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We study the process e−eþ → γH, where H represents HSM, h0, or H0. This process occurs at the one
loop level in the standard model or in the minimal supersymmetric standard model (MSSM). We establish
supersimple (sim) high energy expressions for all helicity amplitudes of this process, and we identify their
level of accuracy for describing the various polarized and unpolarized observables, and for distinguishing
SM from MSSM or another beyond the standard model. We pay special attention to transverse e∓
polarization and azimuthal dependencies induced by the imaginary parts of the amplitudes, which are
relatively important in this process.
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I. INTRODUCTION

After the discovery [1] of the Higgs boson [2], detailed
experimental and theoretical studies are necessary for
checking its properties and dynamics [3,4]. Within this
aim, we have recently studied the process e−eþ → ZH [5],
where H represents ðHSM; h0; H0Þ. This process occurs at
the one loop level in the standard model (SM) or the
minimal supersymmetric standard model (MSSM), and is
observable at future linear colliders [6,7], and also at future
circular colliders; see [8]. We have analyzed the contents of
its amplitudes in SM and MSSM, their consequences for
the various observables, and we have established simple
expressions which approximate them at high energy.
In the present paper we consider the process e−eþ → γH

which, contrarily to e−eþ → ZH, has no Born term and
should be relatively more affected by anomalous effects.
The basic amplitudes are arising at electroweak one loop
order [9,10]. These contributions contain specific SM or
MSSM parts that we discuss. Due to the absence of real
Born terms, the imaginary parts of the one loop amplitudes
play here an important role and we look for the conse-
quences of this feature.
We start from the complete computation of these one

loop amplitudes in SM and MSSM, in order to dispose of
the exact expressions in terms of Passarino-Veltman (PV)
functions [11]. From their expansions at high energy [12],
we then establish simple approximate expressions called
supersimple (sim), as in the other similar recent studies on
ðgg → γγ; γZ; ZZ;W−WþÞ, ug → dWþ, and ðe−eþ → tt̄;
W−Wþ; ZHÞ, [5,13–15]. As before, we expect that these
simple expressions will be useful for making quick esti-
mates of the amplitudes and meaningful comparisons with
experimental results.
In addition, during the analysis of e−eþ → ZH [5], we

have found that some observables are especially sensitive to
the underlying dynamics, i.e. SM, MSSM or another BSM.
Our aim is therefore to check whether this is also the case

for e−eþ → γH, particularly because e−eþ → γH is deter-
mined by the helicity violating (HV) amplitudes1 at high
energies, in contrast to the processes aforementioned in the
preceding paragraph, which are dominated by their helicity
conserving (HC) amplitudes [16,17]. As we show in the
Appendix, one consequence of this is that the augmented
Sudakov-type quadratic logarithms in e−eþ → γH do not
retain the universal structure observed in ðgg → γγ;
γZ; ZZ;W−WþÞ, ug → dWþ, ðe−eþ → tt̄; W−Wþ; ZHÞ
[5,13–15].
This way, we have calculated various polarized and

unpolarized cross sections and asymmetries, and studied
their sensitivity to the underlying dynamics. In addition, we
also consider the possibility of transversally polarized e−eþ
beams, where the presence of imaginary parts in the
e−eþ → γH amplitudes leads to a particular azimuthal
sin 2ϕ dependence, supplying further dynamical tests.
The contents of the paper are the following: In Sec. II we

give the notation for the kinematics and the helicity
amplitudes. In Sec. III we present the electroweak (EW)
one loop contributions and establish their supersimple
expressions, explicitly written in the Appendix.
Section IV is devoted to the description of other BSM
effects in terms of effective couplings. The various observ-
ables are defined in Sec. V. The numerical analysis is
presented in Sec. VI with many illustrations, while the
conclusions are given in Sec. VII.

II. KINEMATICS AND HELICITY AMPLITUDES

The kinematics of the process

e−λ ðlÞeþλ0 ðl0Þ → γτðpÞHðp0Þ; ð1Þ

1In our case, HVare the amplitudes that at high energies violate
(8); see below.
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is defined in terms of the helicities ðλ; λ0Þ of the incoming
ðe−; eþÞ beams, and the helicity τ of the outgoing γ, whose
polarization vector is ϵ. The momenta of the various
incoming and outgoing particles are ðl; l0; p; p0Þ, and we
also use

s ¼ ðlþ l0Þ2 ¼ ðpþ p0Þ2; t ¼ ðl − pÞ2 ¼ ðl0 − p0Þ2;

u ¼ ðl − p0Þ2 ¼ ðl0 − pÞ2; pγ ¼ Eγ ¼
s −m2

H

2
ffiffiffi
s

p ¼ βγ
s
2
;

ð2Þ
where pγ ¼ Eγ ¼ p denotes the equal values of the three-
momentum and energy of the outgoing photon, and θ is the
angle between the direction of the incoming e− and the
outgoing γ.
The general invariant amplitude is written as

A ¼
X
i

Ni¼1;3;4ðs; tÞIi þ N0
1ðs; tÞJ1 ð3Þ

using the forms

I1 ¼ v̄ðeþλ0 Þϵ uðe−λ Þ;
I3 ¼ v̄ðeþλ0 Þϵ · l0puðe−λ Þ;
I4 ¼ v̄ðeþλ0 Þϵ · lp uðe−λ Þ; ð4Þ

J1 ¼ −iv̄ðeþλ0 Þϵμνρσγμϵνp0
ρpσuðe−λ Þ; ð5Þ

already used in [5]. Note that the J1 form only appears in
the case of CP-violating couplings; see Sec. IV.
The scalar functions Ni¼1;3;4ðs; tÞ; N0

1ðs; tÞ are obtained
by computation of specific diagrams. One then gets the
corresponding helicity amplitudes Fλ;τðs; θÞ by usual
expansion of the Dirac spinors appearing in the forms
(4), (5), using the standard Jacob-Wick conventions [18];
note that τ ¼ �1 and that

λ ¼ −λ0 ¼ ∓ 1

2
; ð6Þ

when one neglects the electron mass. The notation
ðλ ¼ L;RÞ for these two cases of e∓ helicity is also used.
This way one then gets

I1 → δλ;L

ffiffiffi
s
2

r
ðτ cos θ − 1Þ − δλ;R

ffiffiffi
s
2

r
ðτ cos θ þ 1ÞÞ;

I3 ¼ −I4 → ðδλ;R − δλ;LÞ
ps

2
ffiffiffi
2

p τsin2θ;

J1 → 2λ
psffiffiffi
2

p ðcos θ þ 2λτÞ: ð7Þ

Due to (6), the helicity amplitudes Fλ;τðs; θÞ violate the
high energy helicity conservation (HCns) rule [16,17]
which requires

λþ λ0 ¼ τ: ð8Þ

They are thus called helicity violating amplitudes, and they
are indeed vanishing at high energy in MSSM or SM.
When CP is conserved, the additional constraint

Fλ;τðs; θÞ ¼ Fλ;−τðs; π − θÞ ð9Þ
also holds, reducing the independent amplitudes to
only two.

III. THE ONE-LOOP EW CORRECTIONS
AND THEIR SUPERSIMPLE (SIM) EXPRESSIONS

IN SM AND MSSM

The one-loop amplitudes of the process e−eþ → γH
consist of a reduced set of the diagrams appearing in the
ZH case (replacing of course the Z couplings by the γ
ones). Having no Born terms, there is no self-energy
corrections nor renormalization counterterms. There are
also no s-channel initial triangles, because of the absence of
any Hγγ; HZγ couplings.
Thus, the one-loop diagrams in the SM case consist only

of final triangles in the s channel; up and down triangles in t
and u channels; direct, crossed, and twisted boxes; and
specific diagrams involving 4-leg bosonic couplings; see
[9,10,19]. In the MSSM case we also have corresponding
diagrams involving supersymmetric partners like sleptons,
squarks, charginos, neutralinos, and additional Higgs
bosons. As in [5], we always restrict ourselves to CP-
conserving SM or MSSM couplings, so that (9) is satisfied.
We have computed all these contributions in terms of PV

functions [11]. This gives the exact basic contributions. We
then compute their high energy expansions using the forms
in [12]. The results thus obtained, called sim results, are
given in the Appendix. As already mentioned in Sec. II, the
e−eþ → γH amplitudes are of helicity violating type
[16,17]. Because of this, for SM or MSSM, they are
suppressed at high energies likeM=

ffiffiffi
s

p
, tempered by terms

involving single and double logarithms.

IV. OTHER BSM EFFECTS

Apart from MSSM, another possibility of BSM physics
is by inserting anomalous couplings to the SM gauge and
Higgs bosons. There are various types of such models. One
consequence of them for the process e−eþ → γH is the
appearance of Born terms with intermediate γ; Z exchanges
and final γγH and γZH couplings. Our aim is just to see
how the generated amplitudes and observables can differ
from the one-loop SM or MSSM predictions, and at what
level of accuracy the sim expressions are adequate for that
purpose.
As an example of such a BSM model we consider the

description [20] of the anomalous couplings of the gauge
and SM Higgs field given by the 2 CP-conserving
operators OUW , OUB and the 2 CP-violating ones ŌUW ,
ŌUB,
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OUW ¼ 1

v2

�
Φ†Φ −

v2

2

�
W
!μνW

!
μν;

OUB ¼ 4

v2

�
Φ†Φ −

v2

2

�
BμνBμν;

ŌUW ¼ 1

v2
ðΦ†ΦÞW!μν eW!μν;

ŌUB ¼ 4

v2
ðΦ†ΦÞBμν ~Bμν; ð10Þ

where Φ is the SM Higgs doublet field, with the vacuum
expectation value of its neutral component satisfying
hϕ0i ffiffiffi

2
p ≡ v ¼ ðGF

ffiffiffi
2

p Þ−1 at tree level. Inserting the oper-
ators (10) in the SM Lagrangian induces a BSM term
given by

δLBSM ¼ dUWOUW þ dUBOUB þ d̄UWŌUW þ d̄UBŌUB;

ð11Þ

which in turn creates the anomalous γγHSM and γZHSM
couplings

dγZ ¼ sWcWðdUW − dUBÞ; dγγ ¼ ðdUBs2W þ dUWÞc2B;
d̄γZ ¼ sWcWðd̄UW − d̄UBÞ; d̄γγ ¼ ðd̄UBs2W þ d̄UWÞc2B:

ð12Þ

Denoting V ¼ γ; Z and using

gγeL ¼ gγeR ¼ qe ¼ −1; gZeL ¼ −1þ 2s2W
2sWcW

; gZeR ¼ sW
cW

;

ð13Þ

the induced (Born type with V exchange) anomalous
contribution to the invariant amplitude becomes

A ¼ −
X
V

e2

ðs −m2
VÞ

½gV1 I1 þ g0V1 J1�½gVeLPL þ gVeRPR�; ð14Þ

where the CP-conserving part appears with the I1 form
defined in (4) and the couplings

gγ1 ¼
2Eγ

ffiffiffi
s

p
mZsWcW

dγγ; gZ1 ¼ 2Eγ
ffiffiffi
s

p
mZsWcW

dγZ; ð15Þ

while the CP-violating part is given by J1 of (5) and the
couplings

g0γ1 ¼ 2

mZsWcW
d̄γγ; g0Z1 ¼ 2

mZsWcW
d̄γZ: ð16Þ

In the illustrations presented in Sec. VI, we choose the
CP-conserving and the CP-violating BSM couplings in
(11), so that the BSM amplitudes are comparable to the
one-loop SM results, in the high energy domain (≲5 TeV)

considered here. More explicitly, we then show separately
two cases with nonvanishing couplings, respectively called

ðdUW ¼ 0.00017; d̄UW ¼ 0.0001Þ ⇒ Weff; ð17Þ
ðdUB ¼ 0.00017; d̄UB ¼ 0.0001Þ ⇒ B eff: ð18Þ

Note that the (HCns) rule [16,17] does not apply to such
anomalous nonrenormalizable contributions. Because of this,
such BSM amplitudes are not suppressed at high energy.

V. OBSERVABLES AND AMPLITUDE ANALYSIS

Contrary to the ZH case, where real amplitude contri-
butions coming from the Born terms dominate, in the γH
case the four independent helicity amplitudes are complex
and one would need 8 independent observables in order to
make a complete analysis. This would require longitudinal
and transverse initial e∓, as well as final γ polarizations; the
last ones being probably very difficult to measure.
When CP is conserved, only two independent complex

helicity amplitudes occur, and one would need only 4
observables (at a given energy and all angles) in order to
make the amplitude analysis.
In presenting these observables we use the same notation

as in [5]. A lower index like L or R refers to the initial e−

polarization and corresponds to λ ¼ − 1
2
or λ ¼ þ 1

2
respec-

tively. The final photon polarization is denoted by an index
γτ for τ ¼ �1. Quantities like σðλ; τÞ can then be also
denoted as σγτL;R; see also immediately after (6).
The differential unpolarized cross sections and the

corresponding integrated ones over all θ angles are respec-
tively given by

dσ
d cos θ

¼ βγ
128πs

X
λτ

jFλτðθÞj2; ð19Þ

and

σ ¼
Z

1

−1
d cos θ

dσ
d cos θ

; ð20Þ

where βγ is defined in (2) and the summations apply over
λ ¼ � 1

2
and τ ¼ �1.

Correspondingly, unpolarized (or polarized with the
adequate index) cross sections integrated over the forward
(with respect to the e−-beam) or the backward region, are
respectively denoted as σF and σB.

A. Polarization asymmetries

These contain initial e−L-e
−
R asymmetries, with the γ

helicity being either not observed, or chosen to have
specific value τ ¼ �1

ALR ¼ σL − σR
σL þ σR

; ð21Þ

ALRðτÞ ¼
σLðτÞ − σRðτÞ
σLðτÞ þ σRðτÞ

; ð22Þ
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or asymmetries defined with respect to the final γ polari-
zation, with the e∓ beams selected to be either unpolarized,
or the electrons being either purely e−L or purely e−R

Apol γ ¼ σðτ ¼ −Þ − σðτ ¼ þÞ
σðτ ¼ −Þ þ σðτ ¼ þÞ≡

σγ− − σγþ

σγ− þ σγþ
; ð23Þ

Apol γðλÞ ¼ σðλ; τ ¼ −Þ − σðλ; τ ¼ þÞ
σðλ; τ ¼ −Þ þ σðλ; τ ¼ þÞ≡

σγ−λ − σγþλ
σγ−λ þ σγþλ

: ð24Þ

B. Forward-backward asymmetries

In the unpolarized beam case, when the final photon
polarization is not looked at, these are defined as

AFB ¼ σF − σB
σF þ σB

; ð25Þ

while for any definite e− and photon helicity they are
defined as

AFBðλ; τÞ ¼
σFðλ; τÞ − σBðλ; τÞ
σFðλ; τÞ þ σBðλ; τÞ

: ð26Þ

Combining (24), (26), one obtains a peculiar forward-
backward asymmetry of the above γ transverse polarization
asymmetry,

Apol γ
FB ¼ ðσγ− − σγþÞF − ðσγ− − σγþÞB

ðσγ− þ σγþÞF þ ðσγ− þ σγþÞB
; ð27Þ

which may be defined for unpolarized e∓ beams, as well as
separately for L or R electron beams. It turns out to be
nonvanishing in all these three cases.

C. CP conservation

When CP is conserved, one gets from (9)

AFBðλ;−τÞ ¼ −AFBðλ; τÞ; ð28Þ

which remains true also for unpolarized e∓ beams, where
one sums over λ ¼ L;R obtaining

AFBð−τÞ ¼ −AFBðτÞ ⇒ AFBðγþÞ ¼ −AFBðγ−Þ: ð29Þ

If one sums over all final γ polarization in (29), then one
obtains AFB ¼ 0.
Another consequence of CP conservation concerns

the left-right asymmetries in the forward and backward
directions

AF
LRðτÞ ¼ AB

LRð−τÞ ⇒ AF
LRðγ−Þ ¼ AB

LRðγþÞ; ð30Þ

compare (22).

We also note that CP conservation implies

Apol γ
F ðλÞ ¼ −Apol γ

B ðλÞ; ð31Þ
for both λ ¼ L;R cases, such that the totally integrated
Apol γðλÞ vanishes; compare (27).
In the next section we illustrate the above properties for

CP conserving one-loop corrections to SM or MSSM
models, as well as for the effective, possibly CP-violating
Higgs couplings in the BSM case (11). It turns out that
some of the above asymmetries are particularly sensitive to
the dynamical details, and may be very useful for disen-
tangling SM from MSSM or BSM corrections.

D. Transverse e� polarization

We next turn to the possibility of e−eþ collisions with
transversally polarized beams. It has been known for quite
some time that this can reveal in a clear way the presence of
various types of BSM effects; see e.g. [21–23]. In our case,
this is particularly motivated by the presence of a relatively
important imaginary part in the e−eþ → γH amplitudes,
which may produce an important sin 2ϕ azimuthal depend-
ence in the transition probability. Restricting ourselves to
(6), we then obtain

R ¼ R0 þ 2PTP0
T ½cos 2ϕRcos 2ϕ þ sin 2ϕRsin 2ϕ�; ð32Þ

with the unpolarized part being

R0 ¼ jF−−j2 þ jF−þj2 þ jFþ−j2 þ jFþþj2; ð33Þ
ðPT; P0

TÞ being the e∓ degrees of transverse polarization,
and the two azimuthal-dependent terms being

Rsin 2ϕ ¼ ImF−−ReFþ− − ReF−−ImFþ− þ ImF−þReFþþ
− ReF−þImFþþ; ð34Þ

Rcos 2ϕ ¼ ReF−−ReFþ− þ ImF−−ImFþ− þ ReF−þReFþþ
þ ImF−þImFþþ: ð35Þ

Note that only the sin 2ϕ term is proportional to the
imaginary parts of the amplitudes, while the cos 2ϕ term
is nonvanishing even when all amplitudes are purely real.
These R0, Rsin 2ϕ, Rcos 2ϕ terms can be extracted from the

observed R form in (32) by integrating the complete
azimuthal distribution over the angular domains

½0; 2π�;
1

4

��
0;
π

2

�
−
�
π

2
; π

�
þ
�
π;
3π

2

�
−
�
3π

2
; π

��
;

1

2

��
0;
π

4

�
−
�
0;
3π

4

�
þ
�
π;
5π

4

�
−
�
π;
7π

4

��
: ð36Þ

Note that in case of CP conservation, the validity
of (9) makes the three forms R0, Rsin 2ϕ, Rcos 2ϕ, forward-
backward symmetric.
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In the illustrations of these transverse terms, we present
the ratios of the polarized terms to the unpolarized one:

Tsin 2ϕ ¼ 2Rsin 2ϕ

R0

; Tcos 2ϕ ¼ 2Rcos 2ϕ

R0

: ð37Þ

VI. NUMERICAL ANALYSIS

For the MSSM illustrations, we use the S1 benchmark of
[24], where the EW scale values of the various parameters
(with masses in TeV) are

FIG. 1. The F−− (left panels) and Fþþ (right panels) amplitudes in SM. Upper row gives the energy dependence at 60°,
while the middle (lower) row gives the angular dependence at 1 (5) TeV. The W eff and B eff couplings of the BSM model are
defined in (17), (18).
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μ¼0.4; mA0 ¼0.5; M1¼0.25; M2¼0.5; M3¼2;

tanβ¼20; m ~q¼2; m~l¼Aτ¼0.5; At¼Ab¼2.3:

ð38Þ
Such a benchmark is consistent with all present LHC
constraints [24].

A. Comparison of basic amplitudes

In Figs. 1–4, we give the energy dependencies of the 4
e−eþ → γH amplitudes at a fixed angle θ ¼ 60°, and the
angular dependencies at fixed energies of 1 and 5 TeV,
successively for HSM and h0, in SM and the S1 MSSM
benchmark mentioned above [24]. In order to not increase
the number of figures we do not show the H0 amplitudes.

FIG. 2. The F−þ (left panels) and Fþ− (right panels) amplitudes in SM. Panels and BSM couplings as in Fig. 1.
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They are an order of magnitude smaller than the h0 ones
because of the benchmark choice [24], where the α; β
parameters lead to small H0 couplings. Consequently the
H0 cross section is probably not observable.
Because of the HCns theorem [16,17], all these HV

amplitudes are suppressed at high energy, albeit somewhat
slowly, because of logarithmic enhancements partially
canceling the naively expected M=

ffiffiffi
s

p
suppression.

The left-handed F−∓ amplitudes are (at least 10
times) larger than the right-handed Fþ∓; this is due to
the left-handed charged W contribution in triangles
and boxes.
The imaginary parts are often non-negligible, and in fact

comparable to that of the real parts. They arise from the
possibility of on-shell intermediate states in various
diagrams.

FIG. 3. The F−− (left panels) and Fþþ (right panels) amplitudes for h0 in S1 MSSM; see (38). Panels as in Fig. 1.
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The real parts of the h0 amplitudes are close to the HSM

ones, but the imaginary parts differ because of contribu-
tions from virtual spartner exchanges leading to typical
threshold effects.
We observe that globally the sim approximation is

quickly good for HSM and h0. In the H0 case it would
require higher energies.

Note that the one-loop SM and MSSM amplitudes
satisfy (9), since the SM and the MSSM benchmark we
are considering respects CP conservation [24].
In the SM Figs. 1 and 2 we also include the possibility of

an effective BSM involving anomalous couplings between
HSM and the gauge bosons. Since in this example,
determined by (17), (18), CP is also violated, the BSM
contributions violate the restriction (9).

FIG. 4. The F−þ (left panels) and Fþ− (right panels) amplitudes for h0 in S1 MSSM; see (38). Panels as in Fig. 1.
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B. Unpolarized differential cross sections

In the left panels of Fig. 5 we give the unpolarized
differential cross sections for HSM in SM. Correspondingly
in the right panels of Fig. 5 we present the h0 production in
S1 MSSM [24]. In the various panels we show the energy
and angular dependencies, as in Figs. 1–4.

Note that the angular peaks in the forward and backward
directions (coming from t; u channel triangles and boxes)
and the CP invariance of the one-loop contributions lead to
forward-backward symmetries, possibly violated by
anomalous couplings.

FIG. 5. Cross sections for SM (left panels) and for h0 in S1 MSSM (right panels). BSM and MSSM parameters as in previous
figures.
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C. ALR Asymmetries

We first discuss ALR defined in (21) for the case where the
polarization of the final photon is not measured. In Fig. 6 we
give ALR for HSM (left panels) and the MSSM h0 results
(right panels). The one-loop contributions ALR get large
values. Theweak energy and angle dependencies come from

the dominance of the L amplitudes as seen above. The HSM

and h0 cases are rather similar.
The BSM contributions from W eff and B eff (17), (18)

are also large and rather flat.
We next turn to ALRðτÞ defined in (22) for the cases when

the polarization of the final photon is chosen to have

FIG. 6. ALR without looking at photon polarization, for SM (left panels) and for h0 in S1 MSSM (right panels). BSM and MSSM
parameters as in previous figures.
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specific values τ ¼ �1. Figure 7 shows ALR for τ ¼ þ1,
and Fig. 8 for τ ¼ −1.
The angular dependencies are particularly interesting.

For the one-loop amplitudes which respect CP invariance,
they reflect the helicity properties of (30). Consequently,
the two τ-helicity one-loopALRðτÞ satisfy anF/B interchange
rule. But this is strongly violated by the chosen BSM
anomalous couplings, which do not respect CP invariance.

D. Apol γ Asymmetries

For unpolarized e� beams, these are defined in (23)
and shown in Fig. 9 for HSM (left panels) and h0 (right
panels).
As seen there, the energy dependence is not negligible

and the angular dependencies reflect also the photon
helicity properties of the one-loop terms. CP invariance

FIG. 7. ALR for a photon with helicity τ ¼ þ1, for SM (left panels) and for h0 in S1MSSM (right panels). BSM andMSSM parameters
as in previous figures.
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imposes the F/B antisymmetry, again possibly perturbed by
anomalous coupling contributions.
The corresponding results for e−L and e

−
R beams, defined in

(24), are shown in Fig. 10 forHSM (left panels) and h0 (right
panels).
The 2 cases of electron polarization lead to very

different results; they can even differ by a sign. As the

L amplitudes are larger than the R ones, this explains
why this case leads to results closer to the unpolarized
ones.
The CP forward-backward symmetry relations of (31) are

well illustrated and again easily violated by anomalous
couplings.

FIG. 8. ALR for a photon with helicity τ ¼ −1, for SM (left panels) and for h0 in S1 MSSM (right panels). BSM andMSSM parameters
as in previous figures.
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E. Azimuthal dependence

As described in Sec. V, when transversely polarized
beams are available, the azimuthal dependence of the
differential cross section is controlled by the coefficients

Tcos 2ϕ, Tsin 2ϕ in (37), of the cos 2ϕ, sin 2ϕ terms in (32).

Figure 11 then shows the energy and angular dependencies

for HSM (left panels) and h0 (right panels).
These coefficients get non-negligible values which

means that there is a significant azimuthal dependence.
As already mentioned Tsin 2ϕ is particularly interesting

FIG. 9. Apol γ defined in (23) for unpolarized e∓, for SM (left panels) and for h0 in S1 MSSM (right panels). BSM and MSSM
parameters as in previous figures.
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because it is governed by the imaginary parts of the
amplitudes which are important in the process under
consideration. This should constitute an additional
source of tests of the underlying dynamics and of
the Higgs couplings. With CP invariance the angular

dependence of these coefficients is forward-backward
symmetric.
In the left panels of Fig. 11, we also show the

contributions of the anomalous couplings of W and B
types (17), (18).

FIG. 10. Apol γ defined in (24) for eL and eR beams, in SM (left panels) and in S1 MSSM for h0 (right panels). BSM and MSSM
parameters as in previous figures.
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VII. CONCLUSIONS

We have analyzed the specificity of the process
e−eþ → γH as compared to e−eþ → ZH. The new
feature is that this process has no Born term and is
therefore immediately sensitive to one-loop effects and
the underlying Higgs dynamics. This arises in particular

through the contributions of the imaginary parts of the
amplitudes.
Our aim in doing this is to see the differences between

SM, MSSM, and another (possibly CP-violating) BSM,
and to check especially whether this is observable when
using the supersimple approximation.

FIG. 11. The coefficients Tcos 2ϕ, Tsin 2ϕ defined in (37) for SM (left panels) and for h0 in S1 MSSM (right panels). BSM and MSSM
parameters as in previous figures.
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We have insisted on two important aspects of the
supersimple description: its ability to allow the
immediate reading of the dynamical contents of
the various standard and nonstandard contributions,
and, in addition, the fact that these supersimple expres-
sions quite accurately reproduce the exact one-loop
effects at high energies.
For achieving this, we have computed the exact

one-loop amplitudes and cross sections, as well as their
sim approximations, and compared them numerically.
The sim and exact one-loop amplitudes agree at high
energy but differ at low energies due to neglected terms
behaving like m2=s, possibly modified by logarithmic
corrections, and also due to threshold effects caused
by virtual contributions particularly visible in the
SUSY cases.
At 1 TeV, the agreement between sim and the exact one-

loop results is already good in the HSM case, but there are
still some non-negligible differences in the h0 case, which
disappear at higher energies. The H0 case would need even
higher energies for achieving such an accuracy; but H0

production is probably unobservable with the considered
benchmark parameters [24].
In addition to the unpolarized differential cross

section (angular distribution and forward-backward
asymmetry) we have also considered several other
observables with initial and final polarization asymme-
tries: ALR, ALRðτ ¼ ∓1Þ, Apol γ , Apol γ

L , Apol γ
R , as well as the

coefficients of the cos 2ϕ and sin 2ϕ azimuthal depend-
encies (37), when the e� beams are transversally
polarized.
We have illustrated how sensitive all these

observables are to the underlying dynamics by
comparing the SM predictions to the MSSM ones, and
a simple type of BSM physics involving anomalous
Higgs couplings to gauge bosons, possibly containing
also CP violation.
We hope that this work will motivate further studies

studies of the e−eþ → γH process, using in particular
polarized beams and containing also measurements of
the final γ polarization.

APPENDIX: SIM EXPRESSIONS
FOR THE e−eþ → γH AMPLITUDES

IN SM AND MSSM

From the decomposition of the invariant amplitude
over the CP-conserving invariant forms defined in (4)
and leading to (9), we write the four HV amplitudes in the
form

F−− ¼ α2mW

βγ

�
u

ffiffiffi
2

pffiffiffi
s

p NL
1 þ utffiffiffiffiffi

2s
p ðNL

3 − NL
4 Þ
�
;

Fþ− ¼ α2mW

βγ

�
t

ffiffiffi
2

pffiffiffi
s

p NR
1 −

utffiffiffiffiffi
2s

p ðNR
3 − NR

4 Þ
�
;

F−þ ¼ α2mW

βγ

�
t

ffiffiffi
2

pffiffiffi
s

p NL
1 −

utffiffiffiffiffi
2s

p ðNL
3 − NL

4 Þ
�
;

Fþþ ¼ α2mW

βγ

�
u

ffiffiffi
2

pffiffiffi
s

p NR
1 þ utffiffiffiffiffi

2s
p ðNR

3 − NR
4 Þ
�
; ðA1Þ

where H ¼ HSM; h0; H0 and the kinematics are defined
in (2).
The NL;R

i contributions in (A1) are obtained from
the exact one-loop computation in terms of PV functions
[11]. These are then expanded using the high energy
forms given in [12]. We thus obtain the so-called
supersimple (sim) results written below in SM and
MSSM.
We next turn to the forms entering the sim expressions.

These consist of the linear log augmented Sudakov form
and the forms involving ratios of Mandelstam variables, as
in [5,13,15]. These are

ln sijðaÞ≡ ln
−s − iϵ
mimj

þ bij0 ðm2
aÞ − 2; ðA2Þ

where bij0 ðm2
aÞ is given in e.g. Eqs. (A.6) of [15], with (i,j)

denoting internal exchanges and a an on-shell particle, such
that the aij tree- level coupling is nonvanishing, and the
forms

ln2rxy ¼ ln2rxy þ π2; ln rxy; ðA3Þ

where

rxy ≡ −x − iϵ
−y − iϵ

; ðA4Þ

with x; y standing for the Mandelstam variables s; t; u.
For e−eþ → γH though, the additional augmented quad-

ratic Sudakov logarithms are different from those in
[5,13,15]. The forms we meet here are
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ln2xWW ¼ ln2
−x − iϵ
m2

W
þ 2LγWW þ 2LHWW;

ln2xW ¼ ln2
−x − iϵ
m2

W
þ 2LeWν þ LγWW þ LHWW;

ln2xZ ¼ ln2
−x − iϵ
m2

Z
þ 2LeZe þ LHZZ;

ln2xt ¼ ln2
−x − iϵ
m2

t
þ 2Lγtt þ 2LHtt;

ln2xb ¼ ln2
−x − iϵ
m2

b

þ 2Lγtt þ 2LHbb; ðA5Þ

and the forms involving charginos or neutralinos described
by the indices ði; j; kÞ are given by

ln2xj ¼ ln2
−x− iϵ
M2

j
þ 2LHjiþ 2Lej~lL

with ~lL ¼ ~νL; ~eL;

ln2sii ¼ ln2
s
M2

i
þ 2Lγiiþ 2LHii;

ln2sji ¼ ln2
s
M2

j
þ 2Lγjjþ 2LHji; ðA6Þ

where Laij in (A5), (A6) are given in Eqs. (22) of [12].
Again (i,j) denote internal exchanges and a are an on-shell
external particle, such that the aij tree-level coupling is
nonvanishing.
To describe the sim expressions, we also need the

constants of Table I, the ðt; bÞ and sfermion couplings
respectively given by

CL
t ¼ −3 − 2s2W

3s2Wc
2
W

; CL
b ¼ −3þ 2s2W

6s2Wc
2
W

;

CR
t ¼ −10

3c2W
; CR

b ¼ −1
3c2W

; ðA7Þ

fZ ~f ¼ −
ðI3~f − s2WQ ~fÞ

sWcW
;

fH ~f ¼
mWðI3~f − s2WQ ~fÞ

sWc2W
Cþ
H −

m2
f

sWmW
ffH; ðA8Þ

as well as the chargino and neutralino couplings

AL
i ð~eLÞ¼−

e
sW

Z−
1i; AL

i ð~νLÞ¼−
e
sW

Zþ
1i;

A0L
i ð~eLÞ¼

effiffiffi
2

p
sWcW

ðZN
1isW þZN

2icWÞ;

A0R
i ð~eRÞ¼−

e
ffiffiffi
2

p

cW
ZN�
1i ;

OL
Zij¼−

1

2sWcW
ðZþ�

1i Z
þ
1jþδijðc2W − s2WÞÞ;

OR
Zij¼−

1

2sWcW
ðZ−

1iZ
−�
1j þδijðc2W − s2WÞÞ;

cLh0ij¼−
1ffiffiffi
2

p
sW

ð−sinαZ−
2iZ

þ
1jþ cosαZ−

1iZ
þ
2jÞ;

cRh0ij¼ cL�h0ji;

O0L
Zij¼

1

2sWcW
ðZN�

4i Z
N
4j−ZN�

3i Z
N
3jÞ;

OR
Zij¼

1

2sWcW
ðZN

3iZ
N�
3j −ZN

4iZ
N�
4j Þ;

c0L
h0ij

¼ 1

2sWcW
½ð−sinαZN

3i− cosαZN
4jÞðZN

1isW −ZN
2icWÞÞ

þði→ jÞ�; c0R
h0ij

¼ c0L�
h0ji

; ðA9Þ
given in terms of the usual mixing matrices [25].
The H0 case is subsequently obtained from the above h0

one through the replacement

ðh0 ⇒ H0Þ↦ðsin α ⇒ − cos α; cos α ⇒ sin αÞ: ðA10Þ

Using the above forms and couplings, we give below the
sim results for the NL;R

i contributions to the HVamplitudes
in (A1). These include an SM part which is easily
identified, and the MSSM SUSY contributions to the h0

case, arising from sfermion and chargino-neutralino
exchanges.
In the expressions below, the SM and sfermion contri-

butions are always included explicitly in the NL;R
i forms,

while the chargino-neutralino contributions are collected in
T and B forms entering them. We thus have

TABLE I. Parameters for the HV amplitudes in SM and MSSM.

HSM h0 H0

C−
H 1 sinðβ − αÞ cosðβ − αÞ

Cþ
H 0 sinðβ þ αÞ − cosðβ þ αÞ

fGGH − m2
H

2sWmW

mW

2sWc2W
cosð2βÞ sinðβ þ αÞ − mW

2sWc2W
cosð2βÞ cosðβ þ αÞ�

fHHH 0 − mW
sW

½cosð2βÞ sinðβþαÞ
2c2W

þ sinðβ − αÞ� mW
sW

½cosð2βÞ cosðβþαÞ
2c2W

− cosðβ − αÞ�
ftH 1 cos α

sin β
sin α
sin β

fbH 1 − sin α
cos β

cos α
cos β
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sNL
1 ¼ C−

H
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with the chargino-neutralino contributions being
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3 − NL

4 ¼ −C−
H
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A rough approximation for the chargino and neutralino contributions in (A12), (A14), (A16), (A18) is respectively given
by neglecting the various mass differences in the summations over virtual states, using common “average”masses. From the
unitarity of the mixing matrices one then obtains the results
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hM0
Rþi

c3WmW

�
sln2t
ut

−
sln2u
ut

− 4s
ln rtu
ut

þ ln2rtu
u

−
ln2rtu
t

�
ðA19Þ

with

hMþ
12i ¼

mW

ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2β

p ; hMþ
21i ¼

mW

ffiffiffi
2

p
tan βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tan2β
p ;

hM0
Lþi ¼ sin αðsWhMN

13i þ cWhMN
23iÞ þ cos αðsWhMN

14i þ cWhMN
24iÞ;

hM0
L−i ¼ − sin αðsWhMN

13i þ cWhMN
23iÞ þ cos αðsWhMN

14i þ cWhMN
24iÞ;

hM0
R−i ¼ sin αhMN

13i − cos αhMN
14i;

hM0
Rþi ¼ sin αhMN

13i þ cos αhMN
14i;

hM00þ
L− i ¼ sin αðsWhMN

13i − cWhMN
23iÞ þ cos αðsWhMN

14i − cWhMN
24iÞ;

hMN
13i ¼

−mWsW
cW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2β

p ; hMN
23i ¼

mWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2β

p ;

hMN
14i ¼

mWsW tan β

cW
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2β

p ; hMN
24i ¼

−mW tan βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2β

p ; ðA20Þ

where Mþ⊤ denotes the ~χþ mass matrix, and MN the
neutralino one.
The quantities ln2x and ln x in (A19) are approximated

by their pure logarithmic contents ln2ðx=M2Þ and
lnðx=M2Þ, where M are adequate average sparticle masses.
Correspondingly, the average hMi quantities in (A20)
denote common (chargino or neutralino) mass matrix
elements. The values of these average masses could be
determined by fitting each B and T contribution in (A12),

(A14), (A16), (A18), to its corresponding (A19), (A20)
simplified expression.
However the numerical results are not very accurate at

low energies, because they do not reproduce the various
threshold structures. In addition the values of the average
masses should be adapted to each specific benchmark
choice. In fact the use of the simplified expressions
(A19), (A20) is only to show in a direct way the nature
of the B and T contributions. In the numerical calculations
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it is best to use the expressions in (A12), (A14),
(A16), (A18).

1. Global approximation for the helicity amplitudes

Finally we give a global fit of the four helicity amplitudes,
which reproduces at intermediate energies (in the domain
0.6–5 TeV), their angular and energy dependencies. The fit
is rather accurate, being valid at a few percent level. It
consists in fitting the one-loop contributions, to the forms

F−−¼
α2mW

βg

�
u

ffiffiffi
2

p

s
ffiffiffi
s

p ðCL
1 þC0L

1 cot
2θÞþðu− tÞ

s
ffiffiffiffiffi
2s

p CL
34

�
;

Fþ−¼
α2mW

βg

�
t

ffiffiffi
2

p

s
ffiffiffi
s

p ðCR
1 þC0R

1 cot
2θÞ−ðu− tÞ

s
ffiffiffiffiffi
2s

p CR
34

�
;

F−þ¼α2mW

βg

�
t

ffiffiffi
2

p

s
ffiffiffi
s

p ðCL
1 þC0L

1 cot
2θÞ−ðu− tÞ

s
ffiffiffiffiffi
2s

p CL
34

�
;

Fþþ¼α2mW

βg

�
u

ffiffiffi
2

p

s
ffiffiffi
s

p ðCR
1 þC0R

1 cot
2θÞþðu− tÞ

s
ffiffiffiffiffi
2s

p CR
34

�
; ðA21Þ

with

CL;R
1;34 ¼ aL;R1;34ln

2
s

m2
W
þ bL;R1;34 ln

s
m2

W
þ cL;R1;34;

C0L;R
1;34 ¼ a0L;R1;34 ln

2
s

m2
W
þ b0L;R1;34 ln

s
m2

W
þ c0L;R1;34 : ðA22Þ

Note the factors ðu − tÞ, in front of the C34 coefficients in
(A21), which reproduce the fact that these terms, arising
only from boxes, vanish at θ ¼ π=2, due to crossing
relations.
Note also that the terms C0L;R

1 cot2 θ reproduce the
angular dependencies coming from t, u channel triangles
and boxes.
The effective constants in (A21), (A22) are given in

Table II. Note the similarity of the real parts in theHSM and
the h0 cases, and the large differences in the imaginary
parts, due to the averaging of the threshold effects in the
virtual contributions of the spartners.

TABLE II. Constants fitting the amplitudes (A21), (A22), for SM and S1 MSSM, in the intermediate anergy domain 0.6–5 TeV [24].

HSM

aL1 ¼ −31.4þ i5.7 bL1 ¼ 150.3 − i21.6 cL1 ¼ −319.1 − i22.4

aL34 ¼ 13.0 − i1.8 bL34 ¼ −54.5 − i29.9 cL34 ¼ 47.4þ i82.6

aR1 ¼ −10.9þ i3.1 bR1 ¼ 79.6þ i3.5 cR1 ¼ −143.4 − i47.4

aR34 ¼ 0.57 bR34 ¼ −1.26 cR34 ¼ −0.90
a0L1 ¼ 17.7 − i1.2 b0L1 ¼ −88.8þ i19.2 c0L1 ¼ 149.6 − i57.9

a0R1 ¼ 2.7 b0R1 ¼ −15.3 c0R1 ¼ 24.2

h0 S1 MSSM

aL1 ¼ −46.1þ i55.2 bL1 ¼ 336.9 − i596.4 cL1 ¼ −832.0þ i1482.3

aL34 ¼ 14.2 − i1.6 bL34 ¼ −65.9 − i32.2 cL34 ¼ 74.0þ i88.4

aR1 ¼ −12.9þ i7.82 bR1 ¼ 114.6 − i43.6 cR1 ¼ −249.2þ i61.8

aR34 ¼ 0.40þ i0.42 bR34 ¼ 0.42 − i3.80 cR34 ¼ −4.86þ i8.52

a0L1 ¼ 17.69 − i1.60 b0L1 ¼ −88.1þ i23.1 c0L1 ¼ 146.6 − i67.8

a0R1 ¼ 2.22þ i0.16 b0R1 ¼ −11.2 − i1.5 c0R1 ¼ 15.3þ i3.3

H0 S1 MSSM

aL1 ¼ 8.5þ i32.2 bL1 ¼ −61.4 − i421.7 cL1 ¼ 102.6þ i1176.1

aL34 ¼ −5.0þ i2.7 bL34 ¼ 47.4 − i23.0 cL34 ¼ −109.7þ i49.1

aR1 ¼ −2.1þ i1.8 bR1 ¼ 28.9 − i27.7 cR1 ¼ −83.7þ i82.0

aR34 ¼ 0.16 − i0.043 bR34 ¼ −1.46þ i0.39 cR34 ¼ 3.20 − i0.88

a0L1 ¼ 0.18þ i0.10 b0L1 ¼ −3.36 − i2.28 c0L1 ¼ 10.7þ i7.5

a0R1 ¼ 0.24 − i0.0064 b0R1 ¼ −2.26þ i0.0070 c0R1 ¼ 5.13þ i0.073
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