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We study the strangenessþ1meson-baryon systems to obtain improved KN and K�N amplitudes and to
look for a possible resonance formation by the KN-K�N coupled interaction. We obtain amplitudes for
light vector meson–baryon systems by implementing the s-, t- and u-channel diagrams and a contact
interaction. The pseudoscalar meson-baryon interactions are obtained by relying on the Weinberg-
Tomozawa theorem. The transition amplitudes between the systems consisting of pseudoscalars and vector
mesons are calculated by extending the Kroll-Ruderman term for pion photoproduction by replacing the
photon by a vector meson. We fix the subtraction constants required to calculate the loops by fitting ourKN
amplitudes to the data available for the isospin 0 and 1 s-wave phase shifts. We provide the scattering
lengths and the total cross sections for theKN andK�N systems obtained in our model, which can be useful
in future in-medium calculations. Our amplitudes do not correspond to the formation of a resonance in any
of the isospin and spin configurations.
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I. INTRODUCTION

Recent experimental studies related to the production of
the K and K� mesons in proton-proton and proton-nucleus
collisions are bringing forward some intriguing findings
which seem to call for a reinvestigation of the interaction
of these mesons with nuclear matter. For example, a deep
subthreshold K�0 production has been reported in
Ar þ KCl collisions by HADES, with the experimental
K�0 yield and K�0=K0 being overestimated by about a
factor 5 and 2, respectively, when applying the UrQMD
transport approach [1]. Recent results on K0 production
reported in pþ p collisions at 3.5 GeV by the HADES
Collaboration show a dominant resonant production com-
ing from Δð1232Þ and Σð1385Þ for intermediate energies in
the formation of K0 [2]. The need for reliable information
on the in-medium kaon potential has also been discussed in
Ref. [3], where the K0 production in pþ Nb reactions at a
beam kinetic energy of 3.5 GeV is analyzed by HADES.
Further, by analyzing the freeze-out temperature using a
statistical hadronization model, the experimental results for
K�0 production seem to indicate the necessity of consid-
ering the rescattering of the decay products of K�0 in the
hadronic matter [1]. The importance of the hadronic
interactions of the final states is also realized for the K�0
production in Auþ Au and Cuþ Cu at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 62.4 and
200 GeV collisions by the STAR Collaboration [4]. There

are some unsolved issues present in the field from some
previous experiments too. For example, the attenuation of
the K� and K̄� states in the hadronic phase of the expanding
fireball, as determined by the observation of a strong
suppression of the total yield ratios hK�i=hKþi and
hK̄�i=hK−i in central Pbþ Pb collisions compared to
pþ p, Cþ C and Siþ Si by the NA49 Collaboration
[5], was not reproduced using UrQMD [6,7] or statistical
HQGM [8] models. These findings indicate the importance
of obtaining a reliable determination of K and K� inter-
actions with nuclear matter. For such studies, it is helpful to
first have information on (free) KN and K�N interaction.
The motivation of the present paper is to make an attempt
to revise the information available on the KN and K�N
s-wave interactions from previous studies by using the more
complete approach of Refs. [9–12] and by constraining the
resulting amplitudes to fit the relevant available data.
In Refs. [9–12] a detailed investigation of coupled light

meson–baryon systems involving pseudoscalars and vector
mesons was performed. The basic vector meson–baryon
(VB) Lagrangian, used in Refs. [9–12], is based on the
hidden local symmetry [13] which treats vector mesons
consistently with the chiral symmetry. A study of VB
systems done in Ref. [9] showed that the gauge invariance
of the Lagrangian enforces the consideration of a contact
term together with s-, t- and u-channel interactions, which
all turn out to give important contributions. This result
shows that the low-energy theorems related to the pseu-
doscalar mesons cannot be extended to the VB systems,
implying that it is important to solve the Bethe-Salpeter
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equation using the sum of all these interactions as the
kernel. The formalism was further extended to couple
VB with pseudoscalar meson–baryon (PB) systems by
extending the Kroll-Ruderman theorem for the pion photo-
production by replacing the photon by a vector meson in
accordance with vector meson dominance. This formalism
has been used to solve coupled-channel equations for
strange and nonstrange meson-baryon systems [11,12],
and has been found to be useful in reproducing some
relevant experimental data and understanding the properties
of several resonances.
A question might arise at this point: why should coupling

pseudoscalar and vector baryons be useful in the light
baryon sector? We would like to recall that efforts in this
direction were made earlier within different formalisms
[10–12,14–19] showing that this coupling is important for
reproducing experimental data. For example, it is crucial
for calculating some properties of a resonance such as its
partial decay widths for different channels. In some cases
this coupling can even play an important role in obtaining
the right mass and quantum numbers of a resonance,
especially when the thresholds of the channels with
pseudoscalars and vectors are closely spaced, like
KΛ; KΣ, ρN;ωN in the nonstrange sector, KΞ and ρΛ
in the strangeness −1 sector. Although the KN and K�N
thresholds are not as close as the preceding examples, as we
shall explain in the next section, it is important to couple
them since the KN interaction in the isospin 0, spin 1=2
configuration is null. The coupling to the K�N system,
then, could be useful in obtaining nonzero phase shifts and
scattering lengths and comparing them with those available
from the partial wave analyses of the relevant experimental
data [20–23].
It is also our intention to look for a possible resonance in

the KN-K�N coupled-channel system. Although the KN
interaction is known to be repulsive, it is possible that its
coupling to K�N can result in the formation of a resonance.
In fact such a possibility was explored earlier in a study of
KN-K�N coupled systems [19] within a formalism based
on an SU(6) spin-flavor symmetry for the light hadrons.
A calculation of the Weinberg-Tomozawa term (t channel)
for all channels was done in Ref. [19] and as a result an
isoscalar resonance with spin-parity 3=2− and mass
between 1.7 and 1.8 GeV was obtained. A similar situation
has been found in the case of anticharm meson–baryon
systems in Ref. [24], where a resonance with spin-parity
1=2− and isospin 0 is obtained when pseudoscalar meson–
baryon and vector meson–baryon channels are coupled. In
this case the uncoupled amplitudes are null and the
resonance is obtained only as a consequence of coupling
the two channels, i.e., due to the transition amplitude. An
anticharm baryon (like a strange baryon) necessarily
requires a five-quark content [24–28].
It might sound discouraging to look for a strangenessþ1

resonance with the failure of several experiments in finding

Θþð1540Þ [29] (for a review on this, see Ref. [30] and for
an alternative explanation for the enhancement of the cross
section seen in Ref. [29] see Refs. [31,32]). These findings,
however, do not imply that no strangeness þ1 baryon
exists. Maybe one has to look for a state with a different
mass and width, for instance, closer to theK�N threshold as
indicated in Refs. [19,33,34].
In fact, the consideration of the possibility of formation

of a resonance in the present case is very much in line with
the studies of five-quark or meson-baryon systems with
strangeness −1 or 0 [35–40]. In these latter works it has
been shown that a five valence quark content or a meson-
baryon content of the resonances formed in these systems is
essentially needed to reproduce the relevant experimental
data. In this sense, such strangeness −1 or 0 resonances can
also be considered as pentaquark states. Actually similar
investigations have even been extended to systems of two
mesons and a baryon where resonances arising purely from
the three-body dynamics have been deduced [41–44], thus
indicating the importance of heptaquark content in some
cases. Proceeding in a similar way we investigate if meson-
baryon configurations with a positive strangeness also form
a resonance or a bound state.
By solving coupled-channel equations in our formalism

with the subtraction constants constrained by the available
data, we find no resonance. Further, we attempt to extend
our model by considering the exchange of some hyperon
resonances in the u channel, for which the necessary
couplings are available from our previous works [11].
But we end up finding these contributions to be negligible.
As a result, we conclude that light meson–baryon dynamics
does not lead to the formation of any resonance. Our work,
thus, does not support the existence of any light pentaquark
with spin-parity 1=2− or 3=2−.

II. THE KN AND K�N SCATTERING

A study of the KN and K�N coupled-channel dynamics
requires the calculation of the scattering matrix, T. In the
present work we are interested in obtaining the T matrix in
the s-wave. This can be done by solving the Bethe-Salpeter
equation, which in its on-shell factorization form reads
as [37,45]

T ¼ ð1 − VGÞ−1V; ð1Þ

where G is the loop function of two hadrons. The kernel V,
or the potential, is obtained from the Lagrangians based on
the hidden local symmetry (as done in Refs. [9–11]), when
dealing with vector mesons, and on the chiral symmetry,
when studying pseudoscalar meson–baryon systems.
The transition between KN and K�N is obtained from
an extension of the Kroll-Ruderman term [10].
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A. Determination of the kernel V of the
Bethe-Salpeter equation

1. Pseudoscalar meson–baryon interaction

To determine the KN → KN amplitude we use the
lowest order chiral Lagrangian [46,47]

LPB ¼ hB̄iγμ∂μBþ B̄iγμ½Γμ; B�i −MBhB̄Bi

þ 1

2
D0hB̄γμγ5fuμ; Bgi þ

1

2
F0hB̄γμγ5½uμ; B�i; ð2Þ

with D0 ¼ 0.8, F0 ¼ 0.46, such that F0 þD0 ≃ gA ¼ 1.26
and

Γμ ¼
1

2
ðu†∂μuþ u∂μu†Þ; uμ ¼ iu†∂μUu†;

U ¼ u2 ¼ exp

�
i
P
f

�
;

where P and B are SU(3) matrices for pseudoscalar mesons
and octet baryons given by

P ¼

0
BBB@

π0 þ 1ffiffi
3

p η
ffiffiffi
2

p
πþ

ffiffiffi
2

p
Kþ

ffiffiffi
2

p
π− −π0 þ 1ffiffi

3
p η

ffiffiffi
2

p
K0

ffiffiffi
2

p
K−

ffiffiffi
2

p
K̄0 −2ffiffi

3
p η

1
CCCA;

B ¼

0
BBB@

1ffiffi
6

p Λþ 1ffiffi
2

p Σ0 Σþ p

Σ− 1ffiffi
6

p Λ − 1ffiffi
2

p Σ0 n

Ξ− Ξ0 −
ffiffi
2
3

q
Λ

1
CCCA:

The standard Weinberg-Tomozawa contribution for the KN
system can be obtained using Eq. (2) as [37]

VI
KN ¼ −

CI
KN

4f2K
ðωþ ω0Þ; ð3Þ

where the superscript label I indicates the isospin of the
meson-baryon system. In the present case we can have total
isospin I ¼ 0 or 1. The coefficient CI

KN is 0 (−2) for isospin
0 (1), when using average masses for the kaons (K0, Kþ)
and the nucleons (n, p). Further, fK ¼ 113.46 MeV is the
kaon decay constant, and ω (ω0) corresponds to the energy
of the kaon in the initial (final) state.

2. Vector meson–baryon interaction

For the case of K�N we use the formalism developed in
our previous works [9,11,12] to investigate the interaction
of vector mesons with baryons. We review this formalism
here for the convenience of the reader. Our formalism relies
on the theory of the hidden local symmetry (HLS)
developed in Ref. [13], which accommodates vector
mesons consistently with the chiral symmetry. Let us start
the discussion by writing the SU(2) VB Lagrangian

LρN ¼ ψ̄iDψ ; ð4Þ
which has been obtained through the minimal substitution

∂μ → Dμ ¼ ∂μ þ igρμðxÞ; ð5Þ

and by requiring that the nucleon fields (ψ ) transform under
the HLS as ψ → hðxÞψ , where hðxÞ is an element of the
HLS. Equation (4) can be further extended to

LρN ¼ −gψ̄
�
γμρ

μ þ κρ
4M

σμνρ
μν

�
ψ ; ð6Þ

recalling the need to reproduce the anomalous magnetic
moment of the baryons. It was found in Refs. [9,12] that the
gauge invariance of Eq. (6) under the HLS transformation,
which requires the invariance of the new term
ψ̄h†ðxÞσμνρμνhðxÞψ , can be accomplished only when the
commutator part of the tensor field ρμν is taken into account.
This latter term leads to a contact VB interaction (originating
from the two vector fields in the commutator term) which
gives a large contribution. Thus, we find the tensor part of
the VB interaction to be relevant, not only from the point of
view of the contribution obtained from the same but also
from the point of view of the gauge invariance of the HLS.
The importance of the tensor interaction has also been
discussed in other contexts in Refs. [48–50].
The SU(3) generalization of Eq. (6) leads to the

Lagrangian

LVB ¼ −g
�
hB̄γμ½Vμ; B�i þ hB̄γμBihVμi

þ 1

4M
ðFhB̄σμν½Vμν; B�i þDhB̄σμνfVμν; BgiÞ

�
;

ð7Þ

where Vμν is the tensor field of the vector mesons,

Vμν ¼ ∂μVν − ∂νVμ þ ig½Vμ; Vν�: ð8Þ

and V denotes the SU(3) matrix for the vector mesons

V ¼ 1

2

0
BB@

ρ0 þ ω
ffiffiffi
2

p
ρþ

ffiffiffi
2

p
K�þffiffiffi

2
p

ρ− −ρ0 þ ω
ffiffiffi
2

p
K�0ffiffiffi

2
p

K�− ffiffiffi
2

p
K̄�0 ffiffiffi

2
p

ϕ

1
CCA: ð9Þ

In Eq. (7), the coupling g is obtained by the
Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin relation
[51,52]

g ¼ mK�ffiffiffi
2

p
fK�

; ð10Þ

and the constants D ¼ 2.4, F ¼ 0.82. These values of D
and F were found to well reproduce the magnetic moments
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of the baryons in Ref. [53]. It should be mentioned here that
Eq. (7) is also in good agreement with the VB Lagrangians
obtained with other approaches [54,55].
Further, to obtain the right couplings for the physical ω

and ϕmeson at the meson-baryon-baryon vertices, we have
considered the mixing of their octet and singlet compo-
nents. Under the ideal mixing assumption, we write

ω ¼
ffiffiffi
1

3

r
ω8 þ

ffiffiffi
2

3

r
ω0;

ϕ ¼ −
ffiffiffi
2

3

r
ϕ8 þ

ffiffiffi
1

3

r
ϕ0; ð11Þ

and use only the octet part of these wave functions in
Eq. (7). In other words, the Lagrangian given by Eq. (7)
corresponds to the interaction between the octet vector
mesons and the octet baryons. For the singlet states we
write

LV0BB ¼ −g
�
hB̄γμBihVμ

0i þ
C0

4M
hB̄σμνVμν

0 Bi
�
; ð12Þ

where the constant C0 is chosen to be 3F −D such that the
anomalous magnetic coupling at the ϕNN vertex is null and
for ωNN is κω ≃ 3F −D. These results, together with the
anomalous magnetic coupling at the ρNN vertex, which is
Dþ F ¼ κρ, lead to a consistent formalism.
From Eqs. (7) and (12), we can determine Yukawa-type

vertices which can be used to write diagrams corresponding
to the exchange of a baryon in s- and u-channels. To obtain
the amplitudes for t-channel diagrams we additionally need
the kinetic term of the hidden local symmetry Lagrangian
for the three-vector meson vertices

L3V ∈ −
1

2
hVμνVμνi: ð13Þ

The VB amplitudes in our formalism, hence, get con-
tribution from s-, t- and u-channel exchange diagrams
together with a contact term (CT) arising from the com-
mutator in the vector meson tensor. Thus, the leading order
amplitude for K�N is written as

VI
K�N ¼ VI

t;K�N þ VI
s;K�N þ VI

u;K�N þ VI
CT;K�N: ð14Þ

Since K� has spin 1 and the spin of the nucleon N is 1=2,
we can have total spin S ¼ 1=2 and 3=2 for the system in
the s-wave. The potentials in Eq. (14) are, in fact, spin (and
isospin) dependent and need to be projected to each
configuration. The t-channel amplitude in Eq. (14) is
analogous to the one in Eq. (3) (as also obtained earlier
in Ref. [56]),

VI
t;K�N ¼ −

CI
t;K�N

4f2K�
ðωþ ω0Þ~ϵ1 · ~ϵ2; ð15Þ

with ωðω0Þ and ϵ1ðϵ2Þ representing the energy and the
polarization vector of the K� in the initial (final) state,
respectively. The values of CI

t;K�N are 0 and −2 for isospin 0
and 1, respectively, and fK� ¼ 171.12 MeV is the decay
constant of K� [57,58].
Next, for the system studied here, the s-channel potential

is trivially zero, since it would imply the exchange of a
baryon with strangenessþ1. The u channel and the contact
term are given, at nonrelativistic energies, by

VI
u;K�N ¼ CI

u;K�N

�
g2

2M̄ −m

�
~ϵ1 · ~σ~ϵ2 · ~σ;

VI
CT;K�N ¼ iCI

CT;K�N
g2

2M
~σ · ~ϵ2 × ~ϵ1; ð16Þ

wherem (M) is the mass of the K� (N) and M̄ represents an
average mass for the baryons involved in the process. The
coefficients CI

u;K�N for the exchange of an octet baryon and
CI
CT;K�N are given in Table I. It is interesting to notice that

Vt;K�N alone is spin degenerate, while the total potential in
Eq. (14) is spin-isospin dependent due to the structure of
the amplitudes coming from the u channel and the contact
term [given in Eq. (16)]. This finding shows that diagrams
other than the t-channel can play an important role in
studies related to VB systems.
It is possible to argue that, in principle, exchange of a

baryon resonance with negative parity and/or higher spin
may also contribute to the u-channel amplitude. We have
not considered such a possibility in our previous works
since the couplings of several resonances to different
meson-baryon channels are not well known and, hence,
it can lead to the introduction of numerous unknown
parameters in the formalism which can be difficult to
control. However, in the present work, we can consider at
least the exchange of the resonances found in Ref. [11],
where the same formalism was applied to strangeness −1
systems. The states found in Ref. [11] can be associated
with some well-known resonances: Λð1405Þ, Λð1670Þ,
Λð2000Þ, Σð1750Þ, Σð1940Þ and Σð2000Þ. Thus, we con-
sider the exchange of these states in the u channel (see
examples of such diagrams in Fig. 1) by using the couplings
obtained for both PB and VB channels in Ref. [11].
To determine the contribution from the exchange of

resonances, we write the following phenomenological
effective field Lagrangians [59,60]:

TABLE I. Isospin coefficients for the u-channel amplitude
given by Eq. (16).

I ¼ 0 I ¼ 1

CI
u

Dm½ðD−3FÞm−6M̄�
6M̄2

12M̄2þ12FmM̄þðD2þ3F2Þm2

12M̄2

CI
CT D −F
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LNKH� ¼ igNKH�H̄�K†N þ H:c:;

LNK�H� ¼ gNK�H�H̄�γμγ5K
�†
μ N þ H:c:; ð17Þ

whereH� stands for Λ� or Σ� and K†ðK�†Þ creates a K (K�)
meson. It should be remarked here that the couplings gNKΛ�

and gNK�Λ� were obtained in Ref. [11] by studying VB
interaction using the Lagrangian given in Eq. (7) and, thus,
the contributions from both vector and tensor VB inter-
action are embedded in gNKΛ� and gNK�Λ� in Eq. (17).
We list gNKΛ� and gNK�Λ� in Table II for completeness.
Using the Lagrangians of Eq. (17), we obtain the

diagonal amplitudes for the diagrams shown in Fig. 1,
within the nonrelativistic approximation [in consistency
with the procedure followed to obtain the amplitudes in
Eqs. (15) and (16)], as

VH�
u;K ¼ DI∣gNKH� ∣2 M −mK þMH�

u −M2
H� þ iMH�ΓH�

; ð18Þ

VH�
u;K� ¼ DI∣gNK�H� ∣2 M −mK� þMH�

u −M2
H� þ iMH�ΓH�

~ϵ1 · ~σ ~ϵ2 ·~σ;

ð19Þ
where u is the Mandelstam variable, MH� and ΓH� are the
mass and the width of the exchanged Λ� or Σ� resonance.
DI in Eqs. (18) and (19) is a Clebsh-Gordon coefficient
taking care of the fact that we use gNKΛ� and gNK�Λ� from
Ref. [11], which are isospin projected couplings while the
Λ’s can be exchanged only in the processesK0p↔Kþn and
K�0p↔K�þn. For these processes, the value ofDI is −1 for
a Σ� exchange and −1=2 in case of Λ�. For diagonal
processes proceeding through a Σ� exchange DI is 1.

3. Amplitudes for PB↔VB

The transition KN → K�N amplitude is obtained from
the PB↔VB (PBVB) Lagrangian deduced in Ref. [10]
consistently with the HLS. The procedure consists of using
the Kroll-Ruderman term for the photoproduction of a pion
and replacing the photon by a vector meson. To do this we
use the πN Lagrangian from the nonlinear sigma model

LπN ¼ ψ̄ ½iγμ∂μ − gπNNðσ þ i~τ:~πγ5Þ�ψ ; ð20Þ

and introduce a vector meson field as a gauge boson of the
HLS through i∂ → i∂ − gρ to obtain

LπNρN ¼ −i
ggA
2fπ

N̄½π; ρμ�γμγ5N; ð21Þ

where π ¼ ~τ · π and ρ ¼ ~τ · ρ
2
.

Generalizing the Lagrangian in Eq. (21) for SU(3)
leads to

LPBVB ¼ −igKR
2fπ

ðF0hB̄γμγ5½½P;Vμ�; B�i

þD0hB̄γμγ5f½P;Vμ�; BgiÞ; ð22Þ

where F0 ¼ 0.46, D0 ¼ 0.8 such that F0 þD0 ≃ gA ¼
1.26 [10].
The KN → K�N amplitude obtained using Eq. (22) is

VI
KNK�N ¼ i

ffiffiffi
3

p gKR
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
fKfK�

p CI
KNK�N; ð23Þ

where gKR is the Kroll-Ruderman coupling [10]

gKR ¼ mK�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fKfK�

p ∼ 4.53: ð24Þ

The isospin coefficient CI
KNK�N is −2D0 for isospin 0 and

2F0 for isospin 1.
Note that in our formalism the PB and VB channels

couple only in the spin 1=2 configuration. Thus, the
amplitude in Eq. (23) determines the transition KN →
K�N for isospins 0,1 and total spin S ¼ 1=2. The PB-VB
coupling for total spin 3=2 is zero (as in Ref. [10–12]). This
is consistent with the results obtained within a different
formalism [17], where the VB amplitudes in spin 3=2 have
been found to change weakly when coupled to pseudo-
scalar baryon systems.
As can be seen in Fig. 1, the transition amplitude KN →

K�N can also get a contribution arising from the u-channel
exchange of hyperon resonances. Using the Lagrangians
given in Eq. (17), we obtain

VH�
KNK�N ¼ iDI∣gNKH� ∣∣gNK�H� ∣ M −mK� þMH�

u −M2
H� þ iMH�ΓH�

~ϵ · ~σ;

ð25Þ

FIG. 1. Diagrams involving a u-channel exchange of Λ
resonances.

TABLE II. Coupling of the resonances considered in the
u-channel diagram with different meson-baryon channels, as
found in Ref. [11]. There are two values listed for Λð1405Þ and
Σð2000Þ in this table since a two pole structure was found to be
associated with them in Ref. [11].

Resonance (R) gKNR gK�NR

Σð1940Þ D13 0.0þ i0.0 −0.3þ i0.2
Λð2000Þ S01 −0.2þ i0.4 −1.1þ i0.9
Σð1750Þ S11 0.1þ i0.4 2.7þ i1.2
Σð2000Þ S11 0.9 − i0.6 −0.8 − i0.1

−0.2 − i0.4 0.9þ i0.1
Λð1405Þ S01 1.2 − i1.4 0.4þ i1.6

2.8þ i0.6 −4.9 − i0.0
Λð1670Þ S01 0.3 − i0.6 0.9þ i0.3
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where H�, Γ� and DI have the same meaning and values as
in Eqs. (18) and (19).
Finally, we must mention that the following form factor

is multiplied to u-channel amplitudes, following
Refs. [9,11],

FðΛ; uÞ ¼ Λ4

Λ4 þ ðu −M2
uÞ2

; ð26Þ

where u is the usual Mandelstam variable, Mu is the mass
of the baryon exchanged and Λ is a cutoff which we vary in
the range 650–1000 MeV. As discussed in Refs. [9,11],
only the terms involving the negative energy solution of the
Dirac equation for the baryon propagator contribute to such
diagrams when studying a near threshold s-wave meson-
baryon interaction. The above form factor takes care of the
fact that such diagrams require large momentum transfers at
nonrelativistic energies.

B. The loop function

After determining the kernel V needed to solve the
Bethe-Salpeter equation, the other element required to
obtain the scattering matrix is the loop function G of
Eq. (1), which is given by

Gð ffiffiffi
s

p
; m;MÞ ¼ i2M

Z
d4q
ð2πÞ4

1

ðP − qÞ2 −M2 þ iϵ

×
1

q2 −m2 þ iϵ
;

where
ffiffiffi
s

p
is the center of mass energy, M (m) corresponds

to the mass of the nucleon (meson) present in the loop and
P is the total four-momenta of the system. As can be seen,
this loop function is logarithmically divergent and it needs
to be regularized. Standard procedures to calculate the loop
functions involve using a three-momentum cutoff or dimen-
sional regularization. In this paper, we use the latter
scheme, in which case the loop function is written, in
the center of mass (c.m.) frame, as [9,12,16,17,19,24,
38,45,56]

Gð ffiffiffi
s

p
; m;MÞ ¼ 2M

16π2

�
bðμÞ þ ln

M2

μ2
þm2 −M2 þ s

2s
ln

m2

M2

þ qffiffiffi
s

p ½ln ðs − ðM2 −m2Þ þ 2q
ffiffi
s

p Þ

þ ln ðsþ ðM2 −m2Þ þ 2q
ffiffi
s

p Þ
− ln ð−sþ ðM2 −m2Þ þ 2q

ffiffi
s

p Þ

− ln ðs − ðM2 −m2Þ þ 2q
ffiffi
s

p Þ�
�
: ð27Þ

In Eq. (27), q is the on-shell momentum of the particles in
the c.m., μ is the regularization scale and bðμÞ a subtraction
constant, which needs to be fixed, normally, by requiring

the amplitudes to fit some experimental data. Thus, the only
parameters to be fixed are the subtraction constants
required to regularize the loops [since any change in μ
can be reabsorbed in the value of the subtraction con-
stant bðμÞ].

C. Calculation of phase shifts and
scattering lengths

With these ingredients we solve Eq. (1) and obtain the
scattering matrix for the KN-K�N system. The subtraction
constants bKN and bK�N present in the loop functions ofKN
and K�N are fixed by fitting the data available from the
partial wave analysis groups [20–22] on the isospin 0 and 1
KN phase shifts (δ0KN and δ1KN , respectively), which, in our
formalism, are related to the scattering matrix through the
relations [43]

~TI;S ¼
�
ηI;Se2iδ

I;S − 1

2i

�
; ð28Þ

with

TI;S ¼ −
4π

ffiffiffi
s

p
Mq

~TI;S; ð29Þ

where q is the center-of-mass momentum and ηI;S is the
inelasticity in the isospin I and the spin S. Finally, using the
resulting scattering matrix we also calculate the KN and
K�N scattering lengths for different isospin and spin,
aI;S¼1=2
KN and aI;SK�N , using the relation [37]

aI;S ¼ −
M

4π
ffiffiffi
s

p TI;S; ð30Þ

at threshold energies.

III. RESULTS AND DISCUSSIONS

Let us start the discussions on the results by recalling that
the Weinberg-Tomozawa interaction for the KN channel is
null for isospin 0 [considering the isospin averaged masses
in Eq. (3), which leads to CI

KN ¼ 0], which gives null
scattering phase shifts. Even the consideration of the
differences between the masses leads to a nearly zero
KN potential, as shown in Ref. [37] where a scattering
length of the order of 10−7 fm was obtained. While a nearly
zero scattering length is compatible with the results of some
older partial wave analyses [61], some other report values
varying between −0.1 fm [20] (which is the most recent
one) to −0.4 fm [23]. To reproduce these values and the
available data on the S01 (representing LIsospin;2×Spin) partial
wave KN phase shifts [20–22], it is required to go beyond
the KN interaction obtained from the lowest order chiral
Lagrangian. One possibility is to consider contributions
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from higher order terms of the Lagrangian (like
Refs. [62,63]). While that would imply fixing a large
number of parameters with scarce data available, it is wiser
and important to exhaust possible corrections to be
included while keeping the lowest order contribution for
the KN system. For example, one could include the
coupling to the K�N channel, which, precisely, is the
aim of the present paper.
As discussed in the previous section, we consider t- and

u-channel diagrams and a contact interaction to obtain the
K�N diagonal amplitudes. The t-channel interaction in
isospin 0 is found to give a null amplitude (as also found in
Ref. [19]), while the contributions from other diagrams—
the contact term and u-channel diagrams—are found to be
nonzero. Out of these different contributions, we find that
the ones arising from the exchange of hyperon resonances
in the u-channel diagrams (shown in Fig. 1) are negligibly
small in the present case. Such contributions have been
found to be important in the studies of some processes
involving nonstrange and strangeness −1 systems [64,65].
However, we do not find this to be the case for KN-K�N
systems. Indeed the exchange of the octet baryons was also
found to give important contribution to some processes and
negligible to others in Refs. [9,11,12].
To solve the Bethe-Salpeter equation, we need to fix the

subtraction constants which are required to regularize the
logarithmical divergence of the loop functions. One way to
proceed with the calculations would be to consider the
same “natural” values [66] of the subtraction constants
[bðμÞ ¼ −2, with μ ¼ 630 MeV] as the ones used for the
meson-baryon systems with the opposite strangeness
(S ¼ −1) [37]. Let us denote these subtraction constants
as the parameter set I in order to simplify the subsequent
discussions. In Fig. 2 we show the isospin 0 (left panel) and
1 (right panel) KN phase shifts obtained with these
constants for (a) the coupling between KN and K�N given

by Eq. (24) (as solid lines) and (b) for its value gKR ¼ 0 (as
dashed lines).
As can be seen from this figure, the isospin 1 phase shift

data [20–22] (shown in the right panel) can be reasonably
reproduced by considering the KN channel alone and by
using the parameter set I (dashed line). The phase shifts
in isospin 0 are zero in this case. The zero phase shift in
isospin 0 comes trivially from VI¼0

KN ¼ 0 (as explained in
Sec. II A 1). Further, Fig. 2 shows that the coupling to the
K�N channel does not alter much the isospin 1 results but
the isospin 0 phase shifts do get affected, although the
results do not agree with the data (except near the thresh-
old). The fact that results for isospin 0 are sensitive to the
coupling to the K�N channel while the isospin 1 results are
not can be understood by looking at the leading order
amplitudes (VI

t;K�N , V
I
CT;K�N , V

I
u;K�N , V

I
KNK�N) obtained in

Secs. II A 2 and II A 3. The sum of K�N amplitudes
[Eqs. (15) and (16)] and the transition KN↔K�N [see
Eq. (23)] all turn out to be very weak in the isospin 1
configuration, unlike the case of isospin 0. In other words,
the KN channel is found to couple weakly with a weak
K�N amplitude in the isospin 1 configuration.
The poor agreement of the results obtained in the isospin

0 case suggests that we need to use some other values of the
subtraction constants. In principle, the physics related to the
strangeness −1 and þ1 meson-baryon systems is different
since the presence of an s or s̄-valence quark leads to very
different situations: the former allows for the existence of a
three-quark intermediate state while the latter does not.
Thus, the subtraction constants required to regularize the
loops do not need to be necessarily the same in the two
cases. Thus, we make χ2 fits to the data [20–22] on the
s-wave isospin 0 and 1 KN phase shifts to fix the
subtraction constants. We treat the subtraction constants
as free parameters, with the motivation to obtain KN
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amplitudes in agreement with the data and, hence, obtain

constrained predictions for the K�N amplitudes.
We find that a good fit is obtained with the subtraction

constants: bI¼0
KN ¼ −6.82, bI¼0

K�N ¼ 1.84, bI¼1
KN ¼ −1.59 and

bI¼1
K�N ¼ −1 for the regularization scale μ fixed to 630 MeV.

We shall refer to these values collectively as parameter set
II. The resulting phase shifts are shown in Fig. 3, which
also displays the sensitivity of our results to the cutoff
parameter Λ in Eq. (26) varied in the range 650–1000 MeV.
It can be seen that the data are reasonably reproduced and
that our results are quite stable against the variation in Λ.
We shall, thus, keep the value of Λ ¼ 650 MeV for
showing further results.
It can be noticed that the phase shifts shown in Fig. 3 for

isospin 0 appear as a narrow band while the results for
isospin 1 appear as a line. Also, the results for isospin 0
shown in Figs. 2 and 3 differ much more than those for
isospin 1. This occurs (1) because the subtractions con-
stants are more different in the isospin 0 case, and (2) due to
a stronger influence of the KN-K�N coupling and the K�N
amplitudes in the isospin 0 configuration, which is weaker
in isospin 1.
Although a good fit to data has been obtained as shown

in Fig. 3, we must add that the subtraction constants

required to fit the data are isospin dependent and are far
from natural values, especially in the case of isospin 0. As
explained in Refs. [12,66], a deviation of subtraction
constants from the natural value (b≃ −2 in the present
case) can be interpreted as a modification of the interaction
kernel, and this modification can be spin-isospin depen-
dent. For example, in a single channel case, we can write

TI;S ¼ 1

ðVI;SÞ−1 −GI;S
phen

; ð31Þ

where GI;S
phen is the loop function obtained with the

“phenomenological” subtraction constants which fit the
data. Let us denote the loop function obtained using natural
values of the subtraction constants by Gnat (which is spin-
isospin independent) and let Δa be a (constant) such that

GI;S
phen ¼ Gnat þ ΔaI;S: ð32Þ

We can now rewrite Eq. (31) in terms of Gnat as

TI;S ¼ 1

ðVI;SÞ−1 −Gnat − ΔaI;S

¼ 1

½ðVI;SÞ−1 − ΔaI;S� −Gnat
; ð33Þ

1500 1600 1700 1800 1900 2000

Total energy (MeV)

-30

-20

-10

0

10

   
   

(d
eg

)

S01

K
N

1500 1600 1700 1800 1900 2000

Total energy (MeV)

-60

-40

-20

0

   
   

(d
eg

)

PRC75
VPI
PRC29

11S

K
N

FIG. 3. Scattering phase shifts for the KN system obtained by using the parameter set II (subtraction constants: bI¼0
KN ¼ −6.82,

bI¼0
K�N ¼ 1.84, bI¼1

KN ¼ −1.59 and bI¼1
K�N ¼ −1, with μ ¼ 630 MeV), and for Λ in Eq. (26) varying between 650 and 1000 MeV. The lines

and symbols here have the same meaning as in Fig. 2.

1500 1600 1700 1800 1900 2000

Total energy (MeV)

0

1

2

3

4

5

V
   

  (
M

eV
   

) V             (x 10  ) 

V               (x 10  ) 

I = 0, S = 1/2 

K
N

5

2

-1

our model

1500 1600 1700 1800 1900 2000

Total energy (MeV)

0

1

2

3

V
   

  (
M

eV
   

) V             (x 10) 

V               (x 10) 

I = 1, S = 1/2 

K
N

our model

-1

FIG. 4. A comparison of the kernel V for KN system obtained in Sec. II A and defined by Eq. (34). Here Vour model is the sum of the
amplitudes obtained from Eqs. (3) and (18).

KHEMCHANDANI et al. PHYSICAL REVIEW D 91, 094008 (2015)

094008-8



where the inverse of the expression in the rectangular
bracket can be considered as a modified kernel

VI;S
modified ¼ ½ðVI;SÞ−1 − ΔaI;S�−1: ð34Þ

For completeness, we compare the modified kernel and
those obtained in Sec. II A in Figs. 4 and 5 for the KN and
K�N systems, respectively.
The discussion made above and the comparison of the

interaction kernels shown in Figs. 4 and 5 indicates that
some information is missing in our model. A question that
may arise at this point is if this missing information can be
recovered by considering an exchange of a larger number
of hyperon resonances in the u-channel diagrams.
Although we already mentioned that the contribution of
the resonance exchange are found to be negligibly small,
to answer the aforementioned question, we find it useful to
show this contribution qualitatively. For this we consider,
as an example, the S01 amplitude for the KN system
obtained with parameter set II. In Fig. 6 we show the
results obtained for the isospin 0, spin 1=2 amplitude
(1) without including any resonance exchange in
KN → KN, K�N → K�N, KN↔K�N, and (2) by

considering the resonances listed in Table II in all these
processes. It can be seen in Fig. 6 that the contribution
obtained from the resonance exchange in the u channel
is insignificant. The case for isospin 1 is similar. These
findings discourage us from considering more resonances,
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TABLE III. Scattering lengths for the K�N system.

I ¼ 0, S ¼ 1=2 I ¼ 0, S ¼ 3=2 I ¼ 1, S ¼ 1=2 I ¼ 1, S ¼ 3=2

aI;SK�N (fm) (0.2, 0.03) (−0.08; 0.04) (0.1, 0.0) (−0.31; 0.03)
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which implies increasing the number of parameters of
the theory but obtaining no significant contributions. It is
possible that the missing contribution could be obtained
by considering higher order terms in the Lagrangian.
Although it would involve fixing a larger number of
parameters using the data shown in Figs. 3 and 7, it would
be an alternative approach and should be considered in
the future. Other possibilities can involve considering
box diagrams for all the processes, in line with the study of
VB systems in Refs. [17,18]. The results presented in our
manuscript could stimulate calculations of such correc-
tions while serving as guidance for the findings of the
experimental studies of K;K� production in p-p and p-A
processes.
With a reasonable agreement between our results and the

available data on KN, we search for poles in the complex
plane. We have calculated the amplitudes for isospin 0 and
1 and spin-parities 1=2− and 3=2−. We do not find a pole
in any of these configurations which can be related to a
physical state.
It is interesting to add that a calculation of the πKN

system in the s-wave led to the generation of a broad state
with spin-parity 1=2þ in Ref. [67]. The present calculation
is, in some sense, similar to the one made in Ref. [67],
recalling that the KπN system can be reorganized as K�N
too. However, the latter implies a p-wave interaction
between the kaon and the pion. This difference between
the kaon-pion interaction might be important for the
formation of a resonance.
Next, we calculate the scattering lengths for the KN

system using the relation given by Eq. (30) and find
aI¼0
KN ¼ −0.16 fm and aI¼1

KN ¼ −0.29 fm. The values found
by different partial wave analysis groups for the KN
scattering lengths range from −0.105� 0.01 fm [20] to
−0.23� 0.18 fm [23], for isospin 0, and between
−0.286� 0.06 fm and −0.308� 0.003 fm [20], for the
isospin 1 case.

Finally, we would like to present our results for the K�N
system, which might be useful as an input to studies of K�

mesons in a hot and dense medium [1,4,5]. We show the
total cross sections for spin 1=2 and 3=2 in the right panel
of Fig. 7, which have been calculated as

σS ¼
1

2
σI¼0;S þ

3

2
σI¼1;S; ð35Þ

with

σI;S ¼
1

4π

M2
N

s
∣TI;S

K�N∣2: ð36Þ
The symbols I and S in the above equation represent the
total isospin and spin, respectively,MN is the nucleon mass
and

ffiffiffi
s

p
is the total energy in the center of mass frame. This

definition of an isospin averaged cross section is often used
in the literature [20] and an analogous definition is used
for isospin averaged amplitudes in the study of mesons in
medium [68–71]. Although we have already shown our
results for the phase shifts for the KN channel in Fig. 2, for
completeness, we show the corresponding cross sections
too in Fig. 7 (left panel).
We also provide the scattering lengths calculated using

Eq. (30) for the different spin-isospin configurations of the
K�N channel in Table III.

IV. SUMMARY

We can summarize the present work by mentioning that a
coupled-channel calculation involving both pseudoscalar
and vector mesons has been done for strangeness þ1 by
taking different diagrams into account to obtain the kernel
potential. In the case of VB systems, we consider a contact
term and the t- and u-channel diagrams, with an exchange of
an octet baryon or a light hyperon resonance for the latter
one. For PB channels we consider, in addition to the
Weinberg-Tomozawa interaction, the u-channel exchange
of light hyperon resonances. The exchange of hyperon
resonances is found to give a negligible contribution.
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The subtraction constants required to regularize the loop
have been fixed by fitting the available data on theKN phase
shifts in the S01 and S11 partial waves. The resulting values
of the subtraction constants turn out to be far from the natural
values, indicating missing information on the interaction
kernel in the model.We depict the kernels which are required
to fit the data and discuss possible alternative calculations
which can be done in the future to obtain such interaction
kernels. With the calculations carried out in this formalism,
we do not find any resonances. We present the total cross
sections and scattering lengths for the KN and K�N
channels. Indeed, the results presented here are of special
interest for K and K� production in pþ p and pþ A
collisions, as reported by the HADES [1–3], STAR [4] and
NA49 [5] collaborations.

ACKNOWLEDGMENTS

The authors thank Profs. D. Jido, A. Hosaka and H.
Nagahiro for the useful discussions. The authors would also
like to thank the Brazilian funding agencies FAPESP and
CNPq for their financial support. L. T. acknowledges support
from the Ramón y Cajal Research Programme (Ministerio de
Economía y Competitividad) and from Grants
No. FPA2010-16963 and No. FPA2013-43425-P
(Ministerio de Economía y Competitividad), FP7-
PEOPLE-2011-CIG under Contract No. PCIG09-GA-
2011-291679 and the European Community-Research
Infrastructure Integrating Activity Study of Strongly
Interacting Matter (acronym HadronPhysics3, Grant
Agreement No. 283286) under the Seventh Framework
Programme of the European Union.

[1] G. Agakishiev et al. (HADES Collaboration), Deep sub-
threshold K�ð892Þ0 production in collisions of Ar þ KCl at
1.76 A GeV, Eur. Phys. J. A 49, 34 (2013).

[2] G. Agakishiev et al. (HADES Collaboration), Associate K0

production in pþ p collisions at 3.5 GeV: The role of
Δð1232Þþþ, Phys. Rev. C 90, 015202 (2014).

[3] G. Agakishiev et al. (HADES Collaboration), Medium
effects in proton-induced K0 production at 3.5 GeV, Phys.
Rev. C 90, 054906 (2014).

[4] J. Adams et al. (STAR Collaboration), Kð892Þ� resonance
production in Auþ Au and pþ p collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼
200 GeV, Phys. Rev. C 71, 064902 (2005); M. M.
Aggarwal et al. (STAR Collaboration), K�0 production in
CuþCu and AuþAu collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 62.4 GeV
and 200 GeV, Phys. Rev. C 84, 034909 (2011).

[5] T. Anticic et al. (NA49 Collaboration), K�ð892Þ0 and
K̄�ð892Þ0 production in central Pbþ Pb, Siþ Si, Cþ C
and inelastic pþ p collisions at 158A GeV, Phys. Rev. C
84, 064909 (2011).

[6] M. Bleicher, E. Zabrodin, C. Spieles, S. A. Bass, C. Ernst, S.
Soff, L. Bravina, M. Belkacem et al., Relativistic hadron-
hadron collisions in the ultra-relativistic quantum molecular
dynamics model, J. Phys. G 25, 1859 (1999).

[7] S. A. Bass, M. Belkacem, M. Bleicher, M. Brandstetter, L.
Bravina, C. Ernst, L. Gerland, M. Hofmann et al., Micro-
scopic models for ultrarelativistic heavy ion collisions, Prog.
Part. Nucl. Phys. 41, 255 (1998).

[8] F. Becattini, J. Manninen, and M. Gazdzicki, Energy and
system size dependence of chemical freeze-out in relativistic
nuclearcollisions,Phys.Rev.C73, 044905(2006);F.Becattini
and U.W. Heinz, Thermal hadron production in pp and pp̄
collisions, Z. Phys. C 76, 269 (1997); 76, 578(E) (1997).

[9] K. P. Khemchandani, H. Kaneko, H. Nagahiro, and A.
Hosaka, Vector meson-baryon dynamics and generation
of resonances, Phys. Rev. D 83, 114041 (2011).

[10] K. P. Khemchandani, A.M. Torres, H. Kaneko, H. Nagahiro,
and A. Hosaka, Coupling vector and pseudoscalar mesons
to study baryon resonances, Phys. Rev. D 84, 094018
(2011).

[11] K. P. Khemchandani, A. M. Torres, H. Nagahiro, and A.
Hosaka, Negative parity Λ and Σ resonances coupled to
pseudoscalar and vector mesons, Phys. Rev. D 85, 114020
(2012).

[12] K. P. Khemchandani, A. M. Torres, H. Nagahiro, and A.
Hosaka, Role of vector and pseudoscalar mesons in under-
standing 1=2− N� and Δ resonances, Phys. Rev. D 88,
114016 (2013); N�’s and Δ’s generated in vector, pseudo-
scalar meson-baryon systems, Int. J. Mod. Phys. Conf. Ser.
26, 1460060 (2014).

[13] M. Bando, T. Kugo, and K. Yamawaki, On the vector
mesons as dynamical gauge bosons of hidden local sym-
metries, Nucl. Phys. B259, 493 (1985).

[14] O. Krehl, C. Hanhart, S. Krewald, and J. Speth, What is the
structure of the Roper resonance?, Phys. Rev. C 62, 025207
(2000).

[15] M. F. M. Lutz, G. Wolf, and B. Friman, Scattering of vector
mesons off nucleons, Nucl. Phys. A706, 431 (2002); A765,
495(E) (2006).

[16] D. Gamermann, C. Garcia-Recio, J. Nieves, and L. L.
Salcedo, Odd parity light baryon resonances, Phys. Rev.
D 84, 056017 (2011).

[17] E. J. Garzon and E. Oset, Effects of pseudoscalar-baryon
channels in the dynamically generated vector-baryon reso-
nances, Eur. Phys. J. A 48, 5 (2012).

[18] E. J. Garzon, J. J. Xie, and E. Oset, Case in favor of the
N�ð1700Þð3=2−Þ, Phys. Rev. C 87, 055204 (2013).

[19] C. Garcia-Recio, J. Nieves, and L. L. Salcedo, SU(6)
extension of the Weinberg-Tomozawa meson-baryon
Lagrangian, Phys. Rev. D 74, 034025 (2006); Resonances
and the Weinberg-Tomozawa 56-baryon-35-meson interac-
tion, Eur. Phys. J. A 31, 499 (2007).

STUDY OF THE KN-K�N COUPLED SYSTEM IN … PHYSICAL REVIEW D 91, 094008 (2015)

094008-11

http://dx.doi.org/10.1140/epja/i2013-13034-7
http://dx.doi.org/10.1103/PhysRevC.90.015202
http://dx.doi.org/10.1103/PhysRevC.90.054906
http://dx.doi.org/10.1103/PhysRevC.90.054906
http://dx.doi.org/10.1103/PhysRevC.71.064902
http://dx.doi.org/10.1103/PhysRevC.84.034909
http://dx.doi.org/10.1103/PhysRevC.84.064909
http://dx.doi.org/10.1103/PhysRevC.84.064909
http://dx.doi.org/10.1088/0954-3899/25/9/308
http://dx.doi.org/10.1016/S0146-6410(98)00058-1
http://dx.doi.org/10.1016/S0146-6410(98)00058-1
http://dx.doi.org/10.1103/PhysRevC.73.044905
http://dx.doi.org/10.1007/s002880050551
http://dx.doi.org/10.1007/s002880050581
http://dx.doi.org/10.1103/PhysRevD.83.114041
http://dx.doi.org/10.1103/PhysRevD.84.094018
http://dx.doi.org/10.1103/PhysRevD.84.094018
http://dx.doi.org/10.1103/PhysRevD.85.114020
http://dx.doi.org/10.1103/PhysRevD.85.114020
http://dx.doi.org/10.1103/PhysRevD.88.114016
http://dx.doi.org/10.1103/PhysRevD.88.114016
http://dx.doi.org/10.1142/S201019451460060X
http://dx.doi.org/10.1142/S201019451460060X
http://dx.doi.org/10.1016/0550-3213(85)90647-9
http://dx.doi.org/10.1103/PhysRevC.62.025207
http://dx.doi.org/10.1103/PhysRevC.62.025207
http://dx.doi.org/10.1016/S0375-9474(02)00868-0
http://dx.doi.org/10.1016/j.nuclphysa.2005.11.017
http://dx.doi.org/10.1016/j.nuclphysa.2005.11.017
http://dx.doi.org/10.1103/PhysRevD.84.056017
http://dx.doi.org/10.1103/PhysRevD.84.056017
http://dx.doi.org/10.1140/epja/i2012-12005-x
http://dx.doi.org/10.1103/PhysRevC.87.055204
http://dx.doi.org/10.1103/PhysRevD.74.034025
http://dx.doi.org/10.1140/epja/i2006-10203-9


[20] W. R. Gibbs and R. Arceo, Partial-wave analysis of Kþ-
nucleon scattering, Phys. Rev. C 75, 035204 (2007).

[21] J. S. Hylop, R. A. Arndt, L. D. Roper, and R. L. Workman,
Partial-wave analysis of Kþ-nucleon scattering, Phys. Rev.
D 46, 961 (1992).

[22] K. Hashimoto, KþN phase shifts from 600 to 1500 MeV=c,
Phys. Rev. C 29, 1377 (1984).

[23] B. R. Martin, S-wave I ¼ 0 KN scattering length and
forward cross-sections, J. Phys. G 4, 335 (1978).

[24] D. Gamermann, C. Garcia-Recio, J. Nieves, L. L. Salcedo,
and L. Tolos, Exotic dynamically generated baryons with
negative charm quantum number, Phys. Rev. D 81, 094016
(2010).

[25] A. Aktas et al. (H1 Collaboration), Evidence for a narrow
anti-charmed baryon state, Phys. Lett. B 588, 17 (2004).

[26] H. Kim, S. H. Lee, and Y.-s. Oh, Anti-charmed pentaquark
Θcð3099Þ from QCD sum rules, Phys. Lett. B 595, 293
(2004).

[27] S. H. Lee, Y. Kwon, and Y. Kwon, Anticharmed Pentaquark
from B Decays, Phys. Rev. Lett. 96, 102001 (2006).

[28] R. M. Albuquerque, S. H. Lee, and M. Nielsen, QCD sum
rule study for a possible charmed pentaquark Θcð3250Þ,
Phys. Rev. D 88, 076001 (2013).

[29] T. Nakano et al. (LEPS Collaboration), Evidence for a
Narrow S ¼ þ1 Baryon Resonance in Photoproduction
from the Neutron, Phys. Rev. Lett. 91, 012002 (2003).

[30] K. H. Hicks, On the conundrum of the pentaquark, Eur.
Phys. J. H 37, 1 (2012).

[31] A. Martinez Torres and E. Oset, Novel Interpretation of the
“Θþð1540Þ Pentaquark” Peak, Phys. Rev. Lett. 105, 092001
(2010).

[32] A. Martinez Torres and E. Oset, Study of the γd → KþK−np
reaction and an alternative explanation for the “Θþð1540Þ
pentaquark” peak, Phys. Rev. C 81, 055202 (2010).

[33] N. G. Kelkar, M. Nowakowski, and K. P. Khemchandani,
Time delayed KþN reactions and exotic baryon resonances,
J. Phys. G 29, 1001 (2003); Evidence of pentaquark states
from KþN scattering data?, Mod. Phys. Lett. A 19, 2001
(2004).

[34] R. Aaron, R. R. Silbar, and R. D. Amado, Theoretical
Evidence for i ¼ 0Z�’s, Phys. Rev. Lett. 26, 407 (1971);
R. Aaron, W. L. Hogan, Y. N. Srivastava, and M. Rich,
Modified phase-shift analysis of the i ¼ 0K − N system and
the existence of exotic baryon resonances, Phys. Rev. D 7,
1401 (1973).

[35] S. G. Yuan, K. W. Wei, J. He, H. S. Xu, and B. S. Zou, Study
of qqqcc̄ five quark system with three kinds of quark-quark
hyperfine interaction, Eur. Phys. J. A 48, 61 (2012).

[36] B. S. Zou, Penta-quark components in baryons and evidence
at BES, Int. J. Mod. Phys. A 21, 5552 (2006).

[37] E. Oset and A. Ramos, Nonperturbative chiral approach to
s-wave anti-KN interactions, Nucl. Phys. A635, 99 (1998).

[38] D. Jido, J. A. Oller, E. Oset, A. Ramos, and U. G. Meissner,
Chiral dynamics of the two Λð1405Þ states, Nucl. Phys.
A725, 181 (2003).

[39] U.-G. Meissner and J. A. Oller, Chiral unitary meson baryon
dynamics in the presence of resonances: Elastic pion
nucleon scattering, Nucl. Phys. A673, 311 (2000).

[40] M. Doring and K. Nakayama, The phase and pole structure
of theN�ð1535Þ in πN → πN and γN → πN, Eur. Phys. J. A
43, 83 (2010).

[41] A. Martinez Torres, K. P. Khemchandani, and E. Oset, Three
body resonances in two meson-one baryon systems, Phys.
Rev. C 77, 042203 (2008).

[42] K. P. Khemchandani, A. M. Torres, and E. Oset, The
N�ð1710Þ as a resonance in the ππN system, Eur. Phys.
J. A 37, 233 (2008).

[43] A. Martinez Torres, K. P. Khemchandani, and E. Oset,
Solution to Faddeev equations with two-body experimental
amplitudes as input and application to JP ¼ 1=2þ, S ¼ 0

baryon resonances, Phys. Rev. C 79, 065207 (2009).
[44] A. Martinez Torres and D. Jido, KΛð1405Þ configuration of

the KK̄N system, Phys. Rev. C 82, 038202 (2010).
[45] J. A. Oller and E. Oset, Chiral symmetry amplitudes in the

S-wave isoscalar and isovector channels and the sigma,
f0ð980Þ; a0ð980Þ scalar mesons, Nucl. Phys. A620, 438
(1997); A652, 407(E) (1999).

[46] G. Ecker, Chiral perturbation theory, Prog. Part. Nucl. Phys.
35, 1 (1995).

[47] A. Pich, Chiral perturbation theory, Rep. Prog. Phys. 58,
563 (1995).

[48] T. J. Hobbs, J. T. Londergan, and W. Melnitchouk, Phe-
nomenology of nonperturbative charm in the nucleon, Phys.
Rev. D 89, 074008 (2014).

[49] J. Haidenbauer and G. Krein, The reaction p̄p → Λ̄−
cΛþ

c

close to threshold, Phys. Lett. B 687, 314 (2010).
[50] R. Shyam and H. Lenske, Reaction p̄p → Λ̄−

cΛþ
c within

an effective Lagrangian model, Phys. Rev. D 90, 014017
(2014).

[51] K. Kawarabayashi and M. Suzuki, Partially Conserved
Axial Vector Current and the Decays of Vector Mesons,
Phys. Rev. Lett. 16, 255 (1966).

[52] Riazuddin and Fayyazuddin, Algebra of current compo-
nents and decay widths of ρ and K� mesons, Phys. Rev. 147,
1071 (1966).

[53] D. Jido, A. Hosaka, J. C. Nacher, E. Oset, and A. Ramos,
Magnetic moments of the Λð1405Þ and Λð1670Þ resonan-
ces, Phys. Rev. C 66, 025203 (2002).

[54] E. E. Jenkins, M. E. Luke, A. V. Manohar, and M. J. Savage,
Chiral perturbation theory analysis of the baryon magnetic
moments, Phys. Lett. B 302, 482 (1993).

[55] U.-G. Meissner and S. Steininger, Baryon magnetic mo-
ments in chiral perturbation theory, Nucl. Phys. B499, 349
(1997).

[56] E. Oset and A. Ramos, Dynamically generated resonances
from the vector octet-baryon octet interaction, Eur. Phys. J.
A 44, 445 (2010).

[57] P. Maris and P. C. Tandy, Bethe-Salpeter study of vector
meson masses and decay constants, Phys. Rev. C 60,
055214 (1999).

[58] P. Maris, Dyson-Schwinger studies of meson masses and
decay constants, Nucl. Phys. A663-A664, 621c (2000).

[59] S.-i. Nam, J.-H. Park, A. Hosaka, and H.-C. Kim,
Λð1405; 1=2−Þ photoproduction from the γp →
KþΛð1405Þ reaction, J. Korean Phys. Soc. 59, 2676 (2011).

[60] S. Ozaki, H. Nagahiro, and A. Hosaka, Magnetic interaction
induced by the anomaly in kaon-photoproductions, Phys.
Lett. B 665, 178 (2008).

KHEMCHANDANI et al. PHYSICAL REVIEW D 91, 094008 (2015)

094008-12

http://dx.doi.org/10.1103/PhysRevC.75.035204
http://dx.doi.org/10.1103/PhysRevD.46.961
http://dx.doi.org/10.1103/PhysRevD.46.961
http://dx.doi.org/10.1103/PhysRevC.29.1377
http://dx.doi.org/10.1088/0305-4616/4/3/009
http://dx.doi.org/10.1103/PhysRevD.81.094016
http://dx.doi.org/10.1103/PhysRevD.81.094016
http://dx.doi.org/10.1016/j.physletb.2004.03.012
http://dx.doi.org/10.1016/j.physletb.2004.06.038
http://dx.doi.org/10.1016/j.physletb.2004.06.038
http://dx.doi.org/10.1103/PhysRevLett.96.102001
http://dx.doi.org/10.1103/PhysRevD.88.076001
http://dx.doi.org/10.1103/PhysRevLett.91.012002
http://dx.doi.org/10.1140/epjh/e2012-20032-0
http://dx.doi.org/10.1140/epjh/e2012-20032-0
http://dx.doi.org/10.1103/PhysRevLett.105.092001
http://dx.doi.org/10.1103/PhysRevLett.105.092001
http://dx.doi.org/10.1103/PhysRevC.81.055202
http://dx.doi.org/10.1088/0954-3899/29/6/303
http://dx.doi.org/10.1142/S0217732304014173
http://dx.doi.org/10.1142/S0217732304014173
http://dx.doi.org/10.1103/PhysRevLett.26.407
http://dx.doi.org/10.1103/PhysRevD.7.1401
http://dx.doi.org/10.1103/PhysRevD.7.1401
http://dx.doi.org/10.1140/epja/i2012-12061-2
http://dx.doi.org/10.1142/S0217751X06034732
http://dx.doi.org/10.1016/S0375-9474(98)00170-5
http://dx.doi.org/10.1016/S0375-9474(03)01598-7
http://dx.doi.org/10.1016/S0375-9474(03)01598-7
http://dx.doi.org/10.1016/S0375-9474(00)00150-0
http://dx.doi.org/10.1140/epja/i2009-10892-4
http://dx.doi.org/10.1140/epja/i2009-10892-4
http://dx.doi.org/10.1103/PhysRevC.77.042203
http://dx.doi.org/10.1103/PhysRevC.77.042203
http://dx.doi.org/10.1140/epja/i2008-10625-3
http://dx.doi.org/10.1140/epja/i2008-10625-3
http://dx.doi.org/10.1103/PhysRevC.79.065207
http://dx.doi.org/10.1103/PhysRevC.82.038202
http://dx.doi.org/10.1016/S0375-9474(97)00160-7
http://dx.doi.org/10.1016/S0375-9474(97)00160-7
http://dx.doi.org/10.1016/S0375-9474(99)00427-3
http://dx.doi.org/10.1016/0146-6410(95)00041-G
http://dx.doi.org/10.1016/0146-6410(95)00041-G
http://dx.doi.org/10.1088/0034-4885/58/6/001
http://dx.doi.org/10.1088/0034-4885/58/6/001
http://dx.doi.org/10.1103/PhysRevD.89.074008
http://dx.doi.org/10.1103/PhysRevD.89.074008
http://dx.doi.org/10.1016/j.physletb.2010.03.065
http://dx.doi.org/10.1103/PhysRevD.90.014017
http://dx.doi.org/10.1103/PhysRevD.90.014017
http://dx.doi.org/10.1103/PhysRevLett.16.255
http://dx.doi.org/10.1103/PhysRev.147.1071
http://dx.doi.org/10.1103/PhysRev.147.1071
http://dx.doi.org/10.1103/PhysRevC.66.025203
http://dx.doi.org/10.1016/0370-2693(93)90430-P
http://dx.doi.org/10.1016/S0550-3213(97)00313-1
http://dx.doi.org/10.1016/S0550-3213(97)00313-1
http://dx.doi.org/10.1140/epja/i2010-10957-3
http://dx.doi.org/10.1140/epja/i2010-10957-3
http://dx.doi.org/10.1103/PhysRevC.60.055214
http://dx.doi.org/10.1103/PhysRevC.60.055214
http://dx.doi.org/10.1016/S0375-9474(99)00669-7
http://dx.doi.org/10.3938/jkps.59.2676
http://dx.doi.org/10.1016/j.physletb.2008.06.020
http://dx.doi.org/10.1016/j.physletb.2008.06.020


[61] V. J. Stenger, W. E. Lsater, D. H. Stork, and H. K. Ticho,
K − N Interaction in the I ¼ 0 State at Low Energies, Phys.
Rev. 134, B1111 (1964); A. D. Martin, Dispersion relation
constraints on low-energy anti-Kn scattering, Phys. Lett.
65B, 346 (1976); C. B. Dover and G. E. Walker, The
interaction of kaons with nucleons and nuclei, Phys. Rep.
89, 1 (1982).

[62] J. A. Oller, J. Prades, and M. Verbeni, Surprises in Thresh-
old Antikaon-Nucleon Physics, Phys. Rev. Lett. 95, 172502
(2005).

[63] X. K. Guo, Z. H. Guo, J. A. Oller, and J. J. Sanz-Cillero,
Scrutinizing the η-η0 mixing, masses and pseudoscalar decay
constants in the framework of Uð3Þ chiral effective field
theory, arXiv:1503.02248.

[64] R. Shyam, O. Scholten, and A.W. Thomas, Production of a
cascade hyperon in the K−-proton interaction, Phys. Rev. C
84, 042201 (2011).

[65] S.Ozaki,A.Hosaka,H.Nagahiro, andO.Scholten,Acoupled-
channel analysis for ϕ-photoproduction with Λð1520Þ, Phys.
Rev. C 80, 035201 (2009); 81, 059901(E) (2010).

[66] T. Hyodo, D. Jido, and A. Hosaka, Compositeness of
dynamically generated states in a chiral unitary approach,
Phys. Rev. C 85, 015201 (2012).

[67] K. P. Khemchandani, A. M Torres, and E. Oset, Searching
for exotic states in the NπK system, Phys. Lett. B 675, 407
(2009).

[68] L. Tolos, R. Molina, E. Oset, and A. Ramos, K̄� meson in
dense matter, Phys. Rev. C 82, 045210 (2010).

[69] A. Ilner, D. Cabrera, P. Srisawad, and E. Bratkovskaya,
Properties of strange vector mesons in dense and hot matter,
Nucl. Phys. A927, 249 (2014).

[70] D. Cabrera, L. Tolos, J. Aichelin, and E. Bratkovskaya,
Antistrange meson-baryon interaction in hot and dense
nuclear matter, Phys. Rev. C 90, 055207 (2014); L. Tolos,
D. Cabrera, A. Ramos, and A. Polls, The effect of the in-
medium Θþ pentaquark on the kaon optical potential, Phys.
Lett. B 632, 219 (2006).

[71] L. Tolos, D. Cabrera, and A. Ramos, Strange mesons in
nuclear matter at finite temperature, Phys. Rev. C 78,
045205 (2008).

STUDY OF THE KN-K�N COUPLED SYSTEM IN … PHYSICAL REVIEW D 91, 094008 (2015)

094008-13

http://dx.doi.org/10.1103/PhysRev.134.B1111
http://dx.doi.org/10.1103/PhysRev.134.B1111
http://dx.doi.org/10.1016/0370-2693(76)90239-2
http://dx.doi.org/10.1016/0370-2693(76)90239-2
http://dx.doi.org/10.1016/0370-1573(82)90043-6
http://dx.doi.org/10.1016/0370-1573(82)90043-6
http://dx.doi.org/10.1103/PhysRevLett.95.172502
http://dx.doi.org/10.1103/PhysRevLett.95.172502
http://arXiv.org/abs/1503.02248
http://dx.doi.org/10.1103/PhysRevC.84.042201
http://dx.doi.org/10.1103/PhysRevC.84.042201
http://dx.doi.org/10.1103/PhysRevC.80.035201
http://dx.doi.org/10.1103/PhysRevC.80.035201
http://dx.doi.org/10.1103/PhysRevC.81.059901
http://dx.doi.org/10.1103/PhysRevC.85.015201
http://dx.doi.org/10.1016/j.physletb.2009.04.036
http://dx.doi.org/10.1016/j.physletb.2009.04.036
http://dx.doi.org/10.1103/PhysRevC.82.045210
http://dx.doi.org/10.1016/j.nuclphysa.2014.04.022
http://dx.doi.org/10.1103/PhysRevC.90.055207
http://dx.doi.org/10.1016/j.physletb.2005.10.061
http://dx.doi.org/10.1016/j.physletb.2005.10.061
http://dx.doi.org/10.1103/PhysRevC.78.045205
http://dx.doi.org/10.1103/PhysRevC.78.045205

