
Rapidity divergences and deep inelastic scattering in the endpoint region

Sean Fleming* and Ou Z. Labun†

University of Arizona, Tucson, Arizona 85721, USA
(Received 28 January 2013; revised manuscript received 4 March 2015; published 12 May 2015)

The deep inelastic scattering cross section in the endpoint region x ∼ 1 has been subjected to extensive
analysis. We revisit this process using soft collinear effective theory, and show that in the endpoint
individual factors in the factorized hadronic tensor have rapidity divergences. We regulate these
divergences using a recently introduced rapidity regulator, and find that each operator matrix element
requires a different scale to minimize large rapidity logarithms. However, the running in rapidity is
nonperturbative and must be absorbed into the definition of the parton distribution function.
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I. INTRODUCTION

Deep inelastic scattering (DIS) has been crucial in
developing our understanding of QCD since the first
high-energy experiments at the Stanford linear accelerator
in 1967.1 These early experiments gave rise to Feynman’s
parton model, and subsequent DIS experiments have
allowed us to further refine our understanding of the
structure of nucleons. In this paper we explore DIS in a
corner of phase space, where the light-cone momentum
fraction x of the struck quark nears its maximal value,
x ∼ 1. Ours is not the first analysis that has scrutinized this
endpoint regime. Factorization and resummation of the DIS
cross section for x ∼ 1 was first investigated in Refs. [2–5]
using QCD factorization methods. Later, with the develop-
ment of soft collinear effective theory (SCET) [6–8], DIS in
the endpoint region was revisited in the context of effective
field theory [9–16].
In this work we use SCET to study the x ∼ 1 region of

DIS and focus on the definition of each term in the
factorized form of the hadronic tensor. We repeat the
derivation of the factorization of the DIS hadronic tensor
into a hard coefficient, a jet function, a collinear factor, and
a soft function. With the zero-bin subtraction, each of these
pieces is well defined in SCET. The hard coefficient comes
from the matching of SCET onto QCD, while the jet
function, collinear factor, and soft function are matrix
elements of SCET operators. The jet function consists of
all radiation that is collinear to the final state, while the
collinear factor consists of all radiation collinear to the
initial state. The soft function includes soft radiation from
both the initial and final state. Though the properties of
the hard coefficient and jet function are well known, the

collinear factor and soft function have not been explored as
thoroughly, and it is on these latter two objects that we
focus our attention.
The collinear factor and soft function can be combined into

a single nonperturbative parton distribution function (PDF) as
wasdone inRef. [10].While, aswewill argue, this is a sensible
procedure, there is something to be learned from considering
the renormalization properties of the soft and collinear pieces
separately: namely, that combining these objects results in a
single logarithm of widely mismatched rapidity scales. We
carry out a one-loop calculation of the collinear and soft
operator matrix elements using the rapidity regulator intro-
duced in Refs. [17,18]. Our calculation explicitly shows that
the collinear factor and the soft function each have a rapidity
divergence and an associated logarithm of the rapidity scale ν
that is minimized at ν ∼Q (whereQ is a large-energy scale)
for the collinear factor and at ν ∼Qð1 − xÞ ≪ Q for the soft
function. When the soft function and collinear factor are
combined into the PDF, the rapidity divergences cancel;
however, a single large logarithm of the ratio of collinear
and soft rapidity scales is left over. This large logarithm shows
up both in the finite part of the one-loop expression for the
PDF, and in the PDF anomalous dimension. This is the first
time that the presence of a single large logarithm in the
endpoint region ofDIS has been identified and explained; it is
one of the main results of this paper.
Our calculations have a number of interesting aspects.

First, SCET label momentum conservation and the collin-
ear zero-bin subtraction [19] forces real emission from the
initial state to be soft [16], which is a characteristic that
distinguishes endpoint DIS from DIS at moderate x. As was
first noted in Ref. [15], this implies that the collinear factor
has only virtual contributions. Second, since the soft and
collinear functions are both described in SCETII, there
exists a soft zero bin in which any overlap of the soft
degrees of freedom with collinear ones also has to be
subtracted from the soft contributions. In this work, we
present the first computation in endpoint DIS of these zero-
bin subtractions using the rapidity regulator of Ref. [17,18].
Third, we find that the choice of scale which minimizes
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2In the QCD factorization approach the need for subtracting

soft/collinear overlap terms in the case of DIS endpoint diver-
gences was noted in Ref. [23], where an explicit subtraction
procedure was carried out based on the method of Ref. [24].

1For a nice review of the history of DIS, see the Nobel lecture
by Henry W. Kendall [1].
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large rapidity logarithms is different in the collinear factor
and soft function so that a resummation of rapidity loga-
rithms is needed. The running in rapidity is nonperturbative
and must therefore be absorbed into the nonperturbative soft
function. This implies that a model of the PDF in the
endpoint might have logarithmically enhanced parameters.
Finally, we show that the soft function, which naively is
expressed in terms of soft Wilson lines extending from the
initial state into the final state, can be expressed only in terms
of Wilson lines in the initial state. This guarantees the
universality of the PDF in the sense that it only depends on
the initial hadronic state.

II. FACTORIZATION

In this section, we use SCET to repeat the derivation of
the factorization of the DIS hadronic tensor. We work in the
Breit frame where the incoming proton moves along the −ẑ
direction with energy much larger than the proton massmp,
so that the proton momentum is

pμ ¼
ffiffiffi
s

p
2

nμ þ m2
p

2
ffiffiffi
s

p n̄μ; ð1Þ

where nμ ¼ ð1; 0; 0;−1Þ, s ¼ ðpþ kÞ2, is the center-of-
mass energy squared, and mp is the proton mass. Particles
collinear to the proton have momentum

pμ
n ¼ 1

2
n̄ · pnnμ þ

1

2
n · pnn̄μ þ pμ

n;⊥; ð2Þ

where components differ parametrically in their sizes:
n̄ · pn ∼

ffiffiffi
s

p
, pμ

n;⊥ ∼ Λhad=
ffiffiffi
s

p
, and n · pn ∼ ðΛhad=

ffiffiffi
s

p Þ2,
with Λhad ∼mp a typical hadronic scale. The incoming
proton is struck by a virtual gluon of momentum qμ with
large invariant mass squared: −q2 ≡Q2. The final state
momentum is restricted by momentum conservation to be
pX ¼ pþ q with invariant mass squared

M2
X ¼ ðpþ qÞ2 ¼ Q2

x
ð1 − xÞ þm2

p ≈
Q2

x
ð1 − xÞ;

x ¼ Q2

2p · q
: ð3Þ

In the endpoint region we consider that the invariant mass
Mx ≈Q

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
is small compared to Q, but is much larger

than the typical hadronic scale Λhad. Note, we do not fix the
scale Qð1 − xÞ relative to Λhad. Thus, the total final state
momentum in the endpoint region is collinear, and any final
state collinear particle will have momentum

pμ
n̄ ¼

1

2
n · pn̄n̄μ þ

1

2
n̄ · pn̄nμ þ pμ

n̄;⊥; ð4Þ

where n̄μ ¼ ð1; 0; 0; 1Þ, n · pn̄ ∼Q, pμ
n̄;⊥ ∼Qλ and n̄ · pn̄ ∼

Qλ2 with λ ∼
ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
. Finally, we have

qμ ¼ Q
2
ðn̄μ − nμÞ; ð5Þ

and

ffiffiffi
s

p ¼ QþQ
1 − x
x

þ � � � ≈ Q ð6Þ

which means that up to correction of order λ2 the large
light-cone momentum component of the proton is

n̄ · p ≈Q: ð7Þ

In our analysis we follow a two-step procedure: in the
first step we match from QCD onto SCETI where the
offshellness of collinear momentum scales as p2

c ∼Q2λ2, in
the next step we integrate out the final state collinear fields
and match onto SCETII where the offshellness of collinear
fields scale as p2

c ∼ Λ2
had. The first step is straightforward

and has been covered in detail in Ref. [9]. In this work
we are only concerned with the second one. Following
Ref. [20], the DIS cross section is

σ ¼ d3k0

2jk0jð2πÞ3
πe4

sQ4
Lμνðk; k0ÞWμνðp; qÞ; ð8Þ

where k and k0 are the incoming and outgoing lepton
momenta, q ¼ k − k0, and

Lμν ¼ 2ðkμk0ν þ kνk0μ − k · k0gμνÞ: ð9Þ

The DIS hadronic tensor is

Wμνðp; qÞ ¼ 1

2

X
σ

Z
d4xeiq·xhhðp; σÞjJμðxÞJνð0Þjhðp; σÞi;

ð10Þ
with

JμðxÞ ¼ ψ̄ðxÞγμψðxÞ;
and external proton state hðp; σÞ with momentum p and
spin σ. The QCD current in Eq. (10) matches onto an SCET
current of the form

JμeffðxÞ ¼ χ̄n̄;ω2
γμ⊥χn;ω1

ðxÞ þ H:c:; ð11Þ

where H.c. stands for the hermitian conjugate. Matching
gives

JμðxÞ →
X
ω1;ω2

Cðω1;ω2; μq; μÞ

×
�
e−

i
2
ω1n·xe

i
2
ω2n̄·xχ̄n̄;ω2

γμ⊥χn;ω1
ðxÞ þ H:c:

�
; ð12Þ

where
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γμ⊥ ≡ γμ −
1

2
nn̄μ −

1

2
n̄nμ;

and the coefficient Cðω1;ω2; μq; μÞ depends on a factorization scale μq at which the matching onto QCD is carried out, and
a running scale μ. From Eq. (10) we determine the hadronic tensor in SCETI:

Wμν
eff ¼

X
ω1;ω2;ω0

1
;ω0

2

C�ðω1;ω2; μq; μÞCðω0
1;ω

0
2; μq; μÞ

Z
d4x
4π

e−
i
2
ðQ−ω1Þn·xei

2
ðQ−ω2Þn̄·xe−i

2
Q1−x

x n·x

×
1

2

X
σ

X
n̄· ~p

δn̄· ~p;Qhhnðp; σÞjT̄½χ̄n;ω1
γμ⊥χn̄;ω2

ðxÞ�T½χ̄n̄;ω0
2
γν⊥χn;ω0

1
ð0Þ�jhnðp; σÞi

¼
X

ω1;ω2;ω0
1
;ω0

2

δQ;ω1
δQ;ω2

C�ðω1;ω2; μq; μÞCðω0
1;ω

0
2; μq; μÞ

Z
d4x
4π

e−i
2
Q1−x

x n·x

×
1

2

X
σ

X
n̄· ~p

δn̄· ~p;Qhhnðp; σÞjT̄½χ̄n;ω1
γμ⊥χn̄;ω2

ðxÞ�T½χ̄n̄;ω0
2
γν⊥χn;ω0

1
ð0Þ�jhnðp; σÞi; ð13Þ

where T denotes time ordering, T̄ anti-time ordering, and hnðp; σÞ denotes the SCET proton state. Here we have inserted a
sum over proton label momentum and an explicit Kronecker delta that ensures the proton label momentum is equal to Q as
required by momentum conservation, Eq. (7). Usoft gluons in SCETI can be decoupled from collinear modes via the BPS
phase redefinition [8], and the hadronic tensor above can be factored into matrix elements of operators in each of the two
collinear sectors and the usoft sector:

Wμν
eff ¼

−gμν⊥
2

Nc

X
ω0
1
;ω0

2

C�ðQ;Q; μq; μÞCðω0
1;ω

0
2; μq; μÞ

Z
d4x
4π

e−i
2
Q1−x

x n·x

×
1

2

X
σ

X
n̄· ~p

δn̄· ~p;Qhhnðp; σÞjχ̄n;QðxÞ
n̄
2
χn;ω0

1
ð0Þjhnðp; σÞi

×
D
0jn
2
χn̄;QðxÞχ̄n̄;ω0

2
ð0Þj0

E 1

Nc
h0jTrðT̄½Y†

nðxÞ ~Yn̄ðxÞ�T½ ~Y†
n̄ð0ÞYnð0Þ�Þj0i: ð14Þ

The Wilson lines Yn and ~Yn̄ associated with soft
radiation from the initial and final state respectively
are defined as

YnðxÞ ¼ P exp

�
ig
Z

x

−∞
dsn · AusðsnÞ

�

~Y†
n̄ðxÞ ¼ P exp

�
ig
Z

∞

x
dsn̄ · Ausðsn̄Þ

�
: ð15Þ

We define a jet function

h0j n
2
χn̄;ω2

ðxÞχ̄n̄;ω0
2
ð0Þj0i

≡Qδðn̄ · xÞδð2Þðx⊥Þ
Z

dre−
i
2
rn·xJn̄ðr; μÞ; ð16Þ

and a soft function

1

Nc
h0jTrðT̄½Y†

nðn · xÞ ~Yn̄ðn · xÞ�T½ ~Y†
n̄ð0ÞYnð0Þ�Þj0i

≡
Z

dle−
i
2
ln·xSðl; μÞ: ð17Þ

Then, we use label momentum conservation to simplify
the collinear matrix element in the n sector:

hhnðp; σÞjχ̄n;QðxÞ
n̄
2
χn;ω0

1
ð0Þjhnðp; σÞi

¼ δQ;ω0
1
hhnðp; σÞjχ̄nðxÞ

n̄
2
δP̄;2n̄· ~pχnð0Þjhnðp; σÞi; ð18Þ

where P̄ ¼ n̄ · ðP þ P†Þ projects out label momentum
[21], and n̄ · ~p is the large component of the proton
momentum. Using the definitions in Eqs. (16),(17) and
the relation in Eq. (18), the hadronic tensor in Eq. (14)
becomes
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Wμν
eff ¼ −gμν⊥HðQ; μq; μÞ

Z
drdlJn̄ðr; μÞSðl; μÞ

Z
dn · x
4π

e−
i
2
ðrþlþQ1−x

x Þn·x

×
1

2

X
σ

X
n̄· ~p

δn̄· ~p;Qhhnðp; σÞjχ̄nðn · xÞ n̄
2
δP̄;2Qχnð0Þjhnðp; σÞi; ð19Þ

where

HðQ; μq; μÞ ¼ QjCðQ;Q; μq; μÞj2: ð20Þ
Finally, we introduce an n-collinear function

Cnðk; μÞ ¼
Z

dn · x
4π

e
i
2
kn·x 1

2

X
σ

X
n̄· ~p

δn̄· ~p;Qhhnðp; σÞjχ̄nðn · xÞ n̄
2
δP̄;2Qχnð0Þjhnðp; σÞi

¼ 1

2

X
σ

X
n̄· ~p

δn̄· ~p;Qhhnðp; σÞjχ̄nð0Þ
n̄
2
δP̄;2Qδðin̄ · ∂ − kÞχnð0Þjhnðp; σÞi: ð21Þ

Using this definition in Eq. (19) we arrive at our final
expression for the factored form of the DIS hadronic tensor
in SCETI:

Wμν
eff ¼ −gμν⊥HðQ; μq; μÞ

×
Z

drdlJn̄ðr; μÞSðl; μÞCnðQ
1 − x
x

þ rþ l; μÞ:
ð22Þ

The μ dependence of the hard coefficient H is such that it
exactly cancels the μ dependence of the product of the
collinear and soft functions.
It is now straightforward to match Eq. (22) onto SCETII.

The jet function Jn̄ðr; μÞ characterizes the final state with
typical offshellness M2

x ∼Q2ð1 − xÞ, and can be integrated
out at the scale μc ∼Q

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
. The usoft gluons of SCETI

become soft gluons in SCETII, so Sðl; μÞ remains
unchanged. The off-shellness of the n-collinear degrees of
freedom changes from p2

c ∼Q2ð1 − xÞ in SCETI to p2
c ∼

Λ2
had in SCETII and Cn also remains unchanged. As was

pointed out in Refs. [17,18] the factorization of soft and
collinear modes in SCETII requires an additional regulator
whichseparates rapidity regions, soSandCnwill dependona
rapidity scale that cancels between the two. In addition, since
there can be no collinear radiation into the final state in the
x ∼ 1 region, the collinear function can be expressed as

Cnðk; μ; νÞ ¼ ZnðQ; μ; νÞδðkÞ; ð23Þ

where ν plays the role of a dimensionful rapidity scale
separating soft and collinear rapidity regions. Thus, in
SCETII the hadronic tensor is

Wμν
eff ¼ −gμν⊥HðQ; μq; μcÞ

×
Z

dlJn̄ðl; μc; μÞϕns
q ðQ 1 − x

x
þ l; μÞ; ð24Þ

with

ϕns
q ðl; μÞ ¼ ZnðQ; μ; νÞSðl; μ; νÞ; ð25Þ

defining the nonperturbative PDF. The scale that minimizes
rapidity logarithms in Zn is different from the scale that
minimizes rapidity logarithms in S; however, the ν depend-
ence cancels on the right-hand side so the PDF is ν
independent. Our expression agrees with the expression in
Ref. [15] up to the appearance of the rapidity regulatorwhich
was not considered in that work. One may worry that
identifying ϕns

q with the PDF is problematic because ϕns
q

depends on final state soft radiation. However, as we show in
Sec. VI, ϕns

q can be expressed only in terms of initial state
Wilson lines, which ensures the universality of the PDF.

III. THE COLLINEAR FUNCTION

In this section we study the collinear function Cnðk; μ; νÞ.
Aswas first done inRef. [16],we argue that labelmomentum
conservation and the zero-bin subtraction allows no real
radiation of n-collinear particles into the final state so this
function involves only virtual corrections. We explicitly
show how this works at one loop in perturbation theory. In
addition, up to the sameorderwe show the need for a rapidity
regulator and determine the value of the rapidity scale ν
which minimizes rapidity logarithms.
The label momentum conserving Kronecker delta δn̄· ~p;Q

in Eq. (21) forces the external proton label momentum to be
equal to Q, while the Kronecker delta δP̄;2Q requires that
each χn field has total label moment Q as well. Thus, any
momentum that flows from the χ̄n field on the left side to
the χn field on the right must have zero label momentum.
Any field that causes momentum to flow in this way
corresponds to real radiation (as it must cross the cut). Since
SCET is formulated with an explicit zero-bin subtraction,
collinear fields with zero label momentum vanish, which
means that there can be no real radiation of n-collinear
particles. This is just a manifestation of momentum con-
servation: only soft radiation from the initial state into the
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final state is allowed; otherwise we are no longer in the
x ∼ 1 region.
Let us consider an explicit calculation of Cnðk; μ; νÞ to

order αs using external parton states. The Oðα0sÞ Feynman
diagram is shown in Fig. 1 and gives the tree level result

CnðkÞð0Þ ¼
X
n̄· ~p

δn̄· ~p;Qδn̄· ~p;Qδðn̄ ·pr−kÞm0¼δðkÞm0; ð26Þ

where n̄ · ~p is the Oð1Þ quark label momentum, and pr is
the Oðλ2Þ quark residual momentum which can be set to
zero for an on-shell quark. The two Kronecker deltas in the
first line come directly from the definition of the operator in
Eq. (21). Here,

m0 ¼
1

2

X
σ

ξ̄σn
n̄
2
ξσn; ð27Þ

where ξσn is an SCET quark spinor with spin σ.
Three of the five OðαsÞ Feynman diagrams for

Cnðk; μ; νÞ are shown in Fig. 2. The remaining two
diagrams are obtained by the reflection of diagrams (a)
and (b) about a vertical axis through the middle of the
diagram. The amplitude corresponding to diagram (a) is

imðaÞ ¼ im0ð2g2sCFÞ
X
n̄· ~p

δn̄· ~p;Qδðn̄ · pr − kÞμ2ϵ

×
X
n̄· ~q≠0

Z
dDqr
ð2πÞD

1

n̄ · q
n̄ · ðp − qÞ

ðp − qÞ2 þ iϵ
1

q2 þ iϵ
; ð28Þ

where we work inD ¼ 4 − 2ϵ dimensions, and the external
quark states have momentum pμ. This diagram gives a
virtual correction since the gluon does not cross the cut.
The sum over the gluon label momentum is restricted to
those values where n̄ · ~q ≠ 0 to prevent double counting of

degrees of freedom [19]. The amplitude obtained from
diagram (b) is

imðbÞ ¼ im0ð2g2sCFÞ
X
n̄· ~p

δn̄· ~p;Qμ
2ϵ
X
n̄· ~q≠0

δn̄· ~q;0

×
Z

dDqr
ð2πÞD−1

1

n̄ · q
n̄ · ðp − qÞ

ðp − qÞ2 þ iϵ
δðq2Þδðn̄ · pr − kÞ

ð29Þ
and corresponds to real radiation as the gluon crosses the
cut. Note, because of label momentum conservation the
real gluon must have zero label momentum, as enforced by
the δn̄· ~q;0. Since all collinear fields are defined such that
n̄ · ~q ≠ 0, imðbÞ ¼ 0, there is no real collinear radiation in
the amplitude. Similarly, imðcÞ ¼ 0.
Including the contribution from the reflected diagrams

which are not shown in Fig. 1 the total collinear contri-
bution will be twice that in Eq. (28),

CnðkÞð1Þ ¼ m0

X
n̄· ~p

δn̄· ~p;QδðkÞð4g2sCFÞμ2ϵ

×
Z
½0�

dDq
ð2πÞD

1

n̄ · q
n̄ · ðp − qÞ

ðp − qÞ2 þ iϵ
1

q2 þ iϵ
;

ð30Þ
where the ½0� subscript indicates that the integral requires a
zero-bin subtraction. As was thoroughly discussed in
Ref. [18] the integral in Eq. (30) contains a rapidity
divergence that must be regulated properly. Here we adopt
the approach in Ref. [18], and introduce a gluon mass to
regulate infrared (IR) divergences. Then, in agreement with
Ref. [18] we find

CnðkÞð1Þ ¼ m0

X
n̄· ~p

δn̄· ~p;QδðkÞ
αsCF

π
w2

×

�
eϵγEΓðϵÞ

η

�
μ2

m2
g

�
ϵ

þ 1

ϵ

�
1þ ln

ν

n̄ · p

�

þ ln
μ2

m2
g
ln

ν

n̄ · p
þ ln

μ2

m2
g
þ 1 −

π2

6

�
: ð31Þ

Here η is the rapidity regulator and ν the running rapidity
scale. Clearly the logarithms in the expressions are

(a) (b) (c)

FIG. 2. The one-loop Feynman diagrams for the n collinear function: (a) is the virtual contribution, while (b) and (c) are real
contributions. Two diagrams which are the mirror image of (a) and (b) are not shown. The double line represents a Wilson line which is
the source of a single gluon.

FIG. 1. TheOðα0sÞFeynman diagram for then collinear function.
The dashed lines are collinear quarks, the grey circles are vertices
where momentum is injected, and the gap indicates a cut.
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minimized for a choice ν ∼ n̄ · p ≈Q and μ ∼ Λhad. The
divergences in η and ϵ must be absorbed into appropriate
counterterms, as we discuss in Sec. V.

IV. THE SOFT FUNCTION

Next we turn our attention to the soft function defined in
Eq. (17). Our aim is to calculate the soft function to one
loop so that we can isolate the poles in η and determine the
scale which minimizes rapidity logarithms. At tree level we
have the trivial result

SðlÞð0Þ ¼ δðlÞ: ð32Þ
The one-loop result is given by the sum of the diagrams in
Fig. 3 and their reflections about a vertical axis through the
middle of the diagram.The gap between thevertices indicates
a cut in the diagram, so diagram (a) corresponds to a virtual
contribution, while diagram (b) corresponds to a real con-
tribution. Again, in agreement with Ref. [18] we obtain

mv ¼ δðlÞ 2αsCF

π
w2

�
−
eϵγEΓðϵÞ

η

�
μ

mg

�
2ϵ

þ 1

2ϵ2
þ 1

ϵ
ln
μ

ν

þ ln2
μ

mg
− ln

μ2

m2
g
ln

ν

mg
−
π2

24

�
; ð33Þ

for diagram (a) in Fig. 3. The real contribution from diagram
(b) is

~mr ¼ −2CFg2sμ2ϵw2νη

×
Z

dDk
ð2πÞD−1 δðk2 −m2

gÞδðl − kþÞj2k3j−η 1

kþ
1

k−

¼ −
αsCF

2π

�
eγE

μ2

m2
g

�
ϵ

w2νη
θðlÞ
l1þη ΓðϵÞ: ð34Þ

As pointed out in Ref. [19] in SCETII there are also zero-bin
subtractions for the soft modes: any overlap with the
n-collinear or n̄-collinear region must be removed. The
virtual contribution zero-bin subtractions are all scale free
and therefore vanish. The real contribution zero-bin

subtractions, however, are not zero because the measurement
function introduces an external scale into the one-loop
integrals. The overlap of the integral in Eq. (34) with the
n-collinear region is given by taking the limit kþ ≫ k− with
kþk− ∼ k2⊥,

sn ¼ −2CFg2sμ2ϵw2νη

×
Z

dDk
ð2πÞD−1 δðk2 −m2

gÞδðl − kþÞjkþj−η 1

kþ
1

k−

¼ −
αsCF

2π

�
eγE

μ2

m2
g

�
ϵ

w2νη
θðlÞ
l1þη ΓðϵÞ; ð35Þ

which is the same as the result in Eq. (34). The n̄-collinear
subtraction is given by taking the limit k− ≫ kþ with kþk− ∼
k2⊥ in the first line of Eq. (34):

sn̄ ¼ −2CFg2sμ2ϵw2νη

×
Z

dDk
ð2πÞD−1 δðk2 −m2

gÞδðl − kþÞjk−j−η 1

kþ
1

k−

¼ −
αsCF

2π

�
eγE

μ2

m2
g

�
ϵ

w2

�
ν

m2
g

�
η θðlÞ
l1−η

Γðηþ ϵÞ
Γð1þ ηÞ : ð36Þ

Thus, the zero-bin subtracted real contribution is

mr ¼ ~mr − sn − sn̄ ¼ −sn̄

¼ 2
αsCF

π
w2

��
1

2

eϵγEΓðϵÞ
η

�
μ

mg

�
2ϵ

−
1

2ϵ2
þ 1

2ϵ
ln

ν

μ2

− ln2
μ

mg
þ ln

μ

mg
ln

ν

m2
g
þ π2

24

�
δðlÞ

þ
�
1

2ϵ
þ ln

μ

mg

�
1

lþ

�
; ð37Þ

where the plus function of the dimensionful variable l is
given in terms of the definition of a dimensionless variable
x ¼ l=κ,

1

ðlÞþ
¼ 1

κðxÞþ
þ ln κδðκxÞ; ð38Þ

with

1

ðxÞþ
≡ lim

β→0

�
θðx − βÞ

x
þ ln βδðxÞ

�
: ð39Þ

As was pointed out in Refs. [16,22], the net effect of the
zero-bin subtraction without a rapidity regulator is to divide
by the square of the soft matrix element.2 In perturbation
theory, this is equivalent to subtracting the soft contribu-
tion. With the introduction of a rapidity regulator this

FIG. 3. Feynman diagrams for the one-loop evaluation of the
soft function: (a) is the virtual contribution and (b) is the real
contribution. There are two additional diagrams which are
obtained by reflecting about a vertical axis through the middle
of the diagram. The double lines indicate Wilson lines which
produce the gluons, and n and n̄ label the direction of the Wilson
lines. The gap between vertices indicates a cut.

2In the QCD factorization approach the need for subtracting
soft/collinear overlap terms in the case of DIS endpoint diver-
gences was noted in Ref. [23], where an explicit subtraction
procedure was carried out based on the method of Ref. [24].
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equivalence no longer holds. The only nonzero zero-bin
subtraction in the virtual pieces is from the overlap of
n-collinear modes in Eq. (28) with the soft region. This is
equivalent to dividing by a single power of the soft matrix
element. There is, however, no real collinear contribution,
and the zero-bin subtractions for the real part come from the
overlap of the soft integral with the two collinear regions.
These subtractions are not equivalent to dividing by the
square of the soft function, and a more complex picture
emerges once rapidity divergences are isolated. Adding the
virtual and real constributions and multiplying by two to
account for the mirror image diagrams gives the one-loop
expression for the soft function,

SðlÞð1Þ ¼ αsCF

π
w2

�
−
eϵγEΓðϵÞ

η

�
μ

mg

�
2ϵ

δðlÞ

þ
�
1

ϵ
þ ln

μ2

m2
g

��
1

ðlÞþ
− ln νδðlÞ

��
: ð40Þ

When this expression is written in terms of the dimension-
less variable z ¼ l=κ, we find

SðlÞð1Þ ¼ αsCF

π
w2

�
−
eϵγEΓðϵÞ

η

�
μ

mg

�
2ϵ

δðzÞ

þ
�
1

ϵ
þ ln

μ2

m2
g

��
1

zþ
− ln

ν

κ
δðlÞ

��
: ð41Þ

The single logarithm of ν in this expression is minimized
for ν ∼ κ ∼Qð1 − xÞ, which is different from the value of
ν ∼Q required to minimize the logarithm in Eq. (31). Thus,
while the dependence on the rapidity regulator vanishes if
the above expression is added to the collinear result in
Eq. (31), a single large logarithm of the ratio of Q to
κ ∼Qð1 − xÞ is left over. This constitutes an incomplete
cancellation of sensitivity to rapidity scales between the
soft and collinear contributions, and running in ν is
necessary to resum these logarithms.

V. RENORMALIZATION AND
RUNNING

The divergences in ϵ and η in Eq. (31) and Eq. (41) can
be subtracted by suitable counterterms, which we define by

CnðQ − kÞR ¼ Z−1
n CnðQ − kÞB

SðlÞR ¼
Z

dl0Zsðl − l0Þ−1Sðl0ÞB;

where the superscripts R and B indicate renormalized and
bare. To extract Zn, we need the wave function renorm-
alization factor at one loop,

Zψ ¼ 1 −
αsCF

4πϵ
: ð42Þ

Then the one-loop collinear counterterm is

Zn ¼ 1þ αsCF

π
w2

�
eϵγEΓðϵÞ

η

�
μ

mg

�
2ϵ

þ 1

ϵ

�
3

4
þ ln

ν

n̄ · p

��
:

ð43Þ
The one-loop soft counterterm is

ZsðlÞ ¼ δðlÞ þ αsCF

π
w2

�
−
eϵγEΓðϵÞ

η

�
μ

mg

�
2ϵ

δðlÞ

þ 1

ϵ

�
1

ðlÞþ
− ln νδðlÞ

��
: ð44Þ

A nontrivial check on this result is to verify that these
counterterms obey the consistency condition

ZHZJn̄ðlÞ ¼ Z−1
n Z−1

s ðlÞ; ð45Þ

where ZH is the square of the counterterm of the SCET DIS
current, and ZJn̄ðlÞ is the jet-function counterterm. The
one-loop expression for ZH was first given in the Appendix
of Ref. [25]. Converting their expression from 4 − ϵ
dimensions to 4 − 2ϵ dimensions and squaring gives

ZH ¼ 1 −
αsCF

2π

�
2

ϵ2
þ 3

ϵ
þ 2

ϵ
ln

μ2

Q2

�
; ð46Þ

whereQ2 ¼ n̄ · pn · pX, with p
μ
X the final state momentum.

The one-loop expression for ZJn̄ðlÞ can be obtained from
Ref. [9],

ZJn̄ðlÞ ¼ δðlÞ

þ αsCF

4π

��
4

ϵ2
þ 3

ϵ
−
4

ϵ
ln
n · pX

μ2

�
δðlÞ − 4

ϵ

1

lþ

�
:

ð47Þ
Thus, at one loop,

ZHZJn̄ðlÞ ¼ δðlÞ

þ αsCF

4π

��
−
3

ϵ
þ 4

ϵ
lnðn̄ · pÞ

�
δðlÞ − 4

ϵ

1

lþ

�
:

ð48Þ
Adding the inverse of Eq. (43) and the inverse of Eq. (44),
we find that at one loop the expression for Z−1

n Z−1
s ðlÞ

agrees with the above expression, satisfying the consis-
tency condition.
We can extract the one-loop anomalous dimensions from

the counterterms above. The μ anomalous dimensions are

γμnðμ; νÞ ¼ 2αsCF

π

�
3

4
þ ln

ν

n̄ · p

�

γμsðl; μ; νÞ ¼ 2αsCF

π

�
1

lþ
− ln νδðlÞ

�
: ð49Þ
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When γμn and γ
μ
s are added, the rapidity scale ν cancels as it

must; however, we clearly see that a large logarithm of
n̄ · p ∼Q remains. Once again this is a manifestation of
the incomplete cancellation of rapidity logarithms. The ν
anomalous dimensions are

γνnðμ; νÞ ¼
αsCF

π
ln

μ2

m2
g

γνsðμ; νÞ ¼ −
αsCF

π
ln

μ2

m2
g
: ð50Þ

We notice that γνn þ γνs ¼ 0 as required for consistency, and
as is immediately obvious from the presence of mg in these
expressions, the running in ν is not perturbative. Although
we have calculated these anomalous dimensions in pertur-
bation theory at one loop in a particular scheme, they reveal
sensitivity to IR scales, which may signal a breakdown of
rapidity factorization in SCETII. This IR sensitivity is also
present if a δ regulator [26] is used to regulate rapidity
divergences [27].
The running in μ and the running in ν are independent of

each other and can be carried out in any order. The one-loop
μ-running factor for the collinear function is

Cnðk; μ; νcÞ ¼ Uðμ; μ0; νcÞCnðk; μ0; νcÞ

Uðμ; μ0; νcÞ ¼ e
3
4
ωðμ;μ0Þ

�
νc

n̄ · p

�
ωðμ;μ0Þ

; ð51Þ

where νc is the collinear rapidity scale and

ωðμ; μ0Þ ¼
4CF

β0
ln

�
αsðμÞ
αsðμ0Þ

�
: ð52Þ

The one-loop μ-running factor for the soft function is

Sðl; μ; νsÞ ¼
Z

drUðl − r; μ; μ0; νsÞSðr; μ0; νsÞ

Uðl − r; μ; μ0; νsÞ ¼
ðe2γEνsÞ−ωðμ;μ0Þ
Γðωðμ; μ0ÞÞ

1

½ðl − rÞ1−ωðμ;μ0Þ�þ
:

ð53Þ

Despite the fact that the ν running is nonperturbative, we
give the expression for the ν-running factor,

Sðl; μs; νÞ ¼ Vðμs; ν; ν0ÞSðl; μs; ν0Þ

Vðμs; ν; ν0Þ ¼
�
ν

ν0

�
ωðμs;mgÞ

: ð54Þ

Since the running in μ is independent of the running ν we
are free to choose the order in which we resum the different
types of logarithms. Here, however, the running in ν is
nonperturbative and can not be done. Thus, we can only run
in μ. One approach is to carry out the running in μ with
νc ∼Q and νs ∼Qð1 − xÞ in the expressions above. This
minimizes logarithms of ν; however, the ν dependence of

the soft and collinear pieces does not cancel in the
perturbative expressions for the one loop results, nor does
it cancel between the anomalous dimensions. If the ν
running were not IR sensitive and could be carried out
there would be an additional resumation factor that would
result from the running the soft function from νs to νc. Once
this factor is included all expressions would be ν indepen-
dent to the order we are working. A second approach,
equivalent to the one adopted in Ref. [15], is where the ν
scale in the one-loop matrix elements and the anomalous
dimensions are all chosen to be the same. In this approach
the ν dependence cancels between the soft and collinear
pieces, but a large single logarithm is left over. Implicitly
this approach first runs the soft function in ν to the scale
νs ∼ νc ∼Q, with μs ∼ Λhad in Eq. (54). Since the running
in ν is nonperturbative we are left with little choice but to
include the ν resummation factor as part of our non-
perturbative model for the PDF. As a result the model
could contain large single logarithms that would manifest
themselves as larger than expected parameters.

VI. DEFINITION OF THE PARTON
DISTRIBUTION FUNCTION

Finally, we consider the definition of the parton distri-
bution function. The PDF defined in Eq. (25) above is
worrisome because the soft function is sensitive to both the
initial and final state due to the soft Wilson lines running to
positive infinity. This would imply that the PDF is not
universal to other processes with the same initial state but
different final state. To keep the PDF universal, we want to
require that it only depends on properties of the initial state.
In this section we show that the soft function in Eq. (17) can
be manipulated into a form which is only sensitive to initial
state radiation making our definition of the PDF universal.
We introduce Wilson lines linking the far past to the far

future [28],

~Y∞†
n̄ ¼ P

−
exp

�
−ig

Z
∞

−∞
dsn̄ · Asðn̄sÞ

�
ð55Þ

~Y∞
n̄ ¼ P exp

�
ig
Z

∞

−∞
dsn̄ · Asðn̄sÞ

�
; ð56Þ

and insert the identity ~Y∞†
n̄

~Y∞
n̄ ≡ 1 between the time-

ordered and anti-time-ordered Wilson lines in the soft
function Eq. (17). In Appendix A, we show that

1

Nc
h0jTrðT̄½Y†

nðn · xÞ ~Yn̄ðn · xÞ� ~Y∞†
n̄

~Y∞
n̄ T½ ~Y†

n̄ð0ÞYnð0Þ�Þj0i

¼ 1

Nc
h0jTrðT̄½Y†

nðn · xÞYn̄ðn · xÞ�T½Y†
n̄ð0ÞYnð0Þ�Þj0i

≡
Z

dle−
i
2
ln·xSðl; μÞ; ð57Þ

which gives an Sðl; μÞ that is sensitive only to initial state
information, since all four Wilson lines extend from minus
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infinity to the interaction point. Now the expression for the
PDF defined in Eq. (25) has the form

ϕns
q ðz;μÞ¼1

2

X
σ

hhnðp;σÞjχ̄nð0Þ
n̄
2
χnð0Þjhnðp;σÞi

×
Z

dn·x
4π

e
i
2
Qzn·x

×
1

Nc
h0jTrðT̄½Y†

nðn·xÞYn̄ðn·xÞ�T½Y†
n̄ð0ÞYnð0Þ�Þj0i;

ð58Þ

which makes it manifest that the PDF only depends on the
initial state.

VII. CONCLUSIONS

In this paper we have revisited DIS in the endpoint
region x ∼ 1 with the goal of a clearer understanding of the
individual factors in the factorized hadronic tensor. We use
a two-step process where we first match QCD onto SCETI
at a scale ∼Q and then match onto SCETII at a scale
∼Q

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
. In agreement with previous results, we find that

the hadronic tensor factors into the form

Wμν
eff ¼ − gμν⊥HðQ; μq; μcÞ

×
Z

dlJn̄ðl; μc; μÞϕns
q ðQ 1 − x

x
þ l; μÞ;

with H the hard coefficient, Jn̄ the jet function, and ϕns
q the

quark PDF. The PDF is defined as

ϕns
q ðl; μÞ ¼ ZnðQ; μ; νÞSðl; μ; νÞ;

with Zn the collinear factor and S the soft function. Both
the collinear factor and the soft function need a rapidity
regulator to be well defined, while the product is free of
rapidity divergences. However, as we show in a one-loop
calculation, the scale which minimizes rapidity logarithms
in the collinear factor is νc ∼Q, while the scale which
minimizes rapidity logarithms in the soft function is
νs ∼Qð1 − xÞ. Thus, while the product of Zn and S is
free of rapidity divergences, there is only an incomplete
cancelation of these divergences which results in a
lnðνs=νcÞ term in the PDF. To sum this large logarithm
running in rapidity is necessary. We find that rapidity
running in DIS at the endpoint is nonperturbative and has to
be absorbed into the nonperturbative soft function.
In addition, we find two other interesting aspects to the

one-loop calculations. First, in the collinear factor, real
radiation is prohibited by label momentum conservation so
this function only includes virtual contributions. Second, in
the one-loop computation of the soft function, the overlap
of the soft degrees of freedom with n and n̄ collinear
degrees of freedom needs to be subtracted.

Finally, we consider the proper definition of the PDF.
Our derivation of the factored form of the DIS hadronic
tensor makes explicit that while the collinear factor only
depends on the initial state interactions, the soft function
appears to depend both on initial and final state inter-
actions. We show that appearances can be deceiving and
that the soft function can be manipulated into a form that is
sensitive only to initial state information which guarantees
the universality of the PDF. In a future publication, we will
examine rapidity divergences in different regularization
schemes both in DIS and Drell-Yan in the endpoint
region [27].
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APPENDIX: INITIAL AND FINAL
STATE SOFT WILSON LINES IN

SOFT FUNCTIONS

In this appendix we prove Eq. (57), based on the work in
the Appendix of Ref. [25]. We start with a general event-
shape function,

SðkÞ ¼ 1

Nc

Z
du
ð2πÞ e

iku

× h0jT̄½ðY†
n̄ÞedðYnÞae �ðun=2ÞT½ðY†

nÞcaðYn̄Þdc �ð0Þj0i:
ðA1Þ

The Wilson lines in this expression can be divided into N
infinitesimal segments of length ds with a subscript
denoting their space-time position along the integration
path,

ðYnÞae ¼ P̄ exp

�
−ig

Z
∞

0

dsn · As

�

¼ ðe−igA1dsÞb1e …ðe−igANdsÞabN−1
; ðA2Þ

ðY†
nÞca ¼ P exp

�
ig
Z

∞

0

dsn · As

�

¼ ðeigANdsÞbN−1
a …ðeigA1dsÞcb1 ; ðA3Þ

ðYn̄Þdc ¼ P exp
�
ig
Z

0

−∞
dsn̄ · As

�

¼ ðe−igA1ðn̄ÞdsÞb1c …ðe−igANðn̄ÞdsÞdbN−1
; ðA4Þ
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ðY†
n̄Þed ¼ P̄ exp

�
ig
Z

0

−∞
dsn̄ · As

�

¼ ðeigANðn̄ÞdsÞbN−1
d …ðeigA1ðn̄ÞdsÞeb1 : ðA5Þ

Among these Wilson lines, Eq. (A2) and Eq. (A3) are sums
of outgoing gluons, which represent final state gluons.
Applying time-ordering and anti-time-ordering operators,
we obtain

TðY†
nÞca ¼ ðY†

nÞca ðA6Þ
and

T̄ðYnÞae ¼ ðYnÞae: ðA7Þ

For the other two, we find

TðYn̄Þdc ¼ ðe−igANðn̄ÞdsÞdbN−1
…ðe−igA1ðn̄ÞdsÞb1c ðA8Þ

¼ ðe−igAT
Nðn̄ÞdsÞbN−1

d …ðe−igAT
1
ðn̄ÞdsÞcb1 ðA9Þ

¼ ðeign̄·ĀNdsÞbN−1
d …ðeign̄·A1dsÞcb1 ¼ ðȲ†

n̄Þcd; ðA10Þ

T̄ðY†
n̄Þed ¼ ðeigA1ðn̄ÞdsÞeb1…ðeigANðn̄ÞdsÞbN−1

d ðA11Þ

¼ ðeigAT
1
dsÞb1e …ðeigAT

Nðn̄ÞdsÞdbN−1
ðA12Þ

¼ ðe−igĀin̄dsÞb1e …ðe−ign̄·ĀNdsÞdbN−1
¼ Ȳd

n̄e: ðA13Þ
Applying the above identities to the expression in Eq. (A1)
gives

SðkÞ ¼ 1

Nc

Z
du
ð2πÞ e

iku

× h0jðȲn̄ÞdeðYnÞa0e ðun=2Þδaa0 ðY†
nÞcaðȲ†

n̄Þcdð0Þj0i:
ðA14Þ

Now consider two infinite Wilson lines,

ðY∞Þfa0 ¼ P exp

�
ig
Z

∞

−∞
dsn · As

�
un
2

��
f

a0

¼ P exp

�
ig
Z

∞

−∞
dsn · Asð0Þ

�
f

a0
ðA15Þ

¼ fðeigAN ·ndsÞcN−1
a0 · ðeigA1·ndsÞc0c1gfðeigA−1·ndsÞc1c0

· ðeigA−N ·ndsÞfcNþ1
g; ðA16Þ

ðY†
∞Þaf ¼ P̄ exp

�
−ig

Z
∞

−∞
dsn · Asðun=2Þ

�
a0

f

¼ P̄ exp
�
−ig

Z
∞

−∞
dsn · Asð0Þ

�
a0

f
ðA17Þ

¼ fðe−igA−N ·ndsÞcNþ1

f · ðe−igA−1·ndsÞc0c−1g
× fðe−igA1·ndsÞc1c0 · ðe−igAN ·ndsÞacN−1

g; ðA18Þ
which have the property that

ðY∞Þfa0 ðY†
∞Þaf ¼ δaa0 : ðA19Þ

We can use this property to replace the identity δaa0 in SðkÞ
with the pair of infinite Wilson lines above,

SðkÞ ¼ 1

Nc

Z
du
ð2πÞ e

ikuh0jðȲn̄ÞdeðYnÞa0e ðun=2Þδaa0 ðY†
nÞcaðȲ†

n̄Þcdð0Þj0i ðA20Þ

¼ 1

Nc

Z
du
ð2πÞ e

ikuh0jfðe−igĀN ·n̄dsÞb1e …ðe−ign̄·A1dsÞdbN−1
gfðe−igA1·ndsÞb1e …ðe−igAN ·ndsÞa0bN−1

g
�
un
2

�

· fðeigAN ·ndsÞcN−1
a0 …ðeigA1·ndsÞc0c1gfðeigA−1·ndsÞc−1c0 …ðeigA−N ·ndsÞfcNþ1

g
�
un
2

�

· fðe−igA−N ·ndsÞc−Nþ1

f …ðe−igA−1·ndsÞc0c−1gfðe−igA1·ndsÞc1c0…ðe−igAN ·ndsÞacN−1
gð0Þ

· fðeigAN ·ndsÞbN−1
a …ðeigA1·ndsÞcb1g · fðeign̄·ANdsÞbN−1

d …ðeign̄·A1dsÞcb1gð0Þj0i

¼ 1

Nc

Z
du
ð2πÞ e

ikuh0jfðe−igĀN ·n̄dsÞb1e …ðe−ign̄·A1dsÞdbN−1
gfðeigA−1·ndsÞc−1e …ðeigA−N ·ndsÞfc−Nþ1

g
�
un
2

�

· fðe−igA−N ·ndsÞc−Nþ1

f …ðe−igA−1·ndsÞcc−1gfðeign̄·ANdsÞbN−1
d …ðeigĀ1·n̄dsÞcb1gð0Þj0i

¼ 1

Nc

Z
du
ð2πÞ e

ikuh0jðȲn̄ÞdeðYnÞfeðun=2ÞðY†
nÞcfðY†

n̄Þcdð0Þj0i

¼ 1

Nc

Z
du
ð2πÞ e

ikuh0jT̄½ðY†
n̄ÞedðYnÞfe �ðun=2ÞT½ðY†

nÞcfðYn̄Þdc �ð0Þj0i; ðA21Þ
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in which

ðYnÞfeðun=2Þ ¼ ðeigA−1·ndsÞc−1e …ðeigA−N ·ndsÞfc−Nþ1
¼ P exp

�
ig
Z

0

−∞
dsn · As

�
ðA22Þ

ðY†
nÞcfð0Þ ¼ ðe−igA−N ·ndsÞc−Nþ1

f …ðe−igA−1·ndsÞcc−1 ¼ P̄ exp

�
−ig

Z
0

−∞
dsn · As

�
ðA23Þ

are incoming gluons. Thus, from Eq. (A1) to Eq. (A21), we show that by inserting the identity operator for infinite Wilson
lines, we change the final state Wilson lines in the soft function into initial state Wilson lines.
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