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We analyze the thermodynamic behavior of the generalized scalar Yukawa model, composed of a
complex scalar field interacting with scalar and vector fields. Finite-size effects on the phase structure are
investigated using methods of quantum field theory on toroidal topologies. We focus on the analysis of the
phase structure of this model at effective chemical equilibrium, under change of values of the relevant
parameters of the model, looking especially to the influence of the spatial compactification on the phase
structure.
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I. INTRODUCTION AND GENERAL
FRAMEWORK

The study of phase diagrams of interacting relativistic
systems has been important for the understanding of many
physical situations, such as cosmological problems, proper-
ties of nuclear matter, the confinemenet/deconfinement
phase transition of strongly interacting matter, and the
formation of quark-gluon plasma in heavy ions collisions
[1,2]. One of the most appropriate frameworks to study
these subjects is quantum field theory at finite temperature
and density.
An emblematic example is the scalar Yukawa model,

which consists of interacting charged and neutral scalar
bosons. It is often used as the prototype of more realistic
theories in many situations. There are several scenarios in
which this model is applied, as follows: nuclear physics and
bound states of relativistic n-body systems [3–14]; hadron
spectrum [15,16]; the effective interaction of scalar quarks
in supersymmetric models [17,18]; phase transitions of
relativistic systems under the change of magnitude of the
interaction [19]; thermodynamic behavior of relativistic
systems in a magnetic background [20].
In the context of scalar Yukawa-like models, we believe

that there is still room for investigation of another interest-
ing aspects, such as the analysis of finite-size effects on its
phase diagram. It is worth noticing that finite-size effects
can be introduced by means of a generalized Matsubara
prescription, by compactifying spatial dimensions. A recent
account on the subject treating concurrently finite temper-
ature and finite-size effects may be found in Ref. [21]. On
general grounds, systems defined on spaces or spacetimes
with some of its dimensions compactified are of interest in
several branches of physics, such as statistical, condensed-
matter, high and low energy physics [22–25].

In this sense, here we intend to study finite-size effects
on the phase structure of the generalized scalar Yukawa
model, that is, a model with a complex scalar field
interacting with scalar and vector fields. We treat jointly
spatial compactification and the introduction of finite
temperature, using the methods presented in Ref. [21],
in such a way that any set of δ dimensions (δ ≤ D) of the
manifold RD can be compactified. Notice that if one of the
compactified dimensions is fixed as being the imaginary
time, δ ¼ dþ 1, with d being the number of compactified
spatial dimensions. A possible physical motivation for such
a study is the description of a thermal gas of interacting
particles, for instance, a system composed of charged
mesons interacting with a hadronic medium composed
of another kind of light mesons. The motivation lies on the
use of effective models for the study of the interacting
hadronic matter with interactions of Yukawa type, in which
case the charged mesons interact mainly by exchange of
σ- (simulating the exchange of two pions) and ω-mesons
[20,26]. In this framework, in our approach the complex
scalar field would represent the D-meson; the real scalar
and vector fields could be interpreted respectively, as the
scalar σ-meson (corresponding to a resonance of the π − π
scattering) and as the ω-meson. In this way the mean-field
approximation could be associated to a first-order estimate
of the thermodynamic properties of a mesonic matter.

II. THE MODEL AND THE FORMALISM

Let us consider a bosonic system interacting with
pseudo-Goldstone bosons. We take as our basic objects,
a complex scalar field, a real pseudoscalar field and a
massive vector field, ϕ, σ eωμ, respectively. The
Lagrangian density is

L ¼ ð∂μϕÞð∂μϕ†Þ −m2
ϕϕϕ

† þ 1

2
ð∂μσÞð∂μσÞ − 1

2
m2

σσ
2

þ gσϕϕ†σ −
1

4
WμνWμν þ 1

2
m2

ωωμω
μ þ gωωμjμ; ð1Þ
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where Wμν ¼ ∂μων − ∂νωμ and jμ ¼ i½ð∂μϕÞϕ†−
ϕð∂μϕ

†Þ�; mϕ, mω emσ are, respectively, the masses
of the fields ϕ, ω and σ, whereas gσ and gω are, respec-
tively, the coupling constants for the Yukawa interactions
ϕϕ†σ and ϕϕ†ω. It is worth noticing that by solving
equations of motion and current conservation we obtain
the condition ∂λω

λ ¼ 0. The present model can be inter-
preted as a simplified version of the Walecka model,
in which the fermionic field (associated to the nucleons)
is replaced by a complex scalar field (represented a mesonic
field). Therefore, the Lagrangian of the present paper
contains the Yukawa couplings of the complex scalar field
(ϕ) with the real scalar (σ) and the vector (ω) fields.
The present approach is clearly different from other
scenarios, as the quartic self-interaction of the scalar
field and fermionic fields. These mentioned models have
different interactions not involving other kinds of fields,
yielding interpretations different from the ones we get in
this paper.
In this context, we search to understand the thermody-

namic properties and finite-size effects on the system. The
simplest way is to consider the interaction between scalar
and vector fields in the mean-field approximation; this
means that we will neglect fluctuations of the scalar and
vector fields and we will replace the σ and ω fields by its
classical counterparts, that is, σ ¼ hσi; ω ¼ hω0i. with
ωμ ¼ 0 for μ ≠ 0. This approximation allows one to write
the Lagrangian density in Eq. (1) as

L ¼ ϕ†½∂μ∂μ − ðm2
ϕ − gσhσiÞ�ϕ

þ 1

2
m2

ωhω0i − 1

2
m2

σhσi2 þ gωhω0ij0: ð2Þ

It can be seen from equations of motion that, in the mean-
field approximation, hσi ∝ ρs and hω0i ∝ ρ, with ρs e ρ
being number and scalar densities, respectively.
We consider the system defined on a D-dimensional

spacetime, at finite temperature T and d compactified
spatial dimensions, with δ ¼ dþ 1 ≤ D. Then the partition
function is an integral of the form

Z
Dϕ†Dϕ

�Z
β

0

dτ
Yd
i¼1

Z
Li

0

dxi

Z
dD−δ~zðLEþμj0Þ

�
; ð3Þ

where β ¼ 1=T, fLig are the compactification lengths of
the spatial coordinates and LE is the Lagrangian density
given by Eq. (2) in Euclidean space. To study the
thermodynamic behavior of the system, we assume that
it is in equilibrium at a temperature T and chemical
potential (density) μ. Finite-size and temperature effects
are taken into account along the lines described in [21]:
each spatial coordinate xi is compactified in a length Li
and, as usual, imaginary time is compactified in a length β.
The D-dimensional spacetime is spanned by vectors
u ¼ ðτ; x1; x2;…; xd; ~zÞ, where τ is the imaginary time
and ðx1; x2;…; xdÞ correspond to the compactified spatial
coordinates. The Fourier dual of u is a D-dimensional
vector in momentum space, q ¼ ðkτ; kx1 ;…; kxd ; ~pÞ. We
also have a (D − δ)- dimensional vector, ~z, with corre-
sponding momentum ~p, a ðD − δÞ- dimensional vector
in momentum space. As a consequence, in explicit
calculations temperature and finite-size effects are imple-
mented through the following changes in the Feynman
rules:

Z
dkτ
2π

→
1

β

X∞
nτ¼−∞

; kτ →
2πnτ
β

− iμ; ð4Þ

Z
dkxi
2π

→
1

Li

X∞
ni¼−∞

; kxi →
2πni
Li

: ð5Þ

Then, integrating over the fields ϕ and ϕ† we get from
Eq. (3) the grand thermodynamic potential,

UðT; fLigÞ ¼
V
2
½m2

σhσi2 −m2
ωhω0i2� − VY 0ð0Þ

βL1…Ld
; ð6Þ

where YðsÞ is the multiple sum obtained after performing
the integration over the ðD − δÞ-dimensional momentum
vector remaining from the replacements in Eqs. (4) and (5):

YðsÞ ¼
X∞

l;n1;…;nd¼−∞
fðs; dÞ

��
2πl
β

− μeff

�
2

þ
�
2πn1
L1

�
2

þ � � � þ
�
2πnd
Ld

�
2

þ p2 þm2
eff

�
−sþðD−δÞ=2

; ð7Þ

with fðs; dÞ ¼ ½1=ð4πÞðD−δÞ=2�Γðs − D−δ
2
Þ=ΓðsÞ. Y 0ðsÞ stands for the derivative of YðsÞwith respect to the argument s. In the

above equations V is the volume and meff and μeff are respectively the effective mass and the effective chemical potential
pertaining to the scalar field ϕ: m2

eff ¼ m2
ϕ − gσhσi and μeff ¼ μ − gωhω0i.

The summation in Eq. (7) can be rewritten in terms of Epstein-Hurwitz inhomogeneous zeta-functions, which have the
following representation, valid in the whole complex ν-plane [27],
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Zc2
δ ðν; faig; fbigÞ

¼ πδ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1::…aδ

p ΓðνÞ

2
64Γ�ν − δ

2

�
cδ−2ν þ 2

Xδ
i¼1

X∞
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�

πniffiffiffiffi
ai

p
c

�
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2
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2

�
2πcniffiffiffiffi
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cosð2πn1b1Þ..… cosð2πnδbδÞ ·

0
B@ π

c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21
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s 1
CA
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Þ
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0
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21
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þ � � � þ n2δ
aδ

s 1
CA
3
75; ð8Þ

where Kν is the modified Bessel function of the second
kind. We take D ¼ 4. Notice that ν ¼ s − ðD − δÞ=2 and
so, the label of the Bessel functions in Eq. (8), ν − δ=2,
does not depend on δ ¼ dþ 1: ν − δ=2 ¼ s −D=2. This
gives Ks−2 in all cases for D ¼ 4. We will restrict ourselves
to d ¼ 1. In this case, we have the system in equilibrium at
a temperature β−1 contained inside a reservoir with the form
of an infinite hollow slab of thickness L1 ¼ L, correspond-
ing to compactification of just one spatial coordinate. We
introduce the notations a1 ¼ ð2π=βÞ2, a2 ¼ ð2π=LÞ2,
b1 ¼ −iμeffβ=2π, b2 ¼ 0.
In order to obtain the thermodynamic potential

we must perform in Eq. (6) the derivative of YðsÞ with

respect to s, for s → 0. This calculation is simplified
when related to a result that involves Gamma-
functions: for any regular function FðsÞ, we have,
lims→0ðd=dsÞ½FðsÞ=ΓðsÞ� ¼ Fð0Þ.
The first term of Eq. (8) is singular as s → 0; however a

process of regularization prevents divergence, after sub-
traction of a pole term: in fact we have that as s → 0,
Γðs − 2Þ → 1=2sþ ð3=4þ γ=2Þ þOðsÞ, which, by sub-
tracting 1=2s leaves a finite quantity. The second term can
be arranged as indicated in the preceding relation involving
Gamma-functions and using the symmetry property of
Bessel functions, KνðzÞ ¼ K−νðzÞ. Remembering Eq. (6)
for D ¼ 4 and d ¼ 1, we get

Uðmeff ;T;μeff ;LÞ¼
V
2
½m2

σhσi2þUvac−m2
ωhω0i2�þ V

ð2πÞ2
"X∞
n¼1

coshðnβμeffÞ
�
meff

nβ

�
2

K2ðmeffnβÞ

×
X∞
n¼1

�
meff

nL

�
2

K2ðmeffnLÞþ2
X∞

n1;n2¼1

coshðn2βμeffÞ
�

meffffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2n21þβ2n22

p �
2

K2

�
meff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2n21þβ2n22

q !#
; ð9Þ

where Uvac is the ðT; μÞ independent vacuum contribution
coming from the first term in the right-hand side of Eq. (8),
and carries the ultraviolet divergences present in the model.
As discussed in Ref. [20], we will omit this term hence-
forth, which can be interpreted as a renormalization by
minimal subtraction.
In order to study the thermodynamic behavior of the

system, we need to consider separately the state equations
for the two sectors of the model,

∂U
∂hσi ¼ 0;

∂U
∂hω0i ¼ 0: ð10Þ

The solutions of these equations give the values hσi and
hω0i corresponding to the extrema of the grand thermo-
dynamic potential U. Replacing Eq. (9) in the above
equations allows one to obtain hσi and hω0i in terms of
Bessel functions involving explicitly the physical param-
eters, β, L, meff , μeff . Taking the number of ϕ-particles and
antiparticles equal, it follows that the effective chemical
potential μeff vanishes, and the only possible value of hω0i
is zero, as remarked in Ref. [20]. Henceforth, we work in
this situation, i.e., at chemical equilibrium.

FIG. 1 (color online). Effective mass as a function of temper-
ature, at chemical equilibrium, for mσ ¼ 0.26 and gσ ¼ 1.52.
Dotted, dashed and full lines represent the system for respec-
tively, L ¼ 2.58, L ¼ 2.81 and L ¼ 4.68.
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III. PHASE STRUCTURE AND COMMENTS

Now we are able to perform a qualitative study of the
phase structure of the model. In this sense, it is convenient
to use the physical quantities in units of the mass of
the scalar field ϕ, mϕ: U=m4

ϕ → U;meff=mϕ → meff ;
gσ=mσ → gσ; T=mϕ → T; Lmϕ → L.
Also, in Figs. 2–5 we plot the thermodynamic potential

relative to reference state Uðmeff ¼ 0Þ:

Ūðmeff ; T; LÞ ¼ Uðmeff ; T; LÞ − Uðmeff ¼ 0; T; LÞ: ð11Þ

This implies in a shift of the curves leading to negative
values on some domains of the vertical axis in these figures.

We start by investigating the behavior of the effective
mass of the field ϕ in the medium. We plot in Fig. 1 values
for meff that are solutions of the gap equation, as functions
of the temperature for different values of the size of the
compactified coordinate. It can be seen that the behavior of
the effective mass is modified by the presence of the
boundary. At zero temperature, the allowed values of meff
slightly decrease as the size of the compactified coordinate
is diminished.
In addition, when the dependence of meff with the

temperature is analyzed, we notice its rapid fall to zero
at a given temperature, similarly to a liquid-gas first-order
phase transition. But the point here is that the curves for
meff corresponding to lower values of L have a faster
decrease and fall to zero at smaller values of the

FIG. 3 (color online). Same as in Fig. 2, for mσ ¼ 0.26, gσ ¼
1.52 and L ¼ 2.81. Dotted, dashed and full lines represent the
isotherms for T ¼ 0.659, T ¼ 0.654 and T ¼ 0.649, respectively.

FIG. 2 (color online). Grand thermodynamic potential density
ŪðT;meffÞ=V, as a function of the effective mass at chemical
equilibrium, for mσ ¼ 0.26, gσ ¼ 1.52 and L ¼ 3.74. Dotted,
dashed and full lines represent the isotherms for T ¼ 0.687,
T ¼ 0.681 and T ¼ 0.677, respectively.

FIG. 4 (color online). Same as in Fig. 2, for mσ ¼ 0.26, gσ ¼
1.52 and L ¼ 1.87. Dotted, dashed and full lines represent
the isotherms with T ¼ 0.541, T ¼ 0.537 and T ¼ 0.532,
respectively.

FIG. 5 (color online). Same as in Fig. 2, for mσ ¼ 0.26,
gσ ¼ 1.52 and T ¼ 0.64. Dot-dashed, dotted, dashed and full
lines represent respectively, the curves with L ¼ 2.06, L ¼ 2.34,
L ¼ 2.80 and L ¼ 3.74.
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temperature. Thus, we can infer that one of the conse-
quences of the presence of boundaries is to cause the
decreasing of the temperature at which meff vanishes.
Moreover this effect appears to be more significative than
the differences among the values of meff at T ¼ 0 for
different values of L, mentioned above. Also, it can be seen
from Fig. 1 that for a same value of the temperature, the
corresponding values ofmeff are larger for smaller values of
the size of the system, L.
In order to have a better understanding of the details of

this phase transition, in Figs. 2–4 are plotted the grand
thermodynamic normalized potential density as a function
of the effective mass for different values of the temperature.
Each plot is built at a given value of the size of the
compactified coordinate. These plots confirm the first-order
nature of the transition for all considered sizes. Also,
they show the decreasing of the critical temperature as

the size L diminishes. Explicitly, in units of mϕ in the
figures, we have for L ¼ 3.74, TcðL ¼ 3.74Þ ¼ 0.689, for
L ¼ 2.81, TcðL ¼ 2.81Þ ¼ 0.654 and for L ¼ 1.87,
TcðL ¼ 1.87Þ ¼ 0.537. Finally, in Fig. 5 is plotted the
grand thermodynamic normalized potential density as a
function of the effective mass, for different values of L and
at a fixed value of temperature. It is seen that, starting from
a small enough value of L, the system, at a fixed temper-
ature, is driven from the disordered to the broken phase, as
its size grows, in other words, it can be said that
the presence of the boundaries tends to inhibit the broken
phase.
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