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In the context of the AdS/CFT correspondence, we study several holographic probes that relate
information about the bulk spacetime to CFT data. The best-known example is the relation between
minimal surfaces in the bulk and entanglement entropy of a subregion in the CFT. Building on earlier work,
we identify “shadows” in the bulk: regions that are not illuminated by any of the bulk probes we consider, in
the sense that the bulk surfaces do not pass through these regions. We quantify the size of the shadow in the
near-horizon region of a black hole and in the vicinity of a sufficiently dense star. The existence of shadows
motivates further study of the bulk-boundary dictionary in order to identify CFT quantities that encode
information about the shadow regions in the bulk. We speculate on the interpretation of our results from a
dual field theory perspective.
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I. INTRODUCTION

Despite many remarkable advances in our understanding
of the AdS/CFT correspondence, significant obstacles
remain in reconstructing local bulk physics from the
CFT. These obstacles prevent us from answering elemen-
tary questions of enormous importance for our under-
standing of quantum gravity, such as whether an
observer falling into an AdS-Schwarzschild black hole
encounters a “firewall” [1–4]. A particularly important and
difficult question is how to extract physics on scales that are
short compared to the anti–de Sitter (AdS) radius near the
black hole horizon.
One powerful tool in reconstructing bulk physics comes

from the Ryu-Takayanagi proposal [5]. It directly links the
area of minimal bulk surfaces to the entanglement entropy
of spatial regions in the boundary field theory, and thereby
provides a quantitative relationship between entanglement
in holographic CFTs and spacetime geometry [5–11].1 In
some cases, it has been shown that the entanglement
entropy data alone is sufficient to completely determine
the bulk solution [14]. This supports the ambitious claim
that the spacetime is emergent and can be reconstructed
from the boundary CFT [7–9,15–17].
However, there is an obstacle to performing this type of

reconstruction in more general geometries. In general, the

bulk contains shadows, or regions that are skipped over
by the minimal surfaces. One reason for the existence of
shadows is phase transition behavior: a given boundary
region may have multiple bulk surfaces that are all local
minima of the area. But the global minimum, with which
the CFT quantity is associated, may switch from one
branch of local minima to another, and thus the boundary
dual skips over some bulk region [18,19]. In asymptotically
global AdS spacetime, it is possible that a region of the bulk
is always skipped over no matter which boundary regions
we choose. In [20], such regions into which no minimal
area surface can probe were dubbed “entanglement shad-
ows.” When shadows exist, it is obvious that the boundary
data in question do not provide sufficient information to
construct a unique bulk geometry.2

The most obvious way to overcome this obstacle is to
find a better probe, i.e., one that reaches deeper into the
bulk and penetrates the shadow. With this situation in mind,
we present a generalized framework for determining the
“holographic shadows” associated with extremal geometric
objects.
Predictably, the interior of a static black hole lies within

the entanglement shadow [21,22], and is likely also part of
the holographic shadow for any similar probe. Somewhat
more surprising is the fact that, at least in all cases of which
we are aware, holographic shadows always extend beyond
the horizon. Furthermore, they are determined by the phase
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1Note that this method of spacetime reconstruction is quite

different from, and more ambitious than, programs involving the
entire bulk wedge (e.g., the smearing functions of [12]), which
presume the existence of a background geometry. This distinction
must be kept in mind to avoid seemingly contradictory con-
clusions (cf. [13]). See Sec. VII A for further discussion.

2Together with other input, such as the full set of bulk
equations of motion, such reconstruction might be possible. This
is an interesting, though ambitious, future direction, as a full
reconstruction must work at the nonperturbative level. At the
perturbative level, one can assume that a background bulk
geometry exists, and it seems reasonable to assert that the
boundary theory knows about some bulk region as long as it
is contained within the minimal surface [13]. In this scenario,
crossing over a shadow results in an abrupt increase in the amount
of information accessible to the boundary region.
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transition behavior mentioned above, and are not directly
related to the presence of the black hole. Indeed, holo-
graphic probes can suffer shadows even in globally regular
geometries, and we emphasize this by presenting an
explicit example of an entanglement shadow in the case
of a star in AdS2þ1.
In the case of singular spacetimes, the question “how

close to the black hole horizon can we probe?” is both
interesting and important. Thus, building on earlier work
[23], we conduct a comparison of three distinct holographic
probes in AdS-Schwarzschild geometries: minimal area
surfaces, static Wilson loops, and causal information
surfaces [14,24,25]. Our results are summarized in
Table I. We find that in several cases, the causal information
surfaces probe deepest into the bulk. In particular, for small
black holes in higher dimensions, causal information
surfaces get exponentially close to the horizon, while other
probes remain of order-one horizon distance away.
Our finding would seem to conflict with the common

impression that minimal area surfaces reach deeper than
causal surfaces. To resolve this apparent conflict, it is
important to distinguish local vs global comparisons. The
minimal area surface associated with a fixed boundary
region does indeed reach deeper into the bulk than the
corresponding causal surface [14]. However, the shadow is
defined by the smallest radius accessible by any bulk probe,
i.e., the maximum depth among all possible boundary
regions. In particular, the causal surfaces are not subject to
the aforementioned switchover effect, which allows them
to gain the advantage over minimal area surfaces despite
being locally worse. It is in this second, global sense that
we mean a given surface is better or reaches deeper, since
having a smaller shadow is the more relevant standard for
the purpose of holographic reconstruction.
There is an additional, slightly more subtle consideration

that may be important for bulk reconstruction. To retrieve
complete information about a given bulk region, we might
require a probe to not only reach every bulk point, but to do
so with every possible orientation. Indeed, this is precisely
the requirement of the “hole-ographic” construction of
[17]. Thus, we also identify “partial shadows”—regions of
the bulk which are accessible by a given probe, but with

only partial coverage of the tangent space. In this paper we
present only some preliminary results regarding partial
shadows, but we regard them as a potentially interesting
aspect for future work.
Finally, we should emphasize that in higher than two

spatial dimensions, our results strictly speaking do not
prove the existence of holographic shadows. We have
studied only boundary disks, rather than fully arbitrary
boundary regions. Although it is natural to expect that more
complicated boundary shapes cannot reduce the shadow
size (since these tend to suffer from additional phase
transition limitations), we have not succeeded in finding
a general proof. We hope to return to this issue in the future.
The organization of this paper is as follows: In Sec. II we

present the general framework for using extremal bulk
surfaces as probes. We introduce and prove two “coverage
theorems” in the interest of formalizing the conditions
under which a spacetime exhibits holographic shadows.
Then, in Sec. III, we use these theorems to demonstrate
the existence of entanglement shadows for globally well-
defined geometries. In Secs. IV–VI, we extend our analysis
to AdS-Schwarzschild geometries with three different
probes: minimal area surfaces, static Wilson loops, and
causal information surfaces. We present a comparison of
these probes in the discussion, Sec. VII, and close with a
summary and some comments on future directions.
Appendix A contains proofs of some general properties
of extremal surfaces. In Appendix B, we justify why we
only consider static minimal area surfaces in d ¼ 2. Lastly,
we include some detailed calculations of Wilson loops,
in Appendix C, including a proof that for d ≥ 4, shadows
are due exclusively to the phase transition between different
minima.

II. PROPERTIES OF MINIMAL SURFACES

In this section, we present some general properties,
terminology, and theorems that will prove useful in the
analysis of holographic shadows that follows.

A. Minimal area surfaces

Let us first review the Ryu-Takayanagi proposal that
relates bulk minimal surfaces to entanglement entropy on
the boundary CFT [5,6]. Consider a constant time slice in
static, asymptotically AdSdþ1 spacetime. Let the set of all
bulk points be B, and let A be all points on the asymptotic
boundary Sd−1. The proposal relates the entanglement
entropy for a boundary region a ⊆A to the area of a dual
bulk surface b ⊂ B if (1) b has the smallest area among
all surfaces with ∂b ¼ ∂a, and (2) b can be continuously
deformed to a (more precisely, a must be homologous to
b). This proposal has many interesting aspects, but in this
paper we focus on one property with particular relevance
for holographic reconstruction:

TABLE I. Shadow summary for various probes of AdS-
Schwarzschild; d is the spatial dimension. The value listed is
the distance from the black hole horizon rH . The # symbol
denotes an order-one constant, which may depend on the spatial
dimension; both this and the overall proportionality are deter-
mined explicitly in the main text.

Minimal area Wilson loop Causal

d ¼ 2, rH ≪ lAdS ∼lAdS ∼lAdS ∼lAdS
d ¼ 2, rH ≫ lAdS ∼e−#rH=lAdS ∼rH ∼e−#rH=lAdS
d > 2, rH ≪ lAdS ∼rH ∼ðrHlAdSÞ1=2 ∼e−#lAdS=rH
d > 2, rH ≫ lAdS ∼e−#rH=lAdS ∼rH ∼e−#rH=lAdS
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The Strong Coverage Property (SCP): ∀ x ∈ B;
∀ v ∈ TxB, ∃a ⊂ A whose dual minimal surface b inter-
sects x with tangent vector along v.
Intuitively, this says that the entire bulk and its tangent

bundle are “scanned over” by the minimal surfaces b of all
possible boundary regions a. This is satisfied by empty
AdS, and also holds up to small perturbations thereof.
In ð2þ 1Þ dimensions, SCP is equivalent to the condition
for boundary rigidity [26], which means that knowing the
entanglement entropy for every boundary region a uniquely
determines the bulk geometry. SCP is also a necessary
condition for the hole-ographic reconstruction of [17]
(see also [20]). However, the requirement that one covers
the entire tangent bundle is quite strong, and is not a priori
obviously necessary for a successful reconstruction
scheme. We therefore also consider a weaker property:
The Weak Coverage Property (WCP): ∀x ∈ B, ∃a ⊂ A

whose dual minimal surface b intersects x.
This simply means that every bulk point is covered by

the minimal surface b of some boundary region a, but not
necessarily scanning over all orientations in its tangent
space. Note that this is not sufficient for boundary rigidity
in two dimensions, nor for the aforementioned hole-
ographic reconstruction. Nevertheless, this should be a
minimal requirement for any attempt to reconstruct the bulk
using this particular geometric dual.
It is worth pointing out that in the case of a disjoint

boundary region a ¼ ⋃iai with dual minimal surface
b ¼ ⋃jbj, there need not be a direct correspondence
between ai and bj. This is illustrated in the case of two
disconnected boundary subregions in Fig. 1. There are two
ways for the two bulk curves to end on the four boundary
points that specify ∂a without crossing, so there are (at
least) two different local minima of their total area. Since
the Ryu-Takayanagi proposal specifies b as possessing the

smallest area of all bulk surfaces with ∂b ¼ ∂a, the choice
of which of these two bulk possibilities to employ is
determined by comparing their respective areas.
As illustrated in Fig. 1, as the boundary subregions ai are

continuously increased, the bulk dual surfaces bj are pushed
inwards until, at some critical point, b switches over to the
other possible combination of bj, which is then pushed
outwards towards the boundary as the ai continue to grow.
This provides a simple example of a key concept underlying
holographic shadows: rather than mirror the continuous
deformation of the boundary, the bulk dual surface may
undergo a discontinuous switchover in order to ascribe to
the global minimum. This is a phase transition from the
boundary point of view [18], but here we focus on the bulk
implication. This switchover leaves out the middle region,
and thereby limits the region of the bulk that can be probed.
Even without disconnected boundary regions, such

switchovers can still occur. It has been examined in detail
in the work of Hubeny in the context of AdS black holes
[23], and also in geometries with a conical defect [20]. In
all of the above examples, one is tempted to ascribe this
behavior to nontrivial topology: either the boundary region
is not simply-connected, or the bulk has a horizon or a
singularity. In fact, topology is not the real problem. Given
globally well-defined manifolds and simply-connected
boundary regions, the weak coverage property can still
be violated.3 Thus we begin by studying the general

FIG. 1 (color online). The left figure shows a disconnected boundary region a ¼ ⨆iai (blue) and the corresponding disjoint minimal
surface b ¼ ⨆jbj in the bulk (red). As the boundary region is continuously increased, the bulk surfaces bj are pushed towards the
dashed curve, at which point b discontinuously switches to the new global minimum b ¼ ⨆jb

0
j shown in the right figure. The region

inside the dashed curves cannot be probed with this particular choice of bulk dual.

3Some have tried to establish that a globally regular, WCP-
violating geometry is unstable and should collapse into a black hole
[27,28].However, in this paperwe show that in ð3þ 1Þ dimensions,
a star of radius five times its mass in Planck units—e.g., neutron
stars—can already violate WCP. General stability issues are only a
serious concern when the radius is near 2M [29,30], which is the
Schwarzschild radius. Hencewe find no reason to doubt that stable,
regular geometries can indeed violate WCP.
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behavior of SCP/WCP violation in spacetimes without
horizons or singularities, and then proceed to analyze
singular geometries.

B. Generalized minimal surfaces

Before proceeding, we first introduce a more general
formulation of minimal bulk surfaces. In particular, one can
formally take the Ryu-Takayanagi proposal as a special
case of the following general prescription:

(i) Let b ⊂ B be an n < d dimensional surface in the
bulk, and define the geometric quantity

LðbÞ ¼
Z
b
jdn ~BjFðgμνÞ: ð2:1Þ

Over this surface, we integrate the area element and
the function F which only depends on the local
geometry. This is then a very intuitive probe of the
bulk geometry, as it does not care about the shape of
b, but rather only about where b reaches.

(ii) For an n-dimensional boundary region a (or its
boundary ∂a), one finds an observable Q associated
with the minimal value of the above geometric
quantity:

QðaÞ ¼ Min½LðbÞ�j∂b¼∂a: ð2:2Þ

When n ¼ ðd − 1Þ and F ¼ 1, this reduces to the
Ryu-Takayanagi proposal with L ¼ area and Q ¼
entanglement entropy. In addition, when n ¼ 1 and
F ¼ gtt, this reduces to the action of certain Wilson loops.
According to the form of Eq. (2.1), one should always
be interested in a minimum. A maximum is ill-defined
as one can always arbitrarily deform the surface along the
null directions. In this paper, we also limit ourselves to
quantities with F > 0 and

lim
b→a

LðbÞ ¼ ∞: ð2:3Þ

In other words, LðbÞ is a positive definite quantity which
diverges as one deforms b toward the boundary. It is
therefore very natural to expect the minimal surface to
reach into the bulk. This is related to boundary observables
which have UV divergences and needs to be regulated.
We can now study the failure of the coverage properties

above, and the consequent holographic shadows, in a more
general manner not limited to minimal area surfaces vis-à-
vis Ryu-Takayanagi. Other holographic duals can suffer
from exactly the same obstacle, namely that the bulk probes
fail to cover the entire manifold, thus placing a geometric
limit on such reconstruction efforts. Our generalization
makes it easier to compare different holographic probes and
see which one is better, in the sense of which probe casts
the smallest shadow.

C. Seeking shadows

In this paper, we limit ourselves to OðdÞ-symmetric bulk
geometries and OðnÞ-symmetric, simply-connected boun-
dary regions (disks). In such cases we can specify a bulk
point p by its radial distance to the origin, r�. This point
will be the OðnÞ fixed point of a unique, OðnÞ-symmetric
n-dimensional surface bðr�Þ [modulo the remaining
SOðd − nÞ rotation] such that the first-order variation of
Eq. (2.1) is zero.4

Proceeding from r�, we follow the surface bðr�Þ to the
boundary at r ¼ ∞ to find the ðn − 1Þ-dimensional boun-
dary sphere a on which it ends, ∂a ¼ ∂b. We define the
interior of a to be the side closer to the initial bulk point p.
In other words, one can deform from b to a without going
through r ¼ 0. Denote the radius of this boundary ball a as
θ∞ðr�Þ.5 We know two special values of this function:
θ∞ð∞Þ ¼ 0 and θ∞ð0Þ ¼ π=2. The first is due to a surface
bð∞Þ that effectively never leaves the boundary, while the
second comes from symmetry: it is basically the surface
that cuts the bulk into two halves.
This function is straightforward to compute (at least

numerically), and possesses a number of useful properties.
First of all, there is a condition which guarantees that a
holographic reconstruction scheme will work:
Theorem 1: The set of all simply-connected, OðnÞ-

symmetric boundary regions (balls) satisfies the strong
coverage property if θ∞ðr�Þ ∈ ð0; π=2Þ is monotonic as r�
goes from 0 to ∞.
Conversely, there is also a condition which guarantees

that holographic reconstruction will fail:
Theorem 2: If dθ∞=dr� > 0 as r� → 0, then the weak

coverage property fails for the set of all simply-connected,
OðnÞ-symmetric boundary regions (balls).
In this section, we prove these two theorems using the

following lemmas:
Lemma 1: For a boundary sphere ∂a, the bulk surface b

that minimizes L in Eq. (2.1) with ∂b ¼ ∂a must be
spherically symmetric.
Lemma 2: If the boundary anchors ∂b and ∂b0 do not

cross each other, but the corresponding bulk surfaces b and
b0 do, then b and b0 cannot both be minimal surfaces.
Proofs of these Lemmas will be given in Appendix A.

D. Proof of theorem 1

Monotonicity of the boundary angle implies that every
bðr�Þ is the unique global minimum for the boundary ball a

4One might intuitively treat r� as the minimal radius reached
by this critical surface, but there is no a priori reason for this
identification to hold for an arbitrary positive function F in
Eq. (2.1). We will be very careful not to assume this identification
in the proofs that follow.

5There might be cases where some critical surfaces bðr�Þ do
not reach the boundary, so θ∞ is not well-defined. This is exactly
what happens when there is a horizon, but such cases may be
more general.
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of radius θ∞ðr�Þ. Lemma 1 then implies that the bulk can
be foliated by a family of nonintersecting minimal surfaces
anchored on the corresponding family of concentric boun-
dary spheres, as illustrated in Fig. 2. Note that this is
sufficient to satisfy WCP; for the strong coverage property,
we need also demonstrate coverage of the bulk tangent
bundle.
Consider a sphere with finite radius R in the bulk. As

shown in Fig. 2, it intersects bð0Þ at an angle of π=2
between their normal vectors. As r� increases, bðr�Þ will
eventually stop intersecting this sphere. If we follow the
intersection point during this process, the angle between
the two normal vectors must continuously drop to 0. Thus
bðr�Þ can cover the full tangent space of a point at radius R.
Since R is arbitrary, we have covered the full tangent
bundle. ▪
Note that the inverse of theorem 1 is not generally true.

That is, a nonmonotonic θ∞ðr�Þ does not guarantee the
violation of SCP.6 But this is not so concerning. We have
stipulated SCP as a sufficient condition for a successful
holographic reconstruction scheme; violating SCP does
not necessarily imply that all schemes will fail. Thus, the
more physically meaningful “inverse” statement is rather
our theorem 2, about the violation of WCP. Insofar as
WCP is a necessary condition, this indeed rules out
holographic reconstruction (using the set of all boundary
disks). Also note that theorem 2 provides a sufficient
condition to violate WCP. While WCP might be violated
by other conditions, the condition theorem 2 provides
seems to be the most natural.

E. Proof of theorem 2

If dθ∞=dr� > 0 when r� → 0, then since θ∞ð0Þ ¼ π=2
we can find some r0 > 0 such that θ∞ðr�Þ ≥ π=2 for all
0 ≤ r� ≤ r0. According to lemma 2, none of the critical
surfaces bðr�Þ in this range can be the global minimum
of the corresponding boundary sphere ∂b, because they
always intersect their own mirror image.
If for all minimal surfaces bðr�Þ, r� is the minimal radius

reached, then no minimal surfaces can probe the region
r < r0. On the other hand, if a point p ∈ bðr�Þ with radius
rp < r� is allowed, one still cannot allow rp → 0. As
shown in Fig. 3, such a surface can be pinched off to one
with smaller L, which contradicts the assumption that the
original surface is a global minimum. Thus in this case
there must be a lower bound r00 with 0 < r00 < r0 beyond
which these minimal surfaces cannot probe. ▪

FIG. 2 (color online). The left figure shows a continuous foliation of minimal n-dimensional surfaces (red) on an ðnþ 1Þ-dimensional
equatorial slice of the bulk. The right figure shows how the angle between an n-sphere (blue circle) in the bulk and the foliation surfaces
changes continuously from 0 to π=2. Note that although the rightmost red surface is tangent to the blue circle at precisely r� in this plot,
the proof does not rely on this.

FIG. 3 (color online). A minimal surface (red) with its sym-
metric point sitting at a finite radius r� cannot have other points
approach arbitrarily close to r ¼ 0. Otherwise, a pinched-off
version (blue) will have even smaller area.

6The inverse of theorem 1 can be proven if we use the
additional assumption that r� is the minimal radius reached
by the surface bðr�Þ, which happens to be true in many
examples.
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In this paper, we explore the simplest examples where
dθ∞=dr� > 0 for r� < r0 and dθ∞=dr� < 0 for r� > r0.
Additionally, in all the examples we study, we find that r� is
the minimal radius reached by the surface bðr�Þ. Hence,
in the rest of this paper we adhere to the notation that r�
refers to the minimal radius reached for a fixed boundary
region, while rmin denotes the minimum r� among all
possible boundary regions, i.e., the global minimum. Thus,
rmin is also the size of the holographic shadow.

III. STELLAR SHADOWS

We begin our analysis by applying the above framework
to identify shadows in globally regular geometries—
namely, stars in AdS spacetimes. For our purposes, it is
not necessary to specify the matter distribution; we assume
only constant density. We first present analytical results for
stars in AdS2þ1, and then numerically extend our analysis
to AdS3þ1 as evidence for stability.

A. Analytical results in AdS2þ1

In this section, we demonstrate an explicit example of a
nonsingular bulk geometry that nonetheless exhibits an
entanglement shadow. The case we consider is that of an
ideal (constant density) star of radius R embedded in
AdS2þ1, for which a physically reasonable metric is

ds2 ¼ gttðrÞdt2 þ
dr2

fðrÞ þ r2dθ2;

fðrÞ ¼
�
r2 þ 1 −GM; r > R

r2 þ 1 −GM r2

R2 ; r ≤ R
ð3:1Þ

where the AdS radius lAdS is set to 1, and gtt depends on
the particular matter distribution. Since the metric admits
the Killing vector ∂t, we can analyze extremal surfaces
associated to entanglement entropy on constant-time slices.
We thus limit our example to entanglement surfaces, since
an analysis of both Wilson loops and causal information
surfaces would require explicit knowledge of the gtt
component. Though a direct comparison of probes in this
geometry would be interesting, the result for entanglement
surfaces alone suffices to make our point: holographic
shadows are general phenomena not limited to singular or
topologically nontrivial geometries.
In what follows, we takeGM > 1, and try to solve for θ∞

as a function of r�.
7 In the exterior region (r > R) the

spatial part of the metric is identical to that of the BTZ
metric [cf. (4.4)] with the identification r2H ≡GM − 1.
Thus for r� > R, θ∞ðr�Þ is identical to the BTZ solution as
we demonstrate later in Eq. (4.13). For r� ≤ R, θ∞ðr�Þ is

obtained by smoothly matching the r < R segment and the
r > R segment.
The length of a spacelike geodesic may be written as

L ¼
Z

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

fðrÞ þ r2θ02
s

ð3:2Þ

where the prime denotes differentiation with respect to r.
Extremizing via Euler-Lagrange, we have

r2θ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ−1 þ r2θ02

p ¼ δL
δθ0

≡ r�

where the minimum radius r� for this geodesic is, in our
units, equivalent to the associated conserved angular
momentum. Solving this expression for θ0, we obtain

dθ
dr

¼ r�
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞðr2 − r2�Þ

p : ð3:3Þ

We may then perform an indefinite integral in the exterior
(r > R), with fðrÞ ¼ r2 þ 1 − GM, to find

θEðrÞ ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM − 1

p cosh−1

×

�
−2r2�ðGM − 1Þ þ r2ðr2� þGM − 1Þ

r2ðr2� −GM þ 1Þ
�
þ gðr�Þ

ð3:4Þ

with constant of integration gðr�Þ, and in the interior
(r < R), with fðrÞ ¼ r2 þ 1 − GMr2=R2, to find

θIðrÞ ¼
1

2
cos−1

�
2r2� þ r2ð−1þ r2�ð1 − GM

R2 ÞÞ
r2ð1þ r2�ð1 − GM

R2 ÞÞ
�

ð3:5Þ

where the subscripts E and I distinguish these functions as
valid in the exterior and interior, respectively. For θI, the
constant of integration has been fixed to 0 by the symmetry
assumption that demands that the minimum r� occurs at
θ ¼ 0, i.e. θIðr�Þ ¼ 0. To fix the constant of integration
gðr�Þ in θE, we demand continuity in both the function
and its first derivative at the stellar boundary r ¼ R.
The latter condition is satisfied automatically by the
conserved angular momentum r�; thus we simply solve
θIðRÞ ¼ θEðRÞ for gðr�Þ:

gðr�Þ ¼
1

2
cos−1

�
2r2� þ R2ð−1þ r2�ð1 − GM

R2 ÞÞ
R2 þ R2r2�ð1 − GM

R2 Þ
�

−
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM − 1

p cosh−1

×

�
−2r2�ðGM − 1Þ þ R2ðr2� þ GM − 1Þ

R2ðr2� − GM þ 1Þ
�

ð3:6Þ7TheGM < 1 case corresponds to the conical defect geometry,
for which the analysis proceeds along precisely similar lines.
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which we may substitute into (3.4). The function θ∞ðr�Þ is
then obtained by taking the r → ∞ limit of the result.
Dropping the subscript E, we at last obtain

θ∞ðr�Þ ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM − 1

p cosh−1
�
r2� þ GM − 1

r2� −GM þ 1

�

þ 1

2
cos−1

�
2r2� þ R2ð−1þ r2�ð1 − GM

R2 ÞÞ
R2 þ R2r2�ð1 − GM

R2 Þ
�

−
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM − 1

p cosh−1

×

�
−2r2�ðGM − 1Þ þ R2ðr2� þ GM − 1Þ

R2ðr2� −GM þ 1Þ
�

ð3:7Þ
for the minimal geodesics extending from r� ≤ R to the
boundary at infinity.
This function is plotted for a range of stellar parameters

in Fig. 4. Clearly, for insufficiently dense stars, θ∞ðr�Þ is
monotonically decreasing; thus SCP is satisfied. However,
for sufficiently dense stars, dθ∞ðr�Þ=dr� > 0 as r� → 0;
thus WCP is violated, implying the existence of a shadow
within some rmin. Note that in many cases the shadow
extends beyond the stellar boundary, rmin > R; this is
because, for the BTZ geometry in the exterior, we already
have θ∞ðπ=2Þ independent of the stellar mass distribution.
In such cases even the assumption of constant density is
irrelevant: a shadow will exist as long as enough mass sits
within some finite radius R. See Fig. 5 for plots of the
minimal surfaces for a range of stellar densities; the shadow
region is easily seen by rotating the surfaces about the
center.
We can obtain an expression for the density range that

supports shadows from the condition that dθ∞=dr� > 0 at

r� ¼ 0, or from demanding the existence of a real solution
to dθ∞=dr� ¼ 0. Either condition implies

GM − 1 < R2 <
GM2

GM þ 1
: ð3:8Þ

Note that the lhs is simply r2H. Thus the inequality (3.8)
effectively imposes a lower limit on the density for which
one can satisfy SCP: stars of a given mass whose radius
falls below the right-hand side will exhibit shadows.

B. Numerical results in AdS3þ1

In higher dimensions, one must rely on numerics to
solve the second-order differential equation for θ∞ðr�Þ.
For d ¼ 3, we proceed from the following metric:

ds2 ¼ gttðrÞdt2 þ
dr2

fðrÞ þ r2dΩ2
2;

fðrÞ ¼ 1þ r2

l2AdS
−
2MðrÞ

r
ð3:9Þ

where the mass function MðrÞ is given by

MðrÞ ¼ m tanh

�
r3

R3

�
: ð3:10Þ

This corresponds to an almost-constant density star, where
the mass function has been chosen to be smooth to avoid a
step function at the stellar boundary R. Note that we have
restored the AdS curvature scale in the metric, in order to
consider stars much smaller than lAdS. In such cases, the
scale of the shadow region will be determined exclusively
by m and R.
In Fig. 6, we plot numerical results for the casem ¼ 0.1,

R ¼ 0.6, lAdS ¼ 10. We see immediately from the non-
monotonicity that, by theorem 2, this geometry exhibits a
shadow. This result remains unchanged if we make lAdS
arbitrarily large. Note that this m=R ratio is comparable to
that of a typical neutron star in our Universe. The shadow
persists if we make it slightly less dense, with R ¼ 0.7,
which indicates that the density bound is not particularly
severe.

IV. MINIMAL AREA SURFACES IN
AdSdþ1-Schwarzschild GEOMETRIES

We now turn our attention to singular geometries, in
particular AdS with a black hole in the center. Obviously,
θ∞ðr�Þ is undefined if r� falls within the horizon radius;
hence from now on r� ≥ rH is always implied.
A key point worth emphasizing is that, for AdS black

holes, the phase transition (switchover) behavior is modi-
fied. Previously, the global minimum switched solution
branches when

1 2 3 4

0.5

1.0

1.5

2.0

2.5

FIG. 4 (color online). θ∞ðr�Þ for GM ¼ 2 and stellar radii R ¼
1.01lAdS (blue), 1.05lAdS (red), 1.1lAdS (black), 1.15lAdS (green),
and 1.2lAdS (magenta). The case R ¼ 1.2lAdS is insufficiently
dense, and hence exhibits a monotonic function with no shadows.
But the other cases, with R <

ffiffiffiffiffiffiffiffi
4=3

p
lAdS [cf. (3.8)] have a single

maximum at finite radius rmin, within which an entanglement
shadow exists.
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Aðθ∞Þ ¼ Aðπ − θ∞Þ ð4:1Þ

where A is the area of the associated surface (or set of
surfaces). In other words, one switches from a given bulk
surface to the complement when the two have equal area,
cf. Fig. 1. In the case of a black hole however, the
complement must include the horizon area [5]. This
modifies the above area condition to

Aðθ∞Þ ¼ Aðπ − θ∞Þ þ ABH ð4:2Þ

where ABH is the portion that wraps the black hole.
We present our results in three separate subsections.

In Sec. IVA we analytically solve for minimal spacelike
geodesics in the BTZ geometry. We then move to higher-
dimensional considerations of boundary disks in global
AdS in Sec. IV B, which we split into large and small black

FIG. 5 (color online). Plots of extremal surfaces (blue) for stars of varying density. The solid black circle is the stellar radius R; the
smaller, dotted black circle is the would-be horizon radius rH . Note that in the first case, which is outside the range (3.8), there is no
restriction against covering the entire bulk. (a) GM ¼ 1.01, R ¼ 2lAdS: no shadow. (b) GM ¼ 1.01, R ¼ 0.66lAdS: shadow.
(c) GM ¼ 1.1, R ¼ 0.75lAdS: shadow. (d) GM ¼ 2, R ¼ 1.12lAdS: shadow.

0.2 0.4 0.6 0.8 1.0
r

1.52

1.53

1.54

1.55

1.56

1.57

FIG. 6 (color online). θ∞ðr�Þ for an almost-constant density
star in AdS3þ1 with m ¼ 0.1, R ¼ 0.6, and lAdS ¼ 10. The
nonmonotonicity violates WCP, which implies the existence of
an entanglement shadow.
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holes to obtain suitable approximations. Although the
associated spherically symmetric codimension 1 bulk
surfaces are the most natural higher-dimensional general-
izations of the lower-dimensional geodesics, we also
present a similar analysis of boundary strips in planar/
Poincaré-AdS in Sec. IV C, as the latter allow for a more
straightforward approximation. As we shall see, for large
black holes, boundary disks and strips perform almost
equally well in the sense that both exhibit exponentially
small shadows.8 For small black holes however, strips
suffer frommore complicated phase transition behavior that
makes them worse boundary shapes than disks, whose
associated shadow is of order rH.

A. BTZ black holes

The bulk quantity dual to the von Neumann entropy
of a boundary subregion A has been conjectured to be
given by [5,31]

SðAÞ ¼ AreaðEð∂AÞÞ
4G

ð4:3Þ

where Eð∂AÞ is the extremal bulk surface that ends on ∂A
and has minimal proper area among surfaces continuously
deformable to A. When the global state of the boundary
is pure, the von Neumann entropy gives a quantitative
estimate for the entanglement between the subregion and its
complement, called the entanglement entropy. When the
global boundary state is mixed, this is no longer necessarily
true, although we use the terms von Neumann entropy and
entanglement entropy interchangeably in this paper.
A static BTZ black hole is described by the metric

ds2 ¼ −ðr2 − r2HÞdt2 þ
dr2

r2 − r2H
þ r2dθ2: ð4:4Þ

To determine the shadow, it is sufficient to consider
constant time slices.9 In d ¼ 2 the boundary is a circle,
and the subsystem A an interval on the circle. The bulk
extremal surface associated with the entanglement
entropy is then simply a geodesic anchored at the two
points that comprise ∂A. We consider as a boundary
region the interval ð−θ∞; θ∞Þ, where the subscript ∞
indicates that the boundary corresponds to r → ∞ in our
coordinates (4.4).
The Lagrangian describing such a bulk extremal surface

is given by

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02

r2 − r2H
þ r2

s
; r0 ≡ dr

dθ
: ð4:5Þ

Since the Lagrangian does not depend on θ, there is a
conserved momentum due to translation invariance in θ.
Hence

δL
δr0

r0 − L ¼ constant: ð4:6Þ

We may fix the constant by the demanding that the surface
reaches its minimal value r� when r0 ¼ 0. This leads to the
first-order equation of motion

dr
dθ

¼ r
r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2�

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2H

q
ð4:7Þ

which may be integrated to obtain

θ∞ ¼
Z

∞

r�
dr

dθ
dr

¼ 1

2rH
cosh−1

�
r2� þ r2H
r2� − r2H

�
: ð4:8Þ

This curve is plotted in Fig. 7. Note that it diverges when
r� → rH, and decreases monotonically with increasing r�.
We may invert (4.8) to obtain

r� ¼
rH

tanh ðθ∞rHÞ
; ð4:9Þ

which is plotted in Fig. 15. One clearly sees that there are
geodesics that wind around the black hole one or more
times as r� approaches the horizon. But a surface that
intersects itself cannot correspond to a local minimum of
the area functional (intuitively, the kinks in the intersection
can be infinitesimally smoothed out to reduce the area).
Thus for the purpose of identifying the appropriate bulk
probe, we only care about the range θ∞ ≤ π, since a
switchover must occur before θ∞ reaches this value. The
alternative global minimum is then a surface with two
disconnected components: a geodesic connecting the

r0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1.0 1.5 2.0 2.5 3.0

FIG. 7 (color online). θ∞ðr�Þ for a static BTZ black hole with
rH ¼ 1.

8When referring to AdS-Schwarzschild, we speak of the size of
the shadow relative to the horizon radius. Thus an exponentially
small shadow is one for which rmin − rH ∼ e−#rH=lAdS , with #
being some order-one constant.

9We generalize to dt ≠ 0 subregions in Appendix B and find
that these suffer even larger entanglement shadows.
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endpoints at �θ∞ on the opposite side of the black hole,
and a separate part that encircles the horizon; see Fig. 8.
We denote the critical angle at which this switchover

happens by θswitch, which is given by (4.2):

lðθswitchÞ ¼ lðπ − θswitchÞ þ 2πrH; ð4:10Þ

where lðθ∞Þ is the length of the geodesic connecting the
boundary points �θ∞ and 2πrH is the length of the curve
that wraps the horizon.
We can compute the length lðθ∞Þ by integrating the

Lagrangian

lðθ∞Þ ¼ 2

Z
∞

r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r2 − r2H
þ r2

�
dθ
dr

�
2

s

¼ 2

Z
∞

r�

rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2H

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2�

p ð4:11Þ

where we used (4.7), with r� given by (4.9). The integral is
divergent, but the divergent parts on the left- and right-hand
side of (4.10) cancel and the finite parts yield

θswitch ¼
π

2
þ 1

2rH
ln ðcoshðπrHÞÞ: ð4:12Þ

For small black holes (rH ≪ lAdS) we have that
θswitch ≈ π=2, because the area contribution from the black
hole in Eq. (4.10) is close to zero. Conversely, one sees that
for large black holes (rH ≫ lAdS), θswitch ≈ π. See Fig. 8 for
an explicit plot of both cases.
The shadow radius rmin, within which no extremal

surface associated to entanglement entropy can reach,
is finally determined by substituting the value of θswitch
into (4.9):

rmin ¼
rH

tanhðπrHÞ
þ rHe−πrH

sinhðπrHÞ
: ð4:13Þ

This curve is plotted in Fig. 9. However, since the black
hole is always within the shadow region, the shadow may
be more conveniently expressed as

Δr0 ≡ rmin − rH ¼ 2rHe−πrH

sinh ðπrHÞ
ð4:14Þ

which is plotted in Fig. 10. When referring to the size of the
shadow, we implicitly mean the relative quantity (4.14)
unless otherwise noted.
From either Eq. (4.14) or Fig. 8, one sees that the shadow

is exponentially small for large black holes, but remains an
order-one (AdS radius) distance from the horizon for small
black holes. This behavior is easily explained by consid-
ering the switchover effect: a large black hole incurs a
greater cost from the horizon component in the area
condition (4.2), which allows the global minimum to
remain on the original (connected) solution branch for
larger values of θ∞.
It may seem strange that the shadow radius rmin does not

go to zero for vanishing horizon radius. This is due to the
mass gap in AdS3: letting rH → 0 in the BTZ metric (4.4)

FIG. 8 (color online). Minimal surfaces for boundary intervals of varying size θ∞, for a black hole of radius (red circle) rH ¼ 0.1lAdS
(left) and rH ¼ lAdS (right). The switchover to the disconnected solution (red curves) takes place near θ∞ ¼ π=2 for small black holes
(left), and approaches π for large black holes (right).

0.0 0.5 1.0 1.5 2.0
rH0.0

0.5

1.0

1.5

2.0
rmin

FIG. 9 (color online). Shadow radius rmin as a function of
horizon radius rH for a static BTZ black hole.
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will not yield the empty AdS3 metric, but a conical defect.
It was previously shown in [20] that the conical defect
geometry exhibits entanglement shadows; we comment
further on this issue in the discussion, Sec. VII.

B. Global SAdSdþ1 with d ≥ 3

We now wish to ask how this result changes for higher-
dimensional black holes. Unlike the BTZ case, in which
the boundary interval was completely specified by the
angle θ∞, we now consider the entanglement entropy of a
ðd − 1Þ-dimensional region in the boundary CFT, which in
principle can have an arbitrarily complicated shape (indeed,
it does not even need to be simply-connected). This allows
for much richer phase transition structure when deforming
the region. Hence for simplicity, we generally assume that
the boundary region of interest is Oðd − 1Þ symmetric, i.e.,
we consider minimal surfaces of the form rðθÞ.
Note that, among boundary regions of different shapes

but equal area, it seems very plausible that these highly
symmetric surfaces will maximize the reach into the
bulk [21,32]. However, this does not directly imply that
asymmetric regions cannot have minimal surfaces that
penetrate the shadows we find herein. This is because,
as we have stressed, shadows arise from the switchover
behavior, and it is difficult to study such behavior for less
symmetric surfaces. Nevertheless, we believe that even if
less symmetric surfaces do probe deeper in some cases, it
will not eliminate shadows, and probably will not deviate
much from the bounds obtained from these highly sym-
metric surfaces.
Even when restricting to Oðd − 1Þ-symmetric surfaces,

higher dimensions still allow various interesting new
switchover effects. Contrast Figs. 11–12 below. In
Fig. 11, we consider a spherical boundary region, analo-
gous to the BTZ case above. As the radius of this boundary
disk increases, the global minimum will eventually switch
to a disconnected bulk solution consisting of the spherical
cap on the far side of the black hole and a part that wraps
the horizon. In Fig. 12, we instead consider a band around

the boundary sphere. As we increase the width of this strip,
the dual minimal surface will again undergo a switchover,
but now from a single connected piece to two hemispheri-
cal caps plus the horizon component.
In order to study the size of the shadows in these higher-

dimensional geometries, we proceed as above, by con-
structing the function θ∞ðr�Þ that encodes information
about how well the boundary entanglement entropy can
reconstruct the bulk. One of the major differences from the
AdS3 case is that in higher dimensions the equations of
motion describing the minimal surfaces cannot be solved
analytically. We rely instead on numerical methods. Results
for a black hole with rH ¼ l ¼ AdS are displayed in
Fig. 13. At first sight, it looks qualitatively very similar
to the BTZ case, cf. Fig. 7. However, zooming in on the
near-horizon region, as shown in Fig. 14, reveals a crucial
difference: θ∞ðr�Þ is not actually monotonic. In fact,
although not clearly visible in Fig. 14, it will oscillate

FIG. 11 (color online). Transition between two different boun-
dary disks for a black hole with horizon rH ¼ lAdS in AdS5.

FIG. 12 (color online). Transition between a boundary strip and
two disks for a black hole with horizon rH ¼ lAdS in AdS5.
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FIG. 10 (color online). Relative shadow size Δr0 as a function
of horizon radius rH for a static BTZ black hole.
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an infinite number times as r� → rH [23]. The difference is
due to the fact that in the BTZ geometry the minimal
surfaces are geodesics which in principle can self intersect,
whereas in higher d the surfaces instead fold into multiple
layers around the black hole. See Figs. 15–16 for an explicit
illustration of these two behaviors.
To find the shadow, we must study the switchover

behavior. Note that while θ∞ remains finite as r� → rH,
there are values of r� for which θ∞ðr�Þ ≥ π

2
, which makes

switchovers likely. We know from lemma 3 in Appendix A
that values of r� for which dθ∞=dr� < 0 cannot be minimal
surfaces. Additionally, the critical surfaces for which θ∞
undergoes oscillations (e.g. the red curve in Fig. 16) will
fold around the black hole and intersect their mirror
image. Hence by lemma 2, they cannot be minimal either.
Therefore, we again only need to find the largest value of r�
for which the switchover condition (4.2) is satisfied. This r�
then corresponds to the shadow radius rmin for the
symmetric surfaces under consideration.
In the limiting case of a large and small10 black hole in

AdS, we can analytically approximate the size of the
shadow Δr0 in arbitrary dimension as follows. The metric
for SAdSdþ1 is given by

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdΩ2
d−2Þ ð4:15Þ

where

fðrÞ ¼ r2 þ 1 −
rd−2H

rd−2
ðr2H þ 1Þ: ð4:16Þ

From the Lagrangian describing a Oðd − 1Þ minimal
surface,

L ¼ ðrðθÞ sin θÞd−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0ðθÞ2
fðrÞ þ rðθÞ2

s
; ð4:17Þ

we can write down the Euler-Lagrange equation of motion
and expand it:

r00ðθÞ ¼ ðd − 1Þ½r2Hdþ ðd − 2Þ�ðr − rHÞ
− ðd − 2Þ cotðθÞr0 þOðr0Þ2 þOðr − rHÞ2;

ð4:18Þ

where as usual the prime denotes differentiation with
respect to θ. Assuming we are in a regime where it is
permissible to drop the higher order terms (which is near
the tip of the surface and close to the horizon), the above
may be written

1 2 3 4 5
r0.0

0.5

1.0

1.5

2.0

2.5

FIG. 13 (color online). θ∞ðr�Þ for a SAdS5 black hole with
rH ¼ lAdS.
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r rH
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FIG. 14 (color online). Close up of θ∞ðr�Þ for a SAdS5 black
hole with rH ¼ lAdS near r ≈ rH.

FIG. 15 (color online). Extremal entangling surfaces in BTZ
with horizon rH ¼ lAdS and Δr0 ¼ 10−1 (blue), 10−3 (green), and
10−11 (red). The red surface wraps the horizon four times.

10Although small black holes have negative heat capacity in
d ≥ 3, they can still describe stable solutions in the micro-
canonical ensemble for some range of masses [33].
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r00ðθÞ ¼ −ðd − 2Þ cotðθÞr0 þ ðd − 1ÞrH∂rfðrHÞðr − rHÞ;
r ≈ rH; r0 ≪ 1: ð4:19Þ

This equation can be solved analytically for all d, but in
d ¼ 4 it takes the particularly simple form

rðθÞ ¼ rH þ Δr0
λ

sinh ðθλÞ
sin θ

; λ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12r2H þ 5

q
:

ð4:20Þ
The approximation is plotted on top of the exact solution in
Fig. 17 for various values of Δr0.

1. Large black holes: rH ≫ lAdS

For concreteness, we continue our study of shadows for
large black holes in AdS5, but our conclusions will remain
valid for large black holes in arbitrary dimension.
In the large black hole limit rH ≫ 1, our approximate

solution (4.20) reduces to

rðθÞ − rH ≈
Δr0

2
ffiffiffiffiffi
12

p
rH

e
ffiffiffiffi
12

p
rHθ

sin θ
: ð4:21Þ

This solution rðθÞ locally solves the minimal area equations
in the near-horizon geometry. If we pick the parameter Δr0
to be small, this solution will cover an order-one angle θ
before the approximation breaks down (see Fig. 17). At this
point, the surface is a distance OðrHÞ away from the
horizon, and one could extend the approximation by
matching it to a solution in empty AdS anchored to the
boundary. While we do not need to know the exact solution
in this regime to estimate the shadow, we can show that
the rest of the minimal surface will be quite boring in the
sense that it is almost going radially outward towards the

boundary. To be more precise, we can show that the amount
of angle Δθ that the minimal surface covers when leaving
this near-horizon regime will be small in the large black
hole limit.
We start with Lagrangian (4.17) and approximate sin θ to

be constant. We then take fðrÞ ≈ r2 since we are relatively
far from the black hole. As the Lagrangian no longer
depends on θ, there is a conserved quantity C associated to
translations in the angular direction, hence

δL
δr0

r0 − L ¼ C ⇒ r2d ¼ C2

�
r02

r2
þ r2

�
: ð4:22Þ

The constant C can subsequently be determined by
matching, at r ¼ 2rH, to our near-horizon solution.
Specifying henceforth to d ¼ 4, this yields C ≈ 6r3H.
Plugging this into the above, we find

Δθ ¼
Z

∞

2rH

dr

r2
ffiffiffiffiffiffiffiffiffiffiffiffi
r6

C2 − 1

q ≈
0.1
rH

≪ 1 ð4:23Þ

which confirms that the minimal surfaces are going
approximately radially outward outside r ¼ 2rH. Thus
we may match our near-horizon solution at a distance
rH from the horizon at some order-one matching angle θm
to conclude

Δr0 ≈ 2
ffiffiffiffiffi
12

p
r2H sinðθmÞe−

ffiffiffiffi
12

p
θmrH ∝ r2He

−#rH ð4:24Þ

where # is an Oð1Þ number. Thus we find that the shadow
region for minimal surfaces is exponentially small for
large black holes. Although this particular result has been
obtained for SAdS5, we can show that it holds in any
dimension.

FIG. 16 (color online). Extremal entangling surfaces in AdS5
with horizon rH ¼ lAdS and Δr0 ¼ 10−1 (blue), 10−3 (green), and
10−11 (red). Note the folding behavior in the red surface.

FIG. 17 (color online). The approximation (4.20) (red) rendered
atop the exact minimal surfaces (blue) for a black hole with
horizon rH ¼ lAdS in AdS5. The surfaces are plotted for
Δr0 ¼ 10−6, 10−3, 10−1, and 1.
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We must note that in (4.20) we choose as a boundary
condition r� ¼ rðθ ¼ 0Þ, which corresponds to disk-
shaped boundary regions. In contrast, the aforementioned
boundary strips would require r� ¼ rðθ ¼ π

2
Þ. The analysis

for the strip is precisely analogous, and also results in an
exponentially small shadow. In Sec. IV C, we explicitly
show that the shadow is exponentially small for all d in
planar-SAdSdþ1, but we first turn to an analysis of small
black holes in global SAdS5.

2. Small black holes: rH ≪ lAdS

For a small black hole, we can make a different
argument to estimate the size of the shadow. Since the
horizon area is small in Eq. (4.2), the switchover angle
must be approximately π=2. Additionally, as explained
above, the minimal surface must remain in a single
hemisphere, with no folds. The shadow size will therefore
be determined by a simple minimal surface at the
switchover point. Starting from the boundary at
θ ¼ π=2, this surface will dive almost radially inward
until it is an order rH ≪ lAdS away from the black hole
horizon. Here it can be matched to our approximate
solution (4.20) in the rH ≪ lAdS limit:

rðθÞ ¼ rH þ Δr0
λ

sinh ðθλÞ
sin θ

; λ ≈
ffiffiffi
5

p
: ð4:25Þ

If we make Δr0 too small, the solution will remain in the
near-horizon regime and the angle traversed will exceed
π=2. Hence, to find the smallest allowed Δr0, we must pick
it in such a way that our approximation breaks down and
can be matched onto the radially outward piece at almost
π=2. To estimate (and bound from below) this value of Δr0,
we let rðθÞ − rH ≈ rH and take θ ¼ π=2 in our approxi-
mation (4.20):

Δr0 ≈
rH

sinh ð ffiffiffi
5

p
π
2
Þ ¼ #rH ð4:26Þ

where # is again an Oð1Þ number. We conclude that for a
small black hole in AdS5, the shadow size is OðrHÞ. A
similar analysis confirms that for every d ≥ 3 the
property Δr0 ∝ rH holds, with the coefficient of propor-
tionality decreasing for increasing d. As for the large
black hole above, it is important to keep in mind that we
presented only disk-shaped boundary regions. It is of
course also possible to consider a strip on the boundary,
but the small horizon area in this case ensures that the
switchover to disconnected surface containing two disks
will happen quite soon, which makes strips have even
larger shadows.
While these results conclude our analysis of shadows

for small black holes in AdSdþ1, we end with a
parenthetical remark which concerns extending these
results to AdSdþ1 times a compact manifold, as is often

the case in concrete realizations of the holographic
principle. For example, when considering a small black
hole in AdS5 × S5 (smeared uniformly over the S5), one
might be inclined to think that the correct minimal
surface will be the AdS5 solution as described above,
uniformly wrapping the five-sphere. However, when the
size of the AdS black hole is small with respect to the
compact manifold, one can show that these black holes
are Gregory-Laflamme unstable to localizing on the
sphere [34,35]. This means that the black hole will be
an effective ten-dimensional one, and to find the asso-
ciated minimal surfaces one should analyze it in the
appropriate 10d background—interpolating between a
10d Schwarzschild geometry close to the black hole
and an AdS5 × S5 geometry far away. Although we did
not analyze this case in detail, we expect that it will not
qualitatively alter the above results.

C. Planar SAdSdþ1 with d ≥ 3

To show that the shadow for a large black hole is
exponentially small in any dimension d ≥ 3, we can perform
the analysis in a Poincaré patch of AdSdþ1-Schwarzschild,
which is an excellent approximation in the large black hole
limit. If we furthermore restrict ourselves to boundary
strips, the enhanced symmetry of the problem will allow for
an analytical treatment which confirms the exponential size
of the shadow for arbitrary d ≥ 3.
To proceed, we make the change of variables z ¼ rH=r

in the metric (4.15) and consider the rH ≫ 1 limit:

ds2 ≈ ð1 − zdÞ−dt
2

z2
þ dz2

z2ð1 − zdÞ þ
r2HdΩ2

d−1
z2

: ð4:27Þ

For boundary length scales θ∞ ≪ rH, we can take the
boundary metric as approximately flat, r2HdΩ2

d−1 ≈ dx2
d−1.

We consider the strip with width θ∞ ¼ arH with a ≪ 1
and assume that the strip is sufficiently wide that the
deepest point to which the associated bulk minimal
reaches, z�, penetrates the near-horizon region, i.e.,
z� − 1 ≪ 1.
The action is given by

S ¼
Z

dd−2x
Z

dx1
zd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
dz
dx1

�
2 1

1 − zd

s
; ð4:28Þ

where x1 is the transverse direction. This leads to the
equation of motion:

�
dz
dx1

�
2

¼ ð1 − zdÞ
�
1 −

�
z�
z

�
2ðd−1Þ�

ð4:29Þ

for which the width of the bulk probe is
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θ∞
2

¼
Z

θ∞=2

0

dx1 ¼
Z

z�

0

dz

���� dx1dz

����
¼

Z
z�

0

dz

�
z
z�

�
d
�
ð1 − zdÞ

�
1 −

z2ðd−1Þ

z2ðd−1Þ�

��−1=2

which we may solve approximately by making the change
of variables u≡ 1 − z=z� and expanding for small u:

θ∞ ¼ 2z�

Z
1

0

duð1 − uÞd½ð1 − zd�ð1 − uÞdÞ

× ð1 − ð1 − uÞ2ðd−1ÞÞ�−1=2

≈ 2z�

Z
1

0

du½2uðd − 1Þð1 − zd� þ dzd�uÞ�−1=2

¼ 2z�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd − 1Þzd�

p cosh−1
�
2dzd� þ 1 − zd�

1 − zd�

�
:

For ease of comparison with the higher-dimensional
solution in global SAdS (4.24), we make the further
approximation z� ≈ 1,11 under which the above expression
simplifies to

z� ≈ 1 − 2d2sech

�
θ∞

ffiffiffiffiffiffiffiffiffiffiffi
d − 1

2

r �
⇒ Δr0 ≈ 4drHe

−arH
ffiffiffiffiffi
d−1
2

p
:

ð4:30Þ

We emphasize that this result is only valid for θ∞¼arH≫1
with a ≪ 1 and rH ≫ 1. Although the calculation was
done for a boundary strip and not a disk, the result (4.30)
supports our claim that the shadow is exponentially small
for large black holes in all d ≥ 3.

V. WILSON LOOPS

In this section, we turn to another bulk probe: static
world sheets arising from certain Wilson loops in the
boundary CFT. The bulk dual of the expectation value of a
Wilson loop WðCÞ evaluated in the supergravity limit is
proposed to be [36]

WðCÞ ∼ e−S ð5:1Þ

where S is the proper area of a fundamental string ending
on the boundary loop C. To simplify our analysis, we
consider rectangular Wilson loops that extend far into the
past and future time directions. Such a Wilson loop with
temporal height T and spatial width 2θ∞ can be interpreted
as the potential between a quark and an antiquark [36,37].
We assume sufficiently large T so that the world sheet may

be considered invariant under time translations. The action
for such a static world sheet is given by

S ¼ 2T
Z

θ∞

0

dθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂θrÞ2 þ r2fðrÞ

q
: ð5:2Þ

Note that in static spacetimes this quantity takes the
standard form of Eq. (2.1) with F ∝ ffiffiffiffiffiffiffiffi−gtt

p
; thus we

may treat it as a holographic probe similar to minimal
area surfaces.
The action (5.2) does not explicitly depend on θ, so there

is a conserved quantity that we use to write the equation
of motion as a first-order differential equation. We find it
convenient to distinguish two types of solutions to this
equation:

(i) ∪-shaped world sheets are smooth world sheets
anchored on the boundary that do not reach the black
hole horizon, instead turning smoothly such that
∂θrjr¼r� ¼ 0 at some finite r� > rH (see Fig. 18).

(ii) ⊔-shaped world sheets consist of two straight seg-
ments that extend from the boundary to the black
hole, joined discontinuously by a third segment that
partially wraps the horizon (see Fig. 18).

For a given boundary angle θ∞, multiple solutions to
the equation of motion may exist. Evaluation of the area
functional is therefore necessary to determine which world
sheet constitutes the leading saddle point. Generally, we
find that a switchover or phase transition occurs from
∪-shaped to ⊔-world sheets, as illustrated in Fig. 18. Small
BTZ black holes are an exception, see Fig. 19. We discuss
this behavior in more detail below.
We first consider the smooth ∪-shaped solutions to the

equation of motion. We can express the conserved charge
in terms of the minimal/turning radius r�. This allows
us to find an implicit expression for θ∞ in terms of r� by
integrating the equation of motion:

FIG. 18 (color online). World sheets corresponding to different
boundary angles for a BTZ black hole of radius rH ¼ 0.5lAdS.
The ∪-shaped world sheets are rendered in blue, ⊔-shaped in red.

11This approximation is valid if θ∞ is sufficiently large; this
can be accomplished without violating θ∞ ≪ rH by taking the
large black hole limit, rH ≫ 1, which is precisely our current
regime.
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θ∞ðr�Þ ¼
Z

∞

r�
dr

1

r
ffiffiffiffiffiffiffiffiffi
fðrÞp 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2fðrÞ
r2�fðr�Þ − 1

q : ð5:3Þ

Note that this formula only depends on the number of
dimensions via fðrÞ, which is given by Eq. (4.16). θ∞ðr�Þ
is plotted for the BTZ metric [cf. (4.4)] in Fig. 20. The
function is characterized by a single maximum, and
decreases monotonically for large r�. Near the horizon
however, dθ∞=dr� < 0, and hence by lemma 3 (see
Appendix A) there cannot exist any local minima of the
area functional in this range. The ∪-shaped world sheets
thus suffer a shadow that extends some finite distance from
the horizon, but we postpone further discussion of shadows
until after considering ⊔-shaped solutions as well.
As an aside, we note that for d ¼ 2, θ∞ can be

much larger than π=2. Using the equivalence relations
θ∞ ∼ θ∞ þ nπ and θ∞ ∼ π=2 − θ∞, we can map all values
of θ∞ > π

2
into the range ½0; π=2�; see Fig. 21. The solutions

with θ∞ > π=2 correspond to strings that wind one or more
times around the black hole (see Fig. 22). However, strings
that cross themselves fail to be minimal, so we can discard
these solutions in what follows.
We turn now to the ⊔-shaped solutions, which consist

of two radial segments connecting the boundary and the
horizon at �θ∞ and a segment that wraps the horizon (see
Fig. 18). The segment that wraps the horizon does not
contribute to the area since the pullback of the metric
vanishes. The radial segments have divergent area, which is
associated to the unrenormalized self energy of a quark-
antiquark pair. Thus the Wilson loops associated to these
⊔-shaped strings do not encode information about the
bulk. Nonetheless, because these ⊔-shaped solutions exist
for all boundary angles, evaluation of the area functional

is necessary to determine when the ∪-shaped solutions
constitute the global minimum.
We find that ∪-shaped solutions have minimal area up to

some critical angle θswitch, beyond which ⊔-shaped sol-
utions dominate. In general, this switchover will always
occur for sufficiently large θ∞ < π

2
. The only exception is a

small BTZ black hole, for which the minimal area world
sheets are∪-shaped for all θ∞. In Appendix C we show that
for d > 3 one always has θswitch <

π
2
.12

Denote the smallest radius to which the ∪-shaped world
sheets reach before the switchover by rs. Then the switch-
over angle θswitch and associated switchover radius rs are
determined by the equality of the areas of the ∪-shaped and
⊔-shaped solutions:

S∪ðrsÞ ¼ S⊔; θ∞ðrsÞ≡ θswitch: ð5:4Þ

The ∪-shaped world sheet corresponding to the largest
possible boundary angle θ∞ penetrates deepest into the
bulk. The switchover angle θswitch is the largest angle for
which the ∪-shaped solutions have minimal area, so the
shadow radius rmin is determined by

rmin ¼ Max½θ−1∞ ðπ=2Þ; rs�: ð5:5Þ

We can solve for the value of rs by solving the area
condition (5.4):

Z
rc

rs

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2s

r2
fðrsÞ
fðrÞ

q ¼
Z

rc

rH

dr ⇒
Z

∞

rs

dr

0
B@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − r2s
r2

fðrsÞ
fðrÞ

q − 1

1
CA

¼ rs − rH; ð5:6Þ

where rc is a large radial cutoff, necessitated by the fact that
both actions are linearly divergent. The dimensional
dependence is encapsulated in fðrÞ. For the BTZ metric,
we can solve (5.6) exactly by taking rs ¼ λrH:

λ − 1 ¼ λ

Z
∞

1

dx

0
B@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 1
x2

λ2−1
x2λ2−1

q − 1

1
CA; ð5:7Þ

which evaluates to λ ≈ 1.38. We emphasize again that the
BTZ metric is exceptional in the sense that there is no
switchover for small black holes rH ≲ 0.26lAdS. In this case
the ⊔-shaped world sheets never constitute the leading
saddle point of the area functional, even for θ∞ > π=2, and
we find numerically that rmin ∼ lAdS.
For d > 2 we cannot exactly solve (5.6) for the switch-

over radius, but we can obtain an approximation for

FIG. 19 (color online). World sheets corresponding to different
boundary angles for a BTZ black hole of radius rH ¼ 0.2lAdS.
Small black holes in d ¼ 2 are special, because the ∪-shaped
world sheet constitutes the leading saddle point for all values
of θ∞.

12For d ¼ 3 we can also show that θswitch <
π
2
by approximat-

ing (5.3) to find that θ∞ðr�Þ < π
2
, from which it is immediately

implied.
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large and small black holes. The former is especially well
motivated, since for large black holes there is a natural
interpretation of the switchover as a “confinement-
deconfinement” phase transition [37–39]. In this case, we
have lAdS≪ rH <rs≤ r so that fðrÞ≈ r2ð1−rd−2H =rd−2Þ.
Taking rs ¼ λdrH, we have

1 −
1

λd
¼

Z
∞

1

dx

0
B@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 1
x4

λd−2d −1
λd−2d − 1

xd−2

r − 1

1
CA ð5:8Þ

from which we conclude that λd is an order-one constant that
depends on the dimension.
In the case of small black holes, we cannot exactly solve

(5.6), but we can solve it approximately as follows. We
assume that the critical Wilson loop reaches to a location rs
that is much smaller than the AdS radius, but much larger
than the black hole radius,

rH ≪ rs ≪ 1 ð5:9Þ

where we have again set the AdS radius to 1. This
approximation will turn out to be self consistent, and
agrees with numerical results. We then approximate the
integral in (5.6) in two different regimes: the near regime,
in which fðrÞ − fðrsÞ ≪ 1, and the far regime, where
rs=r ≪ 1. For small black holes, assuming that rs satisfies
(5.9), the near and far regimes have overlapping validity.
We can now expand the integrand separately in the near

and far regimes,

rs − rH ≈
Z

r0

rs

dr

��
rffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − r2s
p − 1

�

−
�

r2sr

2ðr2 − r2sÞ3=2
ðfðrÞ − fðrsÞÞ

fðrsÞ
þ…

��

þ
Z

∞

r0

dr

�
r2sfðrsÞ
2r2fðrÞ þ…

�
ð5:10Þ
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FIG. 20 (color online). θ∞ðr�Þ for Wilson loops for a black hole of radius rH ¼ 0.2lAdS (left) and rh ¼ 0.5lAdS (right).
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FIG. 21 (color online). θ∞ðr�Þ for a BTZ black hole with radius
rH ¼ 0.1lAdS (black). Solutions with θ∞ > π=2 are mapped to
the range ½0; π=2� (green). The dashed line is at θ∞ ¼ 1; every
intersection with the green line corresponds to a solution to the
equation of motion for this value of θ∞. These world sheets are
plotted in Fig. 22.

FIG. 22 (color online). Extrema for θ∞ ¼ 1 for a BTZ black
hole with horizon radius rH ¼ 0.1lAdS. Only one of these saddle
points—that with zero winding number (green)—corresponds to
a global minimum of the proper area of the world sheet.
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where we have expanded to first order in the small
parameter in each regime. The first term on the right side
cancels the rs on the left side, leading to the equation

2rH ¼
Z

r0

rs

dr
r2sr

ðr2 − r2sÞ3=2
fðrÞ − fðrsÞ

fðrsÞ
−
Z

∞

r0

r2sfðrsÞ
r2fðrÞ :

ð5:11Þ

In the near region we use the full formula for fðrÞ, while in
the far region we use the pure AdS metric without a black
hole. The integrals can now be performed. Only the term
that depends on the black hole mass carries any dimen-
sional dependence. The intermediate scale r0 cancels as it
should, and we get

2rH ¼ π

2
r2s þ cdrH

�
rH
rs

�
d−3

ð5:12Þ

where d is the spatial dimension and cd is a positive
constant that depends on dimension. For d > 3, the second
term on the right-hand side is parametrically smaller than
the first and can be dropped; for d ¼ 3 it must be kept and
the constant turns out to be c3 ¼ 1. The final answer is then
that the critical Wilson loop reaches to a minimum radius rs
that is related to the horizon radius rH by

r2s ¼
2

π
rH for d ¼ 3

r2s ¼
4

π
rH for d > 3 ð5:13Þ

where d is the spatial dimension. See Fig. 24 for a
comparison of these approximations with our numerical
results in the small black hole limit; numerical results for a
larger range of black hole radii are plotted in Fig. 23.
Finally, since we are often interested in the boundary

angle at which the switchover occurs, a similar computation
to the above gives the simple result:

θswitch ≈
π

2
ð1 − rs þ…Þ; ð5:14Þ

valid for all spatial dimension d ≥ 3.
We close this section with a discussion of how good

Wilson loops are, qualitatively, as bulk probes in the
context of holographic shadows. We first note that locally,
that is, for a given θ∞ < θswitch, Wilson loops probe more
deeply into the bulk than the corresponding minimal
surface due to the extra factor of

ffiffiffiffiffiffiffiffi−gtt
p

in the action
(5.2). But since the shadow radius rmin is the infimum of the
collection of r�ðθ∞Þ from ∪-shaped world sheets, we have
to take into account the switchover effect in order to make
the more appropriate global comparison. In Appendix C,
we approximate (5.6) in higher dimensions (d ≥ 3) for
large and small black holes. The results are summarized in
Table II.

VI. CAUSAL INFORMATION SURFACES

The third and final bulk probe we consider is the causal
information surface [14], whose associated boundary
quantity is dubbed “causal holographic information.”
This differs from the previous two probes in two ways.
First, its boundary CFT interpretation is unclear, although
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FIG. 23 (color online). Shadow size rmin − rH for rectangular
Wilson loops as a function of rH , for d ¼ 3 (blue), d ¼ 4 (red),
and d ¼ 5 (green).
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FIG. 24 (color online). The small black hole regime of Fig. 23,
superimposed with dotted lines corresponding to our analytical
approximation: rmin ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2rH=π

p
for d ¼ 3 (grey) and rmin ∼ffiffiffiffiffiffiffiffiffiffiffiffiffi

4rH=π
p

for d > 3 (magenta).

TABLE II. Leading-order approximation of the shadow size
rmin − rH for Wilson loops. The proportionality constants
are determined numerically via Eq. (5.6). See also plots in
Figs. 23–24.

d ¼ 2 d ¼ 3 d > 3

rH ≪ lAdS O(1) ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2rH=π

p
∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4rH=π

p
rH ≫ lAdS ∼λ2rH ,

λ2 ≈ 1.38
∼λ3rH ,
λ3 ≈ 1.46

∼λdrH ,
λd ≳ 1.52
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suggestions have been made in [24,25]. Second, it does
not take the general form we described in Sec. II B as a
minimal geometric object. Nevertheless, it is still natural to
define θ∞ðr�Þ for this probe. Thus we can study this probe
alongside those above, and later make a comparison of their
respective shadows.
The formal definition of the causal information surface

is as follows: given a boundary region a, we first find its
boundary causal diamond ⋄a, defined as the union of the
boundary future and past domains of dependence of a:

⋄a ¼ DþðaÞ∪D−ðaÞ: ð6:1Þ

The causal information surface13 ΞA is then defined as the
intersection of the boundaries of the bulk future and past
domains of influence J�ð⋄aÞ[14]:

Ξa ¼ ∂Jþð⋄aÞ∩ ∂J−ð⋄aÞ: ð6:2Þ

In static, spherically symmetric spacetimes, we can
understand this by reversing the construction. Start from
a point in the bulk at radial coordinate r�, and construct
the two radially outgoing light rays to the future and past.
These will end on two boundary points, p�

a . The past
boundary light cone from pþ

a and the future boundary light
cone from p−

a enclose a causal diamond. The waist of
diamond is exactly a boundary ball of radius θ∞ that sits on
the same time slice as the initial bulk point. In other words,

θ∞ðr�Þ ¼
Z

∞

r�
dr

���� dtdr
���� ¼

Z
∞

r�
dr

ffiffiffiffiffiffiffiffiffiffi
−
grr
gtt

r
¼

Z
∞

r�

dr
fðrÞ :

ð6:3Þ

However, this is only true when θ∞ < π. When θ∞ ≥ π, the
ball covers the entire asymptotic boundary, and its domain
of dependence is the entire spacetime. Therefore, there is an
effective phase transition at θ∞ ¼ π, and the shadow radius
is given by

rmin ¼ θ−1∞ ðπÞ; ð6:4Þ

if this inverse exists. Otherwise there is no shadow.
In spacetimes with a horizon at rH, fðrÞ → 0 linearly as

r → rH; thus θ∞ → ∞. So such spacetimes will always
show shadows. For example, for the BTZ geometry with
fðrÞ ¼ r2 − r2H, we have (6.3)

π ¼
Z

∞

rmin

dr
r2 − r2H

¼ 1

rH
arccoth

�
rmin

rH

�
⇒ rmin

¼ rH
tanhðrHπÞ

: ð6:5Þ

Note that this is precisely the first term of (4.13). In light of
the earlier work by Hubeny [14], this similarity is not
surprising. In the BTZ background, the causal information
surface ΞA coincides with the extremal surface for a given
boundary subregion. The only difference between their
respective shadows is that the minimal area surfaces
encounter a phase transition at some θ∞ < π determined
by the area matching condition (4.2). In particular, the
phase transition for minimal area surfaces with a small
black hole occurs when θ∞ ∼ π=2, which makes a signifi-
cant difference from the causal information surfaces. For
large black holes, the minimal surface transition occurs
at θ∞ ≲ π, so these two probes agree with each other in
this limit.
The situation is more complicated in higher dimensions

[40]. For d ≥ 3 the integral in Eq. (6.3) is slightly more
involved, but since we are primarily interested in knowing
how close the surface gets to the black hole, a near-horizon
approximation will suffice. Thus we assume r� − rH ≪ 1
and expand the integrand in terms of ðr − rHÞ. For large
black holes (rH ≫ 1), the near-horizon contribution domi-
nates θ∞, so the phase transition happens when

π ≈
Z

rminþa

rmin

dr
f0ðrHÞðr − rHÞ

¼ 1

f0ðrHÞ
ln

�
rmin − rH þ a
rmin − rH

�
;

ð6:6Þ

where a≲ rH is some constant, and fðrÞ is given by (4.16).
Solving for rmin, we find

rmin ≈ rH þ ae−dπrH : ð6:7Þ

Thus for large black holes, the causal information surfaces
probe exponentially close to the horizon.
For small black holes (rH ≪ 1), the leftmost side of (6.6)

is instead π=2. This is because far from the horizon, the
empty AdS region already contributes almost π=2 to the
integral in (6.3). The solution is then

rmin ≈ rH þ ae−
πðd−2Þ
2rH : ð6:8Þ

Thus causal surfaces also probe exponentially close to
small black holes, which are dramatically better than
minimal area surfaces in this limit [cf. (4.26)].

13The geometry of causal information surfaces has been
discussed in detail in [40]. In particular, note that for small
AdS-Schwarzschild black holes and sufficiently large θ∞ > π=2,
the surface consists of two parts, only one of which is connected
to the boundary while the other encloses the black hole.
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VII. DISCUSSION

A. Comparison of probes in AdS-Schwarzschild

In this section, we summarize our results by comparing
the three probes—minimal area surfaces, Wilson loops,
and causal information surfaces—for static black holes in
asymptotically AdS space.
For d ¼ 2, the calculation was sufficiently simple that

we were able to obtain exact analytical results in all three
cases; see Fig. 25 (left panel). As noted earlier, the shadow
persists even when rH ¼ 0 due to the mass gap in AdS2þ1.
The horizon radius is related to the Arnowitt-Deser-Misner
mass by r2H ¼ GM − 1, so a vanishing horizon does not
recover empty AdS. In the right panel of Fig. 25, we extend
the parameter range below the mass gap to include the
conical defect. Then as GM → 0, all shadows indeed
disappear.
We can see clearly that causal information surfaces

almost always leave the smallest shadow. This conclusion
appears to hold in higher dimensions as well, as indicated
by our numerical results and approximations for both small
and large black holes. More quantitatively, both causal
information and minimal area surfaces can probe exponen-
tially close to the horizon of a large black hole, but the
former can also probe exponentially close to a small black
hole in d ≥ 3. This fact, and more generally the relative
shadow size between probes, can be understood by recall-
ing their respective phase transition behaviors:
Minimal area surfaces encounter a phase transition for
small black holes when θ∞ ∼ π=2, so in this case are
significantly worse than causal information surfaces. For
large black holes, their phase transition angle approaches π,
so they become comparable to causal information surfaces.
Static Wilson loops encounter a phase transition at exactly
π=2 for small black holes in d ¼ 2, and are thus comparable
to minimal surfaces in this case. For large black holes or in
higher dimensions, they encounter a deconfining phase
transition when θ∞ < π=2, and thus suffer a larger shadow.

Causal information only encounter a phase transition
when θ∞ ¼ π. This enables them to probe most deeply
into the bulk.
It is perhaps worth remarking on the comparison

between causal information and extremal surfaces in
relation to the earlier work [13]. There it was shown that
if the bulk metric obeys the null energy condition, then the
extremal surface anchored on a given boundary region b
will lie outside (that is, deeper in the bulk than) the
corresponding causal surface. In particular, this implies
that the entanglement wedge covers more of the bulk than
the causal wedge for the same boundary subregion. At first
glance, this suggests that the entanglement wedge offers a
stronger, or more complete reconstruction scheme that
seems at odds with our conclusion above. However, a
key point of our analysis is that we are only interested in
the surface of this bulk region, in the framework of the
generalized minimal surfaces discussed in Sec. II, not with
the entire bulk wedge. Although suggestions have been
made for how one might reconstruct the spacetime within
the entanglement wedge (see for example [41]), such
reconstruction schemes are rather different from the geo-
metric surface prescriptions considered here, and we leave
them for another study.
It is interesting to note that for a point at radius rmin, it

may be that a given probe can only reach it with a specific
orientation, implying a restriction on the accessibility of the
bulk tangent space. Empty AdS space satisfies the strong
coverage property that the entire tangent space of any
point is covered, and indeed this property is necessary for
certain reconstruction schemes [17,20]. It is thus interesting
to ask how much of the tangent space one loses due to the
presence of a black hole.
In the BTZ geometry, this question is easy to answer.

The deepest probe in any particular family, bðrminÞ, also
passes through points with r > rmin at the steepest
angle. Therefore, we need only calculate the slope of this
surface to determine the coverage of the tangent space.
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FIG. 25 (color online). Shadow radius rmin as a function of the black hole radius rH (left) and mass GM (right) for the different bulk
probes: entanglement entropy (black), Wilson loops (red), and causal information (blue). The kink in the Wilson loop curves is due to the
transition from ∪-shaped to ⊔-shaped world sheets. The kink in the minimal area surface curve in the right panel is exactly at the horizon
rH ¼ 0, at which point the phase transition angle becomes fixed at π=2.
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These partial shadows are plotted in Fig. 26. Somewhat
surprisingly, although Wilson loops probe less deeply in
general, they exhibit the smallest partial shadows through-
out most of the bulk.

B. Perspectives

A holographic duality such as AdS/CFT is an intriguing
notion. In principle, every property of the bulk spacetime
can be reconstructed from the combination of all boundary
data. In practice, one seeks simple properties of the bulk
that can be associated with particular observables in some
subset of the boundary. The generalized geometric probe
we defined in Sec. II B provides a continuous, infinite
family of such associations between bulk codimension 1
surfaces and boundary regions. Two examples among
them—the area of minimal surfaces and the action of
Wilson loops—are known to have specific boundary
observables.
In empty AdS space, these geometric probes faithfully

scan through the entire bulk with full coverage of the
tangent space at every point. We encapsulated this complete
coverage in the strong coverage property, which is requisite
for some specific reconstruction programs, such as recov-
ering Einstein’s equations or constructions relying on
arbitrary shapes [7,10,17,42]. However, when coverage
of the bulk is incomplete—either through failure to cover
the entire bulk or some portion of the tangent space—such
reconstruction proposals fail.
Black holes are known to create unreachable regions,

which we generically referred to as holographic shadows.
In particular, these shadows are not limited to the black hole
interior, but extend well beyond the horizon. Therefore,
even if one replaces the black hole with a sufficiently dense
(e.g. neutron) star, such shadows will persist. Proposals
to reconstruct the bulk using smearing functions [12] in
Lorentzian AdS/CFT encounter similar obstructions in the
presence of trapped null geodesics [43]. In general, it seems

that sufficient deviations from pure AdS will pose diffi-
culties for straightforward attempts to completely cover the
bulk, even for topologically trivial spacetimes.
It is very interesting to contemplate the implications of

these holographic shadows in the context of AdS/CFT.
Consider a minimal surface and a bulk field operator ϕðxÞ
inside the region demarcated by the surface, that is,
between the surface and the boundary. It is widely believed
that this bulk operator ϕðxÞ can be described in terms of a
CFToperatorOðxÞ which has support only in the boundary
region defined by the end points of this minimal surface.
However, if the spacetime exhibits shadows, then the CFT
dual of any bulk operators located within the shadow region
is less clear.
One can interpret this scenario in various ways. One

possibility is that the CFT degrees of freedom that
correspond to bulk operators within the shadow region
are completely spread out over the boundary sphere. The
shadow for a particular geometry would then imply a
characteristic nonlocality in the boundary field theory
below some IR cutoff. An alternative is that these degrees
of freedom are encoded in a quantum secret sharing scheme
[41,44], an interpretation that follows from the switchover
effect.14 To see this, let us assume for concreteness that
the shadow is caused by the presence of a black hole. The
disconnected component that wraps the black hole in
principle contains the entire bulk geometry down to the
horizon, and one could hope that the CFT must therefore
capture all the bulk physics between this surface and the
boundary (notably including the shadow). In this picture,
the boundary abruptly gains access to all bulk degrees of
freedom in the shadow region (the secret) after the phase
transition, but contains no information before the switch-
over. It would be very interesting to make this analogy more
precise, but we leave this for future work. Finally, one could
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FIG. 26 (color online). The shaded region above each curve represents the part of the tangent space accessible by the associated bulk
probe [entanglement (black), Wilson (red), and causal (blue)] as a function of the radial coordinate r. π=2 is purely tangential, and 0 is
purely radial. The horizon radius, rH ¼ 0.1lAdS (left) and rH ¼ lAdS (right), is indicated by the vertical line. Note that in the right panel, the
blue and black curves almost overlap, reflecting the agreement of minimal and causal information surfaces in the large black hole limit.

14We thank AronWall for stimulating discussions on this issue.
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conclude that the dual CFT simply does not capture
everything that happens in the bulk. This would be the
most radical point of view, and also the most unsatisfactory,
since it would seem to imply that holographic
reconstruction techniques, at least as presently understood,
will always be incomplete.
To our knowledge, the only current proposal that may

have no shadows is to use the bulk entwinement surfaces
defined in [20]. However, these are dramatically different
from the above geometric probes. The boundary data
required to reconstruct entwinement surfaces are highly
nonlocal, and cannot be associated with a particular
subregion of the boundary. Aside from special cases in
which the spacetime happens to be an integer quotient of
pure AdS, the precise definition of these boundary data is
hard to visualize. In light of our results, it seems appropriate
to ask whether such explicitly nonlocal observables are
necessarily required for holographic reconstruction, or
whether there exists some simple geometric probe within
our generalized framework that nonetheless leaves no
shadow.
The bulk surfaces within this general class are naturally

associated with boundary subregions, and hence to observ-
ables that are guaranteed to satisfy strong subadditivity. If
there are indeed some probes that cast no shadows in the
bulk, then we will have a transparent picture of emergent
spacetime in this context. If, on the other hand, one can
prove that shadows are truly general features of such
probes, then we have motivation to conclude that non-
locality will be an intrinsic feature of any successful
holographic reconstruction scheme.
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APPENDIX A: PROOFS

In this appendix, we present proofs of the two lemmas
used in support of our coverage theorems. Note that
lemma 1 is not limited to globally regular geometries,
while the form of lemma 2 in the main text is. However, we
prove a more general version of lemma 2 that is applicable
to geometries with horizons and/or singularities. We also
introduce and prove a third lemma, from which the
coverage properties are independent, but which finds utility
in the main text.
Lemma 1: For a boundary sphere ∂a, the bulk surface b

that minimizes L in Eq. (2.1) with ∂b ¼ ∂a must be
spherically symmetric.
Proof: If the minimal surface b is not spherically

symmetric, one can rotate it to get a degenerate minimum
b0 of the same boundary region, with ∂b ¼ ∂b0 ¼ ∂a. As
shown in the left panel of Fig. 27, b and b0 must intersect,
but it follows from the uniqueness theorem that their
normal vectors cannot agree at the intersection. Thus
they must intersect with a kink. We assume for simplicity
that this kink separates the surfaces into two regions
each, but the generalization to multiple intersections is
straightforward. Let b be separated into regions 1 and 2,
and b0 into 3 and 4 as depicted in Fig. 27. By symmetry,

1

2
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4
1

2

3

4

5

6

FIG. 27. The left panel shows two nonspherically symmetric bulk surfaces, b ¼ ð1þ 2Þ and b0 ¼ ð3þ 4Þ, ending on the same
spherical boundary, ∂b ¼ ∂b0 ¼ ∂a. The right panel shows two intersecting bulk surfaces, b ¼ ð1þ 2þ 3Þ and b0 ¼ ð4þ 5þ 6Þ,
whose corresponding boundary anchors do not intersect.
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regions 1 and 3 contribute the same amount to the geo-
metric quantity L in Eq. (2.1), which we denote by L13.
Similarly, we denote the contribution from regions 2 and 4
by L24.
If L24 > L13, then we could construct a new surface from

regions 1 and 3 with the same boundary, thereby contra-
dicting the assumption that both b and b0 are minima.
Similarly, for L13 > L24, if instead L13 ¼ L24, then both of
the newly constructed surfaces have the same L as b and b0.
But these new surfaces will not be smooth due to the kink at
the intersection, so neither can be a local minimum of L.
This again contradicts our assumption.
Lemma 2: If the boundary anchors ∂b and ∂b0 do not

cross each other, but the corresponding bulk surfaces b and
b0 do, and at least one connected region between b and b0
does not contain a geometric obstruction, then b and b0
cannot both be minimal surfaces.
Proof: For this proof, we define a geometric obstruction

as any object, defined purely by the metric, through which a
bulk surface cannot be deformed without leaving a dis-
connected piece that wraps the obstruction; this wrapping
piece should furthermore have a nonzero contribution to L
in (2.1). (In other words, they are essentially generaliza-
tions of the black hole horizon in the case of minimal area
surfaces.)
Refer to right panel of Fig. 27. Let b ¼ ð1þ 2þ 3Þ,

b0 ¼ ð4þ 5þ 6Þ, and assume there is no geometric

obstruction within the volume enclosed between 2 and
5. We denote the contribution of region 5 as L5, and the
contribution of region 2 as L2. If L2 > L5, then surface
ð1þ 2þ 3Þ fails to be the minimum since surface
ð1þ 5þ 3Þ has even smaller L. Similarly, for L5 > L2,
if L2 ¼ L5, the uniqueness theorem again guarantees that
the surface ð1þ 5þ 3Þ is not smooth, and thus we still
arrive at a contradiction. Hence both b and b0 cannot be
global minima.
Lemma 3: If dθ∞=dr� > 0, then the surface bðr�Þ

cannot be a local minimum.
Proof: By continuity, if bðr�Þ is a local minimum, there

must be an infinitesimal δr such that bðr� þ δrÞ is also a
local minimum. Since dθ∞=dr� > 0, the corresponding
boundary regions aðr� þ δrÞ and aðr�Þ intersect exactly
as in the right panel of Fig. 27. Applying lemma 2 to these
two surfaces then implies that they cannot both be local
minima.

APPENDIX B: ENTANGLEMENT
SURFACES FOR dt ≠ 0

In this appendix, we consider an entanglement surface
with spacelike separated boundary points at ð−t∞;−θ∞Þ
and ðt∞; θ∞Þ. The bulk geodesics between these end points
are given by

r2ðθÞ ¼ r2H

�
sinh2ðrHθ∞Þ

sinh2ðrHθ∞Þ − sinh2ðrHt∞Þ
�

cosh2ðrHθ∞Þ
sinh2ðrHθ∞Þcosh2ðrHθÞ − sinh2ðrHθÞcosh2ðrHθ∞Þ

;

r2ðtÞ ¼ r2H

�
1þ cosh2ðrHt∞Þ

sinh2ðrHt∞Þcosh2ðrHtÞ − sinh2ðrHtÞcosh2ðrHt∞Þ

×
sinh2ðrHt∞Þ

sinh2ðrHθ∞Þcosh2ðrHt∞Þ − sinh2ðrHt∞Þcosh2ðrHθ∞Þ
�
: ðB1Þ

For a given boundary region, the minimal radius reached by
this geodesic is given by

r2� ¼
r2Hcosh

2ðrHθ∞Þ
sinh2ðrHθ∞Þ − sinh2ðrHt∞Þ

; ðB2Þ

which clearly shows r� is smallest for t∞ ¼ 0.
The length of the geodesics (B1) is given by

lðθ∞; t∞Þ ¼ 2 ln

�
2rc
rH

�
þ lnðsinh2ðrHθ∞Þ

− sinh2ðrHt∞ÞÞ þOðr−2c Þ; ðB3Þ

where rc is a radial cutoff. As in the case of the constant-
time slice analysis, we may determine the switchover angle
θswitch by the matching condition (4.10):

θswitch ¼
π

2
þ 1

2rH
ln ðcoshðπrHÞÞ −

1

2rH
ln ðcoshð2rHt∞ÞÞ:

ðB4Þ

Thus θswitch is indeed smallest for t∞ ¼ 0.

APPENDIX C: WILSON LOOPS

1. Deconfining transition in higher dimensions

In this section, we prove that in AdSdþ1-Schwarzschild
geometries with d ≥ 4, θ∞ðr�Þ ≤ π=2 for all r�. This
implies that a deconfining phase transition completely
determines the shadow size independent of the black hole
radius rH.
The function θ∞ is determined by the metric function

fðrÞ in AdS-Schwarzschild (4.16):
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θ∞ðr�Þ ¼
Z

∞

r�
dr

r�
r

ffiffiffiffiffiffiffiffiffiffiffi
fðr�Þ
fðrÞ

s
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2fðrÞ − r2�fðr�Þ
p : ðC1Þ

In contrast, for empty AdS, we have fAdS ¼ r2 þ 1≡ hðrÞ,
which we call h to avoid confusion in what follows. By
symmetry, we have

π

2
¼ lim

r�→0

Z
∞

r�
dr

r�
r

ffiffiffiffiffiffiffiffiffiffiffi
hðr�Þ
hðrÞ

s
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2hðrÞ − r2�hðr�Þ
p ; ðC2Þ

which is essentially the string that cuts through the middle
of the space. Thus for finite values of r�,

π

2
≥
Z

∞

r�
dr

r�
r

ffiffiffiffiffiffiffiffiffiffiffi
hðr�Þ
hðrÞ

s
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2hðrÞ − r2�hðr�Þ
p : ðC3Þ

To proceed, we first observe that for r ≥ r� ≥ rH, we
have

hðr�Þ
hðrÞ ≥

fðr�Þ
fðrÞ : ðC4Þ

This is straightforward if we expand both f and h explicitly.
Additionally, we need the fact that for d ≥ 4 and r ≥ r�

r2fðr2Þ − r2�fðr2�Þ ≤ r2hðrÞ − r2�hðr�Þ; ðC5Þ

the proof of which is quite immediate:

r2fðr2Þ − r2�fðr2�Þ ¼ r2hðrÞ − r2�hðr�Þ

þ ðr2H þ 1Þrðd−2ÞH

�
1

rðd−4Þ�
−

1

rðd−4Þ

�

≤ r2hðrÞ − r2�hðr�Þ;

where we have used the fact that since r� ≥ rH, the second
term is negative or zero for d ≥ 4.
Finally, (C4)–(C5) allow us to conclude

θ∞ðr�Þ ¼
Z

∞

r�
dr

r�
r

ffiffiffiffiffiffiffiffiffiffiffi
fðr�Þ
fðrÞ

s
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2fðrÞ − r2�fðr�Þ
p

≤
Z

∞

r�
dr

r�
r

ffiffiffiffiffiffiffiffiffiffiffi
hðr�Þ
hðrÞ

s
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2hðrÞ − r2�hðr�Þ
p ≤

π

2
:

ðC6Þ

2. Wilson loops in planar AdS5 × S5

In this appendix we investigate the possible com-
plications for Wilson loops in the more “realistic”

(asymptotically) AdS5 × S5 setup. We use notation con-
sistent with Maldacena [36].

ds2 ¼ α0
�
−
U2fðUÞ

R2
dt2 þU2

R2
d~x2 þ R2

U2fðUÞdU
2 þ dΩ2

5

�
;

ðC7Þ

where fðUÞ ¼ 1 for pure AdS and fðUÞ ¼ 1 −U4
H=U

4 for
the planar black hole with horizon at U ¼ U0.
The world sheet action is given by

S ¼ T
2π

Z
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂xUÞ2 þU2fðUÞð∂xθÞ2 þ

U4

R4
fðUÞ

r
:

ðC8Þ

The action (C8) does not explicitly depend on x or θ. In
terms of two conserved charges l and U�, the equations of
motion are given by

ð∂xUÞ2 ¼ U4

R4
fðUÞ

�
U2ðU2fðUÞ −U2�l2Þ
U4�ðfðU�Þ − l2Þ − 1

�

ð∂xθÞ2 ¼
l2U4

U2�R4ðfðU�Þ − l2Þ

ð∂UθÞ2 ¼
l2

U2�fðUÞ
1

U2

U2�
ðU2

U2�
− l2Þ − ð1 − l2Þ ; ðC9Þ

where l is the angular momentum andU� the point at which∂xU ¼ 0, related to a second conserved charge associated
to the Killing vector ∂x. The quantities U� and l are related
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FIG. 28 (color online). The boundary width L of the Wilson
loop as a function of the minimal radial value U�, for a black hole
with UH ¼ 1 (in units of the AdS radius R) for different angular
momenta: l ¼ 0 (red), l ¼ 0.25 (blue), l ¼ 0.5 (green), l ¼ 0.75
(magenta), and l ¼ 0.99 (black).
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to the loop width L and the angular displacement Δθ,
respectively, by

L
2
¼
Z

∞

U�
dU

R2

U2
ffiffiffiffiffiffiffiffiffiffiffi
fðUÞp 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðU2ðU2fðUÞ−l2Þ
U4�ðfðU�Þ−l2Þ −1Þ

q
Δθ
2
¼ l
U�

Z
∞

U�
dU

1ffiffiffiffiffiffiffiffiffiffiffi
fðUÞp 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðU2

U2�
−1ÞðU2

U2�
−l2þ1Þ

q : ðC10Þ

From (C10) we see that for given U�, one can decrease
the corresponding boundary loop width L by considering
nonzero l and Δθ. Numerical evidence shows that Umin,
the minimum of all U�, is in fact not (significantly) smaller
for nonzero angular momentum l (see Fig. 28). First,
a ∪-shaped solution only exists if we have l ≤

ffiffiffiffiffiffiffiffiffiffiffiffi
fðU�Þ

p
.

Second, the ⊔-shaped solutions constitute the dominant
saddle points for sufficiently large loop width L.
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