust result
when both QED and bottom-mass effects are taken into
account:

αsðmZÞ ¼ 0.1128� 0.0002exp

� 0.0005hadr � 0.0011pert;

Ω1ðRΔ; μΔÞ ¼ 0.322� 0.009exp

� 0.021αsðmZÞ � 0.064pert GeV: ð36Þ

Both the results in Eqs. (35) and (36) are fully compatible at
1-σ with those in Ref. [9], as discussed in more detail in
Appendix C.
When testing for the universality of Ω1 between thrust

andC-parameter, there is an important calculable numerical
factor of 3π=2 ¼ 4.7 between Ωτ

1 and ΩC
1 that must be

accounted for; see Eq. (3). If we instead make a direct

FIG. 13 (color online). Comparison of determinations ofαsðmZÞ
and Ω1 with the corresponding total 1-σ uncertainty ellipses.
As an illustration we display the determination of ΩC

1 obtained
from fits to the C-parameter distribution (green), which is clearly
different from Ωτ

1 obtained from thrust fits (blue), and the
determination of Ωτ

1 as obtained from C-parameter distribution
fits (red). All fits have been performed with N3LL0 theoretical
predictions with power corrections and in the Rgap scheme. The
dashed vertical lines indicate the PDG 2014 [23] determination
of αsðmZÞ.

FIG. 14 (color online). Distribution of best-fit points in the
αsðmZÞ-2Ω1 plane for both thrust (blue) and C-parameter
(red) at N3LL0 þOðα3sÞ þΩ1ðR; μÞ. The outer solid ellipses
show the Δχ2 ¼ 2.3 variations, representing 1-σ uncertainties
for two variables. The inner dashed ellipses correspond
to the 1-σ theory uncertainties for each one of the fit parameters.
The dotted ellipses correspond to Δχ2 ¼ 1 variations of
the total uncertainties. All fits have been performed with
N3LL0 theoretical predictions with power corrections and in the
Rgap scheme. This plot zooms in on the bottom two ellipses of
Fig. 13.

FIG. 15 (color online). Distribution of best-fit points in the
αsðmZÞ-2Ω1 plane for both thrust (blue) and C-parameter (red) at
N3LL0 þOðα3sÞ þ Ω1. The meaning of the different ellipses is the
same as in Fig. 14.
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comparison of Ωτ
1 andΩC

1 , as shown in Fig. 13 (lowest blue
ellipse vs uppermost green ellipse, respectively) then the
results are 4.5-σ away from each other. Accounting for the
3π=2 factor to convert from ΩC

1 to Ωτ
1 the upper green

ellipse becomes the centermost red ellipse, and the thrust
and C-parameter determinations agree with one another
within uncertainties. Due to our high-precision control of
perturbative effects, the Ω1 parameters have only ∼15%
uncertainty, yielding a test of this universality at a higher
level of precision than what has been previously achieved.
A zoomed-in version of this universality plot is shown in

Fig. 14. The upper red ellipse again shows the result from
fits to the C-parameter distribution, while the lower blue
ellipse shows the result from thrust tail fits. For both we
show the theory uncertainty (dashed lines) and combined
theoretical and experimental (dotted lines) 39% C.L. uncer-
tainty ellipses, as well as the solid ellipses which corre-
spond to Δχ2 ¼ 2.3 which is the standard 1-σ uncertainty
for a two-parameter fit (68% C.L.). We see that the two
analyses are completely compatible at the 1-σ level. An
important ingredient to improve the overlap is the fact that
we define the power corrections in the renormalon-free
Rgap scheme. This is shown by contrasting the Rgap result
in Fig. 14 with the overlap obtained when using the MS
scheme for Ω1, as shown in Fig. 15.

VIII. CONCLUSIONS AND COMPARISON TO
OTHER αs DETERMINATIONS

In this paper an accurate determination of αs from fits to
the C-parameter distribution in the resummation region was
presented. We fit to the tail of the distribution defined by
3πΛQCD=Q ≪ C≲ 3=4, where the dominant hadronization
effects are encoded in the first moment of the shape
function Ω1, which is a power correction to the cross
section. By fitting to data at multiple Q’s, the strong
coupling αsðmZÞ and Ω1 can be simultaneously deter-
mined. The key points to our precise theoretical prediction
are a) higher-order resummation accuracy (N3LL0),
achieved through an SCET factorization theorem, b)
Oðα3sÞ matrix elements and fixed-order kinematic power
corrections, c) field-theoretical treatment of nonperturba-
tive power corrections, and d) switching to a short-distance
Rgap scheme, in which the sensitivity to infrared physics is
reduced.
As our final result from the C-parameter global fit we

obtain

αsðmZÞ ¼ 0.1123� 0.0015;

Ω1ðRΔ; μΔÞ ¼ 0.421� 0.063 GeV; ð37Þ

where αs is defined in the MS scheme, and Ω1 in the Rgap
scheme (without hadron-mass effects) at the reference
scales RΔ ¼ μΔ ¼ 2 GeV. Here the respective total 1-σ
uncertainties are shown. The results with individual 1-σ

uncertainties quoted separately for the different sources of
uncertainties are given in Eq. (34). Neglecting the non-
perturbative effects incorporated by Ω1, the fit yields
αsðmZÞ ¼ 0.1219 which exceeds the result in Eq. (37)
by 8%. This is consistent with a simple scaling argument
one can derive from experimental data, presented in
Ref. [12]. We have also presented an updated thrust result,
using our improved profiles for thrust and including
bottom-mass and QED effects (but neglecting hadron-mass
effects). This global fit for thrust gives

αsðmZÞ ¼ 0.1128� 0.0012;

Ω1ðRΔ; μΔÞ ¼ 0.322� 0.068 GeV: ð38Þ

Our theoretical prediction is the most complete treatment
of C-parameter at this time, and, to the best of our
knowledge, all sources of uncertainties have been included
in our final uncertainty. Possible improvements which are
expected to be negligible relative to our final uncertainty
include finite bottom-mass effects, QED effects, and axial-
singlet contributions. There are a number of additional
theoretical issues that would be interesting to be inves-
tigated further in the future. These are common to almost
every event-shape analysis in the literature and include
(i) resummation of logarithms for the nonsingular partonic
cross section; (ii) the structure of nonperturbative power
corrections for the nonsingular contributions (the last two
points can be clarified with subleading SCET factorization
theorems); (iii) analytic perturbative computations of the
Oðα3sÞ nonlogarithmic coefficients in the partonic soft
function and the jet function, as well as the four-loop
QCD cusp anomalous dimension (and to a lesser extent, the

numerically determined seC2 constant of the two-loop par-
tonic soft function); (iv) a better understanding of hadron-
mass effects, and in particular their resummation beyond
NLL; (v) a better theoretical description of the region
around and above the shoulder. Concerning (i), and
following the common lore, we have incorporated in our
analysis the nonsingular contributions in fixed-order per-
turbation theory. However we have estimated the uncer-
tainty related to the higher-order logarithms through the
usual renormalization scale variation. Concerning (ii) we
observe that the effect of these neglected power corrections
is much smaller than naively expected, as can be seen from
a comparison of our theoretical prediction and LEP data in
the far-tail region. A first step towards clarifying (i) and
(ii) has been taken in Refs. [74,75], for the case of thrust.
The computation of missing perturbative terms (iii) is a
priori feasible with current computational knowledge but
they do not dominate our perturbative uncertainties.
Concerning (iv) we have shown that hadron-mass effects
have a very small impact on the determination of αs, and
hence unless the rest of the sources of uncertainty become
substantially smaller, our lack of knowledge does not
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constitute a problem. As for (v), our fits do not include data
above the shoulder, so this problem has no impact on our
fit. Nevertheless an analysis of these subleading effects
would be interesting.
The same theoretical program carried out for thrust andC-

parameter can be applied to other event shapes, and the most
prominent one is heavy jet mass. This has partially worked
out already in Ref. [8] at the purely perturbative level using
fully canonical profiles. Their determination of αs is dis-
cussed below. For recoil-sensitive observables such as jet
broadening [76–80], one needs to deal with rapidity singu-
larities, which imply that additional logs need to be
resummed, and more complicated nonperturbative power
corrections. The former has been pushed to theN2LLorder in
Ref. [81], and the latter has been studied in Ref. [82]. Recoil-
insensitive versions of broadening have also been derived
[83], but not yet studied experimentally. Finally, it is very
straightforward to generalize our theoretical treatment to the
case of oriented event shapes [84], in which one additionally
measures the angle between the beam and the thrust axes.
At this point we compare our result for αs with other

determinations from event shapes at Oðα3sÞ. To the best of
our knowledge, the only analyses which fit to the tail of
the C-parameter distribution using three-loop input are
Ref. [85] (using purely fixed-order perturbation theory) and
Ref. [86] (including NLL resummation). Both analyses
used Monte Carlo (MC) event generators to estimate
hadronization effects, and fit αs for different Q values,
finding values αsðmZÞ ¼ 0.1288� 0.0043 and 0.1252�
0.0053 respectively for a fit to the Q ¼ 91.2 GeV data.
These larger αsðmZÞ values are consistent with our fits
which neglect power corrections, and following Ref. [9] we
can conclude from this that Monte Carlo event generators
does not provide a reasonable estimate of the power
corrections when including the higher-order perturbative
contributions. In Ref. [25] two-parameter global fits to the
first five moments of the C-parameter distribution were
performed. Hadronization effects are included via the
frozen coupling model, and the value obtained,
αsðmZÞ ¼ 0.1181� 0.0048, is fully consistent with our
result in Eq. (37) at 1-σ.
A graphical comparison with other event-shape deter-

minations is shown in Fig. 16. The figure includes
determinations where power corrections are estimated with
MC generators, labeled by 7–10. Analyses 1–6 correspond
to those in which power corrections were incorporated with
an analytic method (either a shape function or the dis-
persive model). In the analyses 1–6 global fits were
performed, whereas in the 7–10 analyses αs was deter-
mined at multipleQ values and the final result is an average
of those. Only analyses 1 [10], 3 (this work), and 4 [9] use a
completely field-theoretical approach for the power cor-
rections. We also show both results from fits to the event-
shape distributions (3–10) and from fits to moments of the
event-shape distribution (1 and 2). Although all analyses

included Oðα3sÞ matrix elements, different levels of resum-
mation have been achieved. Analyses 2 [25] and 10 [85] did
not include resummation; 6 [4] and 9 [86] included NLL
resummation; 5 [11] included N2LL resummation; and
analyses 3, 4, 7, and 8 included N3LL resummation.
Analyses 2, 9, and 10 simultaneously fit to many event
shapes, whereas the others focused on a single observable:
thrust (1, 4–6 and 8 [5]), heavy jet mass (7 [8]), and

FIG. 16 (color online). Comparison of our determination of
αsðmZÞ (red) with similar analyses from thrust [9,10] (green) and
other determinations from fits to event-shape distributions using
Oðα3sÞ theory predictions and different levels of resummation.
Results shown below the lower dashed line include power
corrections as predicted by MC generators, and results above
this line treat power corrections either from a shape function (red
and green) or from the dispersive model (orange [4] and purple
[11]). Determinations above the upper dashed line correspond to
fits to moments of the distributions, and those below to fits to the
tail of the differential distribution. The translucent green band
corresponds to the world average from Ref. [23].
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C-parameter (3, which is this work). The analyses 1, 3, 4, 7
and 8 used SCET to perform Sudakov log resummation. All
results that used an analytic treatment of power corrections
have smaller values of αs. This is consistent with a simple
dimensional analysis argument (see Refs. [9,12]). Higher-
order resummation results in a convergent perturbation
series and smaller uncertainties, and the Rgap scheme also
reduces uncertainties. Accounting for the fact that results
relying on MC for the treatment of power corrections
should likely have larger hadronization uncertainties, all
results are compatible among one another. The most precise
results are however clearly in disagreement with the world
average, which is dominated by lattice QCD results (see
below) and shown as a translucent green band.
We conclude this work by comparing our result for

αsðmZÞ with the results of a selection of recent analyses
using other techniques and observables, as shown in
Fig. 17. We include a next-to-next-to-next-to-leading-order
analysis of data from deep inelastic scattering from the
ABM group [28], the global PDF fits of the MSTW group
[31] and the NNPDF Collaboration [30]; the most recent
(and accurate) determination from the HPQCD lattice
Collaboration [24], from the analysis of Wilson loops
and pseudoscalar correlators; a determination analyzing
the lattice prediction for the QCD static potential [29]; a
reanalysis of electroweak precision observables by the
Gfitter Collaboration [87]; the most recent analysis of
tau decays in which the recently released ALEPH data
was used together with the OPAL data; the previous
determinations from fits to the thrust distribution [9] and
moments of the thrust distribution [10]; and of course the

current world average [23] (shown as the green band). The
ABM (DIS) and thrust results are compatible with our
determination, while in contrast the disagreement with
either lattice QCD or the world average is 4-σ. Many other
determinations lie between these two values. The source of
this disagreement is an important open question.
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APPENDIX A: PROFILE FORMULAS

In this appendix, we give the details for the profile
functions that control the renormalization scales as laid out
in Sec. II B. For the soft profile function, we use the form,

μS ¼

8>>>>>>>>><
>>>>>>>>>:

μ0; 0 ≤ C < t0;

ζ
	
μ0; 0; 0;

rsμH
6

; t0; t1; C


; t0 ≤ C < t1;

rsμH C
6
; t1 ≤ C < t2;

ζ
	
0; rsμH

6
; μH; 0; t2; ts; C



; t2 ≤ C < ts;

μH; ts ≤ C < 1;

ðA1Þ

where the physical meaning of the parameters is explained
in Sec. II B. The function ζða1; b1; a2; b2; t1; t2; tÞ (with
t1 < t2), which smoothly connects two straight lines of the
form l1ðtÞ ¼ a1 þ b1t for t < t1 and l2ðtÞ ¼ a2 þ b2t for
t > t2, is given by

ζðtÞ ¼
�
â1 þ b1ðt − t1Þ þ e1ðt − t1Þ2; t1 ≤ t ≤ tm;

â2 þ b2ðt − t2Þ þ e2ðt − t2Þ2; tm ≤ t ≤ t2;

â1 ¼ a1 þ b1t1; â2 ¼ a2 þ b2t2;

e1 ¼
4ðâ2 − â1Þ − ð3b1 þ b2Þðt2 − t1Þ

2ðt2 − t1Þ2
;

e2 ¼
4ðâ1 − â2Þ þ ð3b2 þ b1Þðt2 − t1Þ

2ðt2 − t1Þ2
: ðA2Þ

FIG. 17 (color online). Comparison of our determination of
αsðmZÞ (red) with similar previous analyses at N3LL0 for thrust
(green) [9,10] and other selected determinations: lattice [24] and
static energy potential [29] (both use lattice input, in blue),
electroweak precision observables fits [87] (black), deep inelastic
scattering [28] and global PDF fits [30,31], and hadron τ decays
[27] [fixed-order perturbation theory (FOPT), and contour-im-
proved perturbation theory (CIPT), both in gray]. The current
world average [23] is shown as a translucent green band.
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For the jet scale, we use the form

μJðCÞ ¼
� ½1þ eJðC − tsÞ2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μHμSðCÞ

p
; C ≤ ts;

μH; C > ts;
ðA3Þ

which allows a slight modification of the natural relation
between the scales μJ ¼ ffiffiffiffiffiffiffiffiffiffi

μHμS
p

in order to account for
theoretical uncertainties.
For the subtraction scale, we have

RðCÞ ¼

8>><
>>:

R0; 0 ≤ C < t0;

ζ
	
R0; 0; 0;

rsμH
6

; t0; t1; C


; t0 ≤ C < t1;

μSðCÞ; t1 ≤ C ≤ 1.

ðA4Þ

As explained earlier, we take R ¼ μS in the resummation
region to avoid large logs and R ≠ μS in the nonperturba-
tive region to remove the renormalon. The ζ function here
interpolates smoothly between these two regions.
It is necessary to vary the profile parameters to estimate

the theory uncertainty. We hold the difference between the
parameters associated with the purely nonperturbative
region constant, μ0 − R0 ¼ 0.4 GeV, and we set as default
values μ0 ¼ 1.1 GeV, R0 ¼ 0.7 GeV. We are then left with
nine profile parameters to vary during the theory scan,
whose central values and variation ranges used in our

analysis are: rs ¼ 2 × 1.13�1, n0 ¼ 12� 2, n1 ¼ 25� 3,
t2 ¼ 0.67� 0.03, ts ¼ 0.83� 0.03, eJ ¼ 0� 0.5, eH ¼
2�1 and ns ¼ 0� 1. These variations are shown in Table I.

APPENDIX B: COMPARISON OF THRUST AND
C-PARAMETER SUBTRACTIONS

In Fig. 18 we compare fits performed in the Rgap
scheme with C-parameter gap subtractions as the upper
red ellipse, and for our default fits in the Rgap scheme
with thrust gap subtractions as the lower blue ellipse.
At N3LL0 order with C-parameter subtractions the results
are αsðmZÞ¼0.1126�0.0002exp�0.0007hadr�0.0022pert
and Ω1ðRΔ;μΔÞ¼0.447�0.007exp�0.018αs�0.065pertGeV,
with χ2min=d:o:f:¼0.988. One can see that, even though
both extractions are fully compatible, the thrust subtrac-
tions lead to smaller perturbative uncertainties. This
is consistent with the better perturbative behavior
observed for the cross section with thrust subtractions
in Ref. [12].

APPENDIX C: COMPARISON OF THRUST
RESULTS WITH REF. [9]

In Fig. 19 we compare global fits for the thrust
distribution using the profiles of Ref. [9] (shown by the
right ellipse in blue) and the profiles used here (shown by
the left ellipse in red). As mentioned earlier, the profiles
used here have several advantages over those of Ref. [9] in

FIG. 18 (color online). Comparison of αs determinations
from C-parameter tail fits in the thrust Rgap scheme (lower
red ellipse) and the C-parameter Rgap scheme (upper blue
ellipse). The leading power correction ΩC

1 in the C-parameter
Rgap scheme is converted to Ω1 in the thrust Rgap scheme in
order to have a meaningful comparison. Theoretical uncertainty
ellipses are shown which are suitable for projection onto one
dimension to obtain the 1-σ uncertainty, without experimental
uncertainties.

FIG. 19 (color online). Comparison of thrust αs determinations
using our new profiles (left red ellipse) and the profiles of Ref. [9]
(right blue ellipse). Theoretical uncertainty ellipses are shown
which are suitable for projection onto one dimension to obtain the
1-σ uncertainty, without experimental uncertainties.
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terms of their ability to independently impact the different
regions of the thrust distribution, and in particular do a
better job in the nonperturbative region (which is outside
our fit region). The two versions of the profiles are

consistent within their variations, and the fit results shown
for 39% C.L. for two dimensions in Fig. 19 (which is
68% C.L. for each one-dimensional projection) are fully
compatible.
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