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In this work we study the duality between F-theory and the heterotic string beyond the stable
degeneration limit in F-theory and large fiber limit in the heterotic theory. Building upon a recent proposal
by Clingher and Doran and by Malmendier and Morrison—which phrases the duality on the heterotic side
for a particular class of models in terms of (fibered) genus-two curves as nongeometric heterotic
compactifications—we establish the precise limit to the semiclassical heterotic string in both eight and
lower space-time dimensions. In particular for six-dimensional theories, we argue that this class of
nongeometric heterotic compactifications capture α0 quantum corrections to the semiclassical heterotic
supergravity compactifications on elliptically fibered K3 surfaces. From the nongeometric heterotic theory,
the semiclassical phase on the K3 surface is recovered from a remarkable limit of genus-two Siegel
modular forms combined with a geometric surgery operation. Finally, in four dimensions we analyze
another limit deep in the quantum regime of the nongeometric heterotic string, which we refer to as the
heterotic Sen limit. In this limit we can explicitly argue that the semiclassical two-staged fibrational
structure of the heterotic hypermultiplet moduli space—recently established by Alexandrov, Louis, Pioline,
and Valandro—gets corrected by quantum effects.
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I. INTRODUCTION

F-theory–heterotic duality remarkably relates in eight
space-time dimensions F-theory on an elliptically fibered
K3 surface to the heterotic string on the two torus [1–4].
Upon adiabatically fibering this duality over suitable base
spaces, the F-theory–heterotic duality generalizes to com-
pactifications in lower space-time dimensions as well.1

As we do not have a microscopic description of
F-theory, the duality to the heterotic string has given us
valuable insights into the physics of F-theory compactifi-
cations. The relationship of non-Abelian gauge groups in
F-theory to the heterotic string via the spectral cover
construction [2,6] has led to a powerful toolbox to
geometrically engineer (minimal) supersymmetric gauge
theories [7].2 As a result the dictionary between the
F-theory compactification space and the low energy
effective gauge theory particle spectrum is rather well
understood. Furthermore, on the heterotic side the duality
has shed light on certain nonperturbative aspects of the
heterotic string—such as NS5-branes states [9]—that enjoy
a geometric description in the dual F-theory description.
While the F-theory–heterotic duality dictionary is fairly

well established for (indexes of) particle spectra [7], it has
been less explored on the level of moduli spaces for
(quantum-exact) effective interactions. This is due to the

fact that the F-theory–heterotic duality is often formulated
in a certain limit—namely in a stable degeneration limit of
the F-theory geometry and a large fiber limit of the
heterotic compactification space [2,3,10]—which describes
the duality only at the boundary of the moduli spaces of the
dual theories.3

Building on earlier work [11,12,16] and by exploiting
the Shioda-Inose structure of certain elliptically fibered K3
surfaces [17–21]—based on the mathematical program
pursued by Clingher and Doran—Malmendier and
Morrison [22] achieve to identify the moduli spaces (and
thus the effective interactions) of a particular simple dual
F-theory–heterotic pair in eight space-time dimensions,
which describes the partial higgsing of the gauge group
E8 × E8 to E7 × E8 of the associated low energy effective
eight-dimensional supergravity theory. Resulting from the
duality they find that the quantum-exact effective heterotic
description is geometrically captured by a genus-two curve
and the low energy effective action is encoded in genus-two
Siegel modular forms [23]. Upon further compactifying to
lower space-time dimensions, it is further argued that
such simple geometric F-theory scenarios give rise to
nongeometric compactifications of the heterotic string
[16,22]. These heterotic string theories nevertheless pose
an effective geometric description in terms of genus-two
fibered projective varieties, which are not Calabi-Yau
varieties.*jiegu@th.physik.uni‑bonn.de

†jockers@uni‑bonn.de
1In particular, compactifying the eight-dimensional duality on

an additional two torus, F-theory–heterotic duality relates to the
type IIA–heterotic duality in six space-time dimensions [5].

2For a review on this topic, see, for instance, Ref. [8].

3See, for instance, Refs. [4,11–15], where particular inter-
actions are described beyond this limit.
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The aim of this article is to further analyze the
Clingher-Doran-Malmendier-Morrison F-theory–heterotic
correspondence [22]. We explicitly establish in this
picture—both in eight and in lower space-time
dimensions—the limit to the semistable degeneration
geometry on the F-theory side and the large fiber limit
on the heterotic side. Establishing this semiclassical limit to
the F-theory–heterotic duality provides for a natural start-
ing point to study heterotic quantum corrections to its
semiclassical large fiber approximation, as described by the
nongeometric effective heterotic compactification space.
Deep in the nongeometric heterotic regime, we discover

in the moduli spaces of genus-two fibered effective
heterotic compactifications the loci of constant (but non-
trivial) genus-two fibration. In analogy to the Sen limit in
F-theory [24], we call such loci the heterotic Sen limit. In
particular, for nongeometric heterotic compactifications to
six and four space-time dimensions, we connect the
heterotic Sen limit to the structure of the hypermultiplet
moduli space, as recently discussed in the semiclassical
approximation in Refs. [25,26]. By comparing with the
heterotic Sen limit, we give evidence that their proposed
hierarchical fibrational structure in the hypermultiplet
moduli space is a property of the semiclassical approxi-
mation in the absence of quantum corrections.
The organization of this article is as follows. In Sec. II we

discuss the F-theory–heterotic correspondence in eight
space-time dimensions. In particular, we establish the limit
to the semiclassical approximation of the F-theory–
heterotic duality in the F-theory stable degeneration limit
and the heterotic large volume limit in terms of the Siegel
operator acting on genus-two Siegel modular forms. In
Sec. III we consider the F-theory–heterotic correspondence
in the nongeometric phase adiabatically fibered over a P1

base. Again we establish the limit to the F-theory–heterotic
duality in the stable degeneration and the large fiber limit,
where we recover the semiclassical heterotic geometric
compactification on the elliptically fibered K3 surface.
Deep in the heterotic quantum regime, we define the
heterotic Sen limit, which allows us to compare with the
semiclassical two-staged fibrational structure of the hyper-
multiplet moduli space of four-dimensional heterotic com-
pactifications studied by Alexandrov, Louis, Pioline, and
Valandro. In Sec. IV we present our conclusions.

II. 8D N ¼ 2 F-THEORY–HETEROTIC DUALITY

It was proposed in Refs. [1–3] that F-theory compacti-
fied on an elliptic K3 surface with a section is dual to the
E8 × E8 heterotic string theory compactified on a torus T2.
Since then much work has been devoted to understand this
duality. The moduli space of the heterotic string has
complex dimension 18, combining the complex structure
modulus τ and the complexified Kähler modulus ρ ¼ Bþ
iJ of the torus as well as the 16 complex Wilson lines.

In the F-theory one can write down the Weierstrass model
for the elliptic K3 surface with a section

y2 ¼ x3 þ f8ðtÞxþ f12ðtÞ ð1Þ

where f8ðtÞ and f12ðtÞ are polynomials of degrees ≤ 8 and
≤12, respectively, of the affine coordinate t on the P1 base.
These are 22 parameters. After modding out the SLð2;CÞ
diffeomorphism on the base P1 as well as one overall
rescaling, one finds 18 complex moduli in the F-theory
as well.
Beyond the simple match of dimensionalities, an exact

dictionary between the moduli spaces of the two theories is
only known in the large volume limit on the heterotic side,
which corresponds to the stable degeneration limit on the
F-theory side [2,3,10]. In Ref. [11] a dictionary was given
when all the Wilson lines are turned off. Clingher and
Doran and Malmendier and Morrison recently extended
this result to one nontrivial Wilson line in the heterotic
theory [20–22]. Our first task is to analyze their proposal in
further detail by exhibiting its relation to the duality in the
large volume/stable degeneration limit.

A. Moduli space of the E8 × E7 heterotic string

The E8 × E8 heterotic theory on T2 with one nontrivial
Wilson line has the unbroken gauge group E8 × E7. Its
moduli space is parametrized by two complex moduli τ; ρ
and the complex Wilson line z, and it is given by [22,27]4

Mhet ¼ D2;3=OþðL2;3Þ ð2Þ

with the Teichmüller space

D2;3 ¼ ðOð2Þ ×Oð3ÞÞnOð2; 3Þ: ð3Þ

The action of the U-duality group OþðL2;3Þ mixes all
moduli τ; ρ; z, where the U-duality lattice L2;3 of signature
(2, 3) is the orthogonal complement of the sublattice
E8ð−1Þ ⊕ E7ð−1Þ in the unique even unimodular lattice
Λ2;18 of signature (2, 18). The sublattice E8ð−1Þ ⊕ E7ð−1Þ
is associated to the remaining 17 Wilson lines to be set
to zero.
The Teichmüller space D2;3 is isomorphic to the genus-

two Siegel upper half-space [28]

H2 ¼
n
τ ¼

� τ z
z ρ

����ImðτÞpos:definite
o
; ð4Þ

where τ;ρ;z∈C. The duality asserts that the Siegel three-
fold A2¼H2=Spð4;ZÞ, which is a partial compactification

4Here, we follow Ref. [22] and use the index 2 subgroup
OþðΛ2;3Þ of the full duality group OðΛ2;3Þ, as the former is the
maximal subgroup for which modular forms are holomorphic.
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of the moduli space of genus-two curves, is isomorphic to
the moduli space Mhet.
The Siegel threefold A2 has a boundary H0 and two

singular surfaces of Z2-orbifold singularities known as the
Humbert surfaces H1 and H4. We refer to them as divisors
H0, H1, and H4, respectively, in both the compactified
moduli space Ā2 of genus-two curves and the compactified
heterotic moduli space M̄het. The boundary H0 at ρ → i∞
is associated to a singular genus-two curve with a nodal
point. At the Humbert surface H1 at z ¼ 0 the genus-two
curve degenerates into two genus-one components trans-
versely intersecting in a single double point, whereas the
Humbert surface H4 at τ ¼ ρ describes a (generically)
smooth genus-two curve with a nongeneric Z2 automor-
phism (in addition to the hyperelliptic involution). In the
heterotic theory, the divisor H0 maps to the large volume
limit, at the surface H1 the Wilson line is turned off, and at
the surface H4 a Z2-quantum symmetry emerges.
As the Siegel threefold A2 is parametrized by the ring of

genus-two Siegel modular forms of even weight generated
by the modular forms ψ4;ψ6; χ10; χ12 with weights 4, 6, 10,
12, respectively [29], it is tempting to identify the heterotic
moduli space M̄het with the weighted projective space
P3
ð2;3;5;6Þ of homogeneous coordinates ψ4;ψ6; χ10; χ12. We

will illustrate momentarily that this description is not quite
complete.

Let us recall the definition of the modular forms ψ2k of
the classical Siegel Eisenstein series of weight 2k

ψ2kðτÞ ¼
X
ðC;DÞ

detðCτ þDÞ−2k; k ∈ Zþ: ð5Þ

Here, the sum is taken over all equivalence classes of pairs
ðC;DÞ of symmetric 2 × 2 integral matrices subject to the
equivalence relation ðC;DÞ ∼ ðM · C;M ·DÞ in terms of
any SLð2;ZÞ matrix M. Furthermore, χ10; χ12 are two
Siegel cusp forms defined by [21,30]

χ10 ¼
43867

21235527 · 53
ðψ4 · ψ6 − ψ10Þ; χ12

¼ 131 · 593
213375372337

ð3272ψ3
4 þ 2 · 53ψ2

6 − 691ψ12Þ; ð6Þ

which—as Siegel cusp forms—are mapped to zero under
the Siegel operator

ðΦχkÞðτÞ ¼ lim
ρ→i∞

χk

�
τ 0

0 ρ

�
¼ 0: ð7Þ

The ring of all genus-two Siegel modular forms has one
more generator, namely a cusp form χ35 of odd weight
[31].5 It is related to the Siegel modular forms of even
weight by [31]

χ235 ¼
1

21239
χ10ð224315χ512 − 21339ψ3

4χ
4
12 − 21339ψ2

6χ
4
12 þ 33ψ6

4χ
3
12 − 2 · 33ψ3

4ψ
2
6χ

3
12 − 21438ψ2

4ψ6χ10χ
3
12

− 22331252ψ4χ
2
10χ

3
12 þ 33ψ4

6χ
3
12 þ 2113637ψ4

4χ
2
10χ

2
12 þ 211365 · 7ψ4ψ

2
6χ

2
10χ

2
12 − 2233953ψ6χ

3
10χ

2
12

− 32ψ7
4χ

2
10χ12 þ 2 · 32ψ4

4χ
2
6χ

2
10χ12 þ 211355 · 19ψ3

4ψ6χ
3
10χ12 þ 220385311ψ2

4χ
4
10χ12 − 32ψ4ψ

4
6χ

2
10χ12

þ 2113552ψ3
6χ

3
10χ12 − 2ψ6

4ψ6χ
3
10 − 21234ψ5

4χ
4
10 þ 22ψ3

4ψ
3
6χ

3
10 þ 2123452ψ2

4ψ
2
6χ

4
10

þ 2213754ψ4ψ6χ
5
10 − 2ψ5

6χ
3
10 þ 2323955χ610Þ: ð8Þ

To further study our moduli spaces, we now locate the
three divisorsH0; H1; H4 in the space P3

ð2;3;5;6Þ. The surface
H1 at z ¼ 0 is given by χ10 ¼ 0, while the surface H4 at

τ ¼ ρ becomes
χ2
35

χ10
¼ 0, which is a polynomial constraint in

the (even) generators ψ4;ψ6; χ10; χ12.
The large volume divisor H0 is more complicated. The

Siegel operator sends a Siegel cusp form to zero [cf.,
Eq. (7)] and maps a Siegel Eisenstein series to an elliptic
Eisenstein series of the same weight

ðΦψ2kÞðτÞ ¼ lim
ρ→i∞

ψ2k

�
τ 0

0 ρ

�
¼ E2kðτÞ: ð9Þ

Furthermore, due to the periodicity of ρ, a Siegel modular
form ϕ of weight k enjoys the Jacobi-Fourier development

ϕk ¼
X∞
m¼0

ϕk;mðτ; zÞe2πimρ: ð10Þ

ϕk;mðτ; zÞ is a Jacobi form of weight k and index m, which
satisfies the two modular transformation properties

ϕk;m

�
aτ þ b
cτ þ d

;
z

cτ þ d

�
¼ ðcτ þ dÞke2πimcz2

cτþd ϕk;mðτ; zÞ;

ϕk;mðτ; zþ λτ þ μÞ ¼ e−2πimðλ2τþ2λzÞϕk;mðτ; zÞ; ð11Þ

5The ring of all genus-two Siegel modular forms describes a
double cover of the Siegel threefold A2 as the modular forms
of odd degree reverse their sign with respect to the modular
transformation of the matrix Diagðþ1;−1;þ1;−1Þ ∈
Spð4;ZÞ. This implies that a given genus-two curve uniquely
specifies the value of all even modular forms, but determines the
odd modular forms only up to a sign.
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with λ; μ ∈ Z and

�
a b
c d

�

∈ SLð2;ZÞ. Since ϕk;0ðτ; zÞ of index 0 is independent of z
(it is an elliptic modular form of weight k), we arrive with
Eqs. (7) and (9) at

lim
ρ→i∞

ψ2kðτÞ ¼ E2kðτÞ; lim
ρ→i∞

χkðτÞ ¼ 0: ð12Þ

The coefficients in the full Jacobi-Fourier development of
the Siegel Einstein series are given in Ref. [32]

E2kðτÞ ¼
X
N

aðNÞe2πiTrðNτÞ: ð13Þ

The sum is taken over all half-integral symmetric matrices
N with integral entries on the diagonal. Combined with the
definition (6), we find

lim
ρ→i∞

χ12
χ10

¼ −
ζ2 þ 10ζ þ 1

3ðζ − 1Þ2 −
4ðζ − 1Þ2q

ζ

−
4ðζ þ 2Þð2ζ þ 1Þðζ − 1Þ2q2

ζ2
þOðq3Þ; ð14Þ

where q ¼ e2πiτ and ζ ¼ e2πiz. This series agrees with

the expansion of ℘ðz;τÞ
π2

in q and ζ, where ℘ðz; τÞ is the

Weierstrass ℘ function. As limρ→i∞
χ12
χ10

and ℘ðz;τÞ
π2

have the
same modular properties, they must be identical, i.e.,

lim
ρ→i∞

χ12ðτÞ
χ10ðτÞ ¼ ℘ðz;τÞ

π2
:

ð15Þ

Therefore, in the large volume limit the homogeneous
coordinates ðψ4;ψ6; χ10; χ12Þ of P3

ð2;3;5;6Þ become

ðE4; E6; 0; 0Þ, which furnishes a subvariety h0 of codimen-
sion two. It is located within the nontransverse intersection

of the divisors χ10 and
χ2
35

χ10
of the Humbert surfaces H1 and

H4. As h0 has not the correct dimensionality to be
identified with the boundary divisor H0, we consider the
blowup of P3

ð2;3;5;6Þ along the subvariety h0

π∶ Blh0P
3
ð2;3;5;6Þ → P3

ð2;3;5;6Þ; ð16Þ

explicitly realized by the incidence correspondence

Blh0P
3
ð2;3;5;6Þ ¼ fðI0; I2;ψ4;ψ6;χ10;χ12ÞjI2χ10 − I0χ12 ¼ 0g:

ð17Þ
Here, ðI0; I2;ψ4;ψ6; χ10; χ12Þ denote the homogeneous
coordinates of the total space PðO ⊕ Oð1ÞÞ → P3

ð2;3;5;6Þ,

where the projective fiber coordinates ðI0; I2Þ have weight
(0, 1) with respect to the base space P3

ð2;3;5;6Þ.
Taking now the limit ρ → i∞ in the blown-up moduli

space Blh0P
3
ð2;3;5;6Þ, we approach the fiber of the exceptional

divisor π−1ðh0Þ with the coordinate ratio limρ→i∞
χ12
χ10

¼ I2
I0
¼

℘ðz;τÞ
π2

. We claim that the exceptional divisor π−1ðh0Þmaps to
the boundary divisor H0, and that the blowup space
Blh0P

3
ð2;3;5;6Þ describes the compactified heterotic string

moduli space, i.e.,

Blh0P
3
ð2;3;5;6Þ ≃ M̄het: ð18Þ

While blowing up the codimension two locus h0 is a
natural operation to arrive at the moduli space M̄het,
a detailed matching of moduli spaces would require a
comparison to the compactification procedure of the Siegel
threefold A2 as developed in Refs. [33,34]. This is beyond
the scope of this note. Instead, we will give a physics
argument in the next subsection that justifies the identi-
fication of Blh0P

3
ð2;3;5;6Þ with the moduli space M̄het.

B. Clingher-Doran-Malmendier-Morrison construction

Using the Shioda-Inose structure [19–21] onK3 surfaces
with Picard lattices of rank 17, in Ref. [22] Malmendier and
Morrison determined the dictionary between the moduli
space of F-theory compactified on an elliptic K3 surface
with II� and III� singular fibers and that of the E8 × E8

heterotic string compactified on T2 with one nontrivial
Wilson line. Starting from the Weierstrass model for the
elliptically fibered K3 surface

y2 ¼ x3 þ ðat4 þ bt3Þxþ ðct7 þ dt6 þ et5Þ; ð19Þ

with affine coordinate t on the base P1, the singular fibers
III� and II� are located over t ¼ 0 and t ¼ ∞, respectively.
Then the five coefficients can be identified with the Siegel
modular forms

a ¼ −
1

48
ψ4ðτÞ; b ¼ −4χ10ðτÞ; c ¼ 1;

d ¼ −
1

864
ψ6ðτÞ; e ¼ χ12ðτÞ: ð20Þ

Together with a choice of symplectic basis, they uniquely
fix the periods τ of a genus-two curve, which describe the
moduli ðτ; ρ; zÞ of the discussed heterotic string theory.
Here, τ and ρ are the complex structure and the volume
modulus of T2, whereas z is the Wilson line modulus.
We want to trace this correspondence to the stable

degeneration limit of the K3 surface, so as to argue that
the blowup (16) describes the physical moduli space M̄het

of the dual heterotic string theory. In this limit the P1 base
of the K3 surface splits into two P1’s intersecting
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transversely at one point. Correspondingly, the elliptic K3
surface splits into two elliptic rational surfaces S1 and S2,
which intersect at an elliptic curve E [3]. This elliptic curve
E becomes the two torus of the heterotic theory, while S1
and S2 determine the bundle data over T2. To extract E and
S1; S2, we perform the change of variables

ðx; y; tÞ ↦
�
t2x
4

;
t3y
16

; πt

�
; ð21Þ

and the Weierstrass model becomes [13]

tpþ1 þ p0 þ t−1p−1 ¼ 0 ð22Þ

where

pþ1 ¼ 28π7;

p0 ¼ −y2 þ 4x3 −
4

3
π4ψ4ðτÞx −

8

27
π6ψ6ðτÞ;

p−1 ¼ −28π3χ10ðτÞxþ 28π5χ12ðτÞ: ð23Þ

Here, p0 is the elliptic curve E, whereas p�1 encode the
bundle data. In the discussed limit p0 simplifies to

y2 ¼ 4x3 − g2ðτÞx − g3ðτÞ; ð24Þ

with g2ðτÞ ¼ 4π4

3
E4ðτÞ and g3ðτÞ ¼ 8π6

27
E6ðτÞ, and describes

an elliptic curve with period τ. Furthermore, with Eq. (15)
the intersection E ∩ fp−1 ¼ 0g yields two points ðx; yÞ ¼
ð℘ðz; τÞ;�℘0ðz; τÞÞ on the elliptic curve E that add up to
zero, which characterize the SUð2Þ bundle over E in the
heterotic string [2], associated to theWilson line modulus z.
On the heterotic side, the stable degeneration limit

corresponds to the large volume limit ρ → i∞ of the
two torus. Hence, we can compare this limit to our proposal
(18) for the compactified heterotic moduli space. In the
space Blh0P

3
ð2;3;5;6Þ, this limit maps to the exceptional

divisor H0 ¼ π−1ðh0Þ, where the point in h0 yields
the complex structure of E, whereas—up to a trivial

rescaling—the ratio of the coordinates I2
I0
¼ ℘ðz;τÞ

π2
deter-

mines via the two points ð℘ðz; τÞ;�℘0ðz; τÞÞ on E the
SUð2Þ bundle data of the heterotic string.
This verifies that the proposed compactification (18) of

the moduli space M̄het agrees with the physical data in the
large volume limit of the heterotic string. Furthermore,
it demonstrates explicitly that the Clingher-Doran-
Malmendier-Morrison construction (20) is consistent with
the F-theory–heterotic duality in the stable degeneration/
large volume limit.

III. 6D N ¼ 1 F-THEORY–HETEROTIC DUALITY

In eight dimensions the Clingher-Doran-Malmendier-
Morrison description encodes the complex structure

modulus τ, the Kähler modulus ρ of the torus, as well
as the bundle modulus z of the 8d heterotic theory in the
moduli space of a genus-two curve. To arrive at a 6d
heterotic string theory, we can now adiabatically fiber this
8d construction over a suitable base. Hence, either we fiber
the torus together with the bundle data over the base—to
obtain the heterotic string on an elliptically fibered surface
with a bundle—or we directly fiber the three moduli
ðτ; ρ; aÞ over the same base to describe the heterotic string
in terms of a genus-two fibered surface. In the latter case the
Spð4;ZÞ transition functions of the fibration would mix up
the three moduli in going from one coordinate patch to
another. Therefore, there is no global distinction anymore
between the complex structure, the Kähler, and the bundle
moduli. In other words, the complex structure moduli space
of the genus-two fibration combined with the Kähler
moduli space of the base constitute the total moduli space
of a nongeometric compactification of the heterotic theory.
Let us fiber both sides of the Clingher-Doran-

Malmendier-Morrison correspondence over a common
P1 base. In the nongeometric description of the heterotic
string—given in terms of the genus-two fibration
S → P1—the complex structure moduli of S together with
the volume of the base P1 are the heterotic moduli fields
appearing in hypermultiplets. This nongeometric compac-
tification is deep in the quantum regime of the heterotic
string on a K3 surface with finite volume, and α0 correc-
tions to the hypermultiplet moduli space play an important
role. The dual F-theory description arises from an ellip-
tically fibered and K3-fibered Calabi-Yau threefold X.
Malmendier and Morrison show that the threefold X is
an elliptic fibration over the Hirzebruch surface F12 [22].
This F-theory compactification of X is actually familiar, as
it appears in the conventional formulation of the F-theory–
heterotic duality [35]. This comes as a surprise, namely
both phases of the heterotic string—the geometric semi-
classical and the nongeometric quantum regime—are dual
to the same semiclassical geometric F-theory compactifi-
cation, and there is no appearance of a nongeometric
F-theory phase.
To resolve this mystery, we consider the corresponding

type IIA–heterotic duality [5]; i.e., type IIA on the same
Calabi-Yau threefold X is dual to the geometric heterotic
string on K3 × T2 or—as we claim—to the nongeometric
heterotic string on S × T2. The discussed 6d hypermultip-
lets become 4d hypermultiplets. In type IIA on the threefold
X, the hypermultiplet sector receives corrections in the
string coupling gs [36]. However, as we fiberwise apply
the 8d type IIA–heterotic duality in the adiabatic limit, the
volume of the heterotic P1 is taken to be large. On the type
IIA side this amounts to working in the weak string
coupling limit gs → 0 [5]. As a consequence, the tree level
result of the type IIA compactification is a good approxi-
mation for the hypermultiplets. In particular, it is legitimate
to approximate the hypermultiplet sector metric ds2;treeIIA HM by
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the classical c map, which (in type IIA) yields the tree level
metric from the Weil-Petersson metric of the complex
structure moduli space of X [37,38]. As the Weil-Petersson
metric of the complex structure moduli space does not
receive any α0 corrections, we also do not expect any α0
effects in the hypermultiplet sector—at least so long as gs
corrections are suppressed.
Therefore, in decompactifying the torus T2, we expect

that the absence of quantum corrections carries over to the
6d hypermultiplets of the F-theory compactification. In this
way two heterotic phases of rather distinct nature enjoy a
unifying semiclassical geometric F-theory description.
Therefore, the discussed dual string theories furnish a
remarkable example, where a nontrivial string duality gives
rise to a conventional geometric description for a compli-
cated dual nongeometric quantum phase.

A. Genus-two fibration

To arrive at the nongeometric heterotic theory in six
dimensions, we start with the Weierstrass model on the
F-theory side [22,31]

y2 ¼ x3 −
�
1

48
ψ4ðsÞt4 þ 4χ10ðsÞt3

�
x

þ
�
t7 −

1

864
ψ6ðsÞt6 þ χ12ðsÞt5

�
; ð25Þ

with the affine coordinate s on the P1 base. ψ4ðsÞ;
ψ6ðsÞ; χ10ðsÞ;ψ12ðsÞ are now sections of the line bundles
Oð8Þ;Oð12Þ;Oð20Þ;Oð24Þ over P1, respectively. Note
that the degrees of the line bundles are twice the weights
of the associated modular forms.
The fibered modular forms ψ4ðsÞ;ψ6ðsÞ; χ10ðsÞ;ψ12ðsÞ

determine a genus-two fibration over the same P1 base by
assigning to the quadruple of modular forms the associated
genus-two curve. To arrive at an explicit description for this
genus-two fibered surface, we start with the hyperelliptic
form of genus-two curves

y2 ¼ x6 þ c5ðsÞx5 þ…þ c0ðsÞ ¼
Y6
l¼1

ðx − ξlðsÞÞ: ð26Þ

Here, the coefficients cl are elementary symmetric
polynomials of the roots ξl, which are both fibered over
the P1 base. Then the roots ξl define the Igusa-Clebsch
invariants I2, I4, I6, and I10 of respective weights 2, 4, 6,
and 10 [29,31]6

I2 ¼
1

48

X
σ∈S6

ð12Þð34Þð56Þ;

I4 ¼
1

72

X
σ∈S6

ð12Þð23Þð31Þð45Þð56Þð64Þ;

I6 ¼
1

12

X
σ∈S6

ð12Þð23Þð31Þð45Þð56Þð64Þð14Þð25Þð36Þ;

I10 ¼
Y
i<j

ðξi − ξjÞ2: ð27Þ

Here, we define ðabÞ≡ ðξσðaÞ − ξσðbÞÞ2, and the sum is
taken over all permutations σ of the symmetric group S6.
Furthermore, the Igusa invariants relate to the Siegel
modular forms according to [31]

ψ4 ¼ 24 · 32I4; ψ6 ¼ 2633ð3I6 − I2I4Þ;
χ10 ¼ 2 · 35I10; χ12 ¼ 2 · 35I2I10: ð28Þ

Thus, the coefficients of the hyperelliptic equation (26)
become functions of modular forms

cl ¼ clðψ4;ψ6; χ10; χ12Þ; l ¼ 0;…; 5; ð29Þ
that are implicitly defined by their relationship to the roots
ξl. In this way we get a rather indirect description of the
genus-two fibered surface S. It would be interesting to have
a more explicit description of the surface S, so as to
examine its properties, such as its topological invariants, its
Hodge numbers, and its moduli space. This, however, is
beyond the scope of this work.
Instead, we proceed by examining the properties of the

surface S in the limit that is dual to the stable degeneration
limit in F-theory. For this approach it suffices to study the
structure of generic and nongeneric genus-two fibers of S,
as characterized by local models of possible genus-two
fibrations classified by Namikawa and Ueno in Ref. [39].

B. Stable degeneration limit

To go to the stable degeneration limit—which relates to
the heterotic large volume limit ρ → i∞—we would
naively consider the Jacobi-Fourier expansion of the
modular sections

ψ2i ¼ E2iðτÞ þ ψ2i;1q2 þOðq22Þ;
χ2j ¼ χ2j;1q2 þOðq22Þ;

with q2 ¼ e2πiρ. Consistently, we can only send q2 to zero,
if it is a global section. This, however, is not the case, as
globally there is a nontrivial mixing with the other fiber
moduli τ and z.
We know from Sec. II A that the compactified

moduli space of 8d heterotic theory is the blown-up
weighted projective space Blh0P

3
ð2;3;5;6Þ parametrized by

6In the original references the numerical factors are absent in
the definitions of I2; I4; I6, because there the sums are taken over
subsets of S6 with indices 48, 72, 12, respectively.
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the homogeneous coordinates ðI0; I2;ψ4;ψ6; χ10; χ12Þ.
Furthermore, the stable degeneration locus is identified
with the exceptional divisor H0≡π−1ðh0Þ at χ10¼χ12¼0.
The nongeometric compactification of heterotic string is

a map ι from the base P1 to the moduli space Blh0P
3
ð2;3;5;6Þ.

By dimensional reasons the intersection ιðP1Þ ∩ H0 is
generically empty. Nevertheless, we can continuously send
the entire image ιðP1Þ to the exceptional divisor H0 with
the help of the complex scalar parameter σ, i.e.,7

χ10ðsÞ ¼ σχ010ðsÞ; χ12ðsÞ ¼ σχ012ðsÞ: ð30Þ

Then the stable degeneration limit becomes σ → 0,8 and we

have χ10ðsÞ → 0, χ12ðsÞ → 0, while the ratio χ12ðsÞ
χ10ðsÞ remains

finite.
In the limit σ → 0, we expect that the nongeometric

genus-two fibration becomes the geometric heterotic com-
pactification of an elliptically fibered K3 surface together
with an SUð2Þ spectral cover. To arrive at this conclusion,
the structure of singular genus-two fibers plays an essen-
tial role.
Using the relations of Ref. [40] among the coefficients of

the genus-two hyperelliptic curve [40], we determine the
structure of genus-two fibers in the limit σ → 0. A generic
genus-two fiber degenerates in the limit σ → 0 to the
equation

y2 ¼
�
4x3 −

4

3
π4ψ4ðsÞx −

8

27
π6ψ6ðsÞ

�
ðx − γðsÞÞ2:

ð31Þ

Such a singular fiber is of type I1−0−0 in the classification of
Ref. [39], which is an elliptic fiber together with a double
point. Using surgery techniques we remove the neighbor-
hood of the singular point at x ¼ γðsÞ and glue in two
disjoint smooth patches so as to arrive at a smooth elliptic
fiber. In this way, we have reduced the singular fiber of
arithmetic genus two to a smooth elliptic curve of genus
one. Furthermore, in recording the two points ~p� on the
elliptic fiber, where the patches have been glued in, we can
deduce the spectral cover for the heterotic SUð2Þ bundle.
Given the Weierstrass function ℘ð·; τÞ associated to the
modulus τ of the elliptic curve in Weierstrass form, we
find

γðsÞ ¼ ℘

�
zðsÞ
2

; τðsÞ
�
; ð32Þ

with the periods τðsÞ in the limit σ → 0. Thus, up to an
overall factor of two the loci of the surgery encode the

Wilson line modulus z of the SU(2) bundle,9 and the
spectral cover is given by the two points p� ¼ 2 ~p�, where
p� arise from the zeros of the Weierstrass function ℘ðz; τÞ.
Thus, altogether the topological surgery amounts to replac-
ing the degenerate genus-two curve (31) with the genus-one
Weierstrass equation

y2 ¼ 4x3 −
4

3
π4ψ4ðsÞx −

8

27
π6ψ6ðsÞ: ð33Þ

Furthermore, with Eq. (15) the spectral cover becomes

0 ¼ χ010ðsÞx − π2χ012ðsÞ; ð34Þ

which—as required for a spectral cover of an SUð2Þ
bundle—indeed intersects the constructed elliptic fiber in
the two points p�, which add up to zero. The described
surgery process is illustrated in Fig. 1.
Let us now turn to the nongeneric fibers in the limit

σ → 0, which arise at the intersection of the image ιðP1Þ in
Blh0P

3
ð2;3;5;6Þ with (the proper transforms of) the divisorsH1

and H4.
10

The former intersection points correspond to singular
fiber of type I1-I0-1 of Ref. [39], which is a degenerate
reducible singular fiber of two elliptic curve components
with self-intersection number −1. In addition, one elliptic
curve component has developed a nodal point. As a
consequence after performing the described topological
surgery on the entire surface the nodal component turns
into a rational curve of self-intersection −1. We blow down
these rational curves to arrive at a minimal surface. Since
the two elliptic components of the reducible fibers alongH1

intersect in the zeros of the two elliptic curves, the spectral

spectral cover

FIG. 1 (color online). Depicted is the topological surgery
operation performed in the limit σ → 0. It maps the singular
genus-two fibers of type I1−0−0 (left side) to smooth elliptic fibers
with the spectral cover data of an SUð2Þ bundle (right side).

7This parameter is called the smoothing parameter in Ref. [25].
8Formally, the homotopy H∶ P1 × ½0; 1� → Blh0P

3
ð2;3;5;6Þ with

HðP1; 1Þ ¼ ιðP1Þ and HðP1; 0Þ ⊂ H0 realizes the limit.

9It is tempting to relate the factor of 1
2
in Eq. (32) to the square

of the appearance of the spectral cover factor x − γðsÞ in Eq. (31).
10In Sec. II A, we have introduced the divisors H1 and H4 in

the context of the projective space P3
ð2;3;5;6Þ, but we use in the

following the same letters for their proper transforms in the
blown-up projective space Blh0P

3
ð2;3;5;6Þ.
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cover points coincide after the blow-down with zero of
the maintained elliptic component.
To examine the intersection points of H4 with the

exceptional fiber H0, we determine the proper transform
of the divisor H4 for the blowup (16). With the affine
coordinate u ¼ I2

I0
in the patch I0 ≠ 0 of Blh0P

3
ð2;3;5;6Þ the

defining equation for the divisor H4 becomes

χ235
χ10

¼ χ310ðψ3
4 − ψ2

6Þ2ð27u3 − 9uψ4 − 2ψ6Þ þOðχ410Þ:
ð35Þ

Therefore, on the exceptional divisor H0—given by
χ10 ¼ 0—the proper transform of H4 restricts to

H4jH0
¼ ðψ3

4 − ψ2
6Þ2ð27u3 − 9uψ4 − 2ψ6Þ: ð36Þ

In the stable degeneration limit σ → 0 of the analyzed
genus-two fibered surface, with Eqs. (12) and (15) these
two components turn into

D1 ¼ 4℘ðsÞ3 − 4π4

3
E4ðsÞ℘ðsÞ −

8π6

27
E6ðsÞ;

D2 ¼ ðE4ðsÞ3 − E6ðsÞ2Þ2: ð37Þ

The elliptic Eisenstein functions E4 and E6 are now
holomorphic sections of Oð8Þ and Oð12Þ, respectively,
while ℘ is a meromorphic section ofOð4Þ over the base P1.
At the points D1 ¼ 0, we again obtain singular genus-

two fibers of the type I1−0−0, which turn into smooth
elliptic fibers via the surgery. At such points the Wilson line
modulus z becomes a half-elliptic period,11 which shows
the appearance of a nongeneric Z2 fiber symmetry.
At the points with D2 ¼ 0 we find singular genus-two

fibers of type I1−1−0 in the classification of Ref. [39]. These
are genus-two fibers with two (Z2 symmetric) nodal points,
where the two nodal points in the genus-two fibers relate to
the square in the component D2. The topological surgery
removes one nodal point, and we are left with a singular
elliptic fiber of Kodaira type I0.
Altogether—after implementing the topological surgery

and performing the blow-down to a minimal surface—we
arrive at a smooth elliptically fibered surface over P1 with
the discriminant Δ ¼ E4ðsÞ3 − E6ðsÞ2, which is a section
of Oð24Þ. As a consequence the constructed surface has 24
singular elliptic fibers of Kodaira type I0, each of which
descends from a degenerate genus-two fiber over the
intersection of ιðP1Þ and the divisor H4. However, this is
nothing else but an elliptically fibered K3 surface of the
Weierstrass form

0 ¼ −y2 þ 4x3 − g2ðsÞx − g3ðsÞ; ð38Þ

where g2ðsÞ ¼ 4π4

3
E4ðsÞ and g3ðsÞ ¼ 8π6

27
E6ðsÞ are now

sections of Oð8Þ and Oð12Þ. Furthermore, it comes with
the spectral cover (34) of a SUð2Þ bundle. Thus, the stable
degeneration limit in F-theory indeed realizes the limit of
the nongeometric heterotic compactification to the geo-
metric semiclassical large volume heterotic compactification
on an elliptic K3 surface together with an SUð2Þ bundle.

C. Heterotic Sen limit

As the nongeometric F-theory–heterotic duality for 4d
and 6d theories gives us insight in the hypermultiplet
moduli space beyond the semiclassical supergravity
Kaluza-Klein reduction of the heterotic string, we can
use this correspondence to study quantum effects in the
hypermultiplet sector of the heterotic string. For concrete-
ness we focus now on the 4d theories.
In Ref. [26] Alexandrov, Louis, Pioline, and Valandro

study the heterotic hypermultiplet sector in a similar context.
They utilize the duality between the heterotic string on
K3 × T2 and the type IIB string on the mirror Y of the dual
elliptically fibered Calabi-Yau threefold X. They work in a
limit, where the volume of K3 is very large to suppress α0

corrections. Furthermore, they demand that the base P1 of
the elliptically fibered K3 is much larger than the elliptic
fiber. In the dual type IIB theory this renders both the 4d
string coupling g4ds and the 10d string coupling g10ds small.
As a consequence all types of string corrections become
negligible. As a result, using the classical c-map metric of the
hypermultiplet sector in the type IIB theory [37,38], they
find that the metric of the heterotic hypermultiplet moduli
space exhibits a two-staged fibrational structure:

MBðg; FÞ ⟶ MH

↓
MFðgÞ → Mg;F

↓
Mg

ð39Þ

Here, the bundle moduli space MFðgÞ is fibered over the
moduli space Mg of the metric of the K3 surface due to
the anti-self-dual field strength ⋆gF ¼ −F given in terms
of the metric-dependent Hodge star ⋆g of the K3 surface.
Then the hypermultiplet moduli space MH is completed by
the B-field moduli spaceMBðg; FÞ, which in turn is fibered
over the moduli spaceMg;F. The B field is governed by the
supergravity equation of motion H ¼ dBþ 1

4
ðωG − ωLÞ

and d⋆H ¼ 0 with the gravitational and gauge Chern-
Simons terms ωG;ωL, which depend on the metric and
the gauge connection.
By construction the two-staged fibration arises from

the supergravity approximation of the heterotic Kaluza-
Klein reduction. As a consequence, deep inside the hyper-
multiplet moduli space—where in particular α0 corrections
are sizable—we expect this structure to break down. With11This is because D1 is identified with ðd℘ðsÞ=dzðsÞÞ2.
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the help of the nongeometric heterotic compactification, we
present an argument here that this fibrational structure
indeed disappears in the interior of the heterotic hyper-
multiplet moduli space.
Let us suppose that in the Weierstrass model of the

F-theory compactification (25) is determined by the sections

ψ4ðsÞ ¼ α4hðsÞ2; ψ6ðsÞ ¼ α6hðsÞ3;
χ10ðsÞ ¼ α10hðsÞ5; χ12ðsÞ ¼ α12hðsÞ6; ð40Þ

where hðsÞ is a section of the line bundleOð4Þ over the base
P1 while α4; α6;α10; α11 are constants. In the dual non-
geometric heterotic string, any generic point on the P1 base
describes the same genus-two curve in the (compactified)
moduli space Ā2 of genus-two curves. As a consequence the
genus-two period τ is constant over the entire base.
Nevertheless, there are still degenerate genus-two fibers,
appearing at the zero loci of the section hðsÞ. We call this
limit the heterotic Sen limit, as this picture realizes the analog
for genus-two fibrations to the conventional Sen limit for
elliptic fibrations in the context of F-theory [24].
For our purpose, in the heterotic Sen limit the three

constant periods τ of the genus-two fibers are regarded as
three moduli fields in the heterotic theory. Subsequently,
we identify the complex structure moduli field τ, the
complexified Kähler moduli field ρ ¼ Bþ iJ, and the
gauge bundle moduli field z with a subset of two scalar
degrees of freedom of three hypermultiplets [25]. In the
semiclassical limit these three fields are distributed over the
entire two-staged fibrational structure (39). Nevertheless, in
the heterotic Sen limit, this property clearly breaks down,
because neither is the metric for z fibered over τ or J, nor is
the metric of the B field fibered over the remaining fields.
Instead, there is a Z2 symmetry exchanging τ and
ρ ¼ Bþ iJ. This can be seen formally, as the SOð2; 3Þ-
isometric metric on the submoduli space Msub parame-
trized by τ; ρ, and z is the same as the metric on the Kähler
symmetric space D2;3, which is explicitly spelled out in
Ref. [41]. For the pairing η of the lattice L2;3, represented
by the matrix

ηAB ¼

0
BBBB@

0 1 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 −2

1
CCCCA; ð41Þ

we parametrize a null vector X in terms of the three moduli
τ; ρ; z as [21,41]

XA ¼ ð1; z2 − τρ; τ; ρ; zÞ: ð42Þ

Then one finds that ηABXAXB ¼ 0 and ηABXAX̄B > 0, and
the metric on D2;3 can be written as [41]

ds2Msub
¼ Ki|̄dtidt̄|̄; ti ¼ ðτ; ρ; zÞ; ð43Þ

with Ki|̄ ¼ ∂i∂ |̄K and the Kähler potential

K ¼ −
1

4
log ðηABXAX̄BÞ: ð44Þ

The obtained Kähler metric (43) with SOð2; 3Þ isometry—
representing a subspace of the quaternionic hyper-Kähler
metric of the hypermultiplet moduli space—clearly does
not fit in the two-staged fibration (39).

IV. CONCLUSIONS

Using the nongeometric duality correspondence pro-
posed by Clingher and Doran and by Malmendier and
Morrison [20–22], we studied F-theory–heterotic duality
beyond the semistable degeneration limit and the semi-
classical heterotic limit in eight and lower space-time
dimensions. By geometric means, we analyzed in detail
the limit from the nongeometric quantum phase to the
semiclassical heterotic phase. This allowed us to argue that
in six and four space-time dimensions, which arose from
adiabatically fibering the eight-dimensional duality over a
common base, the nongeometric heterotic compactifica-
tions captured α0 corrections to the semiclassical large fiber
compactification. Furthermore, we shed light on the puz-
zling phenomenon discovered in Ref. [22] that even though
the heterotic string moduli space continuously interpolated
between the nongeometric quantum phase and the semi-
classical large fiber phase that the dual F-theory description
remained geometric over the entire dual moduli space.
Analyzing the heterotic theory in four dimensions in the

heterotic Sen limit, we observed that α0 corrections modi-
fied the semiclassical two-staged fibrational structure
derived by Alexandrov, Louis, Pioline, and Valandro
[26]. While such alterations to the hypermultiplet sector
are expected on general grounds [42], we believe that the
analysis of nongeometric heterotic compactifications in the
quantum regime—in particular at special loci in the moduli
space such as the heterotic Sen limit—may shed light on
conceptual questions concerning the quantum hypermul-
tiplet moduli space.
To make further progress in analyzing the discussed class

of nongeometric heterotic string compactifications in four
and six dimensions, we need a better understanding of the
relevant genus-two fibered surfaces. In this work, we
mainly analyzed the local structure of such genus-two
fibered surfaces by studying the structure of their singular
fibers, using the classification of Namikawa and Ueno [39].
It would be interesting to study the global features of the
relevant genus-two fibered surfaces—for instance, by
comparing to the general properties of genus-two fibered
surfaces [43]—and to give more detailed physical inter-
pretations of the geometric structures of such surfaces.
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While the studied F-theory–heterotic quantum duality
is based on the rather special class of F-theory–heterotic
models with a single Wilson line modulus, it provides
for an explicit and detailed toy model for nongeometric
string compactifications in general. The technique—to
combine the compactification space with the spectral
cover databy surgery operations—may also open up a
new method to arrive at more general nongeometric
heterotic string theories, which describe quantum cor-
rected heterotic strings beyond a single nontrivial Wilson
line modulus.
Although our discussion starts from the F-theory–

heterotic duality, the general philosophy to use local duality
transformations in order to arrive at nontrivial nongeomet-
ric global string compactifications [44] is applied here
as well. The possibility to explicitly describe the transition

to a conventional semiclassical heterotic compactification in
terms of topological surgery makes our nongeometric
heterotic model appealing and calculable. It would be
interesting to see if such nongeometric models also relate
to recent proposals on nongeometric string compactifications
[45–48].
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