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We present a holographic perspective on magnetic oscillations in strongly correlated electron systems
via a fluid of charged spin 1=2 particles outside a black brane in an asymptotically anti-de-Sitter spacetime.
The resulting backreaction on the spacetime geometry and bulk gauge field gives rise to magnetic
oscillations in the dual field theory, which can be directly studied without introducing probe fermions, and
which differ from those predicted by Fermi liquid theory.
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I. INTRODUCTION

The de Haas–van Alphen effect [1] refers to quantum
oscillations in the magnetization as a function of 1=B,
present in metals at low temperature T and strong magnetic
field B. This phenomenon is generally associated with the
Fermi surface and the observed oscillations are usually
interpreted in terms of Fermi liquid theory and quasipar-
ticles [2]. The measurement of quantum oscillations is
a standard tool for investigating the electronic structure
of metallic systems and this extends to strange metallic
phases, where fermion excitations are strongly correlated
and the quasiparticle description breaks down. The
observation of quantum oscillations, in combination with
ARPES experiments, leads to the conclusion that low
temperature physics in such systems is still governed by
a Fermi surface, although the underlying physics is not
fully understood, see, e.g., [3,4], and may not conform to
the standard Fermi liquid picture. In this paper, we provide
a novel view of quantum oscillations that is not tied to a
quasiparticle description but is instead based on a holo-
graphic representation of the strongly correlated electron
system in terms of a dual gravitational model.
In recent years, gauge/gravity duality [5–7], has been

applied to model strongly coupled dynamics in various
condensed matter systems including strange metals (for
reviews see, e.g., [8,9]). Holographic systems at finite
charge density exhibit interesting non-Fermi liquid behav-
ior, revealed for instance in spectral functions of probe
fermions [10,11]. Here we develop a simple holographic
model for strongly correlated fermions in a magnetic field
and use it to study magnetic oscillations in an unconven-
tional setting. The model involves a fluid of charged spin
1=2 particles outside a dyonic black brane in 3þ 1

dimensional anti-de Sitter (AdS) spacetime. It takes into
account the backreaction due to charged bulk matter on the
spacetime geometry and the bulk gauge field and thus

extends the so-called electron star model [12,13] to include
a magnetic field and finite temperature. We obtain oscil-
lations in the magnetization directly from the bulk gravi-
tational physics by incorporating Landau quantization into
the charged fluid description. The method differs concep-
tually from earlier probe fermion computations of magnetic
oscillations in an electron star background [14,15] and it
predicts a dependence on the magnetic field and temper-
ature of the oscillation amplitude that departs from Fermi
liquid theory.

II. THE MODEL

Our approach is based on an extension of the electron
star geometry, developed in [12,13,16,17]. For related work
see also [18,19]. This geometry is obtained by coupling
Einstein–Maxwell theory to a charged perfect fluid, of
noninteracting fermions of mass m and charge normalized
to one in units of the Maxwell coupling constant e,

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ

−
1

4e2

Z
d4x

ffiffiffiffiffiffi
−g

p
FμνFμν −

Z
d4x

ffiffiffiffiffiffi
−g

p
Lfl; ð1Þ

where κ2 ¼ 8πGN is the gravitational coupling, the AdS
length scale L is given in terms of the negative cosmo-
logical constant Λ ¼ −3=L2, and κ=L ≪ 1 corresponds to
the classical gravity (large N) regime. The bulk fermions
are treated in a Thomas–Fermi approximation, valid for
model parameters satisfying

mL ≫ 1; e2 ∼
κ

L
≪ 1: ð2Þ

In [20,21] more refined computations involving holo-
graphic Fermi systems confirmed that the electron star
qualitatively reproduces essential features of these models,
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even beyond its a priori regime of validity defined
by Eq. (2).
Previous work on magnetic effects in holographic metals

[14,22–27] has not taken into account the full backreaction
on the geometry due to the presence of charged matter
in a nonvanishing magnetic field at finite temperature.
The semiclassical approximation used in the electron star
construction, suitably generalized to finite B and T, also
allows the backreaction to be included in the B ≫ T
regime, which is of primary interest to the study of
magnetic oscillations. Including the backreaction provides
direct access to the underlying strong coupling dynamics
without having to introduce probe fermions.
We work in a 3þ 1 dimensional spacetime with local

coordinates ðt; x; y; rÞ, which asymptotes to AdS4 and
which is static, stationary and has translational symmetry
orthogonal to the radial direction. At any given point in the
spacetime the fluid is at rest in a local Lorentz frame eAμ , and
the fluid velocity is given by uμ ¼ eμ0. The state of the
charged fluid is completely determined by a local chemical
potential and magnetic field,

μloc ¼ Aμuμ; Hloc ¼ e½μ1 e
ν�
2 Fμν; ð3Þ

where Aμ is a Uð1Þ gauge potential, and Fμν the corre-
sponding field strength tensor. This means that the charge
density σ, the pressure p, and the magnetization density η
of the fluid depend only on μloc and Hloc. An equation of
state for the fluid is obtained as in [13], except now the
constituent dispersion relation is that of Dirac fermions in a
magnetic field,

E2
l ¼ m2 þ k2 þ ð2lþ 1ÞγHloc � γHloc; ð4Þ

where γ is a constant proportional to the gyromagnetic ratio
of the fermions. The index l ≥ 0 labels Landau levels and
the last term on the right-hand side is due to Zeeman
splitting. Assuming 1=N effects due to bulk thermalization
can be neglected [16,17], the local pressure, charge and
magnetization of the fluid are then obtained by filling states
up to the Fermi level given by μloc. The number of occupied
Landau levels is thus a local quantity,

lfilled ¼
�
μ2loc −m2

2γHloc

�
; ð5Þ

which is determined by the equations of motion and varies
with radial position in the bulk geometries of interest. In
particular, there is no fluid in regions where lfilled < 0.
The field variables only depend on the radial coordinate r

and we choose the following parametrization for the metric,

ds2 ¼ L2

r2

�
−
ĉðrÞ2
ĝðrÞ2 dt

2 þ dx2 þ dy2 þ ĝðrÞ2dr2
�
; ð6Þ

and nonzero components of the gauge potential,

At ¼
eL
κ

ĉðrÞâðrÞ
rĝðrÞ ; Ay ¼

eL
κ
B̂x: ð7Þ

This conveniently leads to simple expressions for the local
chemical potential and magnetic field,

μlocðrÞ ¼
e
κ
âðrÞ; HlocðrÞ ¼

e
κL

B̂r2: ð8Þ

Inserting this ansatz into the Einstein-Maxwell field equa-
tions coupled to a charged fluid leads to a system of ODE’s
for fâðrÞ; ĉðrÞ; ĝðrÞg, which can be solved by numerical
methods along the lines of [16]. The numerical algorithm is
implemented on dimensionless field variables, denoted
by a hat, obtained from their dimensionful counterparts
by absorbing appropriate powers of κ, e, and L. For more
detail, we refer to the Appendix.
The local chemical potential μloc vanishes both at the

horizon, r ¼ 1, and at the AdS boundary, r ¼ 0. It follows
that lfilled can only be positive inside a finite range
ri > r > re, defining the radial region where the fluid is
supported. The region between the horizon and the inner
edge of the fluid 1 > r > ri is described by a vacuum
dyonic black brane solution. We also have a vacuum
solution in the region outside the fluid re > r > 0, but
with different black brane parameters due to the additional
mass and charge of the intervening fluid. The magnetic
field is the same in all three regions as the fluid particles do
not carry magnetic charge, but the bulk magnetization
varies due to the presence of the fluid.
A typical profile for the fluid charge density σ̂ is shown

in Fig. 1. The fluid does not extend all the way to the
horizon or the boundary and the bumplike shape of the
profile reveals the presence of jumps in the local number of
filled levels.
The AdS/CFT dictionary relates thermodynamic quan-

tities of the dual field theory to properties of the bulk metric
and gauge field. Temperature T̂ and entropy Ŝ in the dual
field theory are given by the Hawking temperature and

0. 0.5 1.
r0.

0.5

1.

FIG. 1 (color online). Profile of the fluid charge density σ̂, with
parameters chosen so that max lfilled ¼ 5.
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entropy of the black brane, while the energy Ê, chemical
potential μ̂, charge Q̂, magnetic field strength B̂ and
magnetization M̂ of the boundary dual are read off from
the asymptotic behavior of the bulk fields. The free energy
follows from evaluating the on-shell action, and is found to
satisfy the standard thermodynamic relation,

F̂ ¼ Ê − Ŝ T̂ −μ̂ Q̂ : ð9Þ

The field equations of the bulk theory give rise to the
following equation of state for the dual theory (see
Appendix for details),

3

2
Ê ¼ Ŝ T̂ þμ̂ Q̂−M̂ B̂; ð10Þ

which agrees with the corresponding relation for dyonic
black branes in AdS4.

III. RESULTS

The electron fluid solution is only found for restricted
values of B̂ and T̂ . In the absence of a magnetic field it was
already observed in [16,17], that there is a critical temper-
ature T̂ c above which there is no electron fluid and a phase
transition to a vacuum black brane configuration occurs. A
nonzero magnetic field brings two new aspects. First of all,
the transition temperature goes down monotonically as B̂ is
increased until it reaches zero at a critical magnetic field B̂c,
above which no electron fluid is supported at any temper-
ature. This is evident from our numerical solutions, but can
also be inferred from the analytic dyonic black brane
solution (provided in the Appendix). Raising either B̂ or
T̂ lowers the maximum value reached by the local chemical
potential μloc as a function of r in the dyonic black brane
background. For sufficiently high B̂ and/or T̂ the number
of occupied levels lfilled in (5) will be nowhere positive so
that no fluid can be supported and the vacuum dyonic black
brane is the only available solution.
Second, the order of the phase transition changes.

Whereas in [16,17] it was found to be of third order, it
becomes second order in the presence of a magnetic field.
This can be shown by a similar analytic argument as was
used in [17] for the B̂ ¼ 0 case. Consider a temperature just
below the transition temperature at B̂ ≠ 0, keeping the
magnetic field fixed. The condition μ̂loc > m̂ is then
satisfied in a narrow band in the radial direction in the
dyonic black brane solution and inside this band the
fermions can occupy the lowest Landau level only.
Furthermore, the backreaction on the geometry due to
the fermion fluid can be neglected at temperatures very
close to the transition. In the presence of the fermion fluid
the free energy of the system is lowered by an amount given
by the on-shell action of the fluid, i.e., the integral of the

fluid pressure. Near the phase transition the pressure, given
by Eq. (A10) in the Appendix, scales as p̂ ∝ ðμ̂ − m̂Þ3=2. A
short callation along the lines of [17] then results in a free
energy difference, ΔF̂ ∝ ðT̂ c − T̂ Þ2, between the solution
with a fluid and a vacuum dyonic black brane, indicating a
second order phase transition. The same behavior is also
seen in our numerical solutions of the field equations with
the full backreaction included. In the limit of vanishing
magnetic field, the different Landau levels collapse
to a continuum and one obtains a softer dependence,
p̂ ∝ ðμ̂ − m̂Þ5=2, that leads to a third order phase transition
as was found in [17].
At nonvanishing magnetic field one can also approach

the phase transition by varying B̂ at fixed temperature. In
this case we find ΔF̂ ∝ ðB̂c − B̂Þ2 and the phase transition
is again of second order. We anticipate that going beyond
the Thomas–Fermi approximation will change the nature of
the phase transition. Indeed, a first order phase transition
was found at B̂ ¼ 0 using WBK wave functions for the
fermions in [21] and we expect this would be the case at
finite B̂ as well.
The B̂ − T̂ phase diagram reveals a periodic feature in

1=B̂. A representative plot for m̂ ¼ 0.5 is displayed in
Fig. 2. Changing the value of m̂ in the numerical calcu-
lations does not significantly affect the phase diagram,
apart from changing the critical values on the axes.
Different colors mark different values of the maximum
value of filled Landau levels lfilled, which increases from
left to right. At low temperatures the edges between regions
with a different number of occupied levels occur at
equal intervals in 1=B̂. This periodic feature is even more
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FIG. 2 (color online). Phase diagram of dyonic electron fluid
solutions for m̂ ¼ 0.5, with axes normalized such that the
boundary chemical potential is μ̂ ¼ 1. The different color
shadings mark parameter regions with different maximum
numbers of occupied Landau levels, increasing from left to
right. In the limit B̂ → 0 the edges between the regions all
asymptote to T̂ c, the maximal temperature at which the electron
fluid is supported at B̂ ¼ 0.
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apparent in the plots showing the magnetization M̂ as a
function of B̂ in Fig. 3. For temperatures close to the critical
transition temperature T̂ c, the magnetization differs only
slightly from that of a dyonic black brane at the same
temperature and magnetic field strength but when the
temperature is lowered the magnetization oscillates.
The oscillations are clearly visible when B̂ ≫ T̂ , which
is the regime where the de Haas–van Alphen effect is
observed experimentally.
Another feature is that the magnetization of the electron

fluid configuration is lower than that of a dyonic black
brane with the same parameters. This is more pronounced
as the value of m̂ is lowered and when m̂ becomes small
enough, the state crosses over from diamagnetic to para-
magnetic. The local magnetization is the sum of two
contributions, a diamagnetic one which originates from
the black brane and a paramagnetic one due to the fluid
which is a gas of free electrons at zero temperature. Varying
the parameter m̂ tunes the gravitational attraction between

the black brane in the center and the electron fluid
surrounding it. The weaker the interaction, the larger the
fluid region can grow and the more dominant the para-
magnetism becomes.
For small values of the magnetic field, the overall

amplitude of the magnetization is linear in B̂, as can be
seen in Fig. 3. This differs from the behavior predicted by
the Landau theory of Fermi liquids via the Kosevich–
Lifshitz formula [2,28]. It also differs from earlier holo-
graphic results obtained in a probe limit in [24,25] and
appears to be due to the gravitational backreaction which is
included in our model.
The plots in Fig. 3 do not show any overlap of

oscillations with different periods, suggesting that a single
Fermi surface is responsible for the phenomenon. This is in
agreement with [15,24], where it was argued that magnetic
oscillations are dominated by a single (extremal) Fermi
momentum, despite the large number of holographically
smeared Fermi surfaces in this system, which turn into a
continuum in the Thomas–Fermi limit.
Figure 4 shows the period in 1=B̂ of the quantum

oscillations vs temperature. It reveals a similar trend as
is observed in experiments, where the period is constant at
low temperature but increases with rising T until the
oscillations get washed out at higher temperatures. Our
numerical results suggest that the oscillation period
diverges in the holographic model at the critical temper-
ature for the transition to the dyonic black brane, above
which the electron fluid is no longer supported.

IV. DISCUSSION

We have presented a holographic model for a 2þ 1
dimensional system of strongly correlated electrons in a
magnetic field, involving 3þ 1 dimensional fermions
treated in a Thomas–Fermi approximation in an asymp-
totically AdS dyonic black brane background, taking into
account both the gravitational and electromagnetic back-
reaction due to the charged matter. The system exhibits de
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FIG. 3 (color online). Magnetization vs magnetic field strength for various values of m̂. Solid lines correspond to the electron fluid
geometry, dashed ones to a dyonic black brane at same temperature and chemical potential. The labels denote temperatures
T̂ =T̂ c ¼ 0.9ðaÞ; 0.3ðbÞ; 3 · 10−3ðcÞ. In the leftmost plot ðbÞ was omitted due to too much visual overlap with the other curves. In the
rightmost plot the relative sign of M̂ and B̂ changes as a function of magnetic field, indicating a crossover from a diamagnetic to a
paramagnetic state.
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FIG. 4 (color online). Period of the de Haas–van Alphen
oscillations as a function of temperature for m̂ ¼ 0.5, the dotted
vertical line marks the critical temperature where the solution
makes the transition to a dyonic black brane.
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Haas–van Alphen oscillations that appear to be dominated
by a single sharp Fermi surface, while the oscillation
amplitude has a non-Fermi liquid character that departs
from earlier probe fermion computations.
While the semiclassical model studied here provides a

relatively simple framework for numerical computations, it
is rather crude. A Thomas–Fermi treatment of bulk fer-
mions is known to wash out some quantum features that are
present in more realistic models [15,29] and the sharp
edges of the fluid profile for individual Landau levels can
introduce fictitious nonanalyticities into observables that
involve derivatives acting on the bulk fields [17]. The
latter problem can presumably be remedied by introducing
thermal effects in the bulk fluid or by replacing the
anisotropic electron star by a quantum many-body model
based on WKB wave functions for bulk Landau levels,
along the lines of [21], where the tails of the fermion wave
functions naturally smooth out the edges found in the fluid
description, but we leave this for future work.

ACKNOWLEDGMENTS

We would like to thank N. Bucciantini, E. Kiritsis,
V. Jacobs, K. Schalm, and J. Zaanen for helpful discus-
sions. This work was supported in part by the Icelandic
Research Fund and by the University of Iceland Research
Fund. V. G. M. P. and L. T. acknowledge the Swedish
Research Council for funding under Contracts No. 623-
2011-1186 and No. 621-2014-5838, respectively. T. Z. was
partially supported by the Nederlandse Organisatie voor
Wetenschappelijk Onderzoek (NWO) under the research
program of the Stichting voor Fundamenteel Onderzoek
der Materie (FOM).

APPENDIX

1. Field Equations

We adapt the electron star construction developed in
[12,13,16,17] to include the effects of a background
magnetic field. Our starting point is the action (1) in the
main text, which describes a charged fluid coupled to
Einstein–Maxwell theory. We will be considering static
solutions describing a charged fluid suspended above the
horizon of a planar dyonic black brane in 3þ 1 dimen-
sional asymptotically AdS spacetime with radial electric
and magnetic fields and translation symmetry in the two
transverse directions. The field equations are given by

Rμν −
1

2
Rgμν þ Λgμν ¼ κ2ðTem

μν þ Tfl
μν þ TJ

μν þ TM
μνÞ;

∇νFμν ¼ e2ðJμ þ∇νMμνÞ; ðA1Þ

where Jμ and Mμν are the fluid current and magnetization
tensor,

Jμ ¼ −
δLfl

δAμ
; Mμν ¼ −2

δLfl

δFμν
; ðA2Þ

and the stress energy tensors are given by

Tem
μν ¼ 1

e2

�
FμλFν

λ −
1

4
gμνFλσFλσ

�
;

Tfl
μν ¼ −gμνLfl;

TJ
μν ¼ −JðμAνÞ þ uλAλuðμJνÞ − uλJλuðμAνÞ;

TM
μν ¼ MλðμFνÞλ þ uλFλ

ρuðμMνÞρ − uλMλρuðμFνÞρ: ðA3Þ

Let eAμ denote a local Lorentz frame where the fluid is at
rest. The fluid four velocity is then given by uμ ¼ eμ0 and
the fluid components experience a local chemical potential
and a local magnetic field,

μloc ¼ Aμuμ; Hloc ¼ e½μ1 e
ν�
2 Fμν; ðA4Þ

which completely determine the state of the charged fluid at
a given point in the bulk spacetime. In particular, the
electric current and magnetic polarization, which can be
expressed in terms of local charge and magnetization

densities, Jμ ¼ σuμ, Mμν ¼ 2ηe½μ1 e
ν�
2 , and the on-shell fluid

Lagrangian density, given by the pressure Lfl ¼ −p for the
static solutions we are considering, are all functions of μloc
and Hloc.
The formalism we are using derives from so called spin

fluid models, which have been studied in general relativity
since the 1970s [30–35]. We have only presented the
minimal ingredients needed to describe the static geom-
etries that are of interest here, but the full formalism can
also handle more general dynamical backgrounds.

2. Fluid Variables

The bulk variables that describe the fluid are the charge
density σ, the magnetization density η and the pressure
p. The fluid components are locally free fermions in an
external magnetic field along the radial direction, with
dispersion relation

E2
l ¼ m2 þ k2 þ ð2lþ 1ÞγHloc � γHloc; ðA5Þ

where the index l ≥ 0 labels the Landau levels, γ is a
constant proportional to the gyromagnetic ratio of the
constituent fermions, and the � in the rightmost term is
due to Zeeman splitting. There is a degeneracy between
different sign Zeeman states in adjacent Landau levels. The
sum over levels can therefore be rearranged into a sumP0

l≥0, where the prime indicates inserting a relative factor
of 1=2 in the l ¼ 0 term. The density of states is
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nðEÞ ¼ βγHloc

X
l≥0

0θðE2 − ϵ2lÞ
Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 − ϵ2l

q ; ðA6Þ

where β is a constant and ϵl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2lγHloc

p
is the

energy in the Landau level labelled by l. In the limit of
weak magnetic field the sum over Landau levels can be
replaced by an integral, which is easily performed to
reproduce the density of states used to construct an electron
star in zero magnetic field in [13].
The local charge density σ is obtained from the density of

states via

σ ¼
Z

μloc

0

nðEÞdE; ðA7Þ

and the pressure and magnetization density are obtained
from the charge density by the thermodynamic relations,

∂p
∂μloc ¼ σ;

∂p
∂Hloc

¼ η; ðA8Þ

analogous to the electron star [13]. The constant of
integration in p is fixed such that p vanishes for σ ¼ 0.
Using the density of states in (A6) leads to the following
explicit expressions for the fluid variables in terms of the
local chemical potential and local magnetic field,

σ ¼ βγHloc

X
l≥0

0θðμ2loc − ϵ2lÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2loc − ϵ2l

q
; ðA9Þ

p ¼ γβ

2
Hloc

X
l≥0

0θðμ2loc − ϵ2lÞ
"
μloc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2loc − ϵ2l

q
− ϵ2l log

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2loc − ϵ2l

q
þ μloc

ϵl

!#
; ðA10Þ

η ¼ γβ

2

X
l≥0

0θðμ2loc − ϵ2lÞ
"
μloc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2loc − ϵ2l

q
− ð2ϵ2l −m2Þ log

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2loc − ϵ2l

q
þ μloc

ϵl

!#
: ðA11Þ

The matter stress-energy tensors in (A3) reduce to

Tfl
μν ¼ pgμν; TJ

μν ¼ μlocσuμuν;

TM
μν ¼ −

1

2
Hlocηðe1μe1ν þ e2μe2νÞ: ðA12Þ

We proceed to solve the combined Einstein and Maxwell
equations for this system with the above expressions for the
fluid variables.

3. Metric and gauge field ansatz

Parametrizing nonvanishing components of the tetrad as

e0t ¼
L
r
ĉðrÞ
ĝðrÞ ; e1x ¼ e2y ¼

L
r
; e3r ¼

L
r
ĝðrÞ; ðA13Þ

and the gauge potential as

At ¼
eL
κ

ĉðrÞâðrÞ
rĝðrÞ ; Ay ¼

eL
κ
B̂x; ðA14Þ

yields the following local chemical potential and magnetic
field,

μlocðrÞ ¼
e
κ
âðrÞ; HlocðrÞ ¼

e
κL

B̂r2: ðA15Þ

Hats denote dimensionless quantities and we find it
useful to convert all parameters and field variables into
dimensionless form [13],

m̂ ¼ κ

e
m; β̂ ¼ e4L2

κ2
β; γ̂ ¼ κ

eL
γ;

μ̂loc ¼
κ

e
μloc; Ĥloc ¼

κL
e
Hloc;

σ̂ ¼ eκL2σ; p̂ ¼ κ2L2p; η̂ ¼ eκLη: ðA16Þ

4. Final form of the field equations

The Einstein and Maxwell equations (A1), with stress-
energy tensors given by (A12) and the ansatz (A13)–(A14)
for the metric and the Maxwell gauge field, reduce to a
system of first order ordinary differential equations,

r
dĉ
dr

¼ −
1

2
ĉĝ2â σ̂; ðA17Þ

r
dĝ
dr

¼ −
3

2
ĝ −

1

4
ĝ3ðB̂2r4 þ q̂2r4 − 6 − 2p̂þ 2â σ̂Þ;

ðA18Þ

r
dâ
dr

¼ −
â
2
− r2ĝ q̂−

âĝ2

4
ðB̂2r4 þ q̂2r4 − 6 − 2p̂Þ; ðA19Þ

r
dq̂
dr

¼ −
1

r2
ĝ σ̂; ðA20Þ

r
dM̂
dr

¼ B̂r −
η̂

r
þ 1

2
âĝ2σ̂ M̂ : ðA21Þ

We have introduced two auxiliary functions. One is q̂ðrÞ,
which is related to the value of the local electric field by
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et0e
r
3Ftr ¼ e

κL r
2q̂. The other is M̂, which originates from

the functional derivative δS
δFxy

of the on-shell action, and

whose value at r ¼ 0 is the magnetization in the boundary
theory, M̂ ¼ limr→0 M̂ðrÞ. Finally, energy-momentum
conservation can be expressed as

dp̂
dr

¼ σ̂
dâ
dr

þ 2rB̂ η̂ : ðA22Þ

The following quantity

Ŷ ¼ ĉ

�
3þ p̂
r3

−
3

r3ĝ2
−
2â q̂
rĝ

þ 2B̂ M̂−
rðB̂2 þ q̂2Þ

2

�
ðA23Þ

is constant along the radial direction r when the field
equations are satisfied, and later on we use this to determine
(A30), the equation of state in the dual boundary field theory.

5. Solutions

In the presence of a charged fluid we have to solve the
field equations (A17)–(A21) numerically. As discussed in
the main text, the fluid is only supported where the local
chemical potential is larger than the minimum energy state
in the lowest Landau level. In solutions with a nonvanishing
fluid profile this condition is met inside a radial range
1 > ri > r > re > 0, where r ¼ 1 is the radial location of
the brane horizon, and r ¼ 0 marks spatial infinity of the
spacetime.
In the region 1 > r > ri, there is no fluid and the

solution of the field equations is a dyonic black brane,

ĉðrÞ ¼ 1;
âðrÞ
rĝðrÞ ¼ Q̂ð1 − rÞ;

1

ĝðrÞ2 ¼ 1 −
2þ Q̂2 þ B̂2

2
r3 þ Q̂2 þ B̂2

2
r4: ðA24Þ

The local chemical potential grows as we move outwards
from the horizon and by Eq. (5) in the main text the lowest
Landau level can be occupied if μ̂2loc ≥ m̂2. The radial
position r ¼ ri outside the black brane horizon where this
condition is first satisfied defines the inner edge of the fluid.
The dyonic black brane solution then provides initial data at
r ¼ ri for the subsequent numerical evaluation of the
system of equations (A17)–(A21) in the fluid region. At
high temperature, the condition is not satisfied anywhere
outside the brane horizon. In this case there will be no fluid
and the only solution is the dyonic black brane itself.
Whenever a solution with a fluid present exists, however, it
has a lower free energy density than a dyonic black brane at
the same temperature.
Returning to the description of the fluid solution, the

local chemical potential reaches a maximum and then
decreases towards the exterior edge r ¼ re where the fluid

is no longer supported. Outside the fluid, we have another
dyonic black brane solution with parameters determined by
the output of the numerical integration at r ¼ re,

ĉðrÞ ¼ c;
âðrÞ
rĝðrÞ ¼ μ̂ − Q̂r;

1

ĝðrÞ2 ¼ 1 − Êr3 þ Q̂2 þ B̂2

2
r4; ðA25Þ

with

B̂ ¼ B̂; c ¼ ĉðreÞ; Q̂ ¼ q̂ðreÞ;

μ̂ ¼ âðreÞ
reĝðreÞ

þ req̂ðreÞ

Ê ¼ 1

r3e

�
1 −

1

ĝðreÞ2
�
þ re

2
ðB̂2 þ q̂ðreÞ2Þ: ðA26Þ

Calligraphic letters denote boundary quantities and hatted
calligraphic letters denote dimensionless boundary quan-
tities. The boundary magnetization is given by the value of
the auxiliary function M̂ðrÞ at r ¼ 0, which can obtained
by integrating (A21) from the outer edge of the fluid to the
AdS boundary,

M̂ ¼ lim
r→0

M̂ðrÞ ¼ −B̂re þ M̂ðreÞ: ðA27Þ

6. Thermodynamics: The dual field theory temperature and
entropy are the Hawking temperature and Bekenstein-
Hawking entropy of the black brane. Restoring dimensions
to our quantities, we obtain

T ¼ 1

8πcL
ð6 − Q̂2 − B̂2Þ; S ¼ 2π

κ2
V2; ðA28Þ

where the c keeps track of the different time normalization
at the inner and outer edges of the fluid and V2 is the
volume of the two-dimensional boundary. The free energy
is computed from the on-shell regularized Euclidean action,

F ¼ E − ST − μQ: ðA29Þ

Evaluating the conserved charge Y (A23) at the horizon of
(A23), and at the boundary (A25) gives the thermodynamic
relation

3

2
E ¼ ST þ μQ −MB; ðA30Þ

once we restore dimensions according to

E ¼ V2

κ2L
Ê; μ ¼ eL

κ
μ̂; Q ¼ V2

κeL2
Q̂;

B ¼ eL
κ
B̂; M ¼ V2

κeL2
M̂: ðA31Þ
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