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We consider backward vector meson exclusive electroproduction off nucleons in the framework of
collinear QCD factorization. Nucleon to vector meson transition distribution amplitudes (TDAs) arise as
building blocks for the corresponding factorized amplitudes. In the near-backward kinematics, the
suggested factorization mechanism results in the dominance of the transverse cross section of vector meson
production (o7 >> ¢,) and in the characteristic 1/Q8-scaling behavior of the cross section. We evaluate
nucleon to vector meson TDAs in the cross-channel nucleon exchange model and present estimates of the
differential cross section for backward p°, @ and ¢ meson production off protons. The resulting cross
sections are shown to be measurable in the forthcoming JLab@12 GeV experiments.
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I. INTRODUCTION

The factorization of exclusive amplitudes into a short
distance dominated part—the coefficient function—
calculable in a perturbative way on the one hand, and
universal hadronic matrix elements of nonlocal operators
on the light cone on the other hand, is a key feature of
quantum chromodynamics (QCD). This allows one to
extract information on the hadronic structure from mea-
surements of specific exclusive processes in specific
kinematics. The textbook examples of such factorization
[1,2] are the nearly forward deeply virtual Compton
scattering (DVCS) and meson hard electroproduction,
where generalized parton (quark and gluon) distributions
(GPDs) are the relevant hadronic matrix elements. The
extension of this strategy to other processes, such as
backward meson hard electroproduction and the cross
conjugated nucleon-antinucleon annihilation into a lepton
pair in association with a light meson, has been advocated
in [3—7]—although the corresponding factorization theo-
rems are not yet rigorously proven. For this latter class of
hard exclusive process, new hadronic matrix elements of
three quark operators on the light cone, the baryon-to-
meson transition distribution amplitudes (TDAs), appear.
Baryon-to-meson TDAs share common features both with
baryon DAs (which are defined as the baryon-to-vacuum
matrix elements of the same three quark light-cone oper-
ators) and with GPDs, since the matrix element in question
depends on the longitudinal momentum transfer between a
baryon and a meson characterized by the skewness variable
&. Also, similar to GPDs [8-10], switching to the impact
parameter space through the Fourier transform in A7 brings
a novel transverse picture of the nucleon. It encodes new
valuable complementary information on the hadronic three-
dimensional structure, whose detailed physical meaning
still awaits its clarification.
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A collinear factorized description for backward reactions
requires the presence of a large scale Q, to ensure the
perturbative expansion of the hard subprocess in the
QCD coupling constant a,(u) at the factorization scale
u = O(Q). The large scale Q can be taken either as the
spacelike virtuality of the electromagnetic probe in the case
of electroproduction processes [6], or, respectively, time-
like virtuality of a photon (or mass of heavy quarkonium)
for the case of cross conjugated processes with lepton pair
emission (or heavy quarkonium production) in association
with a light meson in antinucleon-nucleon annihila-
tion [7,11,12].

Our previous studies [6,7,11,13—15] were almost
exclusively restricted to the case of zN TDAs. Thanks
to the chiral properties of QCD, zN TDAs possess a well-
understood soft pion limit, which can be related to the
& — 1 limit of the TDAs. This easily allows us to work out
the physical normalization of zN TDAs and is helpful for
practical model building.

The special zN TDA case however does not exhaust all
interesting possibilities, and the vector meson sector should
be experimentally accessible as well as the pseudoscalar
meson sector [16—19]. In this paper we consider nucleon to
vector meson (VN) TDAs and address the possibility of
accessing them experimentally through backward hard
electroproduction reactions. The spin-1 nature of the
produced mesons gives rise to new structures for TDAs.
This enables us to define a set of the leading twist-3 VN
TDAs, which in principle may be accessed separately
through a rich variety of polarization dependent observ-
ables. In the present study we enlarge the scope of nucleon
to meson distributions to the cases of p°, @ and ¢ mesons.
These three cases share the same J©¢ quantum numbers,
but each of them addresses a specific question. The ¢-
meson case deals with the issue of the strangeness content
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of the nucleon, which has been the subject of many
experimental and theoretical studies (see e.g. [20] and
references therein), while the combined analysis of p and @
production allows one to disentangle the isotopic structure
of VN TDAs in the nonstrange sector.

The paper is organized as follows: in Sec. II we describe
the kinematics of backward meson electroproduction. In
Sec. III we propose a parametrization of nucleon to vector
meson TDAs. We calculate the hard amplitude in Sec. IV.
In Sec. V we compute the unpolarized cross section for
backward hard meson electroproduction off nucleons and
present estimates for the cross section of the backward
w(782), ¢(1020) and p°(770) production within the cross-
channel nucleon exchange model of the VN TDAs.
Section VI brings our conclusions. Appendix A explores
the isospin constraints and the permutation properties of the
VN TDAs; Appendix B derives the cross-channel nucleon
exchange model for the VN TDAs.

II. KINEMATICS OF BACKWARD VECTOR
MESON HARD ELECTROPRODUCTION

We consider the exclusive electroproduction of vector
mesons off nucleons

e(k) + N(pi,s1) = (r'(q,4,) + N(pi,s1)) + e(K)
— e(k') + N(py,s2) + V(pv.dv), (1)

within the generalized Bjorken limit, in which Q? = —¢?
and s are largel; the Bjorken variable xz = % is fixed

and the u-channel momentum transfer squared is small
compared to Q% and s: |u| = |A%| < Q?,s. Within such
kinematics, the amplitude of the hard subprocess of
reaction (1) is supposed to admit a collinear factorized
description in terms of nucleon to vector meson TDAs
and nucleon DAs, as is shown in Fig. 1. The small u
corresponds to the vector meson produced in the near-
backward direction in the y*N center-of-mass system
(CMS). Therefore in what follows, we refer to the
kinematical regime in question as the near-backward
kinematics. We would like to emphasize that this kin-
ematical regime is complementary to the more familiar
generalized Bjorken limit (Q® and s: large; xp: fixed;
|t| < Q2, s), known as the near-forward kinematics. In this
latter kinematical regime the conventional collinear fac-
torization theorem [1,2] leading to the description of (1) in
terms of GPDs and vector meson DAs is established
(see Fig. 2).

We choose the z axis along the colliding virtual photon
nucleon and introduce the light-cone vectors p and n

lThroughout this paper we employ the usual Mandelstam
variables for the hard subprocess of reaction (1): s = (p; + ¢q)*=

W2t = (pa—p1)su=(py—p)* =A%
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FIG. 1 (color online). Collinear factorization of y*N — NV in
the near-backward kinematics regime (large 02, s; fixed Xg;
|u| ~ 0); VN TDA stands for the transition distribution amplitude
from a nucleon to a vector meson; N DA stands for the nucleon
distribution amplitude; CF denotes hard subprocess amplitudes
(coefficient functions).

(2p -n=1). Keeping the first-order corrections in the
masses and A%, we establish the following Sudakov
decomposition for the momenta of reaction (1) in the
near-backward kinematical regime (cf. [6]):

2

p1=( +f§)p+1+§n
Az — M?
p2z_2§(TQ;2)p
T
2 - n— 5
2601+ G 1-8 Tk
AZ_MZ QZ
q:—2§<1+%>p+wn;
2§(I+ IQZ )
2—A2
PV:(I—f)P'i‘%n‘FAT;
m3 — AL M?
A:—2§p+[ ‘]/_éT—1+§]n+AT. (2)

Here M and my denote respectively the nucleon and the
vector meson masses and & stands for the wu-channel
skewness parameter introduced with respect to the u-
channel momentum transfer

_ _(pyv=p1)-n
~ (pv+pi)n G)

and

, _1=&( Mz_m%,
AT‘1+§<A 25[1+e: I—¢ @
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FIG. 2 (color online).
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Collinear factorization of y*N — NV in the near-forward kinematics regime (large 02, s; fixed xgs |t ~0); N

GPD stands for, respectively, quark and gluon nucleon GPDs; V DA stands for the vector meson distribution amplitude; CF’ and CF”

denote the corresponding hard subprocess amplitudes.

is the u-channel transverse momentum transfer squared. We
introduce u corresponding to A% = 0:

m2 _ A2 _

It is the maximal possible value of u for given &. For
A2 =0 (u = uy) the vector meson is produced exactly in
the backward direction in the y*N CMS (67, = 7).

In the initial nucleon rest frame [corresponding to the
JLab laboratory frame (LAB)] the light-cone vectors p and
n read

M
=—{1 -1}
p|LAB 2(1_’_5){ 70709 }7
14+¢&
=—11 1}.
nliap M {1,0,0,1} (6)

With the help of the appropriate boost we establish the
expressions for the light-cone vectors in the y*N CMS:

Plynems = {a.0.0,—a}; p|y*NCMS ={4.0,0,5}, (7)

with

M+ QWP AW 0% M)
4(1+&wW '
(1+&)(M> + 0> + W2 — A(W?, -0%. M?))
4M*W

b= . (8)

where A is the usual Mandelstam function

Alx,y,z) = \/x2 + 32 + 22 = 2xy = 2xz = 2yz.  (9)

The V-meson scattering angle in the y*N CMS for the
u-channel factorization regime then can be expressed as

m2—A,2
—(1=¢&a+ =
cos 6, = 4-9 =z / . (10)

V(1= Hat+ 520 g2 - A,

One may check that A7> = 0 indeed cos 8}, = —1, which
means backward scattering.

For skewness variable £ we employ the approximate
expression neglecting order of mass and A?. corrections

XB Q2

D S U Tk

(11)

From the transversality of the polarization vector of the
vector meson

5*(19\/,/1\/) ~py =0 (12)

we establish the following condition for the “—"-light-cone
component of the polarization vector of the vector meson:

& (i) p = =T SE(E (o)
S E ) A (13)

III. PARAMETRIZATION OF NUCLEON
TO VECTOR MESON TRANSITION
DISTRIBUTION AMPLITUDES

Nucleon-vector-meson TDAs are formally defined as
the matrix elements of the light-cone three quark operator
between a nucleon and a vector meson state. For simplicity
we leave the discussion of isotopic spin properties of VN
TDAs to Appendix A and consider the transition matrix
element of the uud light-cone operator2

*We adopt the light-cone gauge A* =0 and therefore the
gauge link is not shown explicitly in the operator definition.
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*(43n)
(14)

0%?(/11” doht, A3n) = Sclczﬁu,ﬁ H(An)uz (/1271)

between the proton |N,) state and a I3 =0, JP€ =17
vector meson state [these could be e.g. (w(782), (p°(770)|
or (¢(1020)| meson states].

The parametrization for the leading twist VN TDA
involves 24 Dirac structures. Indeed, each of the three
quarks and the nucleon have two helicity states, while the
vector meson has three. This leads to 3 x 2% = 48 helicity
amplitudes. However, parity relates helicity amplitudes
with all opposite helicities reducing the overall number
of independent helicity amplitudes by a factor of 2. The
procedure for building the corresponding leading twist
Dirac structures was described in Ref. [21]. The revised
version® of the leading twist-3 VN TDA parametrization
reads

4-7:<V(Pv,/lv)|0}f?;?(/11”7/12”,/13”)|N’7(P17Sl)>

= 5()(?1 +)C2 +X3 —26)

xM Z <U’¥N)/)T,)(V¥N<x1’x2ax3,Z_,:, Az)

T=l1e,1T,1n,
2e2T.2n

+ Z pfx

T=l1e.1T,1n,
2¢2T.2n

>

T=1e,IT 1n.e2T 2n,
3¢,3T.3n.4¢ AT 4n

(xl,xz,x3,§, Az)

(l%N)pf.)(T¥N(x1’x27x3v§, A2) ’ (15)

where F stands for the conventional Fourier transform

F = f(xl,X2,X3)(...)

:(Pn>3/l 2ﬂ‘| lZL lxkﬂl\ Pn (16)

and the leading twist Dirac structures are defined as

(Ulg )pf)( (PC) o 53’*(PVJV)U+(P1,SI));(;
(1) pey =M (E* (P Av)-Ar)(PC),. (U (p1,51)) 5
(V1) pey =M(E*(pysdv) 1) (DC),. (U™ (p1,51)),5
(UXeN)pr;( (PC) (Pt U+(P1,Sl));(§
(U¥7ly)p1)( (5*(17\/7/1\/) AT)(PC),)T(VSATU+(P1751))X§
(030 ey = (E7(Pv Ay) 1) (PO) e (PP AL U (p1.51)) 5

(17)

3The original parametrization of Ref. [21] erroneously lacked
75 factors for the Dirac structures. Compare Eq. (14) of Ref. [21]
by Eqgs. (17)—(19) of the present paper.
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(@12 peyy = (P1° C)e(E" (P W)U (pros1)) 5

(@(7)pey =M~ (E (Pv Av) - A7) (PP C) o (UT (p1.51)) 3

(@1 peyy =M(E* (v Av)-n)(Pr°C), (U (p1.51)),5

(@32) e, =M~ (P °C) (6% Ut (pr.s1)) 3

(@) ey =M2(E (Pyo2y) - A7) (Y C) , (Ar U (p1os1))

(a N)pw:(5*<Pv’/1v)'”)(ﬁ?sc)pr(ATU+(P1751));ﬁ
(18)

(V) pes = (szc)m(i’sa’w* Ut (p1,s1)),s

() ey = MU (E(Pv. v) - A7) (6:C) e

< (rsr*Ut(p1.s1)),:
(t}/iiv)pr,)( = M(E*(pV’)’V) ) n)(apic)pr(ySleJr(pl B S])))(;

(13Y) ey = (02 C) e (rsUT (1. 51)) 5
(3 ey = M2 (E(py. Av) - A7)(6,2C) 0

X (ys6™ 87U (p1,51)),s
(3) ey = (E (v Ay) - 1)(6,,C) o (y56™TUT (py. 1)) 5
(15 ey = M_l(apArc)pf(75€*<pV’AV)U-’_(plvsl));(;
(57 ) peyy = M2 (E(Pvi Av) - Ar) (0,4, C) e

X (rsUT(p1,s1)),s
(55) ey = (E(Pvidv) - 1) (05, C) e (rsUT (P1,51)),5
(142) pey = M7 (0,6 C) o (rsA7U™)
() pey = M (E (Pv. Av) - Ar) (6,4, C)

x (rsArU Ut (p1:s1)y
() peyy = M (E(Pv. Ay) - 1) (0, C) e

x (YSAT (p151)), (19)

Throughout this paper we employ Dirac’s “hat” notation,
a =y,a", and adopt the usual conventions: 6" = % ¥, 7"];
oV = vﬂa’”, where vy is an arbitrary 4-vector. The
large and small components of the nucleon Dirac spinor
U(p,) are introduced as U" (p,,s,) = paU(p,,s,) and
U™ (p1.s1) = apU(py,s1).

Each of the 24 VN TDAs defined in (15) are functions of
three longitudinal momentum fractions x;, x,, x3, skewness
parameter &, u-channel momentum transfer squared A? and
of factorization scale y>. TDAs VYN (x|, x5, x3, &, A%) and
TN (x1, x5, x3, &, A%) are defined symmetric under the
interchange x; <> x,, while AYY (x}, x,, x3, &, A?) are anti-
symmetric under the interchange x; <> x,.

Note that with the use of parametrization (15) the
corresponding TDAs do not satisfy the polynomiality
property in its simple form. Indeed, as explained in
Ref. [14], since the light-cone kinematics implies the
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choice of a preferred z direction, parametrization (15)
involves noncovariant kinematical quantities (such as Ay
and light-cone vectors p and n). This results in the presence
of kinematical singularities for the corresponding invariant
amplitudes (TDAs). In principle, one can define the
alternative set of the Dirac structures for VN involving
only fully covariant kinematical quantities such as 4-
vectors P =1(p; + py) and A. Thus, for the price of
the controllable admixture of higher twist contributions
the corresponding set of VN TDAs turns out to be free of
kinematical singularities and satisfies the polynomiality
condition in its simple form. Therefore, for this set of TDAs
one can introduce the spectral representation [22] in terms
of quadruple distributions. The relation between the free-
of-kinematical-singularities set of VN TDAs and those
introduced in Eq. (15) is given by the set of relations similar
to Eq. (C11) of Ref. [14].

In the present study we, nevertheless, prefer to stay with
VN TDA parametrization (15), since it is well suited
to keep an eye on the Ay = 0 limit. Namely, in the limit
A7 = 0 only 7 TDAs out of 24 turn out to be relevant: V1 &

ViR, AR ALY, U TH T

IV. CALCULATION OF THE
HARD AMPLITUDE

Within the suggested factorized approach, in the leading
order (both in a; and 1/Q) the amplitude of*

r*(q,4,) + NP(p1.s1) = NP(p2,52) + V(py,dv)  (20)

involves six independent tensor structures

Ay (47ra ) V47TaemfNM

. VA, Ay 2
M5, = - SacF Zss,sz M (g, A?).

(21)

Here a., = % is the electromagnetic fine structure con-
stant and fy is the nucleon light-cone wave function
normalization constant. Throughout this study we employ
the value from Ref. [23]: fy = 5.2 x 1073 GeV?.

There turn to be two tensor structures independent of Az:

1)A,A = A
SE,L' "' =U(py.5y)2(q. 2

2)A,4 s
Sglzzl "= (E,’ (pVaAV)

y)g*@v’/lv)U(Ph Sl);

n)U(pa. $2)8(q.2,)U(py.51).
(22)

and four Ap-dependent tensor structures:

“For definiteness we take V to be a vector meson with I 3=0:
w, p° or ¢.
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3)4,Ay

S = (€ (py.dv) - AU (pa.52)2(a. ) U P 51):
nyw 1
5.(”22’ ' = M(é‘ (pv.dv) - A7)
x U(pa. s2)§(q”1y)ATU(pl’sl);
52 1 - N A A
SO =17 U(P2:52)8(q. 2,)E (pv. Av)ArU(p1.s1);
6)4, y - N
St = (& (pyady) - M) T (P2 52)2(q. )
S é‘*(Pv,/lv)ATU(Pl»Sl)- (23)

Here £(q.4,) stands for the polarization vector of the
incoming virtual photon and £*(py, 4y) is the polarization
vector of the outgoing vector meson.

To the leading order in «;, within the collinear factorized
description in terms of VN TDAs, the amplitude of reaction
(20) can be computed from the same 21 diagrams listed in
Table I of Ref. [6]. We adopt our common notations for the
integral convolutions ZW, k = 1, ..., 6:

5 1+r§
b(E A2) / dx, /
14e 1+¢

1+&
x/ dx36(x; + x5 + x3 — 2£)
—14¢

1 1 1
XA dy1A dyzA dy36(y1 +y, +y3—1)

7 14
x (2 S +y TS,">> . (24)
a=8

a=1

The explicit expressions for the coefficients Tg,k)

D, X Nék) (no summation over o« assumed) are
presented in Table I. Here D, denote the singular kernels

originating from the partonic propagators and N

Nék) (x1, X2, & A%y, y,,y3) stand for the appropriate com-
binations of VN TDAs and nucleon DAs V?, AP and T?
arising in the numerator. The @ = 1, ..., 21 index refers for
the diagram number and the index k = 1, ..., 6 runs for the
contributions into six invariant amplitudes of Eq. (21).

V. CALCULATION OF THE UNPOLARIZED
CROSS SECTION

First of all, we need to specify our conventions for the
backward vector meson electroproduction cross section.
Within the suggested factorization mechanism only the
transverse virtual photoproduction cross section o7 receives
contribution at the leading twist. Analogously to how this
was done in Ref. [14], using the explicit expression
[Eq. (2.12) of [24]] relating scattering amplitudes of vector
meson electroproduction within a one photon approxima-
tion and the amplitudes for the virtual photoproduction,
we express the unpolarized cross section of hard electro-
production of a V meson off a nucleon through the helicity
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TABLE I. 14 of the 21 diagrams contributing to the hard-scattering amplitude with their associated coefficient T,(Ik) =D, x Nflk)
(no summation over a assumed). The crosses represent the virtual-photon vertex. We do not show seven diagrams with ¢ = 15, ..., 21.
They differ from those with @ = 1, ..., 7 by the inverse order of the u-quark lines and result in exactly the same contributions into the
hard-scattering amplitude.

a Diagram Numerators
D,
. L (V= AN (Vi + A+ 20 (T T
u(ry uly1
(2) A7
o N ~(V7 APV 4 ATY) 4 4TP (T 4 2T
(3) A2
1 e oy N ANV AT VI 4 AT AT (T T 4 ST
W ~(VP ATV A 4 20T 4 T
Qu2ep o (V7 = An)(VEY + ALY) - 279(1Y - i)
(25—3,’1—i€)2($3—i€)(1—y1)2y3 (<l6> VN VN n ‘VN VN
Ny _(VP _Ap)(VZn +A2n ) + 2T (T2n + T3n )
(1) 0
a
((12) 0
u(wy) u(yr) 3) 0
2 u(xs) u(ys) NE}) 0
d(xs) d(ys) (<15) 0
N 0
(1) _2TP(TYN L TVYN
u(ar) ulyn) 5 (Vng " ”V)N
— P —_T_
3 e ) : —ATP(TYY 4 TY + A Ti)
@ =2TP(TYN + TY)
e e R 2T~ 1)
T1—1€ —xo—i€)(x3—t€)y1(1—y1)ys
5 27 (T3 + T3,)
N —(VP = AP)(VIN + A7)

)

) —(VP = AP)(VIY + ALY)

) —(VP = AP) (VI + ATY + VI + ATY)

@ —(VP = AP) (VI + AYY)
Qu(20)? N (VP = AP) (V3 + A3Y)

(z1—i€)(26—z3—ie)(zs—ie)y1(1—y1)ys (6) (VP — AP) (VYN 4 AYNY

) (VP +An)(ViE - AL
) (VP +AP)(VEY = ALY)
) (VP +AP)(VIN — Aip + V3N — AYY)
2 (VP + AP)(VIN — Ayy)

Qu(20)? NS —(VP + AP (V3 - A3Y)
(z1—1€) (2§ —w3—i€) (w3 —ic)y1 (1—y2)ys (6) —(VP + AP) (VYN — AYN)

slolele e e

(Table continued)
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TABLE 1. (Continued)

a Diagram Numerators
D,
Ny —2(VPViE - APATY)

u(xy) u(y1)

)
’ ) =2(VPVYN — APATN)
u(z;) u(ys) ((13) p (VN VII\VJI p ]’\l/N VN
7 dw () Ne AVIVIE  Vas ) AT+ Ax)
" 0 2PV - ArAYY)
Qa(2€)? o 2VPVyY — APAZY)
(z1—1€) (2§ —z3—1€)?y1 (1~y3)? ©) 2(VPVYN — APAYN)
Ny 0
((ZZ) 0
u(xy) ﬁ u(yr) N(” 0
d(z3) d(ys) N,(IS) 0
(<Z6) 0
(1) —(VP — AP VVN AVN 2TP TVN TVN
wr) % () ((,2> ( (VY +ATY) + (T1¢ "’Az 5¢)
o g M. (VP APV 4 ATY) + TP (T 4 2T
2 2
(3) A2
9 d(zs) § 3 (o) a —(VvP —AP) (VY + AT + VI + AJY) +4TP(TY] + T3 + 55 T47)
% —(VP = AP) (Vi + AYY) + 2T7 (T3 + T3)
Qu(26)? NG (VP —AP)(VEY + AYN) —2TP(TYY — TVY)
(26—x1—ie)% (w2 —ie)(1-y1)?y2 216) p_ APV(UVN 1 AVN p(TVN o TVN
o _(V —-A )(V2n +A2n ) +2T7 (T2n + T3n )
o . N —(VP = AP)(VIE + AQY) + 2TP(T1Y + T3Y)
w(x - T u( 2) ) A2
u(zs) 8 u(ya) ((13) _(VP —Af )(V‘l/'iv + AY’{V) + 4TP(TY'§V + ﬁTX'iv)
3 A2
0 dy g § d(se) Na™ (VP = AP) (VI + ALY + V3 + ASY) + 4TV (T + T3 + 55 Tiy)
Y ~(V? - A)(VH AR + 208 4 TH)
Qu(26)? 5 (VP = AP)(VEY + AYY) 277 (T8 — TY)
(z1—1€) (26 —z2—i€)2y1 (1—y2)? ?6) p PY(VN VN p(TVN VN
Ny _(V —-A )(VZn + A2n ) +271 (T2n + T3n )
((11) 0
(2) 0
u(zy) —8_ u(y1) N(<'3> 0
d(x3) —— d(ys) ((Zs) 0
N2 0

VN _ AVN
) ¢ (VP -+ AD)(VIY - ATY)
(VP + APVEY ~ AT)

)
(x2) 2 (%2) |
u(xs ulyz
NER: o (VP -+ AP)(VEN = AT+ VIY - ALY)
12 d(w3) — d(ys) )
)
)

(VP +AP) (V37 = A7)
—(VP +AP)(V3Y = A3Y)
—(VP+An) (V3 - ALY)

Qu(26)” 3
(z1—i€)(z2—ie) (26 —x3—ie)y1 (1—y2)y2

(Table continued)
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TABLE 1. (Continued)

a Diagram Numerators
D,
& 207(T7 + T5¢)
u(wr) 3 1(y1) ) A
g Na ATP(TYN + L TYN
u(z2) u(ys) @) ln 7 2Mm A‘}"
S : VN VN T TVN
13 dw) E— () Na ATV (Tir + Tag + e Tar)
N 2 (TG 4 T
Qa(26)?) ) —27P(TYY —TYY
Y 7 S—— — = ;
(xl 7'6)(6 x1 7'6)(‘%2 le)yl( y2)y2 N(<Z6> _ZTF(T%ZV‘FT%/,ZLV)

(VP —AP)(ViY + ATY)

u(y1) a

)
o g . Ng (V7 = AP)(VEY + A1)
g8 J (V= AP)(VEY + AT VIY 4 ALY)
14 d(x3) —<— d(ys) 4 VN VN
N(<z> (VP —AP)(Vyr +AY)
Qq(26)” ) —(VP = AP)(V3g' + AgE)
(z1—i€)(2{—z1—ie)(z2—ie)y1y2(1—y3) N© —(VP = AP)(VIN 4 AYN)
amplitudes of y*N — NV defined in (21) within the (k§ — ki) +0* 05!
collinear factorized description framework: e=|1+2 02 tan 2 (27)
5
/dia is the polarization parameter of the virtual photon, where 6%
dE'dQy dQy denotes the electron scattering angle in the LAB frame.
A(s,m3, M?) (1 Ay n We employ the following relation for the sum over the
=Ix Sy DL MR hoton’ larizati
1287%s(s = M?) |2, “~ photon’s transverse polarizations
y7AVS1:52
_rx{Lor (25) Y _e(a.2)e" (q.4) = —¢" + L (prn 4 prnt),
dQy A ’ ’ (p-n)

YT

Here Q. is the differential solid angle for the scattered
electron in the LAB frame; Qy is the differential solid angle ~ and the V-meson polarization sum reads
of the produced vector meson in the N'V CMS frame; and

A is Mandelstam function (9). ors
By dots in the rhs of Eq. (25) we denote the subleading ZEP(PV’AV)EG(PV’AV) =-97+ e
twist terms suppressed by powers of 1/Q. I' stands for the v v
virtual-photon flux factor in Hand’s convention . i
Let us introduce the notation
 Aem ks —M* 1 o6
SRk MO 1 —e (26) b <<4msw—4mmfNM>
54 ’

Here k5 and k' denote the initial state and final state
electron energies in the LAB frame and and define
|

Ty = &(q.4)E(py, A)TW(E A?) + M(E(py. Av) - n)&(q,2,) TP (&, A%)

Bt Bl g 7006, m0) + LA A) g0y g 3,706 02)

1 ~ ~ ~ ~
+ Mé(%ﬂy)g(PvJv)ATI(S)(f, Az) + (5(Pv,/1v) ) ”)5(Pv7/1v>ATI<6) (5, Az)'

(28)

(29)

(30)

(31)

We now square the amplitude and sum over the transverse polarization of the virtual photon, over the spin of the outgoing
nucleon and over the polarizations of the V meson and sum over the spin of the initial nucleon. We make use of the

kinematic relations summarized in (2) and keep only the leading twist terms. The resulting expression then reads
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Ady 4 A Ay 1 N N
MrP = Y7 MM = DP =5 > Tr{(pr + M)Tw(p1 + M)roThyro}
Ay AysS1,52 Q Ay 1w
_pp 12(1+¢) {|I<1)|2<1+M2(1—§)2+(1+§)2(m%,—A2T)) N |z<2)\2M2(1‘5)2
¢ & m¥ (1 + &)? 4m?,
2(1-¢) (my, — A%) M*(1-¢)
+(I< )7 (72 ))7+ | |27 + (1(1)1(3)* +I(1)*I(3>)7
2m (1 +¢) my my (1 + &)
2 2 2
H(TOTOr 4 gy MU= | |I<4>|2M (@@ 1 gy Um0~ AF)
2m3, M*m mi
2 2 2
—|Z<5)\2<1+M (1-¢r 2( + &% (my — A7 ))+(1 x4 (D= I(S))M
V( +¢)?° my (1 +¢)
2 _ 2 _ AZ AZ(I _5)
TR L 776 §) TOIT6» L 775" T (7W 70+ 4 7@x7(5)) L
H ) IO+ IO TON IS (1076 4 7070 T
2 2 2
_|I<6>‘2M(17‘5> (zWTO 4 70z M1 =6
4mV Zm%,
AF(1=9¢) M*(1-¢)?
—(TATO) 4 T@xgONITA >/ o (7)) L 7Gx (6)y >/ L} 32

We end up with the following expression for the leading
order (LO) unpolarized cross section of hard photopro-
duction of backward vector mesons off nucleons:

dZGT -
aQy,

128725 (s — 5 Ml (33)

where o refers to the transverse polarization of the virtual

photon and % stands for averaging over the initial

nucleon spin.

Thus we conclude that there are two essential marking
signs of the onset of the suggested factorization regime
for hard vector meson production in the near-backward
kinematics, which can be tested experimentally.

(a) The dominance of the transverse polarization of the
virtual photon resulting in the suppression of the o
cross section by at least 1/Q?. In fact, the preliminary
analysis [25] of backward w-meson production JLab
Hall C 6 GeV data hints at 67 > ¢, already for Q% =
2.4 GeV? and W =2.2 GeV.

(b) The characteristic 1/Q8-scaling behavior of transverse
cross section (33) for a fixed xp.

In what follows we present our estimates for the LO
unpolarized cross section of hard photoproduction of
backward @(782), ¢(1020) and p°(770) mesons off pro-
tons within the u-channel nucleon exchange model for VN
TDAs presented in Appendix B. This is a simple TDA
model which populates VN TDAs only within the
Efremov-Radyushkin-Brodsky-Lepage (ERBL)-like sup-
port region. However, it can be seen as a reliable estimate
of the VN TDAs’ magnitude for the intermediate values of

skewness parameter £ = 0.1 +0.4. As inputs this model
requires the values of the vector and tensor Gy couplings
(B1) and the phenomenological solutions for the leading
twist nucleon DAs.

A. On the choice of phenomenological
parametrization for the nucleon DA

The choice of the phenomenological solution for the
leading twist nucleon DA and the corresponding value of
the strong coupling represents a complicated problem (see

Y*4+p - prw; W=3.20 GeV; |A%|= 0 GeV?;

d?c/dQ,, [nb/sr]

0 [GeV?]

FIG. 3 (color online). Unpolarized cross section L2z d L [in nano-
barn/steradian (nb/sr)] for backward y* + p - p + o "for a fixed
W =3.20 GeV as a function of Q2 in the u-channel nucleon
exchange model for oN TDAs. COZ [33] (long-dashed line) and
KS [32] (solid line) solutions for the leading twist nucleon DA are
used as the phenomenological input.
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e.g. the discussion in Ref. [26]). Roughly speaking, there

exist two distinct classes of the leading twist nucleon DA

parametrizations.

(a) The models with the shape of nucleon DA close to the
asymptotic form [27]

VP(y1,¥2.y3) = TP (y1. y2.y3) = 120,235

AP(y1,y2,53) =0 (34)
already at a low normalization scale. Prominent
examples are the Bolz-Kroll [28] and Braun-Lenz-
Wittmann LO and next-to-leading order models
[29,30]. Also, the advanced lattice calculations of
the nucleon DA [31] favor such nucleon DAs.

The Chernyak-Zhitnitsky (CZ)-type models with a
shape of a nucleon DA considerably different from

(b)

Y+ p-prw; W=3.2 GeV; 0?°=2.45 GeV?;

PHYSICAL REVIEW D 91, 094006 (2015)

the asymptotic limit at a low normalization scale. The
examples of this type of nucleon DA models are
the CZ [23], King-Sachrajda (KS) [32], Chernyak-
Ogloblin-Zhitnitsky (COZ) [33] and Gari-Stefanis
[34] solutions.

Both types of nucleon DA models were employed to
provide a description of the nucleon electromagnetic
form factors. As is well known, the asymptotic form of
the nucleon DA (34) results in a vanishing perturbative
QCD (pQCD) contribution for the proton form factor.
Therefore, using the nucleon DA with a shape close to
the asymptotic form implies that the standard pQCD
contribution must be complemented by the so-called
soft or end-point corrections (see e.g. discussion in
Refs. [28,29,35,36]).

However, the nucleon electromagnetic form factor
appears as a building block of the backward amplitude

Y+ p-p+w; W=3.1 GeV; 0*=3.50 GeV?;

500F 200F
= 200} - 100}
= 100} £ S0
g g
< 50r ] L
S 5%
= 201 = 10}
10k s s s s s 5k s s s s s
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
—AZ [GeV?] —AZ [GeV?]
Y+ p-p+w; W=3.28 GeV; 0*=4.46 GeV?; Y+ p-p+w; W=3.20 GeV; 0°=5.25 GeV?;
100F 50F
) )
g g
2 2
Nb Nb
= =
2t s s s s s 1k L L s L L
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
A} [GeV?] —A% [GeV?]
Y+ p- p+w; W=3.20 GeV; 0°=6.00 GeV?;
20F
_ 10t
7
2 s
3
g
s
= e
0.5k . . . , ,
0.0 0.1 0.2 0.3 0.4 0.5
—AZ [GeV?]

FIG. 4 (color online). o

Unpolarized cross section Por (in nb/sr) for backward y* + p — p + w for several values of W and Q? as a

function of A% in the u-channel nucleon exchange model for N TDAs. COZ [33] (long-dashed lines) and KS [32] (solid lines)
solutions for the leading twist nucleon DA are used as the phenomenological input.
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. ; W=3.20 GeV; |A}|= 0 GeV?; o
YHp > prds W=3.20 GeV: [A7|= 0 GeV within our u-channel nucleon exchange model for VN

200 TDAs. Therefore, within our simple model for VN TDAs,
100 we need to assure that the pQCD contribution into the
- 50 nucleon electromagnetic form factor is close to the exper-
é % imental value. This implies that we are forced to use the
= CZ-type solutions for nucleon DA.
g 10 In the following phenomenological estimates we have
S5 chosen to employ the COZ [33] and KS [32] solutions for
5 the leading twist nucleon DAs and set a compromise value

of the strong coupling a; = 0.3.

B. Backward @w-meson hard photoproduction

0? [GeV?]

FIG. 5 (col fine), Unpolaized tion 22z (in nb/sn) f As the first example we consider backward w(782)-
color online npolarized cross section & g, (innb/sr) for hard phot ducti £f prot

backwardy* + p — p + ¢ forafixed W = 3.20 GeV asafunction fmeson hiar@ photoproQuction ot proton

of 0 in the u-channel nucleon exchange model for N TDAs. COZ

[33] (long-dashed line) and KS [32] (solid line) solutions for the v (q.4,) + p(p1.51) = @(Py.Ay) + P(P2.52).  (35)

leading twist nucleon DA are used as the phenomenological input.

Y+p-p+d; W=32GeV; 0?°=2.45 GeV?; Y +p-p+d; W=3.1GeV; 0*°=3.50 GeV?;
500F 100F
= 200f =
2 100~ 2 20+
R ERNRIN
3 50r =~ < — 3 10} ~
= 20l = S5t
10k L L L L L 2t L L L L L
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
—-A2 [GeV?] —A2 [GeV?]
Y+ p-p+é; W=3.28 GeV; 0’=4.46 GeV?; Y+ pop+d; W=3.20 GeV; 0>°=5.25 GeV?;
50F 20F
10t

d*o/dQy [nb/sr]
o S <
/
/
d*c/dQ, [nb/sr]
[\S] W
/
/

2t S — - 1 AN -
N —_—
1k . . . . . 0.5k . >~ = 7, . .
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
—AZ [GeV?] —AZ [GeV?]

Y+ po p+d; W=3.20 GeV; 0*=6.00 GeV?;

s
=
<
=]
=
5
=
. . N A . . .
0.0 0.1 0.2 0.3 0.4 0.5
—AZ [GeV?]

FIG. 6 (color online). Unpolarized cross section 4 7o) 47 (in nb/sr) for backward y* 4 p — p + ¢ for several values of W and Q7 as a
function of A2 in the u-channel nucleon exchange model for ¢ /N TDAs. COZ [33] (long-dashed lines) and KS [32] (solid lines) solutions
for the leadmg twist nucleon DA are used as the phenomenological input.
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Y*+p = p+p° W=3.20 GeV; |AZ|= 0 GeV?;

d*a/dQ, [nb/sr]

0 [GeV?]

FIG. 7 (color online). Unpolarized cross section ‘fjg‘;T (in nb/sr)
for backward y* 4+ p — p + p° for a fixed W = 3.20 GeV as a
function of Q7 in the u-channel nucleon exchange model for pN
TDAs. COZ [33] (long-dashed line) and KS [32] (solid line)
solutions for the leading twist nucleon DA are used as the
phenomenological input.

We take the Grein 1980 estimates for the @-meson
couplings to nucleons [37] (see also Table 9.2 of Ref. [38])

GXNN =10.1; Gl n = 1.42. (36)
We take the kinematical point from the foreseen

Jlab@12 GeV setup for Hall C [Fpi-3 (E06-12-101) u-
channel kinematics] [39] W = 3.20 GeV. In Fig. 3 we plot

. . . P o
the resulting unpolarized cross section ‘(1157 (33) within the

u-channel nucleon exchange model for N TDAs as a
function of Q? for A7 = 0 (i.e. for the @ meson produced
exactly in the backward direction in the y*N CMS:
o;, = 7).

In Fig. 4 we show the

d’*or
aQ,
AZ for several values of W and Q2 (i.e. for u < u or,
equivalently, 8;, < 7).

We may conclude that qualitatively the expected cross
sections are similar to the backward z-electroproduction
case. Depending on the phenomenological input and
kinematics the cross section turns to be about ~10 + 100
(nb/sr) which lies within reach of future JLab Hall A, B and
C experiments.

cross section as a function of

C. Backward ¢-meson hard photoproduction

The second example is the ¢(1020)-meson hard photo-
production

v (q.4,) + p(p1.s1) = p(p2.52) +d(py.Ap).  (37)

Some controversy exists in the literature for the values
of the phenomenological ¢ meson to nucleon-vector and

PHYSICAL REVIEW D 91, 094006 (2015)

tensor couplings. As the numerical input for the u-channel
nucleon exchange model for N TDAs we employ the
phenomenological ¢ meson to nucleon vector and tensor
coupling presented in Ref. [40] (see also Table 2 of
Ref. [41]):

Ghyy =918 Ghyy = -2.02, (38)

which are roughly consistent with the estimates of
Ref. [42].

In Fig. 5 we plot the backward ¢-meson hard photo-
d’c
dQ;

to exactly backward scattering 6;) = —x) as a function of
Q? for the Q? range corresponding to Fpi-3 (E06-12-101)
u-channel kinematics [39].

d*or
dQ,

AZ for several values of W and Q? (i.e. for u < u or,
equivalently, 0, < 7).

production cross section for A2 = 0 (i.e. corresponding

In Fig. 6 we show the cross section as a function of

D. Backward p°-meson hard photoproduction

Finally, we consider the p°(770)-meson hard photo-
production

v (q.2,) + p(p1.s1) = p(pa.s2) +p°(Py. Ap)-
(39)

As the numerical input for the u-channel nucleon
exchange model for pN TDAs we employ the
Pietarinen 1977 phenomenological p meson to nucleon
vector and tensor couplings presented in Table 9.2 of
Ref. [38]:

Glyy =2.6;  Glyy =16.1. (40)

In Fig. 7 we plot the backward ¢-meson hard photo-
production cross section ‘5—5; for AZ = 0 (i.e. corresponding

to exactly backward scattering 65 = —x) as a function of
Q? for the Q? range corresponding to Fpi-3 (E06-12-101)
u-channel kinematics [39].

. 2 . .
In Fig. 8 we show the % cross section as a function of
)

AZ for several values of W and Q? (i.e. for u < u or,
equivalently, 6, < x).

It is interesting to note that as the p meson is
mostly coupled to the nucleon through the tensor
coupling the cross section turns out to be suppressed
at least by a factor of 3 as compared to the w-

meson case.
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Yy +p-p+p’; W=3.2GeV; 0?°=2.45 GeV?;

PHYSICAL REVIEW D 91, 094006 (2015)
Y +p—=p+p° W=3.1GeV; 0?°=3.50 GeV?;

100F 50F
i —_ E 20'\_/
o N P o
S ~__-- ]
2 20f SRIUD _ -
N —
~ —_— — -
10k L L n L L = L L L L L
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
—AZ [GeV?] —AZ [GeV?]
v +p-p+p° W=3.28 GeV; 0°=4.46 GeV?; v +p-p+p° W=3.20 GeV; 0°=5.25 GeV?;
20F 10F
Z 10t g 5»\_/
) e}
E E
C}Q \/ GQ
3 st 3 D
Nb ~ ~ Nb 2t ~ ~
= ~ —_ ™ ~ —_ N —_—
~— —_— — — — —
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.0 0.1 0.2 0.3 0.4
—A2 [GeVY] —AZ [GeV?Y]

Y+ p-p+p°; W=3.20 GeV; 0°=6.00 GeV?;

20F
_ 10t
%
2 st
QU
g \_/
52N
Q ~
=L ~ I
~— e e — ™
0.5k . . . . .
0.0 0.1 0.2 0.3 0.4 0.5
—-AZ [GeV?]
d’or

FIG. 8 (color online). Unpolarized cross section g

(in nb/sr) for backward y* + p — p + p° for several values of W and Q7 as a

function of AZT in the u-channel nucleon exchange model for pN TDAs. COZ [33] (long-dashed lines) and KS [32] (solid lines) solutions
for the leading twist nucleon DA are used as the phenomenological input.

VI. CONCLUSIONS AND OUTLOOK

In this paper we applied the nucleon to meson TDA
approach to the case of near-backward leptoproduction of
light vector mesons off nucleons. We defined 24 leading
twist-3 VN TDAs and computed the corresponding leading
order hard amplitude. We estimated the differential cross
section of backward p°, @ and ¢ production within a simple
cross-channel nucleon exchange model for VN TDAs.
The cross sections were found to be sizable enough to
be studied at future JLab experiments. The study of hard
leptoproduction of a vector meson in the backward direc-
tion can also be seen as an opportunity for COMPASS at
CERN and the future EIC. Bringing experimental evidence
for the suggested scaling behavior will improve our under-
standing of the onset of the perturbative QCD description
of hard reactions.

The same VN TDAs can also be addressed in nucleon-
antinucleon annihilation into a lepton pair in association
with a vector meson to be studied at PANDA, thus
checking the universality of TDAs. Therefore, a feasibility
study for pp — y*V and pp — J/wV reactions for the
PANDA conditions is highly needed.

Our formalism can be naturally generalized to the case of
nucleon-to-photon TDAs [43], which can be accessed in
backward DVCS. Potentially, this is the cleanest process
involving TDAs that could bring new information on
hadronic structure. However, the experimental feasibility
of backward DVCS requires further study.
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APPENDIX A: ISOSPIN AND PERMUTATION
SYMMETRY PROPERTIES OF VN TDAS

In this appendix we present a brief overview of the
isospin properties of VN TDAs. Throughout this analysis
we literally follow the system of notations and conventions
adopted in Ref. [13].

(a) Letters from the beginning of the Greek alphabet
are reserved for the SU(2) isospin indices

a,p,y, 1,k =1,2.

(b) We have to distinguish between upper (contravariant)
and lower (covariant) SU(2) isospin indices. We in-
troduce the totally antisymmetric tensor &,4 for low-
ering indices and * for rising indices (¢, = £'> = 1):
Wleyy = Wy, U6 = U and 5% = —e%5 = g%

(c) Letters from the beginning of the Latin alphabet
a,b,c =1,2,3 are reserved for indices of the adjoint
representation of the SU(2) isospin group. o, stand for
the usual Pauli matrices.

(d) Letters from the second half of the Greek alphabet
p, 7,y are reserved for the Dirac indices.

(e) Letters ¢, ¢s, c3 stand for SU(3) color indices.

We consider the VN matrix element of light-cone three

quark operators

Ozf)](/(zl’ 225 Z3> = (A)Zf)](/(l’ 2’ 3)

= €c1c05 ‘I]/L;]a(zl)\Il$2ﬁ(z2)\1};3a(z3>' (Al)

For the case of the I =0 vector meson [w(782) and
$(1020) being the examples] the isotopic structure of VN
TDA coincides with that of the leading twist nucleon DA.
Therefore, the invariant isospin parametrization reads (for
definitiveness we consider the @ N TDA case)

4<a)(pm7/1w)|0z{'};(1’ 2’ 3)|Nl(p17 S1)>

= ePS Mo (1,3,2) + e s MNP (1,2, 3),
(A2)

PHYSICAL REVIEW D 91, 094006 (2015)
where the invariant amplitude M;’,’,];{lz}(l ,2,3) is symmet-
ric with respect to the interchange of the first two variables:

MNP (1,2,3) = M2 (2, 1,3), (A3)

and satisfies the isospin identity [cf. Eq. (32) of Ref. [13]]

MU (1,2,3) + MU (1,3,2) + Moy (2,3.1) =0.
(A4)

The Dirac structure of M%V(m}(l, 2,3) is that of Eq. (15).
It is straightforward to check that

H(Pa 2|05 (1.2.3) Ny (p1.s1)

= _4<w(pa)”1w)|0gg)?(1’ 2’ 3)|Nn(plv S1)>

= M1 (1,2,3). (A5)
To work out the consequences of the isospin identity (A4)
for particular TDAs of (15) one has to employ the set of the
Fierz identities (A11)—(A17) for the relevant Dirac struc-
tures (17), (18), (19).

For the case of the / = 1 vector meson [p(770) being
the obvious example] the isotopic structure of VN TDA
coincides with that of the leading twist nucleon zN TDA.
Therefore we can write down the following isospin decom-
position:

Hpal 07 (21.22.23)IV,)
= (£ My " (1.2.3) + e (o, My 1 (1,3.2)

+ e (o) M1 (1,2,3), (A6)

{aﬂly}

where the totally symmetric tensor (f,) reads

()" =5 (00 s, + (0) 5" & + (04 575",

1
3
(A7)

The properties of the wu-channel isospin—% invariant

amplitude M,(,’Zy)” A1 are fully analogous to that of the

corresponding invariant amplitude of Eq. (A2). It is
symmetric under the simultaneous interchange of the
two first arguments and the Dirac indices:

M/()/;j(v)l/z{u}(l’ 2, 3) _ M%g)l/2{12} (2’ 1, 3)’ (AS)

and satisfies the isospin identity [cf. Eq. (32) of Ref. [13]]

M;Zj(v)l/z{lz}(l, 2’ 3) + ME,;]X)I/Z{IZ}(L 3’ 2)

+ Mo 30y =0, (A9)
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The Dirac structure of M, %;])'/ 12 4 again that of Eq. (15).

As a consequence of the permutation and isotopic
symmetry, the u-channel isospin-% invariant amplitude

N)s {12} . . .
Mg;( B {12} completely symmetric under simultaneous

permutations of the arguments and the Dirac indices:

(PN)3)2

N
MPU{ (pPN)s3 /2

(1.2.3) = MUY (1,3,2) = MUY (2,1,3)

= My (2.3,1) = My P (3.2.1)

= M (3,1,2). (A10)

The Dirac structure of M;,pfj(v)w{u} is also that of Eq. (15).

Below, to the leading twist-3 accuracy, we present the set
of Fierz identities for the relevant Dirac structures (17),
(18), (19) needed to establish the consequences of the
isotopic and permutation symmetry (A10) for VN TDAs:

(0 )y =5 (2 = a2 4 2 ),
() ey = 5 (2l Y 80,
(W) ey = 5 0+ 0l + 88 =32,
() =5+ all =+ ), (ATD)
(0 e = 5 0 = @l 4 1),
(@ e = 5 (0 @l + 1),
(1) ey = 0+ (@), (A12)
(o) ey = 5 (01 = a1,
(@) = 5 (0 all + )0
(W) ey = 0+ a0 (A13)
(01 ) = 5 05 =l =),
(@3 g =5 (012l ),
(82 = 5 (0 + 082+l af
=7 + 0 e
() ey = 5 (0 + 01 = a2+l +
Y ), (A14)
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1
W3 )pey = 5 (037 =@ + 037" + 137,03
1
(@2 )pey = 5 (Z037 + a3y + 67 + 657,05
1
(7 ey = 5 (037 +azr + 07 =137 e
1
(5 ey = 5 (0 +azp =37 +157) e (A15)
1
(03 ey = 5 (W30 =@ + 13" +1500), 03
1
(agrllv)/)r,;( - E (_’Ugrlzv + agrlzv + t;/}f\/ + té/rlzv))(‘r.p;
1
(5 Do = 5 (020 +azy’ + 1350 = 137),5
1
(g = SOR Y, (M1
VN 1 A% VN VN VN VN
(47 ) pey = el Uiy —dir — Iy )){T,/} + (41 ) e
VN 1 A% VN VN VN VN
(t4n )pr,)( = EW(vln —ay, —l, ))(np + (t4n ))(T.p‘

(A17)

APPENDIX B: NUCLEON POLE EXCHANGE
MODEL FOR VN TDA

In this appendix we construct a simple u-channel
nucleon exchange model for VN TDAs. This model
populates only the ERBL-like region of the VN TDA
support domain and represents an analogue of the D-term
contribution supplementary to the spectral representation
[22] in terms of quadruple distributions.

The effective VNN vertex [38]

Vet (N(p1,s1) = V(Pv,/lv)N(_Avsp))
= U(_A’sp)[G\ZNNg*(pV’AV)

Opv v Op*
+G‘T/NN2;4(_A) E(py, Av)U(py,s1)

(B1)

involves two dimensionless phenomenological couplings
Gyyy and Giyy.

The u-channel nucleon exchange contribution into the
light-cone three quark operator VN matrix element occur-
ring in VN TDA definition (15) reads
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<V(PVaﬂv)|O%?(/11n»/12”’ﬁ3”)|N(P1, S1)>|N(94o) = Z<0lO}Ii‘;’(/hn,/lzn,/lsn)lN(—A’sp)>U(—A»sp)

Sp

1

6” [ </TES
XA Mz[GVNNg (Pv’/lv)"‘GNNwz (=A) & (py. Av)|U(py.51)-

(B2)

The (O|OZ;‘;(/11n,/12n,ﬂ3n)|N (=A,s,)) matrix element is then expressed through the leading twist-3 nucleon DA.
Performing the Fourier transform (16) this yields

4F (x1, %2, %3)(V(py. Av)| 04 (Ayn, Jyn, 23n)|N, (P12 51w (oa0)

1
= 6(x; + xp + x3 — 2&) X MOggpy (X1, X2, x3) fNM (28) ZZ{ (2_5 2—5 2—§>( AC)pT(y U(-A, Sp))
+ AP <;é ;zg ;—2) (—-AysC), U(-A.s,), + TP (25 ’262 )2“2;)( 0iC),e (P U(=A, 5,)), }U(—A,sp)
1 fe §22%
Xm[G\ZNNE (pv,Av) + GVNN; (=A)E* (py, W)U(py. 51). (B3)

Here we employ the notation

OpgrpL (X1, X2, X3) = [H 0(0 < x; < 25)]- (B4)

To work out from (B3) the nucleon pole exchange contributions to particular TDAs one has to expand it over the set of 24
basic Dirac structures (17), (18) and (19), which is a straightforward (though tedious) calculation. It turns out that the
u-channel nucleon exchange model populates 22 out of the 24 VN TDAs (T} and T}V vanish in this model).

It is convenient to show the results for the groups of VN TDAs interlinked through the set of the isospin relations (see
Appendix A).
(@) Vig, Arg, Tig, Toe satisfy the isospin symmetry relations based on the Fierz transformation set (All):

1 X1 Xp X3
VIN(xy, x0, 3. & Az)|N(940) = ®ERBL(x17x27x3)(27)2VP <2—5»2—52—€>KY5N(§ A?);

1 X1 Xp X3
AVY (X1, %0, %3, &, A2>|N(94o) = ®ERBL(X17X27XS)(—AP <—,—,— KYN(E, A%);

26)? 28728 2¢
TYN (x1, x5, x3, &, A?)] =-0 (x1,x x)—l Tp(XL X2 X3 KVYN(& A?);
1€ (X1, X2, X3, &, N(940) ERBL (X122 %3) (593 26260z ) e (& AT
1
Tzvév(xm,xwf, A2)|N(94o) = _®ERBL(x1’x27x3)@TP <¥Z;§)KYQ(§ Az)’ (BS)
where
f 28(1-¢) 26 A?
KY}{‘V(&AZ):rN]VIz<G“;NNW+G€NN§<I—+§_W>>' (B6)

(b) Vir, Ay, Tp satisfy the isospin symmetry relations based on the Fierz transformation set (A12):

1 X Xy X
VI (x1. X0, %3, &, A2)|1v(940) = ®ERBL(xl’x27x3)_(2§)2 Ve (2—152—22—9 KV (£, A%);
1 X X, X
AT (x1, %2, %3, &, A2)|N(940) = ®ERBL(xlax27x3)@Ap <2‘1§2222)K¥;\1(5 A%);
VN 2 1 p (X X2 X3 pyy 2
Ti7 (x1,x0,x3. 6, A )|N(940) - _®ERBL(XI,X2,X3)WT 2672828 K7 (€.4%), (B7)
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where

I

26(1 + 35)) |

Ki(6A%) =5 (—G\‘ﬁmvli_é

A? — M?

©) Vi, Ay, Ty, satisty the isospin symmetry relations based on the Fierz transformation set (A13):

1

1

where

.o = o2 (2 ) (G40 +6

A2-M2\ ME(1-&?  1+4E&

X1 X2 X3

VY,’,V(xl,xz,x3,§, Az)|N(940) = ®ERBL(X1,X2,X3)—(2 )2 p<2—§72—§72—§

ALY (01, 22,53, & %) |y (040) = OrrpL (X1, X2.%3) s p<ﬁ,ﬂ7ﬁ)KW(f7 A%);
(2¢) 28282

1 X1 Xp X3
TYY (x1, %, %3, &, A2)|N(940) = _®ERBL(XI7X2’X3)@T (2_52_52_5

¢(1

-£)

)K% 2%

)sz:, A7),

)
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(B8)

(B9)

(B10)

(d) Vo, Ase, Tae, Tye satisfy the isospin symmetry relations based on the Fierz transformation set (A14). Within the
nucleon u-channel exchange model this set decouples from the V7, A7, T 7 set:

1 X1 Xo
Vgév(xl,xz,x3,§, A2>|1v(940) = ®ERBL(X17X2,X3)(2?)2V <2—§2—§2—§

1 X; X
Agév(xl,xz,)@f, A2)|N(94o) = ®ERBL(x1:x2»x3)—(2§)2 p<2—l§,2—2,2—§

1 X1

X3

X3

X2 X3
TY¢ (x1, %2, %3, &, Az)|N(940) = _®ERBL(x1’x27x3)WTp <2_§2_§2_§

Xy X2 X3

1
Ty (xy. x0. x3. &, A2>|N(94o) = ®ERBL(x17x27x3)W p<2—§2—52—§

where

Iy

Ky (&, A%) = A (GYnn(=28) + Glyné).

2_M2

(e) Var, Aor, Tyr, Ty satisfy the isospin symmetry relations based on the Fierz transformation set (A15):

1 X1

T37 (x1. %2, %3, 8, A2>|N(940) = _®ERBL<x1vx2,x3)W p<2—§2—§2—§

1 X1
T3 (x1. %2, %3, 8, AZ)|1v(940) = —®ERBL(X1,X2,X3)@T” <2—§2—§2—§>

where
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1 Xp X, X
VIR (X1, X2, %3, &, %) y(0a0) = ®ERBL(x1yx2»x3)WVP <2—é2—§§§

1 X1 Xp X3
AN (X1, %2, %3, & %) |y (040 = ®ERBL(X17X27X3)WAP (2—52—52—5

X2

X2

)szm, 2%):

) KN (6, A7)

X3

X3

)szév(:, 22

)KZ% 2%)

)KZV%V(é, 2%):

)KZV#v (6. 8%);

)KZV;V (&, a%);

VN
2T

(3

A?),

(B11)

(B12)

(B13)
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f {149
Kzr(é:, Az) - A2 _NM2 G\T/NN 1-¢ . (B14)
) Vs, As,, Ta,, T3, satisfy the isospin symmetry relations based on the Fierz transformation set (A16):
1 X| X, X
VI (x1, X, %3, &, A%) | y(040) = ®ERBL(x1:x2,x3)—(2§)2 vr (2—22—22—9 KYN (& A%);
1 X| Xy X
AN (x1, %2, %3, &, A%) [y 9a0) = ®ERBL(X1’X2,X3)WAP (2—22—22—9 K}N (& A%);
1 X1 Xp X3
T3Y (x1, %2, %3, &, A%) [ y940) = _®ERBL<x1vx2’x3)WTp <2—£2—52—§>K¥N§ A?);
VN 2 1 XX X3 pyn 2
T3, (x1. %2, %3, &, A%) |y 040) = —®ERBL(X1,X2,X3)WT” 267282 K3 (6.A%), (B15)
where
1+¢& (md—A2%) 1
KIN(E, A2) = —I¥ VT Glyn- B16
2n (év ) Az _Mzé (1 _5)2 M2 1 +§ VNN ( )

(g) Finally,

Ty (x1, 20, %3, &, A2)|1v<940) =0

TVN

4n (xlv-x2’x37 65 Az)lN(940) =0. (B17)

The above formulas can be employed both for 7/ = 0 and
I =1 vector meson to nucleon TDAs. In the latter case
the u-channel nucleon pole exchange contributes only to

R . N), a {12
the u-channel isospin-j invariant amplitude Mg;()'/z{ },

thus populating only u-channel isospin—% TDAs.

It is straightforward to check to see that the / = 0 and
I =1 vector meson to nucleon TDAs computed within
the u-channel nucleon pole exchange model satisfy the
set of isospin identities following from the appropriate
isospin symmetry relations (A4) and (A9). The explicit
form of these isospin identities can be established with
the use of the set of the Fierz identities worked out in

Appendix A. For example for the case of VY TDA it
reads

VYN (x), X, X3, &, A?)

1
+E(VY£’ — AN + TYY + T3 ) (x5, x1, 50, €, A?)
1
LV AT T TR ko, £.87) =

(B18)

The validity of this and all subsequent isospin identities
for VN TDAs within the wu-channel nucleon exchange
model turns out to be the consequence of the familiar
isospin identity for the leading twist nucleon DAs:

2TP(y1,y2.y3) = (VP = AP)(y1,¥3.¥2)

- (VP =AP)(y2.y3.31).  (B19)
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