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Using the AdS/CFT correspondence, we construct the holographic dual of a tunneling instanton
describing Schwinger pair creation in de Sitter space. Our approach allows us to extract the critical value of
the electric field for which the potential barrier disappears, rendering the vacuum unstable. In addition, we
compute the large-λ, large-Nc corrections to the nucleation rate and we find that it agrees with previous
expectations based on perturbative computations. As a by-product of this investigation, we study the causal
structure of the string dual to the nucleated pair as seen by different static observers and we show that it can
be interpreted as a dynamical creation of a “gluonic”wormhole. We explain how this result provides further
evidence for the ER ¼ EPR conjecture as an equivalence between two descriptions of the same physical
phenomenon.
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I. INTRODUCTION

Understanding quantum field theory in de Sitter space is
of great interest in theoretical physics due to its relevance in
cosmology while offering many insights about the quantum
nature of spacetime [1–3]. An intriguing phenomenon that
can be explored in curved spacetimes is the production of
pairs of particles in the presence of an external electric field,
the so-called Schwinger mechanism [4,5]. Even though this
process is relatively well understood, some aspects of it
are intriguing and deserve further investigation. In de Sitter
space, in particular, the Schwinger mechanism can be
employed as a framework to study false vacuum decay
and is considered a focus of current research efforts [6–14].
Let us briefly review what happens in flat space. In

quantum electrodynamics (QED), the probability of pro-
duction per volume V of a particle-antiparticle pair with
mass m and spin j, in a constant electric field ~E, is

P ¼ 1 − exp½ΓV�; ð1Þ
where Γ is the nucleation rate [4]:

Γ ¼ ð2jþ 1ÞE2

8π3
X∞
n¼1

ð−1Þðnþ1Þð2jþ1Þ

n2
e−

πm2n
E : ð2Þ

A qualitative understanding of this phenomenon can be
obtained by looking at the potential energy of the pair in the
presence of an electric field,

VðrÞ ¼ 2m − Er −
αs
r
; ð3Þ

where αs ≃ 1=137 is the fine-structure constant. The electric
field term generates a potential barrier and the tunneling

effect creates a particle-antiparticle pair. For small values of
E, this effect is largely suppressed. However, as E becomes
larger, the barrier is lowered and the tunneling process
becomes more effective. For a critical value of the electric
field, Ec, the barrier vanishes and the vacuum becomes
unstable. The critical field for the barrier above is easily
found to be

Ec ¼
m2

αs
: ð4Þ

Notice that Ec ≫ m2, so the critical field does not satisfy the
weak-field condition, an implicit assumption for the validity
of the Schwinger formula (2). This suggests that the pair
creation process might receive important nonperturbative
contributions.
As mentioned before, the Schwinger effect has received

attention given its close analogy with the process of bubble
nucleation, or false vacuum decay. If we consider bubble
nucleation in flat space, the bubble is momentarily at rest
at the moment of nucleation and expands afterwards.
However, the false vacuum has Lorentz symmetry, so it
is a priori unclear in which Lorentz frame the bubble is
initially at rest. A beautiful answer was given a while ago
by Coleman and De Luccia [15]. They argued that the
Euclidean version of the bubble must beOðdÞ symmetric so
the full solution, which arises by analytically continuing the
Euclidean instanton through t ¼ 0, automatically respects
the Minkowskian Oðd − 1; 1Þ invariance. A similar situa-
tion appears for the Schwinger effect: the Euclidean
trajectory of the nucleated pair has rotational symmetry
given that the electric field acts as a magnetic field in
Euclidean signature and, hence, the instanton follows a
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usual cyclotron orbit. Moreover, the Lorentzian trajectory is
automatically Lorentz invariant since it becomes a hyper-
bola after the analytic continuation. This implies that the
Schwinger formula (2) can be recovered by considering
a sum over instanton amplitudes for tunneling through
the potential barrier of pair creation [16]. Finally, if we
consider the same problem in de Sitter space, the same
machinery can be adapted in a straightforward way by
replacing Lorentz invariance with de Sitter invariance since
Oðd; 1Þ ⊃ Oðd − 1; 1Þ [6].1
Another motivation to study pair creation via the

Schwinger mechanism is that it provides us with the perfect
laboratory to explore some ideas around the recently
proposed ER ¼ EPR conjecture [17]. Indeed, since the
nucleated pair is created from the vacuum, the pair is
necessarily in a singlet state and therefore is maximally
entangled. Let us illustrate this point with a simple
example. Suppose that each particle can only exist in a
two-level system, with spin up j↑i or spin down j↓i,
respectively. Conservation of angular momentum dictates
that the pair is always created in the singlet state:

j0; 0i ¼ 1ffiffiffi
2

p ðj↑↓i − j↓↑iÞ: ð5Þ

If we denote by Sz1 and Sz2 the z component of the spin of
particle 1 and 2, respectively, then

hSz1i ¼ hSz2i ¼ 0; ð6Þ

and

hSz1Sz2i ¼ −
1

4
; ð7Þ

where the expectation values are taken in the state (5).
In particular, notice that

hSz1Sz2i ≠ hSz1ihSz2i: ð8Þ

The fact that the expectation value of the product Sz1Sz2
does not factorize into a product of expectation values is a
measurement of quantum entanglement, and follows from
the fact that the singlet state is not a product state. Another
quantitative measure of the quantum correlations is the
position-space entanglement entropy, or von Neumann
entropy, obtained by tracing over the degrees of freedom
in a region containing one of the particles. One of the
advantages that the Schwinger pair production setting
offers in this context is the permanent causal disconnection:

it implies that no local interaction can ever spoil the
correlation (7).2 The two particles can only interact with
each other by exchanging spacelike photons or other quanta
of the field theory. In fact, for the special case of N ¼ 4
SUðNcÞ super-Yang-Mills (SYM) theory, direct computa-
tion shows that summing up over all these contributions
yields a value of s ¼ ffiffiffi

λ
p

, with λ≡ g2YMNc, for the entan-
glement entropy of the nucleated pair [19] (see also [20,21]).
Thus, the fact that the nucleated pair is necessarily entangled
means that our setting is suitable to test some aspects of
the ER ¼ EPR equality. Some previous work along this line
of research includes [18,22–27]
There is an extensive literature discussing different aspects

of the Schwinger effect in de Sitter space [7–14]. Naturally,
most of these studies were carried out using conventional
field theoretical methods, which apply to the perturbative
regime of weakly coupled theories. While it is expected that
such a process receives important nonperturbative contribu-
tions, going beyond theweakly coupled regime is technically
and conceptually challenging. Some progress in this direc-
tion was recently initiated in [28,29], and expanded in
various directions in [30–38], by studying the problem in
the context of the AdS/CFT correspondence [39–41].
Despite the qualitative differences between the strongly
and weakly coupled regimes, certain physical quantities
are remarkably similar. For instance, in the prototypical case
of N ¼ 4 SYM, in flat space, conformal symmetry dictates
that the interaction potential of two charged particles has the
Coulombic form (3), where the fine-structure constant is
replaced by

αs ¼
4π2

ffiffiffi
λ

p

Γ4ð1=4Þ : ð9Þ

If we trust the heuristic argument presented previously
based on the effective potential, this implies that the
existence of a critical field could also be derived in the
strong coupling regime for SYM theory. Indeed, this expect-
ation was confirmed in [29] by explicit construction of the
dual of a tunneling instanton describing Schwinger pair
creation and, thus, constitutes an actual prediction of
holography. Our primary goal in this paper is to generalize
these results for theories in de Sitter space.
The organization of the paper is as follows. In Sec. II we

describe the holographic setting we use for the description
of the Schwinger effect in de Sitter space. We emphasize
the role of the UV cutoff from the bulk point of view and its
significance in the dual theory. In Sec. III, we perform a
potential analysis for pair creation in de Sitter space and we
extract from it the critical value of the electric field.

1We must bear in mind that in more than (1þ 1) dimensions a
constant electric field is not a solution of the homogeneous
Maxwell’s equations in de Sitter [7]. The charge distribution that
sources a constant electric field must be tuned and is classically
unstable.

2Notice that, although permanent causal disconnection is not
needed for the members of an Einstein-Podolsky-Rosen (EPR)
pair to be entangled, the fact that the two particles could
eventually exchange signals would make the ER ¼ EPR equality
more subtle [18].

FISCHLER et al. PHYSICAL REVIEW D 91, 086015 (2015)

086015-2



Subsequently, in Sec. IV, we construct the dual of the
tunneling instanton and we estimate the strong-coupling
corrections to the nucleation rate Γ. In addition, we verify
the critical field obtained by the effective potential method
is recovered in this framework. In Sec. V, we analyze the
physical properties of the Lorentzian version of the instan-
ton and we show that our results fit in nicely within the
EPR ¼ ER interpretation. In Sec. VI we close with a brief
summary of our findings and conclusions.

II. HOLOGRAPHIC SETUP

In the present work, we focus on the description of the
Schwinger effect in the strongly coupling regime, using the
AdSdþ1=CFTd correspondence. Known examples of this
duality from string theory constructions include the d ¼ 2,
3, 4 and 6 cases, which involve the near-horizon geometries
and low-energy world volume theories of multiple D1=D5,
M2, D3 and M5 branes, respectively [42]. In these setups,
the bulk metric generally contains a compact manifold that
encodes the internal degrees of freedom of the dual theory.
The prototype example is the d ¼ 4 system, which equates
type IIB string theory on AdS5 × S5 with Nc units of
Ramond-Ramond five-form flux through the five-sphere to
N ¼ 4 SUðNcÞ SYM theory. Replacing the sphere with
other compact geometry gives rise to holographic duals of
conformal field theories (CFTs) with fewer supersymme-
tries. However, this compact space will play no role in our
computations. For any d, the noncompact part of the bulk is
naturally AdSdþ1, which has the same isometry group as
the conformal group SOðd; 2Þ.
AdS/CFT has also been used to study quantum field

theory in curved space [43]. To obtain the holographic dual
of theories in de Sitter, we will use the specific construction
based on the hyperbolic (or topological) anti–de Sitter
(AdS) black hole [44–47]. In this picture, the bulk
geometry is foliated with dS slices and the metric takes
the form3

ds2dþ1 ¼ Gμνdxμdxν ¼
L2

z2
½fðzÞ2ds2dS þ dz2�; ð10Þ

where

fðzÞ≡
�
1 −

H2z2

4

�
; ð11Þ

and ds2dS is the de Sitter metric in d dimensions. In the
above, L denotes the AdS radius andH the Hubble constant

of the boundary theory. Note also that (10) is given in
Fefferman-Graham form. On the other hand, the de Sitter
metric can be given in any set of coordinates. We will
mainly focus on the region of spacetime accessible to a
single geodesic observer, i.e., the static patch of de Sitter.
For such an observer, the metric is given by

ds2dS ¼ −ð1 −H2r2Þdt2 þ dr2

1 −H2r2
þ r2dΩ2

d−2; ð12Þ

and is characterized by a cosmological horizon located at
r ¼ 1=H. One property of the static patch is that there is a
killing vector ξ ¼ ∂t associated with the invariance under
time translations, hence the name “static” Therefore,
thermodynamic quantities such as energy, temperature
and entropy are well defined, a fact that will be useful
later in this work. Indeed, an observer equipped with a
particle detector will detect a background of Hawking
quanta at a temperature of TdS ¼ H=2π. Finally, it is worth
emphasizing that the foliation used in (10) covers only a
portion of the entire manifold, which is known as the
hyperbolic patch of AdS. The Killing horizon, located at
zH ¼ 2=H, is analogous to a Rindler horizon, with an
associated temperature and nonvanishing area. As a result,
a state that is pure from the point of view of global AdS will
generally be mixed because the degrees of freedom in the
hyperbolic patch will be entangled with the degrees of
freedom beyond the horizon, which are traced over. This is
the bulk origin of the “thermality” in the dual theory.4

The addition of fundamental matter in the boundary
theory is realized by the introduction of a stack of Nf flavor
branes in the bulk geometry, whose excitations are
described by open strings.5 We will refer to these new
degrees of freedom collectively as “quarks,” even though
they generically include scalars and fermions. If Nf=Nc is
small we can treat these flavors as probes and in this limit
the backreaction on the geometry can be neglected. More
specifically, we need the energy density of the flavor fields
εf to be small in comparison to the energy density of the
color degrees of freedom εc. For the class of theories we
have at hand, we find that [46,47]

εc ∼ N2
cTd

dS ∼ N2
cHd: ð13Þ

This result also follows from the Stefan-Boltzmann law. On
the other hand, if we turn on a constant electric field in the
flavor sector we get

εf ∼ N2
fE

2: ð14Þ
Therefore, the condition for treating the flavor branes in the
probe limit is3More specifically, the metric (10) is related to the massless

limit of the hyperbolic AdS black hole and is dual to the Bunch-
Davies vacuum of the boundary theory. The cases with m ≠ 0
modify the falloff behavior of the bulk metric near the boundary
(the normalizable mode) and correspond to different states of the
theory.

4See [48] for a discussion of the role of foliations in AdS/CFT.
5Another way to achieve this is to start with a stack of Nc þ 1

color branes and separate one from the rest. Excitations in this
case transform in the fundamental of the unbroken UðNcÞ [29].
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Nf

Nc
≪

Hd

E2
: ð15Þ

In the boundary theory, this corresponds to work in a
quenched approximation which disregards quark loops.
The flavor branes will generally span all directions of the
dual theory (unless we consider a defect theory), and extend
along the radial direction from the boundary at z ¼ 0 to a
position z ¼ zm where they end.6 Some remarks on the
physical implications of zm are in order. First notice that
zm ≠ 0 introduces finite mass (and hence dynamical)
quarks into the theory [49]. One of the crucial conse-
quences of having finite mass is that the quarks develop a
gluonic cloud of finite Compton wavelength [50,51] which
implies that the q-q̄ potential would no longer be
Coulombic as in (3). Second, notice that zm can be used
as an UV regulator. According to the UV/IR connection
[51–53], the bulk coordinate z maps into a length scale
L ∼ z in the boundary theory, so defining the theory at the
surface z ¼ zm is equivalent to cutting off degrees of
freedom of length L≲ zm. Finally, and perhaps most
importantly, the non-normalizable modes of bulk fields
(including the metric) are allowed to fluctuate at the surface
z ¼ zm and this means that we are coupling the field theory
degrees of freedom to dynamical gravity. As advocated for
in [26], this would be in some sense reminiscent of a
Randall-Sundrum scenario.
Before proceeding further, let us mention a subtlety of

the Schwinger mechanism that arises in de Sitter space. It is
well known that, due to the expansion of the Universe, a
constant electric field is not a solution of the homogeneous
Maxwell’s equations in more than (1þ 1) dimensions [7]
(see Appendix A). In our setup, however, such an electric
field is sourced by a fundamental string density which in
the probe limit can be neglected, i.e., it does not backreact
on the background geometry. We will not be worried about
the stability of the charge configuration. Instead, we will
continue with our analysis in an arbitrary number of
dimensions, bearing in mind the physical implications
and the possible limitations.

III. POTENTIAL ANALYSIS FOR PAIR CREATION

As was discussed in the Introduction, the idea here is to
perform a potential analysis of the Schwinger mechanism
in de Sitter space using the tools of the AdS/CFT
correspondence. In order to do so, we need to compute
the potential energy of a pair of particles [analogous to
Eq. (3)] in de Sitter. We will carry out the computation in
two steps. In Sec. III A we start by considering a pair of
infinitely massive particles in the absence of any electric

field. In this case, the holographic computation of the
potential energy is a rather simple exercise but will,
nevertheless, set the grounds for our computations. In
Sec. III B we generalize our result in two ways: first, we
upgrade to the case of finite mass by cutting off the bulk
geometry a distance away from the boundary, and then we
turn on a background electric field. With this result at hand,
we compute the critical value of the electric field, Ec, and
we compare our findings with the flat space result.

A. Quark-antiquark potential

Consider a gauge theory in the static patch of de Sitter
and take an infinitely heavy particle-antiparticle pair mov-
ing along one of the orbits of the Killing vector ξ.
We can obtain the binding energy of the pair by computing
the expectation value of a rectangular Wilson loop operator
[54]. In gauge theories, a Wilson loop is defined as the path
ordered contour integral of the gauge field,

WðCÞ ¼ 1

Nc
trðPe

H
C
AÞ; ð16Þ

where Nc denotes the number of colors, the trace runs over
the fundamental representation of the gauge group and C is
a closed loop in spacetime. Intuitively, the expectation
value of this operator can be thought of as the phase factor
associated with the propagation of a fundamental particle
around the given loop.
Let us now focus on the rectangular loop defined by

t∈ ½−T
2
;T
2
�, x1≡x∈ ½−l

2
;l
2
� and xi ¼ 0 for i ¼ 2;…; d − 2.

In the limit T → ∞ the expectation value of the Wilson
loop evaluates to

hWðCÞi ¼ e−TEðlÞ; ð17Þ

where EðlÞ is the energy of the pair separated by a
(coordinate) distance of l.7 In a curved space, we expect
EðlÞ to have three contributions:

EðlÞ ¼ 2mþ 2Vgravðl=2Þ þ Vqq̄ðlÞ; ð18Þ

where m is the mass of the particles, Vgravðl=2Þ is the
gravitational potential energy of a particle at x ¼ �l=2,
and Vqq̄ðlÞ is the binding energy of the two particles. Thus,
by computing the expectation value of such a loop we can,
in principle, obtain the desired potential.
According to the holographic dictionary, the expectation

value of a Wilson loop is given by the open string partition
function,

6This means that the part of the embedding that wraps the
compact manifold degenerates to a point at z ¼ zm. This can be
concretely illustrated in the D3/D7 system, where the stack of
D7s wrap an S3 ⊂ S5 that shrink to a point at z ¼ zm [49].

7For simplicity we are considering the symmetric configura-
tion where one of the particles is located at x1 ¼ −l=2 and the
other one at x1 ¼ l=2. Any other configuration can be casted as
this one by transforming to the reference frame of an observer that
is at equal proper length of each of the particles.
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hWðCÞi ¼
Z

DΣe−SNGðΣÞ; ð19Þ

where the integral runs over all world sheets Σ with
boundary condition ∂Σ ¼ C (at the position of the flavor
branes, where the open strings end). Here, SNG is the usual
Nambu-Goto action,

SNG ≡
Z

dτdσLNG ¼ 1

2πα0

Z
dτdσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gab

p
; ð20Þ

and gab ¼ ∂axμðτ; σÞ∂bxνðτ; σÞGμν the induced metric on
the world sheet. In the limit of large ’t Hooft coupling8

L2

α0
≡ ffiffiffi

λ
p

≫ 1; ð21Þ

we can make use of the saddle point approximation
and (19) reduces to

hWðCÞi ¼ e−SNGðΣ0Þ; ð22Þ
where Σ0 is the world sheet of minimal area subject to the
boundary condition ∂Σ ¼ C. In Fig. 1, we plot schemati-
cally the minimal area surface for the rectangular loop we
are considering.
In the static gauge, ðτ; σÞ ¼ ðt; xÞ, the string embedding

can be parametrized by a single function zðxÞ. In this case,
the action (20) takes the form

SNG ¼ TL2

2πα0

Z
dx
z2

fðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞ2 þ z0ðxÞ2hðxÞ

q
; ð23Þ

where we defined the function

hðxÞ≡ 1 −H2x2; ð24Þ
and fðzÞ is given in (11). The equation of motion that
follows from (23) is

z00 þ h0ðxÞ
hðxÞ z

0 þ 2fðzÞðfðzÞ − zfzðzÞÞ
zhðxÞ

þ 2fðzÞ − 3zfzðzÞ
zfðzÞ z02 þ h0ðxÞ

2fðzÞ2 z
03 ¼ 0; ð25Þ

where 0 ≡ ∂x and fzðxÞ≡ ∂zfðzÞ ¼ −zH2=2. This equa-
tion is highly nonlinear and, unfortunately, the general
solution cannot be obtained in a closed form. For now we
will proceed numerically, but later in this section we will
present a parametric solution that will allow us to obtain
analytic results in a certain region of the parameter space.
In the numerical approach to solve Eq. (25), our goal is to

find zðxÞ subject to the boundary condition zð�l=2Þ ¼ 0.
In practice, however, it is easier to start from the IR and
then implement the boundary condition through a shooting
method. Due to the symmetry of the geometry, when x ¼ 0,
z reaches its maximum value z ¼ z�. Thus, we impose that

zð0Þ ¼ z�; z0ð0Þ ¼ 0; ð26Þ

and then integrate numerically towards the boundary.
From this solution we extract the value of l for each z�
by solving zðl=2Þ ¼ 0.
Before presenting the results, let us first discuss a

subtlety of the numerical method. For large values of z�
there is a point x ¼ xc for which the integration breaks
down before the solution reaches the boundary. This is
related to the fact that for such cases zðxÞ turns out to be
multivalued. Numerically, this issue can be treated as
follows: first, we integrate the solution up to xc where
z ¼ zc and z0ðxcÞ ¼ z0c → −∞ (this is why the numerical
method breaks down). Next, we invert (25) in order to
obtain an equation for xðzÞ. This equation is used to solve
for xðzÞ starting from zc and xc [where x0ðzcÞ ¼ 1=z0c → 0]
up to the boundary. In Fig. 2, we show different profiles of
zðxÞ (depicted in blue) corresponding to different values
of z�.
Some comments about the solutions are in order. First,

for each value of l we find that there are two solutions
that satisfy the conditions (26) with different values of z�
(see the largest two loops in Fig. 2 for a particular example).
We then choose the solution that yields a smaller surface
area (which turns out to be the one with smaller z�). Tied to
this observation is the fact that l is nonmonotonic with
respect to z�. To be more specific, l first increases as we
increase z� from zero to critical value z� ¼ zmax ≈ 1.21 (in
units of 1=H), and then it decreases. This gives us a
maximum length Hlmax ≈ 0.92 beyond which there is no
solution satisfying the conditions (26). Finally, for each
value of l there is also a solution to the equations of motion
that corresponds to two disconnected strings with end
points at x ¼ �l=2. In this case the profile can be obtained
analytically (see Appendix B for details) and the solution
takes the form

FIG. 1 (color online). Illustration of the holographic setup for
the computation of the quark-antiquark potential. The red
rectangle represents the Wilson loop on the probe D-brane.
In the limit of infinite mass, we take the position of the brane
close to the boundary, zm → 0.

8This definition is precise in AdS5, but we will also use it for
other numbers of dimension.

HOLOGRAPHIC SCHWINGER EFFECT IN DE SITTER SPACE PHYSICAL REVIEW D 91, 086015 (2015)

086015-5



zðxÞ ¼ 2

H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x∓l=2
x� l=2

s
: ð27Þ

Some of these profiles are shown in Fig. 2 (depicted in red
and purple). In cases where a connected solution exists, i.e.,
for l ≤ lmax, the relevant embedding is the one with
minimal area.
The numerical solution for zðxÞ is used to evaluate the

action (23) on shell, which gives us the energy of the pair
EðlÞ through (17). This action is naturally divergent
because it includes the intrinsic energy of the two particles,
which are taken to be infinitely massive. We can easily take
care of this divergence by subtracting the contribution of
the disconnected solution, which includes both the mass
term and the gravitational potential energy that appear in
(18) (see Appendix B). The resulting potential Vqq̄ðlÞ is
shown in Fig. 3. Similar to the finite temperature case in flat
space [55–57], we find that there is a sharp transition at

some l ¼ lscr for which the disconnected solution becomes
energetically more favorable. More specifically, for Hl ≥
Hlscr ≈ 0.75 we observe that the potential flattens abruptly
to a value of Vqq̄ðlÞ ¼ 0.9 Such a transition is interpreted as
the screening of the color flux tube between the two particles
(which is holographically realized by the string extending
between them) by the gluonic sector of the theory, in
complete analogy to the phenomenon of Debye screening
in classical electromagnetism.
The parametric solution for the connected world sheet

can be obtained by analytically continuing to Euclidean
space (see Appendix C for details). The final result for the
embedding can be written as

ZðPÞ ¼ �γP0½Fðβ; γÞ − δP2
0Πðβ; δ; γÞ�; ð28Þ

where Fðβ; γÞ and Πðβ; δ; γÞ are the elliptic integral of the
first kind and the complete elliptic integral of the third kind,
respectively, and

β ¼ arccos

�
P0

P

�
; γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P2

0

1þ 2P2
0

s
; δ ¼ 1

1þ P2
0

:

The coordinates ðZ; PÞ are related to ðx; zÞ through

Z ¼ arccosh

�
2 − fðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2z2 þ hðxÞfðzÞ2
p �

; ð29Þ

P ¼ fðzÞ
Hz

hðxÞ1=2; ð30Þ

and P0 is a constant of integration given by

P0 ¼
fðz�Þ
Hz�

: ð31Þ

Near the boundary P → ∞ and Z → �Z∞, where

Z∞ ¼ arccosh

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −H2l2=4
p �

: ð32Þ

By evaluating (28) at P → ∞, it follows that for a given
value of l there are two minimal surfaces with different P0,
as expected from our numerical calculations. Among these
two, the solution with larger P0 is the one with minimal
area (see Appendix C 2 for explicit expressions).
In general, it is not possible to invert P0 analytically as a

function of l, so we cannot write down an expression for
the quark-antiquark potential in a closed form. However,
for small loops we can expand in Hl ≪ 1 and perform a
perturbative analysis. In this regime, we find that

1.0 0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

x

z
x

FIG. 2 (color online). The rectangular Wilson loops, for differ-
ent separations, with z and x measured in units of 1=H. The blue
lines correspond to connected surfaces while the red and purple
lines represent disconnected surfaces.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

35
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0
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V

FIG. 3 (color online). Quark-antiquark potential obtained by
evaluating the action (23) using the numerical solution to the
equation of motion (25).

9This “first order” transition is an artifact of the Nc → ∞ limit
and is expected to smooth out by considering 1=Nc corrections.
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P0 ¼
A
Hl

ð1 − BH2l2 þOðH4l4ÞÞ; ð33Þ

where

A ¼ 2
ffiffiffi
2

p
π3=2

Γð1
4
Þ2 ; B ¼ 1

12
þ Γð1

4
Þ4

32π3
þ Γð1

4
Þ8

768π5
:

In Lorentzian signature, the regularized on-shell action SNG
is related to the Euclidean action SENG through

SNGðlÞ ¼
HT
2π

SENGðlÞ: ð34Þ

This follows from a simple analytic continuation.10 A brief
computation yields

Vqq̄ðlÞ ¼ −
4π2

ffiffiffi
λ

p

Γð1
4
Þ4l ð1 − CHl −DH2l2 þOðH4l4ÞÞ;

ð35Þ

where

C ¼ Γð1
4
Þ4

4π3
; D ¼ 1

12
−

Γð1
4
Þ8

384π5
:

The leading term gives the expected Coulombic quark-
antiquark potential for N ¼ 4 SYM in flat space. In de
Sitter space, however, we introduce a length scale H−1 into
the theory, and hence the potential receives some correc-
tions. As a consistency check, we verified that the analytic
form of (35) matches our numerical results in the
regime Hl ≪ 1.

B. Effective potential in an external electric field

Let us now discuss the finite mass case. From the bulk
perspective, the inclusion of finite mass quarks amounts to
imposing a radial cutoff zm > 0, and defining the gauge
theory at this hypersurface. The value of zm is fixed by the
location of the flavor branes probing the geometry and is
related to the mass through (see Appendix B)

m ¼
ffiffiffi
λ

p

2πzm

�
1 −

Hzm
2

�
2

: ð36Þ

In the context of holography, the Schwinger effect can be
understood as follows. If we turn on a background electric
field Ftx ¼ E, the Dirac-Born-Infeld (DBI) action for a
probe brane in the geometry (10) is given by

SDBI ¼ −TDL2

Z
dpþ1ξ

fðzÞ2
z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4π2z4E2

λfðzÞ4

s
: ð37Þ

Evaluating (37) at z ¼ zm we find that the action is real as
long as the electric field is below the critical value:

Ec ¼
ffiffiffi
λ

p

2πz2m

�
1 −

H2z2m
4

�
2

: ð38Þ

For E > Ec, the creation of open strings is energetically
favored and the system becomes unstable. Notice that the
critical field in de Sitter space is smaller than the flat space
value (which can be obtained by setting H ¼ 0 in the
equation above). This is indeed expected since the expan-
sion of the Universe is a source of particle creation, making
the vacuum less stable than in flat space.
A remark on the maximum value of the critical field is in

order. Recall that if the electric field is large enough the
backreaction of the flavor branes on the geometry becomes
relevant. This might be a problem if we let zm approach
zero too fast in comparison to the other parameters of the
system. According to (38) in this limit

Ec ∼
ffiffiffi
λ

p

z2m
; ð39Þ

so the condition (15) becomes

N2
f

N2
c
≪

z4mHd

λ
: ð40Þ

Therefore, we can still treat the flavor branes as probes for
any zm provided that we take the ratio Nf=Nc small enough
so that (40) is satisfied.
To compute the effective potential, VeffðlÞ, we need to

recalculate the area of the connected surface but now up to
the cutoff surface at zm (see Fig. 1 for a schematic plot). For
large enough mass m ≫

ffiffiffi
λ

p
H, i.e., for zm ≪ zH, there are

still two connected surfaces for a given value of l, which is
now given by

zð�l=2Þ ¼ zm: ð41Þ

As before, the surface reaching deeper into the bulk has
larger area and can be ignored.11 Also, notice that zm can be
used as an UV regulator, so there is no need to subtract the
area of the disconnected surface. In this case, then, the
potential Vm

qq̄ðlÞ computed from the minimal area includes

10Recall that the Euclidean time is periodic, tE ∼ tE þ β, with
β ¼ 2π=H.

11For zm ≳ zmax ≈ 1.21=H there is only one connected surface
satisfying (41). Although it is tempting to study the physical
implications of such a transition, we must keep in mind that in
this regime m ∼Oð ffiffiffi

λ
p

HÞ and, therefore, quantum corrections to
the string partition function become relevant.
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the mass of the quarks. In addition, we add the term
corresponding to the contribution from the electric field
VEðlÞ coupled to the end points of the string on the probe
brane. The final result can be written as

VeffðlÞ ¼ Vm
qq̄ðlÞ þ VEðlÞ: ð42Þ

In Fig. 4 we show the numerical results for the effective
potential corresponding to different values of E and fixed
mass m. In general, the potential barrier drops as we
increase the value of E, as expected. For E ¼ Ec we find
that V 0

effðlÞjl¼0 ¼ 0 and the barrier disappears completely.
It is noteworthy that the numerical value of Ec found
numerically agrees with the expected value from the DBI
computation (38). In fact, we can prove this equivalence
analytically by exploring the behavior of the effective
potential for small Wilson loops (following similar steps
as in the previous section). This will serve as a consistency
check of our numerical results. First, notice that from (30) it
follows that

Pm ¼ 4 −H2z2m
4Hzm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2l2=4

q
; ð43Þ

where Pm denotes the position of the cutoff in coordinates
ðP; ZÞ. Next, we expand the area of the connected surface
(given in Appendix C 2) around Pm ¼ P0. A brief compu-
tation yields

SENG ¼ 2
ffiffiffi
2

p ffiffiffi
λ

p
P3=2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm − P0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2P2

0

p þOðPm − P0Þ: ð44Þ

Substituting the expressions for P0 and Pm given in (31)
and (43) we can rewrite (44) in terms of l, zm and z�. We
can get rid of the z� dependence by expanding the solution
for the embedding (28) around P ¼ P0 and evaluating at
Pm. In terms of the original variables, we get

z� ¼ zm −
l2

4zm

�
1 −

H4z4m
16

�
2

þO
�
l4

z2m

�
: ð45Þ

Plugging (45) into (44) we obtain

SENG ¼
ffiffiffi
λ

p
l

Hz2m

�
1 −

H2z2m
4

�
2
�
1þO

�
l
zm

��
: ð46Þ

Finally, analytically continuing to the Lorentzian signature
and adding the contribution from the electric field,
VE ≃ −El, we arrive at

VeffðlÞ≃ ðEc − EÞlþ � � � ; ð47Þ

where Ec is given by (38). This result matches our previous
expectation and serves as a nontrivial check of our
numerical results.

IV. THE EUCLIDEAN INSTANTON AND THE
NUCLEATION RATE

The nucleation rate of a particle-antiparticle pair (2) was
originally obtained by considering the contribution of the
appropriate Feynman diagrams [4]. Later, it was realized
that the same could alternatively be derived from the
imaginary part of the Euclidean worldline path integral
[16]. For j ¼ 0, this method amounts to compute

Γ ¼ −
2

V
ℑ
Z

dT
T

Z
Dxμe−SE½T;xμ�; ð48Þ

where

SE½T; xμ� ¼
Z

1

0

dτ

�
_x2

4T
þm2T − iAμ _xμ

�
; ð49Þ

and T is a Lagrange multiplier. Recall that in the Euclidean
signature the time coordinate is periodic so in (48) it is
understood that the integral runs over worldlines satisfying
periodic boundary conditions xμðτ þ 1Þ ¼ xμðτÞ.
The fact that the Schwinger formula (2) is a sum of

exponentials suggests that the production rate can be
obtained in the Euclidean signature as a sum over instanton
amplitudes for tunneling through the potential barrier of
pair creation. The explicit computation was carried out in
[16], but it is easy to see that it indeed yields the correct
answer for the exponential factor in the Schwinger formula;
in Euclidean space, the electric field acts as a magnetic field
and an instanton of the worldline path integral is a cyclotron
orbit that wraps n times the time direction. A brief
calculation shows that the contribution of each of these
is given by

Sn ¼
πm2n
E

; ð50Þ

zm
1

4 H
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3

2

1

0

1

2

3

H

V
ef

f

FIG. 4 (color online). Effective potential VeffðxÞ for different
values of E. At the critical value of 2πα0E ≈ 15.5 (brown line),
the barrier vanishes. This agrees with the expected value from the
analysis of the DBI action.
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which correctly reproduces the factor in (2). The rest of the
computation is technically more involved, as it requires us
to perform the full path integral over fluctuations of the
classical solutions. Needless to say, the final result agrees
with the Schwinger formula, including the prefactor of the
exponential.
In the large-Nc and large-λ regime, we expect (49) to be

modified due to several factors. For example, interaction
with the adjoint degrees of freedom of the gauge theory,
which are usually ignorable at weak coupling, must now be
taken into consideration. These corrections can be
accounted for by the inclusion of a Wilson loop amplitude
WðxÞ in the path integral [29],

S½T; xμ� → S½T; xμ� − logWðxμÞ; ð51Þ

whereWðxμÞ is defined as in (16).12 Our goal is to compute
the contribution of the Wilson loop using the tools of the
gauge/gravity correspondence [54]. Here, we will only deal
with the exponential factor of the nucleation rate Γ ∼ e−SE
for which a classical bulk computation is valid, but we
leave the study of quantum fluctuations for future studies.
We will compare with the weak coupling results (see e.g.
[6]) which we revisit in Appendix D.
We will parametrize the Euclidean AdS in coordinates of

the Poincaré ball ðr; θ;ϕÞ, where r denotes the bulk radial
direction and θ and ϕ are arbitrary polar and azimuthal
angles (see Appendix C for details). As usual, we consider
a Wilson loop ending on some probe brane at r ¼ rm rather
than on the boundary in order to avoid infinite mass.
According to (36) and (C2), this cutoff is related to the mass
through

rm ¼ 2 −Hzm
2þHzm

¼
�
1þ

ffiffiffi
λ

p
H

mπ

�−1=2
: ð52Þ

In this case, the relevant surface representing the Euclidean
instanton is a spherical cap that intersects the boundary of
the ball at a right angle (C10). In Fig. 5 we show
schematically the setup for this configuration. The
Nambu-Goto action is proportional to the area of this
surface truncated at rm, and can be easily obtained from
(C11). The result is

SENG ¼ n
ffiffiffi
λ

p
0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4r2m

ð1 − r2mÞ2
sin2αm

s
− 1

1
CA; ð53Þ

where n is the winding number and αm is the polar angle
subtended by the loop from the axis of symmetry. This
angle αm is related to the angle α at the boundary through

cos αm ¼ 1þ r2m
2rm

cos α ¼
�
4þH2z2m
4 −H2z2m

�
cos α: ð54Þ

Following [29], we add to the action the interaction with the
Electromagnetic field,

SE ¼ SENG þ SEEM; ð55Þ

where

SEEM ¼ −
2πEn
H2

ð1 − cos αmÞ: ð56Þ

The derivation of this expression is presented in
Appendix D. Extremizing the total action with respect to
αm yields

sin2αm ¼ 4λH4r4m − E2π2ð1 − r2mÞ4
4λH4r4m þ 4E2π2rmð1 − r2mÞ2

; ð57Þ

which implies the existence of a critical electric field,

Ec ¼
2
ffiffiffi
λ

p
H2r2m

πð1 − r2mÞ2
: ð58Þ

In terms of zm, this expression is equivalent to the critical
field found with the DBI result (38) and thus, serves as a
consistency check of our computations. We can now
rewrite the most probable separation between the quark
and antiquark and the Nambu-Goto action in terms of the
critical field and the boundary parameters:

FIG. 5 (color online). Holographic dual of the Euclidean
instanton describing Schwinger pair creation in de Sitter space.
The outer sphere is the boundary of the Poincaré ball. The inner
sphere denotes the location of the probe brane, which is placed at
r ¼ rm. The circular loop describing the instanton is at θ ¼ αm
(depicted in black), and the minimal surface is the inner portion of
a spherical cap that intersects the loop and reaches the boundary
at a right angle.

12Depending on the specific theory, the Wilson loop operator
has to be modified (e.g. including couplings to other fields) in
order to preserve gauge invariance.
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sin2αm ¼
ffiffiffi
λ

p
H2ðE2

c − E2Þ
Ecð

ffiffiffi
λ

p
H2Ec þ 2πE2Þ ; ð59Þ

and

SENG ¼ n
ffiffiffi
λ

p  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2π2

λH2

�
1þ

ffiffiffi
λ

p
H

mπ

�
sin2αm

s
− 1

!
:

ð60Þ

Notice that as E → Ec, both αm and SENG approach zero,
indicating the disappearance of the tunneling barrier. Also,
in the same limit, the total action SE vanishes and the
summation over n is unsuppressed.
It is instructive to consider the following two limits.

First, consider the flat space limit: in this case, we have to
convert to the variable y ¼ H−1 sin αm, and then take the
limit H → 0. The result is

SEðflatÞNG ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ 4m2π2y2

q
− n

ffiffiffi
λ

p
; ð61Þ

in agreement with [29]. Second, consider the case H ≠ 0

and m ≫
ffiffiffi
λ

p
H. In this regime, we obtain

SENG ≃ 2πmn
H

sin αm − n
ffiffiffi
λ

p
ð1 − sin αmÞ þ � � � ; ð62Þ

where the dots are terms suppressed by extra factors offfiffiffi
λ

p
H=m. Notice that the first term above correctly repro-

duces the weak coupling result (D5). The second term, on
the other hand, corresponds to the contribution coming
from the Wilson loop in (51) and can be thought of as a
large-Nc, large-λ correction to the action.
Finally, in order to obtain the production rate we

substitute the extremal value of sin αm into the total action
SE. The general result is a cumbersome expression, but we
will explicitly write down the result in the limit m ≫ H

ffiffiffi
λ

p
,

for which our classical calculation is valid:

SE ¼
�
2πnm
H

−
2πnE
H2

��
1þ E2

2H2m2
þ � � �

�
: ð63Þ

If we turn off the large-Nc corrections, then we can
recognize in this expression two contributions to the
nucleation rate Γ ∼ e−SE . The first term is the usual
Boltzmann factor with the de Sitter temperature,
TdS ¼ H=2π, and therefore is the production rate due to
the expansion of space. The second term is due to the
proper Schwinger effect and is linear in E. Finally, if we
make a comparison with the equivalent at weak coupling
(D9), we find exact agreement in the regime m ≫ H. This
implies that the terms in (63) containing higher powers in
the electric field (which come from the Wilson loop
contribution) can be interpreted as the nonperturbative

correction to the nucleation rate. We also point out that
our result agrees with the semiclassical analysis presented
in [11]. The production rate computed in that paper is

SE ¼ 2πn

�
1

H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −

H2

4

r
−

E
H2

�
; ð64Þ

which reduces to (63) in the regime m ≫ H.

V. REMARKS ON THE ER ¼ EPR CONJECTURE

In a recent paper [17], Maldacena and Susskind made the
observation that configurations of black holes connected
by a (nontraversable) wormhole, or Einstein-Rosen bridge,
should be interpreted as states where the black holes are
maximally entangled. They conjectured that this relation
might hold in more general entangled systems so that even
a single EPR pair would be connected by a Planck-scale
wormhole encoding their entanglement. Jensen and Karch
[22] gave further evidence in support of this conjecture by
taking the EPR pair to be a color-singlet quark-antiquark
pair (inN ¼ 4 SYM) undergoing constant acceleration and
showing that its holographic dual has a wormhole.
Later in [23], it was argued that the configuration studied

in [22] is nothing but the Lorentzian continuation of the
instanton associated with Schwinger pair creation, thus
making contact with the black hole pair production
scenario discussed in [17]. Accordingly, in this section
we will study the Lorentzian world sheet associated with
the nucleated quark-antiquark pair in de Sitter space. We
argue that the fact that its causal structure resembles a two-
sided black hole connected by a (nontraversable) wormhole
provides supporting evidence in favor of the ER ¼ EPR
conjecture.
In global coordinates, the Lorentzian world sheet can be

obtained by analytically continuing the solution we used
in the previous section (C10) (see Fig. 5). We will define a
coordinate w ¼ 1

H sinϕ so that

ds2dS ¼ −dτ2 þ cosh2ðHτÞ
1 −H2w2

dw2: ð65Þ

Moreover, we will transform back to the Fefferman-
Graham coordinate z defined in (10). The advantage of
the coordinate w over the angle ϕ is that we can easily take
the limit H → 0 and recover the Poincaré patch of AdS
foliated with Minkowski slices.
In the coordinate system described above, the world

sheet embedding takes the following form:

z ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2w2

p
cosh ðHτÞ − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2w2

0

p
H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 −H2w2Þcosh2ðHτÞ − ð1 −H2w2
0Þ

p ; ð66Þ

where w0 ¼ 1
H sin α. As a consistency check, notice that

taking the flat space limit yields
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z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 − w2 þ w2

0

q
: ð67Þ

This is exactly the string profile for an accelerated quark-
antiquark pair in Minkowski space found by Xiao [58]
and considered by Jensen and Karch in [22]. The world-
line of the nucleated pair wqðτÞ can be found by setting
z ¼ zm in (66)13:

wqðτÞ ¼ � 1

H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2αmsech2ðHτÞ

q
; ð68Þ

where αm is given in (54). By evaluating (68) at τ ¼ 0, we
can see that the parameter αm (which indicates the size of
the circle in the Euclidean signature at r ¼ rm) sets the
initial separation in ϕ between the two particles. At late
times, on the other hand, wq → �H−1. This means that
the two particles approach opposite sides of the de Sitter
hyperboloid. Finally, we point out the fact that the world
sheet never penetrates deeper than Hz ¼ 2, i.e., it stays
within the hyperbolic patch of AdS.
As pointed out by Jensen and Karch in [22], the flat

space world sheet (67) has a two-sided horizon at zwsH ¼ w0

and is therefore a wormhole. We will now show that world
sheet (66) also possesses the causal structure of a wormhole
for H ≠ 0. Taking ðϕ; τÞ as the coordinates on the world
sheet, the induced metric has the following components:

hττ ¼
L2

z2
ð_z2 − fðzÞ2Þ;

hτϕ ¼ L2

z2
z0 _z; hϕϕ ¼ L2

z2

�
z02 þ fðzÞ2

H2
cosh2ðHτÞ

�
;

ð69Þ

where · ≡ ∂τ and 0 ≡ ∂ϕ. The geodesic equation for a null
geodesic in this geometry reads

hττ þ 2hτϕ

�
dϕ
dτ

�
þ hϕϕ

�
dϕ
dτ

�
2

¼ 0: ð70Þ

We will solve this equation numerically. If the geodesic
intersects the worldline of the quark at time τ0, then we
have the boundary condition

ϕðτ0Þ ¼ arccos

��
4 −H2z2m
4þH2z2m

�
cos αmsechðHτ0Þ

�
: ð71Þ

The two edges of the world sheet play a role analogous
to the boundary of an asymptotically AdS space: the null
geodesics can reach the edges and bounce back to the
interior of the world sheet (with appropriate boundary

conditions). However, a single null geodesic cannot con-
nect the two AdS boundaries at finite τ. This can be seen
from Fig. 6, in which we plot the null geodesics emitted
from the two boundaries for different choices of τ0. By
inspection, we can see that the world sheet is divided into
four causally distinct regions, separated one from another
by a world sheet horizon (depicted in red). This means that
the conformal structure of the world sheet is exactly the
same as that of a two-sided black hole in AdS, as we
previously advertised.
We can obtain an explicit expression for the world sheet

horizon: it consists of the null geodesics passing through
ϕ ¼ 0 at τ ¼ 0, and reaching ϕ ¼ � π

2
at τ → �∞. After

some algebra, we find that the horizon lies at a fixed radial
depth:

zwsH ¼ 2

H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þH2z2m − ð4 −H2z2mÞ cos αm
4þH2z2m þ ð4 −H2z2mÞ cos αm

s
;

¼ 2

H

�
1 − cos α
sin α

�
: ð72Þ

A few comments are in order. First, notice that in the flat
space limit we recover the known result zwsH → w0, as
expected. More importantly, if we take zm ≥ zwsH one would
naively think that the wormhole disappears. If this were
true, it would be in contradiction to the ER ¼ EPR
interpretation given that, although the EPR pair would
still be entangled (regardless of the value of zm), the
wormhole would no longer be present. However, notice
that zm ≥ zwsH is not allowed. In such a case αm would be
imaginary regardless of the value of α and the trajectory of

1.5 1.0 0.5 0.5 1.0 1.5

3

2

1

1
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3

FIG. 6 (color online). The causal structure of the world sheet
geometry. The vertical axis is the global time τ, and the horizontal
axis is the angle ϕ. The thick blue lines correspond to the
worldlines of the nucleated pair. The dashed blue lines are
outgoing null geodesics emitted from the two boundaries. The
red lines represent the world sheet horizons. Both τ and ϕ are
measured in units ofH which we set to unity. For this example we
have chosen αm ¼ π=4 and zm ¼ 1=10.

13Notice that our solutions differ from the ones studied by
Jensen, Karch and Robinson in [26]. In their case, the worldlines
of the quark-antiquark pair follow constant-ϕ trajectories.
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the quark-antiquark pair (68) would be spacelike.14 Of
course, such an embedding would not be physically
relevant in the context we are considering. On the other
hand, notice that even for zm < zwsH the portion of the string
above the horizon moves locally faster than the speed of
light. This should not be surprising since from the gravity
point of view the coordinates ðτ;ϕÞ become spacelike/
timelike in that region of the world sheet. From the field
theory perspective, this is related to the fact that the quark
and the antiquark are causally disconnected, so (at least part
of) the flux tube that connects them must stretch faster than
the speed of light. In this sense, the wormhole subtended by
the world sheet of the EPR pair is interpreted as a “gluonic”
wormhole.15

A. The viewpoint of static observers

Since no observer in de Sitter space has access to the
entire manifold, it is instructive to transform the world sheet
into static coordinates adapted to different geodesic observ-
ers and study how their causal structure affects the
observations of the quark-antiquark pair. First, we will
consider an observer at a fixed ϕ, equidistant from the two
particles. From the point of view of this observer the two
particles are interpreted as a usual EPR pair nucleated from
the Bunch-Davies vacuum of de Sitter. Importantly, in
global coordinates the two particles actually stay a finite
time τ inside the causal diamond of this “EPR observer.”
The second observer we will consider is also at a fixed ϕ
but is in causal contact with only one of the two particles,
while the other always lies behind its horizon. We will refer
to the second observer as the “Hawking observer” since,
with respect to this observer, the particles can be interpreted
as a Hawking pair nucleated from the cosmological
horizon. The worldlines of these observers and their
associated causal diamonds are better visualized with the
help of a Penrose diagram, as shown in Fig. 7.
The coordinate transformation to the static patch of the

EPR observer is given by

τ ¼ 1

H
arcsinh

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2x2

p
sinh ðHtÞ

�
; ð73Þ

ϕ ¼ arctan

�
−

Hxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2x2

p sechðHtÞ
�
; ð74Þ

and the world sheet translates to

z ¼ 2

H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2x2

p
cosh ðHtÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2 ~x20

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2x2

p
cosh ðHtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2 ~x20

p
s

: ð75Þ

The parameter ~x0 is related to α through

~x0 ¼
sin α
H

; ð76Þ

and is related to the initial separation of the pair for the
infinite massive case. For finite mass, the trajectory of the
pair can be obtained by evaluating (75) at z ¼ zm:

xðtÞ ¼ � sechðHtÞ
H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2x20 þ sinh2Ht

q
; ð77Þ

where we defined

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x20ð4þH2z2mÞ2 − 16z2m

p
4 −H2z2m

: ð78Þ

The embedding (75) is plotted in Fig. 8. From the point of
view of this observer, two particles come out of the horizon
at t → −∞ reach a minimal value of jxj at t ¼ 0 and finally
fall back into the horizon at t → ∞. This means that the
EPR observer is in causal contact with the pair for all
(static) time t. Therefore, it inherits the causal structure of
the superobserver (global coordinates) given that it has
access to (part of) all four regions of the wormhole. The
constant-t profiles evolve from a semicircle (as in the flat
space case) at t ¼ 0, and become ⊓ shaped at t → �∞. In
this limit, the world sheet is delimited in the x direction by
the cosmological horizon of the EPR observer, located at
x ¼ �1=H, and in the z direction by the bulk horizon,
z ¼ 2=H. In terms of ~x0 the world sheet horizon (72) is
given by

FIG. 7 (color online). Penrose diagram of de Sitter space. The
global coordinates ðτ;ϕÞ cover the whole manifold, with τ being
the vertical axis and ϕ the horizontal. The coordinate ϕ has period
of 2π, so the two vertical dashed lines must be periodically
identified. The brown lines represent the worldlines of the quark-
antiquark pair. The blue and red vertical lines correspond to the
worldlines of the EPR observer and the Hawking observer,
respectively, and the shaded regions are the causal diamonds
of these observers. From the point of view of the EPR observer,
the two particles enter the diamond at static time t → −∞ and
then exit at t → ∞. The Hawking observer only has access to one
of the particles while the other always lies behind its horizon.

14This does not imply that there is a bound on the quark mass
for a given acceleration (or electric field). In other words, if we
first fix zm, then we can always find an α such that αm ∈ ð0; π=2Þ.

15We thank Alberto Güijosa for a discussion on this point.
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zwsH ¼ 2

H2 ~x0

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2 ~x20

q �
; ð79Þ

and is shown in green in Fig. 8. Also, from this plot the
point we made at the end of the previous section regarding
the possible range of zm becomes clear: if we truncate the
world sheet at zm > zwsH the trajectory of the pair will be
spacelike and, therefore, will not correspond to a situation
of physical relevance.
Similarly, we can transform the Lorentzian world sheet

into the static patch coordinates of the Hawking observer.
This can be easily achieved if we keep in mind that the ϕ
coordinate of the Hawking observer differs from that of the
EPR observer only by a shift of π

2
. After the transformation,

the world sheet embedding becomes

z ¼ 2

H

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x − ~x0
xþ ~x0

s
; ð80Þ

where, in this case

~x0 ¼
cos α
H

: ð81Þ

We have actually recovered the disconnected solution (27)
for an isolated static quark. At first glance this may seem
surprising, since the calculation in this section is set up for
an accelerating pair of particles, rather than the static
situation described in Sec. III. However, it is important
to bear in mind that any particle which remains at constant
coordinate x is actually undergoing constant acceleration
toward the geodesic observer at the center [see Eq. (C7)].
Notice that, from the point of view of this observer, the
electric field needed to sustain the quark’s worldline
actually compensates for the gravitational repulsion due

to the de Sitter space. The position of the quark is obtained
from the embedding (80):

xðtÞ ¼ x0 ¼ ~x0

�
4þH2z2m
4 −H2z2m

�
; ð82Þ

and the world sheet horizon is now at

zwsH ¼ 2

H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H ~x0
1þH ~x0

s
: ð83Þ

It is clear that, although the Hawking observer does not
have access to all four regions of the wormhole, the
“maximally extended” version of the world sheet (80) is
the same as in the global case, since we are dealing with a
simple coordinate transformation. This provides supporting
evidence for the ER ¼ EPR conjecture, now applied to
Hawking pairs. The embedding (80) is plotted in Fig. 8.
As we can see, the world sheet horizon is located exactly
where the world sheet intersects the cosmological horizon,
x ¼ 1=H. This implies that zm is also constrained to be
zm < zwsH since, from the point of view of this observer, the
world sheet actually terminates at z ¼ zwsH .

VI. SUMMARY AND CONCLUSIONS

In this paper, we have analyzed the Schwinger mecha-
nism in de Sitter space from the holographic viewpoint.
Even though this effect has been previously studied in the
literature, most of the existing results were derived using
standard field theoretical methods which are valid for the
weak coupling and weak electric field regimes. The general
consensus suggests the existence of an upper critical value
for the electric field for which the potential barrier for pair
creation disappears, rendering the vacuum catastrophically

FIG. 8 (color online). The Lorentzian world sheet as viewed by the EPR observer (left panel) and by the Hawking observer (right
panel). In both plots we have set ~x0 ¼ 0.7. The world sheet horizons are depicted in green, while constant time slices appear in gray. All
quantities are measured in units ofH which we have set to unity. The quark trajectories can be obtained by truncating the embeddings at
z ¼ zm. In both cases it is clear that we must impose zm < zwsH in order to have timelike trajectories.
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unstable. However, such a value is parametrically so large
that it lies outside the regime of validity of the perturbative
approximation. One of the main goals of this work was to
investigate the existence of such a critical electric field from
a nonperturbative point of view and, in order to achieve
this, we have used various tools of the AdS/CFT corre-
spondence. In the following, we will briefly summarize the
most important lessons of our work.
In the first part of this paper, in Sec. III, we performed a

potential analysis of the Schwinger mechanism in de Sitter
space. The computation was carried out in two steps. In
Sec. III A we first considered a pair of infinitely massive
particles in the absence of any electric field. In order to
obtain the binding energy of the pair we computed the
expectation value of a certain Wilson loop operator. We
focused on the static patch of de Sitter since, in this case,
the energy of the pair is well defined. The final result is
shown in Fig. 3. As expected, the short distance behavior
of the potential (35) reduces to the standard Coulombic
profile. However, the full potential receives a series of
corrections that become important at large distances. This
should not be surprising since, in de Sitter space, we
introduce a length scale H−1 into the theory and, therefore,
the potential is expected to contain additional terms that can
be expressed in powers of the dimensionless quantity Hl.
In addition, we found that the system undergoes a first
order phase transition at Hlscr ≈ 0.75. For larger distances
the two particles are screened by the bath of Hawking
quanta, in complete analogy to the phenomenon of Debye
screening in classical electromagnetism. Notice that a
similar effect has also been found in other cosmological
setups [59]. In Sec. III B we generalized the previous result
in two ways: we included finite mass quarks and we turned
on a background electric field. The effective potential in
this case is plotted in Fig. 4, for various values of the
electric field. From this computation, we were able to
obtain the critical value of the electric field, by studying the
short distance behavior of the potential (47) and demanding
that the tunneling barrier disappears at E ¼ Ec. Our result
shows that the value of the critical field is smaller than its
flat space counterpart, implying that the vacuum is less
stable in de Sitter space than in Minkowski space. This
can be intuitively understood since the expansion of the
Universe is itself a source of particle creation, thus lowering
the destabilizing threshold for the electric field.
In Sec. IV, the Schwinger effect was reanalyzed by

explicitly constructing the Euclidean instanton for tunnel-
ing through the potential barrier of pair creation. Given the
symmetries of the problem, the instanton is given by a
circular loop that wraps n times a sphere (the Euclidean
continuation of de Sitter) at a constant polar angle θ0. The
holographic dual of the instanton is found to be a spherical
cap living in the Poincaré ball (the Euclidean continuation
of the bulk geometry) subtended by a polar angle θ0 and,
thus, intersecting the boundary at the same loop describing

the instanton. The nucleation rate, Γ ∼ e−SE , is computed
from the area of the spherical cap and extremizing with
respect of the angle θ0. The final result is a little cumber-
some but in the regime m ≫ H

ffiffiffi
λ

p
the expression reduces

significantly (63). From this expression we can easily
identify three contributions: the first term is the usual
Boltzmann factor with the de Sitter temperature,
TdS ¼ H=2π, and therefore is the production rate due to
the expansion of space. The second term is linear in the
electric field and agrees with the expected result from
weakly coupled computations [6]. In addition, there are
terms containing higher powers of the electric field. From
(62), it is clear that those terms arise from the Wilson loop
insertion and, therefore, can be interpreted as nonpertur-
bative contributions to the nucleation rate. Our result in this
regime also agrees with the semiclassical analysis pre-
sented in [11]. Finally, it is worth pointing out that the
computation of the nucleation rate confirms the value for
the critical electric field obtained in Sec. III. It is easy to
check that in the limit E → Ec the Euclidean action SE of
the instanton vanishes. This implies that when this critical
value is reached, the instanton sum is no longer exponen-
tially suppressed, therefore rendering the vacuum unstable.
In the last part of this work, in Sec. V, we analytically

continued the Euclidean world sheet of the tunneling
instanton and studied its causal structure. We showed that
the induced geometry on the world sheet resembles the
dynamical creation of a wormhole which, as explained,
provides further evidence in support of the ER ¼ EPR
conjecture. We emphasize that this is a feature of the world
sheet geometry (which represents the flux tube connecting
the members of the EPR pair), rather than the bulk
geometry itself, so the Einstein-Rosen (ER) bridge should
be thought of as a gluonic wormhole subtended by the pair,
as opposed to a “spacetime” or “gravitational” wormhole.
On the other hand, since no observer in de Sitter space has
access to the entire manifold, we specialized to the case of
different static observers. We focused on two special cases,
an EPR observer and a Hawking observer, both depicted in
Fig. 8. From the point of view of the EPR observer the two
particles always lie inside its horizon. Therefore, the two
particles in this case are interpreted as a usual EPR pair
nucleated from the de Sitter vacuum. The Hawking
observer, on the other hand, only has causal contact with
one of the particles, while the other always lies behind its
horizon. For this observer, the particles are interpreted as a
Hawking pair nucleated from the cosmological horizon.
We conclude that, regardless of the observer point of view,
the ER ¼ EPR interpretation holds in a similar way since in
all cases the causal structure of the world sheet is inherited
from that of the superobserver.
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APPENDIX A: MAXWELL’S EQUATIONS

Let us take a closer look at Maxwell’s equations in de
Sitter space, focusing for now on the static patch of de Sitter
(12). For a constant electric field in (1þ 1) dimensions we
have

Fμν ¼
�

0 E

−E 0

�
; ðA1Þ

where xμ ¼ ðt; xÞ are the coordinates of a static observer.
There are many worldlines in the patch that have constant
proper acceleration. For concreteness let us consider a
particle sitting at a constant-x orbit, with a 4-velocity given
by

uμ ¼
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2x20

p ; 0

�
: ðA2Þ

For a test particle with unit charge, the geodesic equation is
satisfied as long as the Lorentz force cancels exactly with
the repulsion due to de Sitter space, i.e.,

aμ ≡ duμ

dτ
þ Γμ

αβu
αuβ ¼ Fμ

νuν: ðA3Þ

In particular, this implies the following relation between
the position x0 and the electric field E:

Hx0 ¼
Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 þH2
p : ðA4Þ

The magnitude of the acceleration is constant, as it should
be, and it is determined by the particle’s position x0 through

a2 ≡ aμaμ ¼
H4x20

1 −H2x20
¼ E2: ðA5Þ

A charged particle located at x > x0 will accelerate towards
the horizon. On the other hand, if we place it at x < x0 the
particle will accelerate away from the horizon. It is easy to
check that Maxwell’s equations are trivially satisfied with-
out sources,

∇μFμν ¼ 0: ðA6Þ

To understand the origin of this electric field we can define
a global coordinate θ through Hx ¼ sin θ. The spatial part
of the metric becomes that of a circle of radius H−1.
However, it is clear that the static patch only covers half of
it, from θ ¼ −π=2 to θ ¼ π=2. To achieve a constant
electric field in the static patch we can place a “capacitor”
consisting of two charges þQ and −Q, located at θ ¼ −θ0
and θ0, respectively. See Fig. 9 for a schematic represen-
tation. If the separation is such that Δθ≡ 2θ0 > π, the
static observer will see the charges “smeared” at the
horizon and still detect the presence of the electric field.
Finally, if we let Δθ → 2π, the two charges overlap and
effectively cancel out. This implies that a constant electric
field can be achieved in global de Sitter without the
addition of any source.
Unfortunately, the above analysis does not hold in

higher dimensional de Sitter space. In the following we
will illustrate the similarities and differences for the specific
case of (3þ 1) dimensions. Let us start by considering a
constant electric field along one of the space directions, say
Ftx ¼ −Fxt ¼ E, with all other components turned off. In
spherical coordinates ðr; θ;ϕÞ the nonzero components of
the field strength are given by

Ftr ¼ Frt ¼ E sin θ cosϕ;

Ftθ ¼ Fθt ¼ Er cos θ cosϕ;

Ftϕ ¼ Fϕt ¼ −Er sin θ sinϕ: ðA7Þ

There are many trajectories in the static patch that have
constant proper acceleration. For concreteness, however,

E
Q Q

E

Q Q

2

FIG. 9 (color online). Setup for a constant electric field in de
Sitter space in (1þ 1) dimensions. Two charges þQ and −Q
separated by an angle Δθ are placed in the de Sitter manifold. If
Δθ < π the two charges are visible to a static observer equidistant
to the two particles. The portion of de Sitter accessible to such an
observer consists of the lower half of the circle and is delimited
by a horizon located at θ ¼ f−π=2; π=2g. If Δθ > π the static
observer will detect a constant electric field due to smeared
charges at the horizon. Finally, if we let Δθ → 2π the two charges
effectively cancel out, leaving us with a constant electric field in
the entire manifold with no charges.
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we will focus on worldlines that are simple generalizations
of the (1þ 1)-dimensional case. We will assume that the
particle lies on the y ¼ z ¼ 0 plane and follows a constant-
x orbit. Therefore, its 4-velocity is given by

uμ ¼
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2x20

p ; 0; 0; 0

�
: ðA8Þ

It is straightforward to show that both (A4) and (A5) hold
in this case, so by tuning the value of E we can achieve
the desired trajectory with constant acceleration. However,
Maxwell’s equations imply now that

∇μFμν ¼ Jν; ðA9Þ

with

Jμ ¼
�
−
2EH2r sin θ cosϕ

1 −H2r2
; 0; 0; 0

�
: ðA10Þ

This implies that in order to source the desired electric field,
we must have a charge density:

Jt ≡ ρðr; θ;ϕÞ ¼ 2EH2r sin θ cosϕ ¼ 2EH2x: ðA11Þ
The total charge in the static patch evaluates to zero, but
the distribution explicitly breaks the SOð3Þ symmetry (see
Fig. 10). Moreover, it is clear that although the electric and
gravitational interactions are in balance, the charge con-
figuration is classically unstable.

APPENDIX B: THE ENERGY OF AN
ISOLATED QUARK

In this appendix we obtain the string embedding corre-
sponding to an isolated static quark in de Sitter space. Then,

we employ the solution in order to compute its energy.
The final result can be expressed as the sum of two
contributions, the rest mass of the quark plus the effective
gravitational potential energy which is a function of the
position.
For a single quark located at x ¼ 0 the solution for the

embedding corresponds to a vertical string that stretches
between the boundary and the bulk horizon [47]. However,
if we place the quark at some finite distance from the center
x ¼ x0 the string is no longer vertical but bends towards
the de Sitter horizon (located at x ¼ 1=H). This is just a
reflection of the fact that a purely vertical embedding would
not have minimal area: just as in the boundary theory
trajectories at fixed x0 > 0 are nongeodesic, objects in the
bulk experience a gravitational force that pushes away from
the origin.
The situation is very similar to the case in Rindler space,

in which the solution for the string embedding is bent
and follows a path of minimal proper length towards the
acceleration horizon [60]. With this intuition in mind, let us
first consider spacelike geodesics in the bulk geometry. If
we choose the affine parameter to be λ ¼ x, the proper
length of a curve zðxÞ is given by

S ¼
Z

ds ¼ L
Z

dx
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞ2
hðxÞ þ z02

s
; ðB1Þ

where fðzÞ and hðxÞ are the functions defined in (11) and
(24), respectively. From (B1) we can derive the equation of
motion for the geodesics:

z00 þ h0ðxÞ
2hðxÞ z

0 þ fðzÞ − 2zfzðzÞ
zfðzÞ z02

þ fðzÞðfðzÞ − zfzðzÞÞ
zhðxÞ ¼ 0; ðB2Þ

with fzðzÞ≡ ∂zfðzÞ. Albeit nonlinear, Eq. (B2) can be
solved analytically. The general solution can be written in
terms of two integration constants A and B:

zðxÞ ¼ 2

H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A sin ðBþ arccosðHxÞÞ − 1

A sin ðBþ arccosðHxÞÞ þ 1

s
: ðB3Þ

Imposing that zðx0Þ ¼ 0 fixes one of the constants in terms
of the other, e.g.,

A ¼ csc ðBþ arccosðHx0ÞÞ: ðB4Þ
Thus, at this point we have a solution depending on a single
parameter B. Depending on its value, the geodesic might go
back to the boundary at some other x ¼ xf or end up hitting
the de Sitter horizon at x ¼ 1=H and some z ¼ zf.
We claim that the solution for the string embedding

representing an isolated quark at x ¼ x0 > 0 follows a path

FIG. 10 (color online). Density plot for Jt=EH2 in the equa-
torial plane θ ¼ π=2, assuming a constant electric field along the
x direction, Ftx ¼ E. The total charge in the static patch evaluates
to zero, but the distribution breaks the SOð3Þ symmetry.
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of minimal length towards the de Sitter horizon. Indeed, we
can explicitly check this by plugging (B3) into the equation
of motion of the string (25). This picks up a unique physical
solution with

B ¼ π

2
ðmod πÞ; ðB5Þ

and profile

zðxÞ ¼ 2

H

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x − x0
xþ x0

r
: ðB6Þ

This result should not be surprising. The role of spacetime
geodesics for reconstructing string and brane embeddings
was recently pointed out in [61]. We expect a similar
construction to be possible even for dynamical
configurations.
With this solution at hand, we can now compute the

energy of the quark as a function of x0. To do this, we need
to compute the conjugate momentum of the Nambu-Goto
action.16 Before gauge fixing, the world sheet is para-
metrized by functions of τ and σ, and the momentum
densities are given by

Πμ ¼
∂LNG

∂ _xμ ¼ 1

2πα0
_XμX02 − X0

μð _X · X0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_X2X02 − ð _X · X0Þ2

q ; ðB7Þ

where · ≡ ∂τ, 0 ≡ ∂σ and _X · X0 ¼ Gμν
_XμX0v. In particular,

the energy density is the time component of (B7). To
compute the energy we choose to work in the gauge
ðτ; σÞ ¼ ðt; zÞ, so that Xμ ¼ ðt; xðzÞ; zÞ. In this gauge the
energy density takes the form

E ¼
ffiffiffi
λ

p

2π

fðzÞ
z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðxÞ þ fðzÞ2x02

q
; ðB8Þ

which is, indeed, equivalent to the Nambu-Goto
Lagrangian LNG. The function xðzÞ can be obtained by
inverting Eq. (B6), and takes the following form:

xðzÞ ¼ ~x0

�
4þH2z2

4 −H2z2

�
: ðB9Þ

Notice that we have relabeled the parameter x0 → ~x0. The
reason for this is that, for the case of finite mass, the string
actually ends at a fixed bulk depth zm (where the flavor
branes are located) and the embedding of interest is just the
z ≥ zm portion of the solution (B6). The parameter ~x0 (now
an auxiliary variable) is related to the physical x0 through

x0 ¼ ~x0

�
4þH2z2m
4 −H2z2m

�
; ðB10Þ

and substituting in (B8) the latter becomes

xðzÞ ¼ x0

�
1þ 8H2ðz2 − z2mÞ

ð4 −H2z2Þð4þH2z2mÞ
�
: ðB11Þ

Notice that (B11), in fact, satisfies the expected relation
xðzmÞ ¼ x0. For this solution, the energy density (B8)
evaluates to

E ¼
ffiffiffi
λ

p

2π

fðzÞ
z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2 ~x20

q
: ðB12Þ

Integrating from zm up to the maximum value of z,

zwsH ≡ zð1=HÞ ¼ 2

H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H ~x0
1þH ~x0

s
; ðB13Þ

we find the total energy to be

E ¼
ffiffiffi
λ

p

2πzm

��
1þH2z2m

4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2 ~x20

q
−Hzm

�
: ðB14Þ

This can be expressed as a sum of two contributions,

E≡mþ Vgravðx0Þ; ðB15Þ

where m is the mass of the quark and Vgravðx0Þ is the
effective gravitational potential energy. In particular, for
x0 ¼ 0, we obtain

E ¼ m ¼
ffiffiffi
λ

p

2πzm

�
1 −

Hzm
2

�
2

: ðB16Þ

Notice that (B16) blows up as zm → 0, as anticipated, and
can be inverted to obtain

zm ¼
ffiffiffi
λ

p

πðmþm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffi
λ

p
H

πm

q
þ

ffiffi
λ

p
H

2π Þ
;

¼
ffiffiffi
λ

p

2πm

�
1 −

ffiffiffi
λ

p
H

2πm
þO

�
λH2

m2

��
: ðB17Þ

We stress, however, that we are only allowed to treat the
string semiclassically as long as it is sufficiently heavy.
This means that we are restricted to working in the regime
zm ≪ zH or, equivalently, m ≫

ffiffiffi
λ

p
H. For a neater inter-

pretation, we could alternatively split (B16) in two pieces,
by noticing that the H-dependent terms should be regarded
as the thermal correction to the mass [47]

m ¼ m0 − δmH; ðB18Þ16For a review on quark dynamics in AdS/CFT see [62].
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where

m0 ¼
ffiffiffi
λ

p

2πzm
; δmH ¼

ffiffiffi
λ

p
H

2π

�
1 −

Hzm
4

�
;

and

δmH

m0

¼
ffiffiffi
λ

p
H

2πm
þO

�
λH2

m2

�
≪ 1: ðB19Þ

The effective gravitational potential can be obtained by
subtracting (B16) from (B14) and is found to be

Vgravðx0Þ ¼
ffiffiffi
λ

p

2πzm

�
1þH2z2m

4

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2 ~x20

q
− 1

�
:

ðB20Þ

We emphasize the word “effective” in the above definition.
Physically, (B20) includes both, the “bare” gravitational
energy Vbare

gravðx0Þ plus the self-energy Σðx0Þ which also
depends on the position and is due to interactions between
the quark and the quantum fields in de Sitter.17,18 Using
(B10) and (B17) we could also write (B20) in terms of the
physical data, m and x0, but the result is not particularly
illuminating. For small distances Hx0 ≪ 1, however, the
result takes the following form:

Vgravðx0Þ ≈ −
1

2
m0H2x20

�
1þO

�
δmH

m0

��
: ðB21Þ

The inverted harmonic potential is expected for a test
particle in de Sitter space [47]. TheOðδmH=m0Þ correction,
on the other hand, appears from the self-energy itself and
should be thought of as a quantum effect.

APPENDIX C: ANALYTIC CONTINUATION

1. Euclidean de Sitter and anti–de Sitter

Consider the AdS metric foliated with dS slices (10), and
let us write the dS part in global coordinates,

ds2dS ¼ −dτ2 þ 1

H2
cosh2ðHτÞdϕ2: ðC1Þ

We will also redefine the bulk coordinate according to

z ¼ 2

H
e−2arctanhr; ðC2Þ

so that r ranges from 0 (for z ¼ 2=H) to 1 (for z ¼ 0). To
obtain the Euclidean counterpart of such a geometry, we
analytically continue the time coordinate τ ¼ i τEH both in
the boundary and in the bulk. The resulting geometry is that
of the Poincaré ball,

ds2 ¼ 4L2

ð1 − r2Þ2 ½dr
2 þ r2ðdτ2E þ cos2τEdϕ2Þ�; ðC3Þ

where the Euclidean time is now identified as an angle. This
form of Euclidean AdS can be understood as follows: one
starts with a three-dimensional Euclidean space R3 with
spherical coordinates ðr; τE;ϕÞ, and puts the above metric
on the ball r < 1. The Poincaré ball is the unique Euclidean
metric whose boundary is S2. This shows that the require-
ment of de Sitter invariance uniquely determines the bulk
geometry.
Alternatively, we could have started with the static patch

of dS instead of global dS. In this case, the de Sitter metric
is given by

ds2dS ¼ −ð1 −H2x2Þdt2 þ dx2

1 −H2x2
: ðC4Þ

Redefining the x coordinate according to

Hx ¼ sin θ; ðC5Þ

and analytically continuing the bulk metric, we arrive at

ds2 ¼ 4L2

ð1 − r2Þ2 ½dr
2 þ r2ðcos2θdt2E þ dθ2Þ�; ðC6Þ

i.e., the boundary metric is also that of a sphere. We have
to be careful about the global topology of the Euclidean
space, however. Since the spacetime accessible to any
single geodesic observer is only a fraction of de Sitter space
this should be reflected in the analytic continuation. In fact,
the correct topology of the Euclidean static patch is a
hemisphere rather than the whole sphere. This means that
for each static observer there is a different analytic
continuation (in Euclidean signature, this corresponds to
rotating the hemisphere around the sphere). Finally, we
point out the fact that, in the line element (C6), the
Euclidean time tE plays the role of an azimuthal angle
rather than a polar angle (as in the global de Sitter case).
Let us focus now on the Wilson loops we want to

consider. It is easy to see that the worldlines needed for the
computation of the quark-antiquark potential consist of two
parallel circles with constant polar angles �θ0. In the
Lorentzian signature, these trajectories can be obtained by
intersecting an hyperboloid embedded in Minkowski space
(this is de Sitter space by definition) with planes parallel to
the time axis (see Fig. 11). A short calculation shows that,

17The term δmH is also part of Σðx0Þ, but we choose to write it
as a separate contribution so that Vgravð0Þ ¼ 0.

18The self-energy contribution is responsible for the peculiar
behavior of the rms displacement of a quark which, at late times,
is found to saturate to a finite distance inside the horizon [47].
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for these worldlines, the magnitude squared of the accel-
eration is given by

A2 ¼ H4x2

1 −H2x2
: ðC7Þ

Thus, constant-x trajectories are also trajectories with
constant proper acceleration, with a magnitude that can
vary from 0 for x ¼ 0 (that is, for a geodesic observer) to∞
for Hx → 1. Finally, notice that the Wilson loop needed for
the nucleation rate corresponds also to one of such circles
in Euclidean signature (given that these are precisely the
worldlines with constant acceleration). To achieve this, we
have to rotate the circle around the sphere, so that the static

observer in consideration covers the portion of de Sitter that
has access to the whole loop. After this transformation the
circle is found to lie at a constant-tE surface. In Lorentzian
signature, this means that the worldline will no longer be at
constant x but, instead, will correspond to that of a pair of
particles undergoing back-to-back uniform acceleration, as
desired.

2. Minimal surfaces

In this section we describe the minimal surfaces neces-
sary for the computation of the quark-antiquark potential
and the nucleation rate. The results presented here are
adapted from [63]. The embedding functions are fully
analytical, but are given in terms of a particular set of
coordinates of Euclidean AdS.
Euclidean AdS can be understood as a metric on a solid

ball (the Poincaré ball), on a solid cylinder, or on a semi-
infinite space (the Poincaré half-space), depending on the
particular symmetry of the space that is emphasized. Of
the three realizations, the Poincaré ball is the natural choice
for our problem, because the Euclidean continuation of de
Sitter space is a sphere. Now, as discussed in the previous
section, we are interested in minimal surfaces that intersect
the boundary at two parallel circles of the same size. There
are in general three minimal surfaces satisfying the desired
boundary condition: a disconnected one and two connected
ones. In Fig. 12 we plot one example of each for a given
separation.
Notice that the problem also has axial symmetry. As a

matter of fact, it is simpler work in terms of the cylindrical
parametrization first, and then transform the solutions back
to the Poincaré ball [63]. Euclidean AdS on the cylinder has
a metric of the form

ds2 ¼ L2

�
dP2

1þ P2
þ ð1þ P2ÞdZ2 þ P2dφ2

�
: ðC8Þ

In this case, the boundary is defined as the cylinder at
P → ∞ and the two loops are just circles of constant
Z ¼ �Z∞. The coordinate transformation that relates (C8)

FIG. 11 (color online). The de Sitter manifold (as a hyperboloid
embedded in Minkowski space) and its Euclidean counterpart
(the sphere). Trajectories of constant proper acceleration (shown
in blue) are obtained by intersecting the hyperboloid with vertical
planes, and they become circular loops on the sphere. If the
vertical plane also contains the origin of the ambient Minkowski
space, then the trajectory is a geodesic (shown in black), and its
Euclidean counterpart is a great circle.

FIG. 12 (color online). The disconnected and the two connected extremal surfaces for a given separation, from the point of view of the
Poincaré ball.
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to the Poincaré ball (C3) in the coordinate system ðr; τE;ϕÞ
is given by

P ¼ 2r
1 − r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2τEcos2ϕ

q
;

Z ¼ arccosh

�
1þ r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ r2Þ2 − 4r2cos2τEcos2ϕ
p �

;

φ ¼ arccos

�
cos τE sinϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − cos2τEcos2ϕ
p �

:

Let us now discuss the solutions. The disconnected
surface simply consists of two planes at constant Z
containing the loops

Z ¼ �Z∞: ðC9Þ

In the Poincaré ball, this solution can be written as

r ¼ cosϕ cos τE −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ϕcos2τE − cos2α

p
cos α

; ðC10Þ

with α ¼ π
2
� θ0, and can be described as two spherical caps

intersecting the boundary of the ball orthogonally. It is easy
to see that (C10) indeed leads to the solution reported in
(27) for the Lorentzian signature (see Appendix B for an
alternative derivation). The area of this surface (including
both spherical caps) up to some cutoff value Pm is given by

Ad ¼ 4πL2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P2

m

q
− 1

�
: ðC11Þ

The connected surfaces are a little more complicated. In
this case the solution is given by

ZðPÞ ¼ �γP0½Fðβ; γÞ − δP2
0Πðβ; δ; γÞ�; ðC12Þ

where

β ¼ arccos

�
P0

P

�
; γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P2

0

1þ 2P2
0

s
; δ ¼ 1

1þ P2
0

:

In the above, F denotes the elliptic integral of the first kind
and Π denotes the complete elliptic integral of the third
kind [64]. The parameter P0 is an integration constant and
corresponds to the smallest value of P on the surface. The
area of this surface up to some cutoff value Pm is given by

Ac ¼
4πL2P2

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2P2

0

p Πðβm; 1; γÞ; ðC13Þ

where βm ¼ βðPmÞ. The constant Pm determines the value
of Zm ¼ ZðPmÞ which, in the limit Pm → ∞, reduces to
Z∞. A brief calculation leads to

Z∞ ¼ γP0½KðγÞ − δP2
0Πðδ; γÞ�; ðC14Þ

where K is the complete elliptic integral of the first kind
and Π is the incomplete elliptic integral of the third kind.
Equation (C14) is nonmonotonic with respect to P0. This
implies that for a given boundary separation there are two
minimal surfaces with different P0, one reaching deeper
into the bulk than the other (see Fig. 12 for an example).
Among these two, the solution with larger P0 is the one
with minimal area.
Finally, we will also need the renormalized area of the

connected surface, Ar ¼ Ac − Ad, which can be easily
obtained from (C11) and (C13). In the limit Pm → ∞, in
particular, this quantity simplifies to

A∞
r ¼ 4πL2

�
1þ P2

0KðγÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2P2

0

p −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2P2

0

q
EðγÞ

�
; ðC15Þ

where E is the complete elliptic integral of the second kind.

APPENDIX D: THE NUCLEATION RATE IN
de SITTER SPACE AT WEAK COUPLING

In this appendix, we revisit the instanton computation of
the QED production rate in de Sitter using the instanton
method, that is, by solving the Euclidean equation of
motion [6]. Let us start with the action for a charged
particle in the presence of an electromagnetic field,

S ¼ −m
Z
γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν _zμ _zν

q
dτ þ q

Z
γ
A; ðD1Þ

where m and q are the mass and the charge of the particle,
respectively, and zμ ¼ zμðτÞ. In Euclidean signature, the
action becomes

SE ¼ m
Z
γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμν _zμ _zν

q
dτ þ q

Z
γ
A: ðD2Þ

The contribution of an instanton to the path integral has
the form Ae−SE , where A is a prefactor and SE is the on-
shell Euclidean action. Thus, by computing SE we will
recover the exponent in the Schwinger formula (2).
Now, consider the case of a constant electric field

where Fμν ¼ −E ffiffiffi
g

p
ϵμν. A brief computation shows that

the trajectory that extremizes the action is a circle (see for
example Fig. 11). Furthermore, since the worldline is a
closed curve, we can make use of Stokes’s theorem to
recast the second term in (D2) as

SE ¼ m
Z
γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμν _zμ _zν

q
dτ − qEA; ðD3Þ

whereA denotes the proper area enclosed by the worldline,
and zμðτÞ ¼ ðθðτÞ;ϕðτÞÞ. By rotational symmetry, we
choose spherical coordinates so that the worldline has a
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constant polar angle θ. Furthermore, if the loop is traversed
n times, we can choose

ϕðτÞ ¼ 2πnτ; τ ∈ ð0; 1Þ: ðD4Þ
In the Lorentzian signature, n is interpreted as the number
of pairs being created. The total action in this case evaluates
to

SE ¼ 2πmn
H

sin θ −
2πqEn
H2

ð1 − cos θÞ: ðD5Þ

Extremizing with respect to θ yields the value

tan θ ¼ mH
qE

: ðD6Þ

For this angle, the radius of the circle y≡H−1 sin θ is
given by

y ¼ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2E2 þm2H2

p ; ðD7Þ

in agreement with the result obtained by [6]. It is
illuminating to consider the flat space limit, H → 0. In
this case, we find the radius to be

yðflatÞ ¼ m
qE

: ðD8Þ

This is exactly the distance between the two particles at
which their electric potential energy balances their rest
mass, allowing the particles to tunnel through the poten-
tial barrier to become real. Finally, substituting the
extremal value of y back into the action we obtain

SE ¼ 2π

H2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2H2 þ q2E2

q
− qE

�
: ðD9Þ

A remark is in order regarding the sign of q. When
q > 0, the electric field inside the Wilson loop is smaller
than the external field E. This corresponds to the screening
orientation of the pair, which accelerates away from each
other. In the other case (q < 0), the two charges actually
accelerate toward each other, corresponding to the anti-
screening orientation. Notice that, in the flat space limit,
the action above remains finite for the screening orientation
but diverges for the antiscreening orientation. This can be
understood as follows: the antiscreening orientation viola-
tes conservation of energy, and therefore is forbidden in flat
space. In de Sitter space, however, energy needs not be
conserved on superhorizon scales, and the antiscreening
orientation is allowed. It may seem that for the antiscreen-
ing orientation, the two charges will eventually meet each
other and annihilate, but this is not the case owing to the
expansion of space. Notice also that, due to the compact-
ness of Euclidean dS, which region should be the inside or
outside of the circular Wilson loop is ambiguous; in the
antiscreening orientation, the outside region is actually
smaller than the inside. From here on, we will set q ¼ 1 and
specialize to the screening orientation. In the flat space
limit, then, the action becomes

SðflatÞE ¼ πm2n
E

: ðD10Þ

This is exactly the exponent appearing in Schwinger’s
formula (2) for the production rate.
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