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The resonancelike signal with axial-vector quantum numbers JPC ¼ 1þþ at a mass of 1420 MeV and a
width of 140 MeV, recently observed by the COMPASS and VES experiments in the f0ð980Þπ final state
and tentatively called a1ð1420Þ, is discussed. Instead of a genuine new meson, we interpret this signal as a
dynamical effect due to a singularity (branching point) in the triangle diagram formed by the processes
a1ð1260Þ → K⋆K̄, K⋆ → Kπ, and KK̄ → f0ð980Þ (þc:c). The amplitude for this diagram is calculated.
The result exhibits a peak in the intensity with a sharp phase motion with respect to the dominant
a1ð1260Þ → ρπ S-wave decay, in good agreement with the data. The branching ratio of a1ð1260Þ →
f0ð980Þπ via the triangle diagram is estimated and compared to the dominant decay a1ð1260Þ → ρπ.
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I. INTRODUCTION

Understanding the quark interaction at low and inter-
mediate energies is one of the most challenging tasks of the
theory of strong interactions. To create a theoretical non-
perturbative approach or, at least, to build a reliable model
one should understand the nature of strongly interacting
particles and their excitation spectrum. The classical quark
model assumes that mesons are bound states of quarks and
antiquarks, and groups the low-mass states into nonets with
the same spin J, parity P, and charge-conjugation parity C,
with fixed mass differences between nonet members. The
second assumption is that the quark-antiquark interaction at
large distances is governed by a linearly rising potential
which explains the phenomenon of quark confinement and
predicts the full spectrum of quark-antiquark excited states.
The success of the quark model is indisputable: most of
the known mesons correspond very well to the predicted
scheme [1].
However, it seems that the meson spectrum is notably

richer than that predicted by the quark model. There is a
growing set of experimental observations of resonancelike
structures in partial waves with quantum numbers which
are forbidden for the quark-antiquark system or situated at
masses which cannot be explained by the quark-antiquark
model, see e.g. [2,3] and references therein.
Recently the COMPASS experiment [4–6] reported the

observation of a small resonancelike signal with axial-
vector quantum numbers IGðJPCÞ ¼ 1−ð1þþÞ in the
f0ð980Þπ P-wave of the π−π−πþ final state, produced
by diffractive scattering of a 190 GeV π− beam on a proton
target. The signal was also confirmed by the VES experi-
ment [7] in the π−π0π0 final state. In both experiments, the
three-pion final states were analyzed using a two-step
partial-wave analysis technique. In the first step the data

were grouped in small bins of 3π-invariant mass and
momentum transfer. The isobar model was employed to
parametrize possible decays to three final pions. An isolated,
relatively narrow peak was found in the intensity of the
1−1þþf0πP-wave at a mass of around 1.4 GeV, accom-
panied by a sharp phase motion of this wave relative to other
known resonances, with a phase variation exceeding 180°. In
the second step of the COMPASS and VES analyses the
spin-density matrix resulting from the first step was fitted
with a model including Breit-Wigner resonances and back-
ground contributions. The new signal was described rather
well with a hitherto unknown resonance, which was tenta-
tively called a1ð1420Þ, with a mass Ma1 ≈ 1.42 GeV and
width Γa1 ≈ 0.14 GeV. The interpretation of this signal as a
new state in the framework of the quark model is difficult. It
cannot be a radial excitation of a1ð1260Þ which is expected
to have a mass above 1650 MeV. It is also not expected that
the radial excitation has a width which is much smaller than
the one of the ground state. Therefore, this signal is to be
considered either as a strong candidate for a four-quark
bound state or a meson-mesonmolecular bound state or to be
explained as a dynamical effect resulting from multiparticle
interactions.
In the present paper we show that a signal of comparable

strength, including the rapid phase motion, can be expected
by the opening of the K⋆K̄ decay channel for the isovector
a1ð1260Þ, and the rescattering of the kaons. There are two
isospin combinations of intermediate particles:

(i) a−1 ð1260Þ → K⋆0K− → π−KþK− → π−f0,
(ii) a−1 ð1260Þ → K⋆−K0 → π−K̄0K0 → π−f0.

The corresponding triangle diagram has a logarithmic
singularity on the tail of the wide a1ð1260Þ which is due
to a very peculiar kinematic situation, in which all
intermediate particles are almost on their mass shell,
causing a resonancelike effect.
Recently, Wu et al. [8,9] showed that the same triangle

singularity in the isospin-0 channel can account for the*Bernhard.Ketzer@uni‑bonn.de
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anomalously large isospin violation effects observed by
BESIII for ηð1407=1475Þ and f1ð1420Þ→ f0ð980Þπ→ 3π
[10]. A similar dynamic mechanism was suggested earlier
by Achasow and Kozhevnikov [11] to explain the reso-
nancelike signal observed in the ϕπ0 mass spectrum of the
reaction π−p→ϕπ0n [12] by the decay of ρð1700Þ → K⋆K̄
and the rescattering of KK̄ → ϕ. Triangle singularities are
currently also being discussed in the context of the newly
discovered XYZ quarkonium peaks [13].
Our paper is organized as follows. In Secs. II to IV, we

only discuss the triangle diagram for process (i) with
intermediate particles ðK⋆0; Kþ; K−Þ, the calculation for
process (ii) proceeds analogously. In Sec. II the kinematic
conditions for the appearance of the triangle singularity are
analyzed. The amplitude for the triangle process is calcu-
lated in the following two sections. In Sec. III we first
present an approach for calculating the imaginary part of
the amplitude making use of Cutkosky cutting rules and the
calculation of discontinuities. This method helps us to
understand the structure of the amplitude singularities. In
Sec. IV we then use an effective Lagrangian approach [14]
to calculate the full amplitude, i.e. the real and imaginary
parts, needed to predict the phase motion. In both sections,
we start with the case of scalar particles to illustrate
the underlying physics. In scalar theory the behavior of
the amplitude is ∝ logðs − s0Þ near the singularity s0. Since
the amplitude behavior could be different in scalar theory
and in interactions of particles with spin [11], then the
realistic situation for particles with spin and finite width is
calculated. We show that the singularity is removed only by
including the finite width of unstable particles and gives a
contribution ∼ logΓK⋆ .
In Sec. V we estimate the branching ratio of a1ð1260Þ →

f0ð980Þπ−, now including both isospin combinations,
relative to its dominant decay channel ρπ−, and compare
the signal we expect for the triangle diagram to exper-
imental values as reported in [6].

II. KINEMATIC CONDITIONS FOR
TRIANGLE SINGULARITY

It is well known that logarithmic singularities arise in
processes which proceed via the triangle diagram shown in
Fig. 1. As was shown by a general analysis of singularities
in scalar theory [15], the amplitude behavior near the
branching point of a cut is ∝ logðs − s0Þ, where s is an
external invariant. The position of the singularity s0 can be
obtained from the simple conditions that all intermediate
particles are on mass shell and are collinear to each other.
It is given by the system of Lorentz-invariant Landau
equations:

8>><
>>:

k2i ¼ m2
i ; i ¼ 1…3;

xk1μ − yk2μ þ zk3μ ¼ 0; x; y; z ∈ ½0; 1�;
xþ yþ z ¼ 1;

ð1Þ

with ki and mi the 4-momenta and masses of intermediate
particles, respectively, and x; y; z the so-called Feynman
parameters. The system of equations (1) for x; y; z is
overdetermined, so it is solvable only in exceptional
cases. For the special case of the decay of a−1 ð1260Þ to
f0ð980Þπ− through intermediate particles ðK⋆−; K̄0; K0Þ or
ðK⋆0; Kþ; K−Þ, and neglecting the finite width of the
f0ð980Þ, the external momenta p1 and p2 depend only
on s ¼ p2

0 (see Fig. 1 for the definition of pi). Using
kinematical relations between internal and external momenta
it can be shown that the system (1) has solutions only ifffiffiffi
s

p ¼ E1;2, where E1 ¼ 1.42 GeV, E2 ¼ 1.46 GeV. These
pinch singularities are shown as dots in Fig. 2. As can be
seen, the conditions x; y; z ∈ ½0; 1� are satisfied only for the
first solution.
Here we give a simple kinematic explanation for the

appearance of the singularity. The initial state a1ð1260Þ
with JPC ¼ 1þþ can decay to real K⋆K̄ þ c:c: starting from
the threshold

ffiffiffi
s

p ¼ 1.39 GeV. Then the K⋆ decays to real

FIG. 1. The process 0 → 1þ 2 for particles with 4-momenta
p0, p1, p2, proceeding via a triangle diagram with intermediate
particle momenta k1, k2, k3.

FIG. 2 (color online). Diagram illustrating the positions of
singularities of the triangle diagram shown in Fig. 1 for the
Feynman variables y; z. The shaded triangle is the kinematically
allowed region. The dots are pinch singularities, corresponding toffiffiffi
s

p ¼ E1 (lower dot) and
ffiffiffi
s

p ¼ E2 (upper dot), respectively. The
curves are solutions of Δyzþm2

1ð1−y− zÞ¼ 0 [see Eqs. (16) and
(17)] for

ffiffiffi
s

p ¼ E1 (solid line) and
ffiffiffi
s

p ¼ E2 (dashed line).
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K and π. Note that the K from K⋆ decay can go to the same
direction as the K̄, the ratio of velocities of K̄ and K is a
function of

ffiffiffi
s

p
as well as of the invariant mass of K and K̄.

The invariant mass of K̄ K going in the same direction is
equal to the mass of f0 only if

ffiffiffi
s

p ¼ E1;2, but for E2 the K̄
is faster than the K and thus the K cannot catch up the K̄ to
form f0. Only for the solutionE1 do theK and K̄ proceed in
the same direction with the K being faster than the K̄.
The kinematics discussed here demonstrates a very

peculiar situation in the decay of the a1ð1260Þ to
K⋆K̄ þ c:c: just above the two-body threshold, the rescat-
tering in the triangle can happen with particles almost on
mass shell.

III. IMAGINARY PART OF THE AMPLITUDE

In order to understand the structure of the amplitude, we
first consider the imaginary part only, based on disconti-
nuities. The technique was developed by Cutkosky [16], is
described e.g. in the Gribov lectures [17], and was
successfully applied by Achasov and Kozhevnikov for a
similar process, ρ0 → ϕπ [11]. The imaginary part of the
amplitude M of the diagram in Fig. 1 is related to the
discontinuity across the cuts shown in Fig. 3 by

ImMa1→f0π ¼
1

2
ðDiscK⋆K̄ þ DiscKK̄Þ: ð2Þ

To calculate the discontinuities, we use the following
expression:

Disc ¼
Z Y

cut

d3ki
ð2πÞ32Ek

i
×

� X
polarization

M1 ·M⋆
2

�

× ð2πÞ4δ4ðmom: cons:Þ; ð3Þ

where M1;2 are matrix elements for processes on the
left- and right-hand side of the cutting line, respectively
(see Fig. 3). We are calling particles which are crossed by
the cutting line cut particles. The integration is performed
over all momentum space for cut particles, i.e. ki are the
momenta of cut particles, Ek

i are the corresponding ener-
gies. If a cut particle has spin we sum over all possible
polarizations.

A. Simple model with scalar intermediate particles

For the case of scalar intermediate particles, the expres-
sions for the discontinuities are

DiscðscÞK⋆K̄ ¼ g3
Z

d3k1
ð2πÞ32Ek

1

d3k2
ð2πÞ32Ek

2

×
1

m2
3 − k23 þ iϵ

× ð2πÞ4δ4ðp0 − k1 − k2Þ; ð4Þ

DiscðscÞKK̄ ¼ g3
Z

d3k2
ð2πÞ32Ek

2

d3k3
ð2πÞ32Ek

3

×
1

m2
1 − k21 − iϵ

× ð2πÞ4δ4ðk3 þ k2 − p2Þ: ð5Þ

Here, the products of matrix elements M1 ·M⋆
2 are given

by the coupling constants at the three vertices, which are set
to g, and the propagator, which is a function of the angle

between ~k1 and ~p1 in Eq. (4) and a function of the angle

between ~k2 and ~p1 in Eq. (5). For both discontinuities, the
cut particles (K⋆, K− and Kþ, K−, respectively) are set on
their mass shells. The integration with the delta function in
Eq. (5) is performed in the f0 rest frame. After carrying out
the integration we arrive at the following expression:

ImMðscÞ
a1→f0π

¼ g3

16π

�
1

2j~pj ffiffiffi
s

p log
~Aþ 1þ iϵ
~A − 1þ iϵ

þ 1

2j~p 0jM1

log
~Cþ 1 − iϵ
~C − 1 − iϵ

�
; ð6Þ

where the coefficients ~A, ~C originate from the propagators,

~A ¼ ðm2
3 −m2

1 −M2
1 þ 2Ep

1E
k
1Þ=ð2j~kjj~pjÞ; ð7Þ

~C ¼ ðm2
1 − s −m2

2 þ 2E0
0E

k0
2 Þ=ð2j~k 0jj~p 0jÞ: ð8Þ

Here, M2
i ¼ p2

i , j~kj ¼ λ1=2ðs; m2
1; m

2
2Þ=ð2

ffiffiffi
s

p Þ, j~pj ¼
λ1=2ðs; M2

1; M
2
2Þ=ð2

ffiffiffi
s

p Þ are the momenta of the corre-
sponding particles in the a1 rest frame, with the Källen
function

λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2ðxyþ yzþ zxÞ; ð9Þ

FIG. 3. Two possible cuts which contribute to the imaginary part of the matrix element of the process a−1 ð1260Þ → f0ð980Þπ−.
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and Ek
1 ¼ ðsþm2

1 −m2
2Þ=ð2

ffiffiffi
s

p Þ, Ep
1 ¼ ðsþM2

1 −M2
2Þ=

ð2 ffiffiffi
s

p Þ. The primed variables are calculated in the

f0 rest frame: j~k 0j ¼ λ1=2ðM2
2; m

2
2; m

2
3Þ=ð2M2Þ, j~p 0j ¼

λ1=2ðs;M2
1;M

2
2Þ=ð2M2Þ are the momenta of Kþ (K−) and

π− (a−1 ). The corresponding expressions for the energy are
Ek0
2 ¼ðM2

2þm2
2−m2

3Þ=ð2M2Þ, E0
0¼ðsþM2

2−M2
1Þ=ð2M2Þ.

The imaginary parts of expressions (4) and (5) compensate
for each other and consequently Eq. (6) is real.
The imaginary part of the amplitude ImMðscÞ

a1→f0π
ðsÞ as

well as the contributions from the individual discontinuities
are shown in Fig. 4 by dashed lines. One can clearly see the
singularities at

ffiffiffi
s

p ¼ E1 and E2. The singularity at E2 is out
of the kinematically allowed region of the reaction, so the
sum of the two discontinuities is smooth at E2. One can also
notice that the imaginary part is not zero below the K⋆K̄
threshold. Here, the contribution comes from DiscKK̄ ,
because the mass mf0 is above the 2mK� threshold. Of

course, taking into account the real shape of K⋆ and f0 will
make the amplitude smoother, as shown in Sec. IV C, but
the effect of the singularity at

ffiffiffi
s

p ¼ E1 will remain. This
conclusion will also not change when the spin of the
particles is taken into account, as will be shown in the next
section.

B. Realistic case: intermediate particles with spin

In reality, the particles involved in the process carry
quantum numbers different from the scalar particles used in
the previous section. The a1ð1260Þ with axial-vector
quantum numbers JP ¼ 1þ decays to K⋆K̄ with vector
(V) and pseudoscalar (P) quantum numbers, respectively.
The K⋆ decays to two pseudoscalars, Kπ. We make use of
the expressions for hadronic vertices given in Appendix A
to take into account the spin structure of the particle
involved.
The expressions for the discontinuities are then

DiscðvppÞK⋆K̄ ¼ g3
Z

d3k1
ð2πÞ32Ek

1

d3k2
ð2πÞ32Ek

2

×
ε0μðgμν − kμ

1
kν
1

m2
1

Þðp1 − k3Þν
m2

3 − k23 þ iϵ

× ð2πÞ4δ4ðp0 − k1 − k2Þ; ð10Þ

DiscðvppÞKK̄ ¼ g3
Z

d3k2
ð2πÞ32Ek

2

d3k3
ð2πÞ32Ek

3

×
ε0μðgμν − kμ

1
kν
1

m2
1

Þðp1 − k3Þν
m2

1 − k21 − iϵ

× ð2πÞ4δ4ðk3 þ k2 − p2Þ: ð11Þ

Here ε0 is the polarization vector of the a1; otherwise we use the notation shown in Fig. 3.
After integration, we have

DiscðvppÞK⋆K̄ ¼ g3
1

8π

2j~kjffiffiffi
s

p ðε0ðp1 − p2ÞÞ ×
M2

1 þm2
1 −m2

3

4m2
1 ~p

2
1

�
1þ

�
−
j~pj
j~kj

m2
1

M2
1 þm2

1 −m2
3

þ
~A
2

�
log

~A − 1þ iϵ
~Aþ 1þ iϵ

�
; ð12Þ

DiscðvppÞKK̄ ¼ −g3
1

8π

2j~k 0j
M2

ðε0ðp1 − p2ÞÞ ×
M2

1 þm2
1 −m2

3

4m2
1 ~p

02
E0
0

M2

×
�
1þ

�j~p 0j
j~k 0j

2m2
1M2 − ðM2

1 þm2
1 −m2

3ÞEk0
2

ðM2
1 þm2

1 −m2
3ÞE0

0

þ
~C
2

�
log

~C − 1 − iϵ
~Cþ 1 − iϵ

�
: ð13Þ

We use the same notation as in the previous section. The P-wave from K⋆ decay is propagated to the f0π P-wave. So we
have a factor ½ε0ðp1 − p2Þ� in the final expression for the imaginary part of the matrix element. We separate it to compare the
result with the scalar case:

FIG. 4 (color online). Energy dependence of ImMðscÞ
a1→f0π

ðsÞ and
ImAðvppÞ

a1→f0π
ðsÞ [dashed and full black (orange) lines, respectively].

The contributions of the discontinuities K⋆K̄ and KK̄ are shown
by light gray (green) and dark gray (blue) lines, respectively.
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MðvppÞ
a1→f0π

¼ g3AðvppÞ
a1→f0π

½ε0ðp1 − p2Þ�: ð14Þ

AðvppÞ
a1→f0π

is plotted in Fig. 4 together with the result from the scalar theory. The two results are obviously very similar.

IV. FULL AMPLITUDE FOR a−1 ð1260Þ → f 0ð980Þπ− VIA K⋆0KþK− TRIANGLE

After the calculation of the imaginary part of the amplitude based on discontinuities we proceed now to the calculation of
the full amplitude for the triangle diagram shown in Fig. 5 using Feynman rules for hadronic processes in an effective
Lagrangian approach [14] (see Appendix A for the parametrization of vertices). As in the previous section, we start from the
simple case of scalar particles, and generalize to particles with spin in Sec. IV B.

A. Simple model with scalar intermediate particles

In case of vertices involving scalar particles only the matrix element for the triangle diagram in Fig. 5 is

MðscÞ
a1→f0π

¼ g3
Z

d4k1
ð2πÞ4i

1

ðm2
1 − k21 − iϵÞðm2

2 − ðp0 − k1Þ2 − iϵÞðm2
3 − ðk1 − p1Þ2 − iϵÞ ; ð15Þ

We calculate the integral using the standard technique of Feynman parameters and Wick rotation, which is described in
more detail in Appendix B 1:

MðscÞ
a1→f0π

¼ g3

16π2

Z
1

0

dy
Z

1−y

0

dz
1

Δyz þm2
1ð1 − y − zÞ − iϵ

; ð16Þ

where Δyz is given by

Δyz ¼ ym2
2 þ zm2

3 − yð1 − y − zÞp2
0 − zð1 − z − yÞp2

1 − yzp2
2: ð17Þ

Equation (16) is evaluated numerically and the real and
imaginary parts are shown in Fig. 6 (left panel). If the widths
of all the intermediate particles are set to zero, the detailed
structure of the amplitude becomes apparent. The imaginary
part starts to grow rapidly from threshold

ffiffiffiffiffi
sth

p ¼ mK þmK⋆

and goes to infinity when
ffiffiffi
s

p ¼ E1. It exactly reproduces
our result from Sec. III shown in Fig. 4. The real part has a
cusp at the threshold, then sharply drops below zero atffiffiffi
s

p ¼ E1 and becomes stable for higher values of
ffiffiffi
s

p
.

FIG. 5. a1ð1320Þ → f0ð980Þπ− triangle diagram.

FIG. 6 (color online). (Left panel) Real [black (brown)] and imaginary [gray (orange)] parts of AðvppÞ
a1→f0π

ðsÞ and MðscÞ
a1→f0π

ðsÞ,
respectively. (Right panel) Real [black (brown)] and imaginary [gray (orange)] parts of AðvppÞ

a1→f0π
ðsÞ when the finite width of K⋆ is taken

into account in the VPP case.
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B. Realistic case: intermediate particles with spin

For the realistic case of vector and pseudoscalar intermediate particles the expression for the matrix element is

MðvppÞ
a1→f0π

¼ g3
Z

dk41
ð2πÞ4i

ε0μðgμν − kμ
1
kν
1

k2
1

Þðp1 − k3Þν
ðm2

1 − k21 − iϵÞðm2
2 − ðp0 − k1Þ2 − iϵÞðm2

3 − ðk1 − p1Þ2 − iϵÞ : ð18Þ

We can apply the same procedure as in Sec. IVA, introducing Feynman parameters and performing a Wick rotation, and
then calculate the resulting integral numerically. The details of the calculation are shown in Appendix B 2. Using the
relation between AðvppÞ

a1→f0π
and MðvppÞ

a1→f0π
given in Eq. (14), the result is

AðvppÞ
a1→f0π

¼ 1

16π2

Z
1

0

dy
Z

1−y

0

dz
1

Δyz þm2
1ð1 − y − zÞ − iϵ

þ 1

16π2

Z
1

0

dy
Z

1−y

0

dz
Z

1−y−z

0

dx

�
yzðp0 · p1Þ þ z2p2

1

ðΔyz þm2
1x − iϵÞ2 −

1=4
Δyz þm2

1x − iϵ

�
: ð19Þ

The real and imaginary parts of AðvppÞ
a1→f0π

are compared to
the scalar case in Fig. 6 (left panel). For both real and
imaginary parts, the result for the VPP case is very similar
to the scalar one, as was already shown for the imaginary
part in Sec. III.

C. Corrections to K⋆ → Kπ vertex

There are two additional corrections to be taken into
account in order to arrive at a realistic estimate of the
triangle amplitude:
(1) Finite widths of intermediate particles. Until now we

have assumed that the particles in the loop are stable
(ϵ → 0). While this is reasonable for K, the width of
K⋆ is ΓK⋆ ¼ 0.05 GeV,

(2) P-wave tail suppression. In the VPP case the K⋆
decays to Kπ in a P-wave, which is propagated to

the f0π final state, jMðvppÞ
a1→f0π

j2 ∼ ðAðvppÞ
a1→f0π

Þ2j~pπj2
(j~pπj is a1 → f0π break-up momentum). Therefore,
the final f0 and π effectively are in a P-wave. This
gives rise to an enhanced, unphysical tail in the
signal intensity.

To take into account the finite width of the intermediate
particles we substitute the propagators of stable particles
with resonance propagators. Technically this leads to
substitutions m2

j → m2
j − imjΓj. Including such a term

for the K⋆ propagator in Eq. (18) results in a smoother
behavior of the amplitude, as shown in Fig. 6 (right panel).
The singularity at

ffiffiffi
s

p ¼ E1 ¼ 1.42 GeV is now limited
and proportional to logΓK⋆ .
For a two-body decay with orbital angular momentum L,

the amplitude behaves like pL close to threshold due to the
centrifugal barrier. Far away from threshold this is no
longer correct because of the finiteness of the strong
interaction. Accounting for the finiteness of interaction,
however, is not unique. For a direct decay of a resonance

phenomenological form factors are usually used, which
come from a classical potential model. These could be
Blatt-Weisskopf barrier factors [18] or exponential factors
for finite meson-size corrections [19]. Another phenom-
enological approach is to introduce a simple left-hand
singularity in the amplitude as a vertex form factor [20]. We
demonstrate here that the latter approach, where a pole is
introduced in the amplitude to account for the K⋆ P-wave
decay, gives a reasonable result. To do so, we include in
Eq. (18) a factor

Fðk1Þ ¼
C

M2 − k21
ð20Þ

under the integral, where M is the position of the left-hand
singularity and C is a constant normalized to the K⋆ → Kπ
decay from its mass shell, C ¼ M2 −m2

K⋆ . Above the Kπ
threshold this correction behaves like a D-wave Blatt-

Weisskopf factor [FðDÞ
bw ]. SoM corresponds to the size ofK⋆:

FðDÞ
bw ð~pÞ−1=2∼ 1þR2j~pj2 ≈ 1

þR2
ðk21 − ðmπ þmKÞ2Þðk21− ðmπ −mKÞ2Þ

4k21

≈ 1þR2
ðk21− ðmπ þmKÞ2Þ

4

¼−
R2

4
ðM2− k21Þ;

M2 ¼ ðmπ þmKÞ2−
4

R2
: ð21Þ

With this form of correction, our standard approach of
Feynman parameters and Wick rotation can be used; the
details of the calculation are again moved to Appendix B 3.
The final expression is
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Aa1→f0π ¼
C

16π2

Z
1

0

dy
Z

1−y

0

dz

� ð1 − y − zÞ
ðΔyz þm2

1ð1 − y − zÞÞðΔyz þM2ð1 − y − zÞÞ

þ ðz2p2
1 þ yzðp1 · p2ÞÞð1 − y − zÞ2

ðΔyz þm2
1ð1 − y − zÞÞðΔyz þM2ð1 − y − zÞÞΔyz

−
1

4

2

M2

�
1

m2
1

log
Δyz þm2

1ð1 − y − zÞ
Δyz

−
1

m2
1 −M2

log
Δyz þm2

1ð1 − y − zÞ
Δyz þM2ð1 − y − zÞ

��
: ð22Þ

This result including the finite width of K⋆ and the
suppression of the P-wave tail at higher energies is plotted
in Fig. 7. The left panel shows the intensity, jAa1→f0πj2
ð4p2=3ÞΦ2, where Φ2 is the two-body phase space, for
different values of the size parameter R ¼ 0.8–1.2 fm, and
also without suppression (R ¼ 0). The tail is indeed sup-
pressed as expected, almost independent of the exact value
of R. The phase of the signal for R ¼ 0 (no suppression) is
shown in the right panel. Including the suppression factor in
the integral of Eq. (18) artificially shifts the phase to lower
values with respect to the case with no suppression. The
phase motion, i.e. the relative difference as a function of the
energy, is not affected. Therefore we show only the phase
for R ¼ 0.

V. THE REACTION π−p → a−1 ð1260Þp → f 0ð980Þπ−p

A. Cross section

With a high-energy pion beam, as used in COMPASS
and VES, the a−1 ð1260Þ is produced in a diffractive process
proceeding via t-channel Pomeron exchange between the
beam π− and the target proton, as shown in Fig. 8.
In order to estimate the intensity of the signal expected in

the f0ð980Þπ− channel we calculate its intensity and phase
difference compared to the dominant a−1 ð1260Þ → ρ0π−

decay, assuming that the signal in f0π− is entirely due to the
triangle singularity in the decay a−1 ð1260Þ → f0ð980Þπ−.
We denote the invariant mass squared of the a1 by s, and the
isobar invariant mass squared by s12 or s23, respectively.

Factorizing out the production cross section σprodðsÞ of
the a1ð1260Þ, which is independent of the final state, the
differential cross section for the full process π−p →
a−1 ð1260Þp → Rπ−p → π−πþπ−p can be written as

dσ
ds

¼ σprodðsÞ
4π

�Z
ds12
2π

2ma1Γa−
1
→Rπ−ðs; s12Þ

ðm2
a1 − sÞ2 þm2

a1Γ
2
a1ðsÞ

×
2mRΓR→πþπ−ðs12Þ

ðm2
R − s12Þ2 þm2

RΓ2
Rðs12Þ

þf12↔23g þ
Z

dΦ3πInterfðs12; s23Þ
�
; ð23Þ

FIG. 7 (color online). The intensity (left panel) and the phase (right panel) of the final amplitude Aa1→f0πðsÞ including the finite width
of K⋆ and P-wave tail suppression [see Eq. (22)] as a function of

ffiffiffi
s

p
for different values of the suppression parameter R.

FIG. 8. Diagram for diffractive production of the a1ð1260Þ by
scattering of a high-energy π− off a proton target, which remains
intact. The π−πþπ− final state observed in the experiment is
modeled by the decay of the a−1 into a charged pion and a neutral
isobar R ½ρ0 or f0ð980Þ], which subsequently decays into
two charged pions. The isobar can be formed either by π−1 π

þ
2

or by πþ2 π
−
3 .
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where Γa→bc is the partial width for the two-body
decay a → bc, ma1;R and Γa1;R are the pole masses and
mass-dependent full widths of a1 and R, respectively, and
dΦ3π is the 3π phase space. The first two terms constitute
the contributions with the isobar in the π−1 π

þ
2 and in the

πþ2 π
−
3 subsystem, respectively. The third term is the

contribution of the interference between two processes.

The latter is found to be very small for a−1 → ρ0π− (less

than 2% for the a1 decay from its mass shell) as well as for

a−1 → f0π−, so we will disregard that contribution and use

the following equation for the cross section:

dσ
ds

≈
σprodðsÞ

2π

Z
ds12
2π

2ma1Γa−
1
→Rπ−ðs; s12Þ

ðm2
a1 − sÞ2 þm2

a1Γ
2
a1ðsÞ

2mRΓR→πþπ−ðs12Þ
ðm2

R − s12Þ2 þm2
RΓ2

Rðs12Þ
: ð24Þ

The full widths of the a1ð1260Þ and the isobars ρ0; f0
are described by Eq. (31) and Eqs. (28) and (35), respec-
tively. The partial widths of the a1 and the isobar decays are
calculated by averaging the expressions for the square of
the matrix elements of the corresponding hadronic vertices
over the initial states and summing over the final ones and
multiplying by the corresponding phase space. For the
decay a−1 ð1260Þ → ρ0π− (axial vector to vector and pseu-
doscalar, AVP), we have

Γa−
1
→ρ0π−ðs;m2Þ ¼ 1

2ma1

g2a−
1
ρ0π−

�
1þ j~pρj2

3m2

�
×

1

8π

2j~pρjffiffiffi
s

p ;

ð25Þ
while for a−1 ð1260Þ → f0π− (axial vector to pseudoscalar
and scalar, APS), we get

Γa−
1
→f0π−ðs;m2Þ ¼ 1

2ma1

g2a−
1
f0π−

ðs;m2Þ 4j~pf0 j2
3

×
1

8π

2j~pf0 jffiffiffi
s

p ; ð26Þ

where j~pρ=f0ðs;m2Þj ¼ λ1=2ðs;m2; m2
πÞ=ð2

ffiffiffi
s

p Þ is the
break-up momentum for the two-body decay of a particle
with mass

ffiffiffi
s

p
to particles with masses m ¼ ffiffiffiffiffiffi

s12
p

and mπ .
The coupling of a−1 to f0π− in Eq. (26) is given by

g2a−
1
f0π−

ðs;m2Þ ¼ jAa1→f0πj2ðgðK
⋆K̄þc:c:Þ

a−
1
f0π−

Þ2; ð27Þ

where Aa1→f0π is the triangle amplitude calculated in

Eq. (22) and gðK
⋆K̄þc:c:Þ

a−
1
f0π−

is an effective coupling which

includes the couplings of the individual vertices in the
triangle diagram, taking into account both isospin channels.
The expressions for the isobar decays are

Γρ0→πþπ−ðm2Þ ¼ 1

2mρ
g2
ρ0πþπ−

4j~pπj2
3

×
1

8π

2j~pπj
m

×
1þ R2

ρj~pπðm2
ρÞj2

1þ R2
ρj~pπðm2Þj2 ; ð28Þ

and

Γf0→πþπ−ðm2Þ ¼ 1

2mf0

2

3
g2f0ππ ×

1

8π

2j~pπj
m

≈
2

3
ḡf0ππj~pπj;

ð29Þ

where the dimensionless coupling ḡf0ππ ¼ g2f0ππ=ð8πm2
f0
Þ

has been introduced, and j~pπj ¼ λ1=2ðm2; m2
π; m2

πÞ=ð2mÞ is
the break-up momentum of the isobar with mass m to two
pions. In Eq. (28) a Blatt-Weisskopf factor with Rρ ¼
5GeV−1 has been added to account for the P-wave decay
of the ρ0.

B. Evaluation of the couplings

To evaluate the magnitude of the a1 → f0π decay with
respect to the a1 → ρπ S-wave we take into account two
possible isospin configurations of intermediate states
(K⋆0K−Kþ) and (K⋆−K0K̄0) and evaluate the correspond-
ing couplings. The table gives the couplings and Clebsch-
Gordan coefficients for each vertex inside the loop of the
two isospin configurations:

Vertex K⋆0K−Kþ K⋆−K0K̄0

a−1K
⋆K̄ ga1K⋆K̄ ga1K⋆K̄

K⋆Kπ ffiffiffiffiffiffiffiffi
2=3

p
gK⋆Kπ

ffiffiffiffiffiffiffiffi
2=3

p
gK⋆Kπ

f0KK̄
ffiffiffiffiffiffiffiffi
1=2

p
gf0KK̄

ffiffiffiffiffiffiffiffi
1=2

p
gf0KK̄

Since the isospin structure of both configurations is
identical, the two diagrams add up. Disregarding the mass
difference between charged and neutral kaons, the con-
tributions of both are the same, so the effective coupling of
process can be written as

gðK
⋆K̄þc:c:Þ

a−
1
f0π−

¼ 2ffiffiffi
3

p ga1K⋆K̄gK⋆Kπgf0KK̄: ð30Þ

We first consider a1 decays. The resonance is rather
wide, so the energy dependence of the width should be
taken into account. The best knowledge about a1 decay
channels and branching ratio comes from hadronic τ decay
measurements [19,21,22]. For simplicity we consider only
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the main contribution to the energy dependence of the
width, which comes from the a1 → ρπ S-wave,

Γa1ðsÞ ¼ N
Z ð ffiffi

s
p

−mπÞ2

4m2
π

ds12
2π

2j~pðs; s12Þjffiffiffi
s

p

×
2mρΓρ0→πþπ−ðs12Þ

ðm2
ρ − s12Þ2 þm2

ρΓ2
ρðs12Þ

; ð31Þ

where j~pðs; s12Þj ¼ λ1=2ðs; s12; m2
πÞ=ð2

ffiffiffi
s

p Þ, N is a normali-
zation constant calculated from requiring Γa1ðm2

a1Þ ¼
0.4 GeV. We use the measured branching ratios,
Brða1→ρπ;S-waveÞ≈60%, Brða1→K⋆K̄þc:c:;S-waveÞ≈
2.2% to extract the ratio of the couplings. The ratio
ga1ρπ=ga1K⋆K̄ is calculated with the help of Eq. (24), where
the energy dependence of the production mechanism is
disregarded. For a1 → ρπ, a size correction form factor
expð−R2j~pρj2Þ, where ~pρ is the break-up momentum, is
applied [19]. For R > 0.5 GeV−1, the convergence of the
integral over ds12 in Eq. (24) is achieved for an upper limit
of the integration ≤ 5 GeV, while for R ¼ 0 a higher limit
is required. Varying R between 0 and 5 GeV−1, and
including the uncertainty due to the slow convergence
for R ¼ 0, the resulting ratio of the couplings is

g2a1ρπ
g2a1K⋆K̄

¼
2g2a−

1
ρ0π−

g2a−
1
K⋆0K− þ g2a−

1
K⋆−K0

≈ 6–10: ð32Þ

For the evaluation of the relative strength of the f0π signal
in Sec. V C, we use g2a1ρπ=g

2
a1K⋆K̄ ¼ 6.

The width of K⋆ has been measured precisely and the
branching to the Kπ P-wave is 100% [1]. The correspond-
ing coupling can thus be extracted from

ΓK⋆ ¼ 1

2mK⋆
g2K⋆Kπ

4j~kj2
3

×
1

8π

2j~kj
mK⋆

;

j~kj ¼ λ1=2ðs;m2
K⋆ ; m2

πÞ=ð2mK⋆Þ ð33Þ

to be g2K⋆Kπ ¼ 31.2.
The parametrization of the f0 is not trivial, since both

decay channels (f0 → 2π, f0 → 2K) need to be taken into
account. We make use of the Flatté parametrization [23] of
the f0 propagator and the decay width in Eq. (24),

2mf0 ḡf0ππj~pπðs12Þj
jm2

f0
− s12 − imf0Γf0ðs12Þj2

;

j~pπ=Kðs12Þj ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s12 − 4m2

π=K

q
; ð34Þ

Γf0ðm2Þ ¼ ḡf0ππj~pπðm2Þj þ ḡf0KK̄j~pKðm2Þj: ð35Þ

The measurements of the branching ratio Brðf0 → KK̄Þ=
ðBrðf0 → ππÞÞ and the ratio of couplings extracted there-
from, RK=π ¼ g2f0KK̄=g

2
f0ππ

¼ ḡf0KK̄=ḡf0ππ ≈ 4, are rather

consistent with each other [24,25]. The absolute values
of the couplings, in contrast, are not known very well. For
our estimation of the branching we use gf0ππ ¼ 2.3 GeV
[26], so ḡf0ππ ¼ 0.21, ḡf0KK̄ ≈ 0.8.

C. Evaluation of the branching ratio

The cross section calculated with the help of Eq. (24) for
a−1 ð1260Þ → f0π− → π−πþπ− is compared to the one for
the dominant channel a−1 ð1260Þ → ρ0π− → π−πþπ− in
Fig. 9. Here, the peak of a1 → ρπ has been normalized
to 1, the f0π channel is shown in relative scale. Under the

FIG. 9 (color online). Cross sections for the a1ð1260Þ resonance as a function of invariant mass
ffiffiffi
s

p
in arbitrary units. (Left panel)

Comparison of the dominant a−1 → ρ0π− S-wave decay and the a−1 → f0π− P-wave channel due to the rescattering of kaons. (Right
panel) Pseudoresonant shape of a−1 → f0π− in linear scale.
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assumptions detailed in the previous subsection for the
couplings, the peak-to-peak ratio is ≈ 1∶100, in very good
agreement with the experimental result.
Finally, we discuss the reliability of our estimation and

the factors which could affect the magnitude and the
shape of the f0π peak. First of all, we assume that the
decay of the a1ð1260Þ resonance is the origin of ρπ and
K⋆K̄ þ c:c:, which are rescattered to f0π. In a hadron
fixed-target experiment like COMPASS or VES, how-
ever, there may be other processes which contribute to the
same final state, e.g. nonresonant Deck-like processes
[27]. We expect a rather large contribution of the Deck-
like background to the ρπ S-wave signal [27] as well as to
the K⋆K̄ channel [28]. Taking into account these proc-
esses may cause the resulting ratio of the couplings to be
different from Eq. (32).
Secondly, ρπ → f0π rescattering plays an important role.

Using the same method as in Sec. IV B one can show that
the triangle diagram a1 → ρπ → f0π gives a rather flat
amplitude with a constant phase (magnitude ≈4% of peak
intensity of K⋆K̄ þ c:c: → f0π). It interferes with the
signal from K⋆K̄ þ c:c: and changes its intensity and
phase. Taking into account this contribution is in principle
possible, but requires the knowledge of the relative sign
between a1 → ρπ and a1 → K⋆K̄, i.e. the relative sign of ss̄
in a1, which is unknown.
The third uncertainty comes from the shape of the f0 and

the corresponding coupling constants. We found that the
shape of our signal is stable for different values of gf0ππ and
RK=π . The relative intensity, however, is proportional to
g2f0ππRK=π , which could therefore easily change by a factor
of 2 depending on the input values.

VI. CONCLUSIONS

Even after many years of intense studies, both exper-
imentally and theoretically, the excitation spectrum of
hadrons is still not understood. This is especially true in
the region of charm and bottom quarks, but also the light-
quark sector sometimes bears surprises.
Present-day experiments are collecting extremely large

event samples, with allow them to perform analyses with
very small statistical uncertainties and permit them to find
small signals which were not observable before. Recently,
the COMPASS experiment has reported the observation of
a resonancelike signal with axial-vector quantum numbers
JPC ¼ 1þþ in a completely unexpected mass region only
about 0.2 GeV above the ground state a1ð1260Þ, decaying
to f0ð980Þπ.
In this paper we show that a resonancelike signal with a

maximum intensity at 1.4 GeV, compatible with the
experimental result, can be generated dynamically via a
triangle singularity in the decay of the ground state
a1ð1260Þ to K⋆K̄ þ c:c and the subsequent rescattering
of the K from K⋆ decay to form f0ð980Þ. This process also

generates a rather sharp phase motion, which is not locked
to the phase of the wide a1ð1260Þ. The singularity appears
in a kinematic region where the intermediate particles are
collinear and on mass shell. The structure of the amplitude
is investigated in two ways: first, the imaginary part is
calculated using cutting rules; second, the full amplitude is
evaluated using Feynman rules in order to obtain the
imaginary and real parts. Both approaches are performed
for the hypothetical case of scalar intermediate particles and
for the realistic case of vector and pseudoscalar intermedi-
ate particles. It is shown that both cases give very similar
results. For the final result of the triangle amplitude, we also
include the finite width of the K⋆ and a phenomenological
factor to suppress the tail due to the P-wave decay of theK⋆
at high energies. The inclusion of this factor, however, is
not unique, and also spoils the beauty of the solution
somewhat, because it artificially shifts the phase of the
amplitude. In general, the treatment of decays with higher
angular momenta inside loops in terms of analytical
solutions certainly needs further investigations in the
future.
We then estimate the magnitude of the signal expected in

the f0ð980Þπ channel due to the triangle singularity
compared to the dominant decay of the a1ð1260Þ to ρπ,
also observed in the experiment. Our result gives a relative
peak intensity of 1% for the f0π channel, with a rather
large uncertainty which is due partly to poorly known
couplings and partly to other rescattering processes like
a1 → ρπ → f0π, which were neglected. The last process
does not produce a singularity in the kinematically allowed
region, but the corresponding amplitude interferes with the
K⋆K̄ amplitude and modifies its intensity and phase. In
addition, we only consider the genuine a1ð1260Þ resonance
as a source for the triangle diagram, while it is known that
in the reaction π−p → 3πp there is a rather large contri-
bution to the intensity in the ρπ channel from nonresonant
processes like the Deck effect, which may influence the
relative branching ratio.
Despite these caveats, the dynamical interpretation of

the a1ð1420Þ presented in this paper captures the main
effect and presumably accounts for a large fraction of the
signal observed by COMPASS and VES. As a next step,
one may fit our amplitude to the data and compare to the
Breit-Wigner fit, and eventually extract better values for
the coupling constants. The data sample on the a1 from τ
decays should also be large enough to observe the f0π
peak if the data is fitted without phase locking of f0π with
a1. In general, the large data samples available nowadays
both for light and heavy hadrons allow us to revisit effects
which were already discussed more than 30 years ago, but
were almost forgotten since then because data were too
scarce to test them. These effects may now turn out to play
an important role in our understanding of the hadron
spectrum.
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APPENDIX A: PARAMETRIZATION OF
VERTICES AND FEYNMAN RULES

First we mention the approach we use to parametrize the
vertices for interactions of particles. From symmetry
considerations the Lorentz structure for the vertices is
the following (we use S ¼ scalar, P ¼ pseudoscalar,
V ¼ vector, A ¼ axial vector). For a vector → 2 pseudo-
scalar (VPP) vertex (P-wave) the structure is

V
P

P

VPP ðA1Þ

for a scalar → 2 pseudoscalar (SPP) vertex (S-wave) it is

P

P

S
SPP ðA2Þ

and for an axial vector → vector + pseudoscalar (AVP)
vertex (S-wave) it is

A
V

P

AVP ðA3Þ

The propagator for a pseudoscalar particle is

P
ðA4Þ

while that for a vector particle is

V
ðA5Þ

APPENDIX B: CALCULATION
OF INTEGRALS

In this section we calculate three integrals:

V3 ¼
Z

dk41
ð2πÞ4i

1

Δ1Δ2Δ3

; ðB1Þ

V4 ¼
Z

dk41
ð2πÞ4i

ε0μðgμν − kμ
1
kν
1

k2
1

Þðp1 − k3Þν
Δ1Δ2Δ3

; ðB2Þ

V5 ¼
Z

dk41
ð2πÞ4i

ε0μðgμν − kμ
1
kν
1

k2
1

Þðp1 − k3Þν × C
M2−k2

1

Δ1Δ2Δ3

; ðB3Þ

where Δ1 ¼ m2
1 − k21 − iϵ, Δ2 ¼ m2

2 − ðp0 − k1Þ2−
iϵ, Δ3 ¼ m2

3 − ðk1 − p1Þ2 − iϵ.

1. First integral

For the calculation of V3, Feynman parameters (x; y; z)
are introduced to rewrite the integral:

V3 ¼
Z

1

0

Z
1

0

Z
1

0

dxdydz2!δðxþ yþ z − 1Þ
Z

d4k
ð2πÞ4i

1

D3
;

ðB4Þ

where D ¼ xðm2
1 − k21 − iϵÞ þ yðm2

2 − ðp0 − k1Þ2 − iϵÞþ
zðm2

3 − ðk1 − p1Þ2 − iϵÞ. The quadratic form Dðk1Þ can
be reduced to diagonal form collecting terms with k1 and
extracting the full square. The condition xþ yþ z ¼ 1 is
used.

D ¼ −ðk1 − yp0 − zp1Þ2 þ Δ − iϵ; ðB5Þ

Δ ¼ xm2
1 þ Δyz;

Δyz ¼ ym2
2 þ zm2

3 − yð1 − y − zÞp2
0

− zð1 − z − yÞp2
1 − yzp2

2: ðB6Þ
After shifting the variable of integration k1 → l ¼ k1 −
yp0 − zp1 we have

V3 ¼
Z

1

0

Z
1

0

Z
1

0

dxdydz2!δðxþ yþ z − 1Þ

×
Z

d4l
ð2πÞ4i

1

ð−l2 þ Δ − iϵÞ3 : ðB7Þ

For the integration over l0, notice that the denominator

has poles when l20 ¼ ~l 2 þ Δ2 − iϵ. The positions of the
poles are functions of the external invariants p2

0, p
2
1, p

2
2

and the Feynman parameters. The basic idea which we use

NATURE OF THE a1ð1420Þ PHYSICAL REVIEW D 91, 094015 (2015)

094015-11



is aimed at calculating the integral in the region where
p2
0 < 0, p2

1 < 0, p2
2 < 0, i.e. Δ > 0 for all values of x; y; z.

In that region we can rotate the contour of integration over
l0 counterclockwise (the Wick rotation) and integrate along
the imaginary axis. We make use of the transfer of the
integration variable l to Euler space with the integration
variable lE (l2 ¼ −l2E), where the integration is much
simpler. One has

V3 ¼
Z

1

0

Z
1

0

Z
1

0

dxdydz2!δðxþ yþ z − 1Þ

×
Z

d4lE
ð2πÞ4

1

ðl2E þ Δ − iϵÞ3 : ðB8Þ

The next step is integration over lE. As a result we have

V3 ¼
1

16π2

Z
1

0

dy
Z

1−y

0

dz
1

Δyz þm2
1ð1 − y − zÞ − iϵ

:

ðB9Þ
Equation (B9) is simple enough for numerical integration.

2. Second integral

Let us consider integral V4, Eq. (B2). The numerator can
be simplified as

ε0μ

�
gμν −

kμ1k
ν
1

k21

�
ðp1 − k3Þν

¼ ε0μ

�
gμν −

kμ1k
ν
1

k21

�
ð2p1 − k1Þν

¼ 2ðε0 · p1Þ þ 2
ðε0 · k1Þðk1 · p1Þ

−k21
: ðB10Þ

One can notice that k21 in the numerator has the same
form as Δ0 ¼ m2

0 − k21 with mass m2
0 ¼ 0. The integral in

Eq. (B2) is equal to

1

2
V4 ¼ ðε0 · p1Þ

Z
d4k1
ð2πÞ4i

1

Δ1Δ2Δ3

þ
Z

d4k1
ð2πÞ4i

ðε0 · k1Þðk1 · p1Þ
Δ0Δ1Δ2Δ3

: ðB11Þ

The first integral in Eq. (B11) is equal to Eq. (B9). For the
second one we introduce four Feynman parameters:

Z
d4k1
ð2πÞ4i

ðε0 · k1Þðk1 · p1Þ
Δ0Δ1Δ2Δ3

¼
Z

1

0

dt
Z

1

0

dx
Z

1

0

dy
Z

1

0

dz3!δðtþ xþ yþ z − 1Þ

×
Z

d4k1
ð2πÞ4i

ðε0 · k1Þðk1 · p1Þ
D4

4

; ðB12Þ

where for D4 with the condition x0 þ x1 þ x2 þ x3 ¼ 1
we have the same expression as Eq. (B5). So the same shift
of the integration variable k1 is used, i.e. k1 → l ¼
k1 − yp0 − zp1.
The expression in the numerator can be written as

ðε0 · k1Þðk1 · p1Þ
¼ lμlν · ½εμ0pν

1� þ lμ

· ½ðzp2
1 þ yðp1 · p2ÞÞεμ0 þ zðε0 · p1Þpμ

1�
þ zðε0 · p1Þðzp2

1 þ yðp1 · p2ÞÞ: ðB13Þ

After Wick rotation and the integration over angular
variables dΩ4, the term proportional to lμ gives zero and
lμlν → −gμνl2E=4. So one arrives at

Z
d4k1
ð2πÞ4i

ðε0 · k1Þðk1 · p1Þ
Δ0Δ1Δ2Δ3

¼
Z

1

0

dt
Z

1

0

dx
Z

1

0

dy
Z

1

0

dz3!δðtþ xþ yþ z − 1Þ

× ðε0 · p1Þ
�
−
1

4

Z
d4lE
ð2πÞ4

l2E
ðl2E þ Δ − iϵÞ4

þzðzp2
1 þ yðp1 · p2ÞÞ

Z
d4lE
ð2πÞ4

1

ðl2E þ Δ − iϵÞ4
�
: ðB14Þ

All integrals converge. The integration over dt is removed
by a delta function:

1

2
V4 ¼

ðε0 · p1Þ
16π2

×

�Z
1

0

dy
Z

1−y

0

dz
1

Δyz þm2
1ð1 − y − zÞ − iϵ

þ
Z

1

0

dy
Z

1−y

0

dz
Z

1−y−z

0

dx

�
yzðp0 · p1Þ þ z2p2

1

ðΔyz þm2
1x − iϵÞ2

−
1=4

Δyz þm2
1x − iϵ

��
; ðB15Þ

with Δyz given by Eq. (B6).

3. Third integral

The calculation of V5, Eq. (B3) proceeds similarly to V4.
The difference is that we have four poles instead of three in
the denominator of Eq. (B3). First, one can simplify the
numerator as in Eq. (B10):
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1

2C
V5 ¼ ðε0 · p1Þ

Z
d4k1
ð2πÞ4i

1

Δ1Δ2Δ3Δ4

þ
Z

d4k1
ð2πÞ4i

ðε0 · k1Þðk1 · p1Þ
Δ0Δ1Δ2Δ3Δ4

; ðB16Þ

where Δ4 ¼ M2 − k21.
We introduce four and five Feynman parameters for the

integrals, respectively. The expression for the denominators
are D4

5 and D05
5 :

D5 ¼ xðm2
1 − k21Þ þ yðm2

2 − ðp0 − k1Þ2Þ
þ zðm2

3 − ðk1 − p1Þ2Þ þ uðM2 − k21Þ; ðB17Þ

D0
5 ¼ tð−k21Þ þ xðm2

1 − k21Þ þ yðm2
2 − ðp0 − k1Þ2Þ

þ zðm2
3 − ðk1 − p1Þ2Þ þ uðM2 − k21Þ: ðB18Þ

Then we perform the same calculation as in Sec. B 2, and
the result is

1

2C
V5 ¼

ðε0 · p1Þ
16π2

Z
1

0

dy
Z

1−y

0

dz
Z

1−y−z

0

dx

�
1

ðΔyz þm2
1xþM2ð1 − x − y − zÞ − iϵÞ2

þ
Z

1−x−y−z

0

du

�
yzðp0 · p1Þ þ z2p2

1

ðΔyz þm2
1xþM2u − iϵÞ3 −

1=4
ðΔyz þm2

1xþM2u − iϵÞ2
��

; ðB19Þ

whereΔyz is given by Eq. (B6). To make the expression simpler and convenient for a numerical evaluation, we carry out the
integration over dx and dy explicitly:

1

2C
V5 ¼

1

16π2

Z
1

0

dy
Z

1−y

0

dz

� ð1 − y − zÞ
ðΔyz þm2

1ð1 − y − zÞ − iϵÞðΔyz þM2ð1 − y − zÞ − iϵÞ

þ ðz2p2
1 þ yzðp1 · p2ÞÞð1 − y − zÞ2

ðΔyz þm2
1ð1 − y − zÞ − iϵÞðΔyz þM2ð1 − y − zÞ − iϵÞðΔyz − iϵÞ

−
1

4

2

M2

�
1

m2
1

log
Δyz þm2

1ð1 − y − zÞ − iϵ

Δyz − iϵ
−

1

m2
1 −M2

log
Δyz þm2

1ð1 − y − zÞ − iϵ

Δyz þM2ð1 − y − zÞ − iϵÞ
��

: ðB20Þ
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