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We study the influence of a background magnetic field on the melting of the J=ψ vector meson by
introducing a Born-Infeld modification of the soft-wall model. Out of the three polarizations of the massive
vector meson, we find that the longitudinal one (parallel to the applied magnetic field) melts only at an even
higher temperature than the deconfinement temperature, whereas the two transverse polarizations melt at a
lower temperature than in the absence of a magnetic field. We also conduct a preliminary investigation of
the effect of the magnetic field on the heavy quark diffusion coefficient, showing an increased diffusion
constant for the longitudinal polarization with respect to the transverse polarizations.
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I. INTRODUCTION

The quark-gluon plasma is a short-lived exotic state of
QCD matter, in Earth circumstances only present in
controlled laboratory environments, that is after a heavy
ion collision (e.g. using Pb or Au ions). The ruling
experiments are RHIC and the LHC Alice facility. The
state of deconfined quark-gluon matter is exotic, not only
because it is hard to create but because its properties are not
always as expected from a standard plasma [1]. Despite the
ultrahigh temperature at which the plasma is existing
(∼1012 K), the plasma degrees of freedom are still strongly
coupled, making a perturbative analysis of the physics
virtually impossible. This strong coupling nature of the
plasma can be intuitively understood from the observation
that the relevant temperature—when reexpressed in more
appropriate MeV units—becomes of the order of the
fundamental QCD scale ΛQCD, at which the QCD inter-
action becomes strong.
A potential extra ingredient to further complicate matters

was identified a few years ago [2–4]. It was discussed how
a noncentral heavy ion collision can produce very strong
(short-lived) magnetic fields as well (∼1016 Tesla). Such
strong magnetic (B) fields can couple directly to the
electrically charged quarks and, via the quarks, also
indirectly to the gluons. As this magnetic field is a
collective effect, we can treat it as a classical external field
and due to its size, one might expect considerable effects on
the QCD dynamics. The recent review [5] contains a pleiad
of new strange QCD phenomena directly linked to the
presence of a strong magnetic background. We point out
that most studies restrict to a constant (in time and position)
magnetic field of the formB ¼ Bez. There have been given

(model dependent) estimates of the magnetic field showing
that during the initial stages after the collision during which
the plasma exists (∼1–10 fm), it is nearly constant [6],
hence this approximation is a decent one that allows
explicit analyses, at least to some extent.
A particular riddle in magnetized QCD is the effect the

magnetic field might have on the deconfinement transition.
An approach based on the linear sigma model coupled to
the Polyakov loop [7] predicted an increasing Tc in terms of
B, a result supported by an independent study using the
Polyakov-Nambu-Jona-Lasinio model [8–10], while earlier
a nonlinear sigma model analysis predicted a decrease [11].
Quenched lattice QCD studies on one hand seemed to
support a (slight) decrease in Tc [12] at first, but the
situation got more or less settled when unquenched results
(full quark dynamics) became available [13]; a direct study
of the Polyakov loop or (strange) quark susceptibility
displayed a decreasing critical temperature for the confine-
ment-deconfinement transition. Let us also refer to [14,15]
for two-color QCD studies.
By now, some analytical approximations have also been

worked out which were capable of explaining a decreasing
Tc, see e.g. [16,17]. It is perhaps interesting to point out
here that, frequently, the discussion about the deconfine-
ment transition in a magnetic field is coupled to that of
the chiral transition. Since quarks couple directly to the
magnetic field, one could expect an even stronger response
of the chiral transition to the B field. The predictions of the
papers [7–10,12–15] ranged from a split or no split between
the two transition temperatures, with the temperatures
rising or going down with B. The already mentioned lattice
QCD study [13] in fact was most focused on disfavoring
this rising chiral transition temperature, instead showing the
(unexpected) opposite behavior: the chiral transition tem-
perature also goes down with B. This triggered a lot of
attention, see the already cited papers and also [5].
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In the current paper, we will exclusively be interested in
the deconfinement transition in the presence of a magnetic
field. We will employ the contemporary gauge-gravity
duality approach [18] applied to QCD-like theories.
Although the original AdS/CFT duality was not really
formulated for a gauge theory like QCD, it is safe to say
that the original AdS/CFT insights inspired quite some
activity in gauge theories. Some of these can be called
cousins of QCD (see e.g. [19–23] for some benchmark
papers) while others are effective dual descriptions onto
which the AdS/CFT technology is unleashed, see e.g.
[24,25]. We will in particular take a look at a specific
“foreteller” of the deconfinement transition in a specific
AdS/QCD setting. We recall here that a famous smoking
gun signal of the formation of the quark-gluon plasma is
J=ψ suppression, as proposed in [26], a charm-anticharm
bound state. Since then, charmonium properties have
received widespread attention. In particular, let us refer
to the lattice paper [27] in which by means of the numerical
study of lattice correlation functions, it was found that
charmonia can survive the deconfinement transition at
critical temperature Tc and can continue to exist up to
T ∼ 1.6Tc. We recall here the critical temperature is usually
defined and extracted (approximately) via the Polyakov
loop [28], a quantity that has no direct connection to
observable particle physics. At the level of observable
features of the quark-gluon plasma, a study of charmonium
melting (dissociation) at high temperatures might be a more
practical way to look at the deconfinement transition.
We will thus be interested in the melting of charmonia in

a holographic model that we believe to capture some
essential features of magnetized QCD. We are not the first
to investigate meson melting in AdS/QCD [29–35], but
to our knowledge, determining how the magnetic field
influences the melting temperature has never been consid-
ered. The hope is that this can teach us something about the
deconfinement transition in a magnetic field. Usually, in the
dual gravitational approach, the quarks are added in a probe
brane approximation, following the seminal proposal [36].
As a result, the backreaction of the quarks onto the gluonic
(confining or deconfining) dual geometric background is
not taken into account. Since it is exactly this background
that determines the confinement-deconfinement transition
(via a Hawking-Page-like transition [37,38]), there is no
direct quark effect on the critical temperature Tc. A fortiori,
this means that there is no magnetic field effect on Tc either,
since B can only couple to the uncharged glue sector via the
charged quarks [39,40]. One possible way to make the
transition nonetheless B dependent was discussed in [41],
by taking into clever account the pressure of the quark
probe branes in the derivation of the critical temperature,
while arguing that a complete analysis of the backreaction
would be of higher order in the number of flavors over
the number of colors. The result was a decrease in
the deconfinement temperature. In the current work,

we will investigate how the melting of charmonia is
influenced by a magnetic field. The complication arising
is the neutral nature of a cc̄ bound state, so we will need to
couple the magnetic field to the substructure of the
bound state.
The paper is organized as follows. In Secs. II and III, we

introduce a soft-wall model that allows us to incorporate to
some extent the coupling of the magnetic field to the
charged quark constituents in the J=ψ charmonium. The
equations of motions are analyzed in Sec. IV, followed by a
numerical evaluation of the spectral functions in Sec. V.
Subsequently, we compare our results to lattice or other
models’ data. We also offer an exploratory study of the
heavy quark diffusion constant in Sec. VII. Finally, con-
clusions and an outlook to future research are presented in
Sec. VIII.

II. THE SOFT-WALL MODEL
AND ITS DIRAC-BORN-INFELD (DBI)

EXTENSION

In the soft-wall model [25], a background metric and
dilaton are postulated upon which fluctuations (two gauge
fields and a bifundamental scalar) propagate. The back-
grounds are given by

ds2 ¼ L2

z2
ð−dt2 þ dx2 þ dz2Þ; e−Φ ¼ e−cz

2 ð1Þ

for the low temperature confined phase1 and by

ds2 ¼ L2

z2

�
−fðzÞdt2 þ dx2 þ dz2

fðzÞ
�
; e−Φ ¼ e−cz

2

ð2Þ
in the high temperature deconfined phase where
fðzÞ ¼ 1 − z4=z4h. The radial z coordinate ranges from 0
to zh, the horizon location of the anti–de Sitter (AdS)
black hole. The temperature of the dual boundary theory is
given by the Hawking temperature of the black hole
as T ¼ 1

πzh
.

Besides the bifundamental scalar (which will be irrel-
evant for our discussions), the soft-wall action consists of
two gauge fields with gauge groups SUðNfÞL × SUðNfÞR:

S ¼ −
1

4g25

Z
d5x

ffiffiffiffiffiffi
−g

p
e−Φtr½FL;μνFL;μν þ FR;μνFR;μν�;

ð3Þ
whose equations of motion are Yang-Mills equations in a
curved background (plus dilaton). The original motivation
of the soft-wall model was to provide an explicit holo-
graphic model capable of reproducing the (linear) Regge

1The z coordinate ranges from 0 (the boundary) to ∞ (the
center of AdS).
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spectrum of mesons: m2
n ∼ σn, a property which is not that

simple to obtain in holographic models [most models
obtain m2

n ∼ n2 (e.g. the hard wall model)]. Instead the
soft-wall model in the AdS background (1) yields
m2

n ¼ 4cn. The price one pays for this is that the soft-wall
model does not solve Einstein’s equations. Since then,
models have been constructed that satisfy both of these
properties [42–46], though one pays for this in simplicity. It
was the original hope of the authors of [25] that the model
nevertheless would lead to interesting phenomenology and
it is with this state of mind that we will proceed.
To study the heavy quarkonia, the authors of [30,31]

suggest choosing a flavor-dependent soft-wall parameter
c, where the light quarks (u, d, s) are combined into an
SUð3ÞL × SUð3ÞR soft-wall model and the heavy quark of
interest (charm) is treated on its own in a Uð1ÞL ×Uð1ÞR
Abelian model:

S ¼ −
Z

d5x
ffiffiffiffiffiffi
−g

p
tre−cρz

2

Llight þ e−cJ=ψ z
2

Lcharm: ð4Þ

This proposal immediately dismisses the influence of
the heavy-light meson sector [by choosing uð4Þ →
uð3Þ ⊕ uð1Þ], but as was illustrated in [30,31], some
suggestive qualitative results can be obtained for the
cc̄ meson.
The light quark soft-wall model is fixed by choosing

cρ ¼ 0.151 GeV2. For the heavy charmonium soft-wall
model, we instead choose cJ=ψ ¼ 2.43 GeV2. Both of these
values have been chosen to fix the mass of the meson to its
experimental value: mρ¼0.77GeV and mJ=ψ ¼3.1GeV.2

The Lagrangian of the charm sector hence exhibits a
stronger damping and it was argued in [30,31] that it
can be neglected to determine the deconfinement temper-
ature, which equals Tc ¼ 0.492 ffiffiffiffifficρp ¼ 0.191 GeV [37].
From here on, we hence focus on the Uð1ÞL ×Uð1ÞR
soft-wall model for the charm sector.
The idea of [30,31] is to consider the spectral peaks in

the spectral function and to find out, as the temperature is
increased, when the bound states disappear (¼ melt). If this
happens above Tc, the meson melts only at a higher
temperature than the deconfinement temperature. If this
happens below Tc, the state melts precisely at Tc itself: the
reason for this is that for T < Tc, the black hole back-
ground should not be used anymore since the first-order
Hawking-Page transition will have occurred as the temper-
ature is lowered below Tc.
In [30,31], where the action (4) was originally proposed,

a few words were spent on the origin of the two scales, cρ
and cJ=ψ . A priori, only one scale c should be present since
this c is intimately related to the unique principal QCD

confinement scale. In principle, the latter should corre-
spond to the string tension, as mentioned in [30,31], but the
underlying soft-wall model does not even support a string
tension, in the sense that the Wilson loop does not display
an area law to begin with [47]. The charmonium mass is
mostly dictated by the constituent charm quark mass, which
is an order of magnitude larger than the confinement scale,
nonetheless we fixed, following [30,31], the second
scale cJ=ψ to faithfully reproduce the mass of the J=ψ .
Analogous to [30,31], we consider (4) to constitute a
pragmatic first trial to study nontrivial charmonia proper-
ties. Similar approaches as in [30,31] can be found
in [48,49].
Nonetheless, in soft-wall models it can be motivated that

cJ=ψ will dynamically change its value with respect to cρ
due to backreaction effects of the heavy quark sector on the
geometry. A backreaction study in a hard wall setting [50]
revealed in particular that an effective soft-wall model is
recovered with a c depending on the heavy quark mass.
Quite likely, a similar phenomenon will take place starting
with a soft-wall model, if we were smart enough to carry
out the involved analysis.
As was noticed in [51], many other papers following the

so-called top-down approach to QCD—where holographic
models directly rooted in string theory are used to under-
stand essential QCD features [22,52–54]—suffer from the
same problem, since only a single scale is governing the
dynamics, whereas dual descriptions of charmonia need at
least two.
In the meantime, more involved holographic charmo-

nium models became available on the market, see e.g.
[51,55], where additional parameters are introduced to also
provide a realistic charmonium decay width etc. This goal
is essentially achieved by making a wise choice for the
dilaton profile. For now, we leave these for further study,
and focus here on the generalization to the magnetic field
case of the pioneering model (4) [30,31].
The charm vector modes are defined via 2V ¼ AL þ AR

and these are the ones we are interested in. For our
purposes, this action is not sufficient to handle a back-
ground magnetic field. Indeed, the linearity of Maxwell’s
equations implies the decomposition F ¼ F̄ þ ~F:

∂μðe−Φ
ffiffiffiffiffiffi
−g

p
FμνÞ ¼ ∂μðe−Φ

ffiffiffiffiffiffi
−g

p
F̄μνÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

þ ∂μðe−Φ
ffiffiffiffiffiffi
−g

p ~FμνÞ

¼ 0; ð5Þ

where the first term vanishes due to the fact that a constant
magnetic field solves the soft-wall Maxwell equations of
motion. This means the fluctuations do not feel that the
magnetic field is turned on. The J=ψ particle is a charm-
anticharm bound state and hence is uncharged. The fact
that it does not couple to a magnetic field is quite
natural: only the interior quarks feel the presence of the

2Actually the values are computed using a slightly shifted mass
as is discussed in [30,31].
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magnetic field.3 To overcome this feature, one might be
tempted to take a non-Abelian gauge field instead (for
instance mixing the charm with the top quarks). This would
lead to non-Abelian interaction terms present in the
equations of motion that can couple a background field
to a fluctuation. This is not the right thing to do: the
uncharged mesons (the J=ψ and the ϒ) would still not feel
the magnetic field, whereas all we would have accom-
plished is the study of the influence of the magnetic field on
the charged mesons (ct̄ and c̄t in our example).
Instead of doing this, we need to be able to probe the

internal structure of the meson with a magnetic field. In the
past, the Born-Infeld nonlinear electrodynamic model was
proposed to overcome the infinite self-energy of a static
point charge [56] (see also [57] for a nice discussion on
this). The crucial feature that emerges is the appearance of a
new length scale: point charges in the theory acquire a self-
energy that is of the form of an extended object on the order
of this length scale. In string theory these equations
reappear where the new length scale is the string length
ls. Hence in that case, Maxwell’s equations hold for scales
larger than the string scale, smaller length scales require
utilizing the Born-Infeld action (or its D-brane cousins).
Since the general spirit of holographic models is to use
strings as a guide (these being roughly identified with the
gauge strings), we are led to using the Born-Infeld action as
a plausible guess for an extension of the soft-wall model
capable of probing the internal structure of mesons.
The DBI action naturally appears in top-down construc-

tions of confining gauge theories, as it describes the fluctua-
tions of the underlying D-branes. Let us for example refer to
the Sakai-Sugimoto model (D4=D8) [19,20] or D4=D6
models of [21,22]. The mesons of the dual gauge theory
are identified with these fluctuations. Also in these setups,
submesonic dynamics can be taken into account. To illustrate
this, let us mention that in [58,59], it was found that a
magnetic field has an influence on the vector (ρ) meson
spectrum, this partially due to the quarkconstituents’response
to the magnetic field. In different work, the internal meson
structure was studied via the form factors/parton distribution
functions [60–65], see also the review in [66]. Such analyses
can be carried out by either using bottom-up hard/soft-wall
models, the top-down models mentioned before or the
Polchinski-Strassler background [67,68].
The actionwe use is theDBI version of the soft-wall model

S ¼ −
1

4π2α0g25

Z
dDxe−Φ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðgμν þ 2πα0iFL;μνÞ

q
þ ðFL ↔ FRÞ ð6Þ

for left- and right-handedUð1Þ gauge bosons. The prefactors
have been chosen in such a way as to precisely yield the

correct prefactor for the F2 term in the expansion. Thus this
action can be seen as a generalization of the conventional
soft-wall model (3) in which interactions of the gauge field
have been included in this specific form. We take the gauge
field to be a background plus a fluctuation F ¼ F̄ þ ~F and
we determine the equations ofmotion for non-self-interacting
fluctuations (quadratic in the action4), but exact in the
background field. In writing down this action, we have
implicitly neglected all forms of interaction between left and
right modes. We restrict our study to only vector modes,
hence both actions above are actually the same.5

It is important to emphasize that, for a vanishing back-
ground electromagnetic field, the (quadratic part of the)
model reduces to the normal soft-wall Maxwell action.
Thus it encompasses the successes of the latter but still
allows interactions with a background field in the bulk
which are controlled by a further (dimensionful) param-
eter α0.

III. SETUP OF THE MODEL

Before delving into the computations of the fluctuations
in this model, let us first set up the model in a proper way.
We will show that a constant magnetic field is in fact a
solution to the soft-wall DBI equations of motion (without
backreaction). After that, we will present a method to fix
the additional parameter α0.

A. A constant magnetic field solves the DBI equations
of motion in the soft-wall background

A constant background magnetic field can be modeled
by turning on a constant F12 ¼ −F21 while keeping the
other components zero. Our first goal is to demonstrate that
this background magnetic field solves the DBI equations of
motion (EOMs) in the soft-wall background. We start with

3In purely classical terms, the J=ψ state is like an electric
dipole whose charges are bound to each other by the strong
force.

4At this level, vector and axial vector modes do not mix due to
their different intrinsic parity. In the same context, it is also useful
to point out that the pseudoscalar charmonium mode, the ηc,
could also mix with the J=ψ , see [69,70], but again due to the
intrinsic parity, this can at the (holographic) QCD level only
happen due to the Chern-Simons piece of the action (which
represents the triangle anomaly). In the current work we will
ignore this Chern-Simons contribution as it is relatively sup-
pressed with respect to the DBI action with an extra (supposedly
large) ’t Hooft coupling constant. For a similar comment at the
level of ρ and π mesons, let us refer to [58,59]. In the context
of a Bethe-Salpeter equation analysis, an anomalous mixing
between ηc and J=ψ by means of a magnetic field was also
reported in [71].

5When rewriting the above action in terms of vector and axial
modes, explicit coupling terms are present. However, due to the
symmetry L ↔ R, terms in the Lagrangian only have an even
number of axial gauge fields. Since we are restricting ourselves to
the part quadratic in the fluctuations, the axial part has no
influence at all on the vector part we are interested in. Note that
when including the background magnetic field in the vector part,
terms with field factors such as VmA might be worrisome, even
for the quadratic part. Luckily such terms are absent.
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S ∼
Z

dDxe−Φ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgþ 2πα0iFÞ

p
ð7Þ

for a fixed background dilaton and (string) metric. Varying this action with respect to Aμ yields

δS ∼ −
Z

dDx

�
1

gþ 2πα0iF

�
νλ

δFλνe−Φ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgþ 2πα0iFÞ

p
; ð8Þ

which gives

∂λ

��
1

gþ 2πα0iF

�
νλ

e−Φ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgþ 2πα0iFÞ

p
−
�

1

gþ 2πα0iF

�
λν

e−Φ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgþ 2πα0iFÞ

p �
¼ 0: ð9Þ

The specific form of g, Φ and the candidate F (only the 1,2
and 2,1 indices which are constant), shows that nothing is
dependent on any other coordinate than z. Thus λ ¼ z is the
only possibility. But if λ ¼ z, ν should be z as well (due to
the specific form of 1

gþ2πα0iF). But then both terms cancel
each other out and indeed this candidateF solves the EOMs
in this particular soft-wall background.

B. Fixing the string length parameter α0

Let us next try to fix the additional parameter α0 that we
introduced in the previous section. It is known [47] that the
soft-wall model background does not predict a satisfactory
Wilson loop (which is the prototypical way to fix α0).
Another quantity that might allow us to fix α0 is the
Polyakov loop. Its value has been computed holographi-
cally for several theories [72,73] and shows remarkable
similarity to lattice results. We compute the vacuum
expectation value of the Polyakov loop in terms of a
surface spanning a thermal loop at the boundary. To this
effect, we evaluate the on-shell Nambu-Goto action for a
string surface wrapping the thermal boundary circle. The
resulting surface is cigar shaped and depicted in Fig. 1.
The Euclidean Nambu-Goto action,6

S ¼ 1

2πα0

Z
d2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detGμν∂αXμ∂βXν

q
; ð10Þ

can be evaluated in world sheet coordinates aligned with
the space coordinates as σ1 ¼ τ and σ2 ¼ z. We look for
static solutions. For the AdS5 black hole metric, this gives

S ¼ L2

2πα0T

Z
zh

0

dz
1

z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fx02

q
; ð11Þ

where we expressed the surface as functions xðzÞ. The
extremal configuration hence satisfies

�
fx0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ fx02p �0
¼ 0; ð12Þ

or x ¼ C, a constant vector.7 The on-shell action hence
becomes

Son-shell ¼
L2

2πα0T

Z
zh

0

dz
1

z2
: ð13Þ

After introducing a cutoff at z ¼ ϵ, the Polyakov loop
becomes

hLðTÞi ¼ e−S ¼ e
L2

2α0−
L2

2πα0Tϵ: ð14Þ

In general, the resulting expression in the exponential
consists of two parts: one part is proportional to the
circumference of the loop in the boundary theory whereas
the other is not. The part that scales with the circumference
at the boundary is multiplied by a divergent quantity and
the prescription instructs us to drop this part [74], see also
[75] for a renormalization analysis of the Polyakov loop.
We hence renormalize this expression by subtracting the
1=ϵ divergence so that we obtain

hLðTÞiren ¼ e
L2

2α0 : ð15Þ
Our holographic exercise shows that in this model, the
Polyakov loop is temperature independent (which is of
course not exactly what is seen from lattice studies, the
most accurate way to effectively compute the Polyakov
loop). Our best bet is then to take the asymptotically
constant value and fit our result to this. Lattice computa-
tions [[76], Fig. 4] do indeed show that for large T
(T > 3Tc), hLðTÞi is about 1.1. Using this value immedi-
ately yields

6The metric to be used here is the string metric, not the Einstein
metric.

7This could be observed more quickly by noting that (11) has
an absolute minimum when considering configurations for which
x ¼ C.
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ls

L
≈ 2.29: ð16Þ

This is sufficient since, knowing that the metric is propor-
tional to L2, the DBI action can be rewritten as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðgμν þ 2πð2.29Þ2L2iFμνÞ

q
¼ L5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ð~gμν þ 2πð2.29Þ2iFμνÞ

q
ð17Þ

and all powers of the AdS length drop out from the
equations of motion. We can hence simply set it to L ¼
1 (like for the normal soft-wall model). The important
feature (for which no computation is necessary) is that the
string length and the AdS length are of the same order:
the (inverse) QCD scale. It is perhaps useful to remind the
reader here that the Poyakov loop, just as the Wilson loop,
is typically computed for a heavy quark pair, this to avoid
having to deal with the issue of dynamical string breaking.
It is from this perspective thus rather natural to fix the

new scale we introduced, α0, using the (heavy) charm DBI
action.

IV. EQUATIONS OFMOTION OF FLUCTUATIONS

In general one can expand

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðgμν þ 2πα0iFμνÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðgμν þ 2πα0iðF̄μν þ FμνÞÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðāμν þ 2πα0iFμνÞ

q
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðāÞ

p �
1þ 2πα0i

2
Trðā−1FÞ þ ð2πα0iÞ2

8
ðTrðā−1FÞÞ2 − ð2πα0iÞ2

4
Trððā−1FÞ2Þ þ � � �

	
:

ð18Þ

The first term (after the 1) vanishes by the equations
of motion of the background B field. The other terms
are quadratic in the fluctuations. The inverse background
ā−1 can be split in a symmetric and antisymmetric part:
Sþ J.
The symmetric part only has a contribution from

the final term and this is the Maxwell action where
indices are raised and lowered with only the symmetric
part S.
The antisymmetric part looks as follows (where only the

1,2 and 2,1 indices of J are present):

1

8
JμνFνμJρσFσρ −

1

4
JμνFνρJρσFσμ ¼ 0: ð19Þ

Hence only the symmetric part of the inverse background
contributes to the raising and lowering of indices.8 The
equations of motion are

∂μðe−Φ
ffiffiffiffiffiffiffi
−G

p
FμνÞ ¼ 0; ð20Þ

where Gμν ¼ āμν.

The coordinates are denoted as t; x1; x2; x3 for the dual
coordinates and z for the holographic coordinate. More
concretely, we take

F̄12 ¼ −F̄21 ¼ ∂1A2 ¼ −iqB
2

3
ð21Þ

since the charm quark charge is þ2=3q. We get

Gμν ¼

2
6666664

g00 0 0 0 0

0 g11 2πα0iF̄12 0 0

0 −2πα0iF̄12 g22 0 0

0 0 0 g33 0

0 0 0 0 gzz

3
7777775 ð22Þ

with its determinant

G ¼ g00g33gzzðg11g22 − ð2πα0Þ2F̄2
12Þ ð23Þ

and inverse

FIG. 1. Shape of the surface spanning a thermal loop in the
boundary theory.

8Some simple index gymnastics shows that the term trðSFJFÞ
vanishes identically.
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Gμν ¼

2
6666666664

1
g00

0 0 0 0

0 g22
X − 2πα0iF̄12

X 0 0

0 2πα0iF̄12

X
g11
X 0 0

0 0 0 1
g33

0

0 0 0 0 1
gzz

3
7777777775

ð24Þ

where X ¼ g11g22 − ð2πα0Þ2F̄2
12.

We choose the gauge Az ¼ 0 and focus on vector modes
V ¼ ALþAR

2
.9 We will denote by G only the symmetric part

of the metric tensor G:

Gμν ¼

2
666666664

1
g00

0 0 0 0

0 g22
X 0 0 0

0 0 g11
X 0 0

0 0 0 1
g33

0

0 0 0 0 1
gzz

3
777777775
: ð25Þ

The equations of motion follow from (20). Next, we make a
Fourier expansion of the modes ∼eiq·x−iωt. In the remainder
of this paper, we will focus on the case q ¼ 0 (no
momentum on the boundary). We hope to return to the
momentum-dependent part in the future.
The equation of motion for V1 is given by

∂2
zV1 þ ∂zðln ð

ffiffiffiffiffiffiffi
−G

p
e−cz

2

GzzG11ÞÞ∂zV1 −
Gtt

Gzz ω
2V1 ¼ 0

ð26Þ
(and exactly the same equation of motion for V2).
V3 obeys

∂2
zV3 þ ∂zðln ð

ffiffiffiffiffiffiffi
−G

p
e−cz

2

GzzG33ÞÞ∂zV3 −
Gtt

Gzz ω
2V3 ¼ 0

ð27Þ
which is different since G33 is of a simpler form.

V. NUMERICAL SOLUTION OF THE SPECTRAL
FUNCTION

A. Asymptotics: Frobenius analysis

The numerical recipe we will use follows closely the
work of [30,31,77]. To start the numerical procedure, we

need the asymptotics of the solutions. We first look into the
horizon region and then into the boundary region.

1. Near-horizon limit

We start by looking at fluctuations whose polarization is
parallel to the applied magnetic field (27). Let us denote
D ¼ 2πα0iF̄12. Then

ln ð
ffiffiffiffiffiffiffi
−G

p
e−cz

2

GzzG33Þ

¼ ln

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L10

z10
þ L6

z6
D2

s
z4

L4

�
1 −

z4

z4h

�1A − cz2; ð28Þ

Gtt

Gzz ¼ −1=f2: ð29Þ

To proceed further, it is convenient to rescale the differ-
ential equation to eliminate c from the equation by setting

ξ ¼ ffiffiffi
c

p
z; ~ω ¼ ωffiffiffi

c
p ; ~D ¼ D

c
: ð30Þ

We can define a dimensionless temperature associated with
these parameters as t ¼ Tffiffi

c
p . The deconfinement temperature

then becomes tc ¼ TcffiffiffiffiffifficJ=ψ
p ¼ 0.122. As discussed previously,

for t lower than this value, one should in fact resort to the
thermal AdS background instead. Just like the authors of
[30,31], we will still show results with t < tc, in part
because the identification of the spectral peaks will be more
clear. The conclusions we will obtain in the end will be
independent of this choice. Other reasons to look into this
were discussed in [30,31]: the deconfinement temperature
may be smaller than tc since the soft-wall model does not
solve Einstein’s equations. Also the phase transition in real
QCD is expected not to be sharp and the results for the
black hole background at t < tc may provide indications of
this smooth behavior.
The above rescaling transforms (27) into

∂2
ξV3 þ ∂ξ

�
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L10

ξ10
þ L6

ξ6
~D2

s
ξ4

L4

�
1 −

ξ4

ξ4h

��
− ξ2

�
∂ξV3

þ
�
~ω2

f2

�
V3 ¼ 0: ð31Þ

The only term worth discussing is the second one
(containing a single ∂ξ). In the limit ξ → ξh, the prefactor
of this term becomes

−4ξ4h
ξhðξ4h − ξ4Þ ð32Þ

and this is precisely of the same form as when B ¼ 0:
the background magnetic field does not influence the

9Note that we refrain from making an additional gauge choice
such as ∂μAμ ¼ 0 as was done by [25,30,31] because there appear
to be some subtleties in this choice for the AdS black hole. For the
polarizations and momentum choice we will make shortly, we
actually do not need to impose an additional gauge choice to
simplify the equations of motion. We will come back to this issue
in a forthcoming paper.
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near-horizon behavior of this term in the differential
equation. Substituting V3 ¼ ð1 − ξ

ξh
Þα into the fluctuation

equation (31), we hence obtain the same indicial equation
as in the case B ¼ 0 leading to

α ¼ �i
~ωξh
4

: ð33Þ

Quite analogously, when the polarization is
perpendicular to the applied magnetic field, the (rescaled)
governing equation is given by

∂2
ξV1 þ ∂ξ

�
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L10

ξ10
þ L6

ξ6
~D2

q
L4

ξ4
þ ~D2

�
1 −

ξ4

ξ4h

��
− ξ2

�
∂ξV1

þ
�
~ω2

f2

�
V1 ¼ 0; ð34Þ

where the complicated prefactor in the second term, in the
limit ξ → ξh, becomes analogously

−
4ξ4h

ξhðξ4h − ξ4Þ ð35Þ

which is again of the same form as in the case with B ¼ 0.
To summarize, a Frobenius analysis around the horizon

(ξ → ξh) shows that the asymptotics for both of these
differential equations is given by

V ∼
�
1 −

ξ

ξh

��i ~ω
ξh
4

; ð36Þ

which is hence not altered by turning on a background
magnetic field. Note that since ~D2 > 0, no extra singularity
is created at all by turning on a magnetic field.

2. Near-boundary limit

In the boundary limit ξ → 0, we take ξα as a first term in
the power series analysis and we find that the second terms
in both (31) and (34) behave as −1=ξ, which is the same as
in the case of B ¼ 0 (every ~D multiplies at least one ξ). G

33

Gzz

and G11

Gzz behave as 1 (and therefore cannot create more
divergent terms). The asymptotic analysis then simply
gives

αðα − 1Þ − α ¼ 0; ð37Þ
yielding α ¼ 0 or α ¼ 2. In this case, we require more
(since we will solve the differential equations by evolving
from the boundary to the horizon): we need the first
derivatives of Φ at the holographic boundary. For this,
the Frobenius analysis needs to be taken one level further.
The indicial equation has two solutions whose difference is
an integer. The larger of the two (¼ 2) has a regular series

expansion, whereas the other solution has a logarithmic
series as well:

Φ2ðξÞ ¼ ξ2
Xþ∞

k¼0

akξk;Φ1ðξÞ ¼ C lnðξÞΦ2ðξÞ þ
Xþ∞

k¼0

bkξk:

ð38Þ

As normalization, we choose a0 ¼ b0 ¼ 1. Also b2 is a free
parameter, since it corresponds to simply adding Φ2 to Φ1

with factor b2. Explicit analysis in our case (for both cases)
shows that a2 ¼ − ~ω2

8
þ 1

2
and C ¼ − ~ω2

2
.

All odd-indexed parameters are automatically zero. The
crucial information is then encoded in

Φ2
0ðϵÞ ¼ 2ϵ;Φ1

0ðϵÞ ¼ ∂ξðC lnðξÞξ2 þ Fξ2Þjξ¼ϵ; ð39Þ

where we can freely choose F as we will.

B. Real-time holographic prescription

The real-time holographic prescription [78,79] requires
us to construct the ingoing solution at the horizon. In the
above, we have constructed two linearly independent real
solutions Φ1 and Φ2 with the boundary conditions10

Φ1ðϵÞ ¼ 1; Φ1
0ðϵÞ ¼ − ~ω2 lnðϵÞϵ;

Φ2ðϵÞ ¼ ϵ2; Φ2
0ðϵÞ ¼ 2ϵ: ð41Þ

Since also the ingoing and outgoing solutions [with

behavior ϕ� ∼ ð1 − ξ
ξh
Þ�i ~ω

ξh
4 near the horizon] are a com-

plete set, we can set

Φ1 ¼ αϕ− þ α�ϕþ
Φ2 ¼ βϕ− þ β�ϕþ: ð42Þ

If we normalize the desired solution v as

v ¼ Φ1 þ BΦ2 ¼ ðαþ BβÞϕ− þ ðα� þ Bβ�Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
0

ϕþ; ð43Þ

we obtain B ¼ − α�
β�.

10In [30,31], the boundary conditions are instead

Φ1ðϵÞ ¼ 1; Φ1
0ðϵÞ ¼ − ~ω2 ln

�
~ω
ϵ

2

�
ϵ − ϵγ ~ω2;

Φ2ðϵÞ ¼ ϵ2; Φ2
0ðϵÞ ¼ 2ϵ; ð40Þ

with γ the Euler-Mascheroni constant. The extra terms added to
Φ1

0ðϵÞ (corresponding to choosing F in the formulas above) are
chosen such that the asymptotic Bessel functions are found. This
is not necessary and we believe things are more transparent by
simply dropping these terms.
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The quadratic fluctuations come from a Maxwell-type
action:

S ∼
Z

d5xe−Φ
ffiffiffiffiffiffiffi
−G

p
GμρGνσFμνFρσ: ð44Þ

It is immediate that the bulk action vanishes on shell. The
boundary contribution [obtained by integrating by parts and
retaining only the contribution at z ¼ 0 (cf. the real-time
prescription of [78,79])] is schematically given by

Son-shell;bdy ∼ lim
z→0

Z
d4x

ffiffiffiffiffiffiffi
−G

p
GzzGνσAν∂zAσ: ð45Þ

We need the z ≈ 0 behavior of several quantities:

Gzz ¼ fz2

L2
≈

z2

L2
þOðz6Þ;

Gtt ¼ z2

fL2
≈
z2

L2
þOðz6Þ;

G11 ¼
L2

z2

L4

z4 þ ~D2
≈

z2

L2
þOðz6Þ;

G33 ¼ z2

L2
;

ffiffiffiffiffiffiffi
−G

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L10

z10
þ L6

z6
~D2

s
≈
L5

z5
þOð1=zÞ: ð46Þ

Since the inverse metric Gνσ is diagonal, this action splits
into the sum of the different polarizations. Without paying
attention to z-independent prefactors, we can write

Son-shell;bdy ∼ lim
z→0

Z
d4x

L5

z5
z2

L2

z2

L2
Ai∂zAi

¼ lim
z→0

Z
d4x

L
z
v∂zv ð47Þ

or in terms of ξ,11

Son-shell;bdy ∼ lim
ξ→0

Z
d4x

L
ξ
v∂ξv; ð48Þ

where we only retained the most singular contributions. If
this is finite, the subdominant terms will all vanish
as ξ → 0.
The prescription instructs us to Fourier transform in the

4D boundary theory and then extract the ξ-direction parts.
If the field has harmonic dependence ∼eiq·x−iωt (as is the
case here), this simplifies to

lim
ξ→0

Z
d4x

L
ξ
v∂zv ¼ lim

ξ→0
V4

L
ξ
~v∂ξ ~v; ð49Þ

where by the tilde notation we denote that the plane wave
part has been extracted. The prescription reduces to simply
dropping V4 in this case. Thus

DRðω;qÞ ∼ lim
ξ→0

~v∂ξ ~v
ξ

: ð50Þ

Up to a proportionality constant, the imaginary part of
the retarded Green function is the spectral function and
hence

ρðω;qÞ ¼ −
ℑDRðω; qÞ

π
∼ ℑ

�ð1þ Bϵ2ÞðΦ1
0ðϵÞ þ 2BϵÞ

ϵ

�
¼ 2ℑB: ð51Þ

In the final equality we have used the small ϵ limit. Hence
the imaginary part of B holds the information on the
spectral function and it is this quantity that we will display
in the following paragraphs.

C. Numerical results

First, we focus on the case when the polarization is
parallel to B. The spectral function as a function of ω2 is
shown in Fig. 2 for varying background magnetic field
strengths with a fixed temperature t ¼ 0.07.
It is clear that spectral peaks are monotonically shifted

towards lower ω2. The critical value ω2 ¼ 0 is however
never reached for any peak no matter how strong the
applied field. This is fortunate since otherwise tachyonic
instabilities might set in.

FIG. 2 (color online). Spectral function for the polarization
parallel to B as a function of ~ω2 for different values of qB.
The temperature is fixed at t ¼ 0.07. Blue: qB ¼ 0, purple:
qB¼0.2GeV2, yellow: qB¼0.4GeV2, green: qB ¼ 1.0 GeV2.

11A global factor of c is needed in this conversion, but we will
not keep track of prefactors.
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In Fig. 3 below we show the same figure but with
varying temperature and fixed background magnetic
field qB ¼ 0.5 GeV2.
From this figure one readily deduces that the spectral

peaks only melt at higher temperatures than in the case
when B ¼ 0. In the case of Fig. 3, the lowest lying peak is
found to melt only at around t ¼ 0.20, which is substan-
tially higher than the melting temperature t ¼ 0.14
when B ¼ 0.
The spectral function for fluctuations with polarization

transverse to the applied magnetic field is shown in Figs. 4
and 5.
It is clear that in this case, the behavior is opposite to that

of the longitudinal polarizations: peaks shift towards larger
ω2 and they melt at lower temperatures. As the magnetic
field increases, the spectral peaks do not shift without
bound towards larger ω2: they approach a fixed asymptotic
value that we will discuss further in the next section. It is
reassuring to note that a sum rules approach at zero

temperature [71] confirms the picture of relatively faster
rising masses for the transversal polarizations.

D. Thermal AdS (f ¼ 1)

Setting f ¼ 1, the space reduces to thermal AdS space.
In this case, just as with zero magnetic field (B ¼ 0), we
expect to find a discrete spectrum of normalizable modes
whose spectral peaks are Dirac peaks which coincide with
the widened peaks determined above. The fluctuation
equations reduce to the form

∂2
ξvþ

� ðL4 − ~D2ξ4Þ
ð−L4 − ~D2ξ4Þξ − 2ξ

�
∂ξvþ ~ω2v ¼ 0;

longitudinal; ð52Þ

∂2
ξvþ

� ðL4 þ 3 ~D2ξ4Þ
ð−L4 − ~D2ξ4Þξ − 2ξ

�
∂ξvþ ~ω2v ¼ 0;

transversal: ð53Þ

Note that these eigenfunctions should be normalized as
dictated by the action itself; we can rescale the eigenfunc-
tions to conventionally normalized modes as ui ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−ξ

2 ffiffiffiffiffiffiffi
−G

p
GzzGii

p
vi. Incidentally, these modes also satisfy

a Schrödinger equation.
It is found that the discrete spectrum at very high

magnetic field asymptotes to

~ω2 ¼ 4n; n ¼ 0; 1;… ð54Þ
for the polarization parallel to the magnetic field and

~ω2 ¼ 8þ 4n; n ¼ 0; 1;… ð55Þ
for the polarizations transverse to the magnetic field. We
believe these to be the asymptotic values of the spectral

FIG. 3 (color online). Spectral function for the polarization
parallel to B as a function of ~ω2 for different values of t. The
magnetic field is fixed at qB ¼ 0.5 GeV2. Blue: t ¼ 0.07, purple:
t ¼ 0.09, yellow: t ¼ 0.11, green: t ¼ 0.14, light blue: t ¼ 0.20.

FIG. 4 (color online). Spectral function for the polarization
transverse to B as a function of ~ω2 for different values of qB.
The temperature is fixed at t ¼ 0.07. Blue: qB ¼ 0, purple:
qB¼ 0.2GeV2, yellow: qB¼ 0.4GeV2, green: qB ¼ 1.0 GeV2.

FIG. 5 (color online). Spectral function for the polarization
transverse to B as a function of ~ω2 for different values of t. The
magnetic field is fixed at qB ¼ 0.5 GeV2. Blue: t ¼ 0.07, purple:
t ¼ 0.09, yellow: t ¼ 0.11.
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peaks discussed in the previous section, a feature that can
be numerically verified.
So far, in this work, we have focussed on a specific

model (DBI) to correct the noninteracting Maxwell equa-
tions in the bulk. Of course, there exists an entire array of
possibilities here. One other approach might be to insert a
F4 correction to the soft-wall Maxwell action. How would
this alter our conclusions here?
In our formulas, letting α0 be small (which for our

purposes is exactly the same as choosing a small magnetic
field), after Taylor expanding the DBI action, we can make
contact with the low α0 limit of for instance solely a F4

correction to the action. We have explicitly verified that
similar peak-shifting effects are observed (as the shifting of
the peaks happens monotonously in B). Hence, we con-
clude that this effect (at least for small magnetic fields)
seems to be quite generic and is not just a peculiarity of this
specific extension of the soft-wall model.

VI. COMPARISON TO MODELS
AND THE LATTICE

In [80], it was argued that for magnetic fields
perpendicular to the gauge string, the string becomes more
and more unlikely to break, effectively increasing the string
tension. On the lattice [81] it was observed that, when
performing this experiment (moving a QQ̄ pair apart from
each other), when the axis connecting both quarks is parallel
to the applied magnetic field, the string tension decreases
and the opposite happens for a perpendicular orientation.
It is not that easy to link this result for the staticQQ̄ pair to

our result in which we only consider the effective mesonic
degrees of freedom and not the individual quarks (whose
influence we hoped to have modeled with the DBI action) or
the confining string between those quarks. Nonetheless a
simple statistical argument shows that our result might be
quite plausible. Consider a random distribution of these static
QQ̄ pairs in an external magnetic field. Roughly speaking,
two thirds of these mesons can be viewed as perpendicular to
the applied field, resulting in an increased effective string
tension, and hence (usingm2 ∼ σn) an increased mass of the
excitations. Analogously, one third of these mesons are
expected to experience a decrease in string tension and mass.
In our case, the different degrees of freedom we have for

the mesons are their polarizations, and indeed the two
transverse polarizations become more massive, whereas the
single longitudinal degree of freedom becomes lighter.
Thus a simple counting argument shows that both results

are not inconsistent a priori. A closely connected point was
also made in [81]: the chromoelectric field perpendicular to
the applied magnetic field increases, whereas the tangential
component decreases. Again the direct link between this
field and the polarization of the resulting meson is unclear,
although it seems plausible that they should be related in
some way.

For a recent holographic study on the anisotropy of the
heavy quark potential in a magnetic field in the context of
N ¼ 4 SYM, see [82].
Obviously a better understanding of this would be

beneficial, although this will be very difficult since a clear
understanding of the gauge string between quarks and its
precise link to the effective meson degrees of freedom is
precisely part of the confinement problem.
Unfortunately, we are unaware of any direct experimental

or lattice data that can support (or disprove) the above results.

VII. HEAVY QUARK DIFFUSION CONSTANT

Having introduced our model, we are also able to
investigate certain transport properties of the magnetized
plasma. Here, we shall in particular be interested in the
heavy quark diffusion coefficient, which is defined as12

D ¼ 1

6χ
limω→0

X3
i¼1

ρVii
ω

; ð56Þ

where the sum is over all three different spatial current-
current correlators. In the case of a background magnetic
field (and hence loss of isotropy), it is natural to define two
diffusion coefficients D⊥ and D∥ and it is these quantities
that we will study here. The χ appearing here is the quark
number susceptibility. It is expected that this quantity as
well will be sensitive to a background magnetic field [85].
Because χ is insensitive to the polarization vector (by
definition), it will be the same for all polarizations and
hence the conclusions below should be interpreted in a
relative way: only ratios should be considered.

A. Numerical analysis

This quantity can be rapidly deduced numerically from
the spectral function, and we plot 6χD as a function of
applied magnetic field in Figs. 6 and 7.
We observe from these figures that the heavy quark

diffusion coefficient for the longitudinal polarization
becomes larger than that of the transverse polarizations
as theB field increases. The behavior of 6D∥χ is linear with
magnetic field for sufficiently large magnetic fields. As
remarked above, a more detailed analysis would require the
knowledge of the quark number susceptibility χ as a
function of B to which we plan to return in future work.

B. Diffusion constant using hydrodynamic expansion

In this subsection we will reproduce the above behavior
of χD using a hydrodynamic expansion [78,79]. This will
allow us to obtain an analytic formula which provides a
check on the numerical work in the previous sections.

12See e.g. [83,84] for other transport related quantities ob-
tained from a different model.
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Let us return to the differential equation for the longi-
tudinal polarization:

V 00
3 þ

g0

g
V 0
3 −

Gtt

G33
ω2V3 ¼ 0; ð57Þ

where we denoted

g ¼
ffiffiffiffiffiffiffi
−G

p
e−cz

2

GzzG33 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L10

z10
þ L6

z6
D2

s
z4

L4
e−cz

2

�
1 −

z4

z4h

�
ð58Þ

for notational simplicity and primes denote z derivatives.
The solution V3ðzÞ is written in the hydrodynamic (small
ω) expansion

V3ðzÞ ¼
�
1 −

z
zh

�
−iωzh

4 ðF0ðzÞ þ ωFωðzÞ þ…Þ ð59Þ

for some unknown functions F0ðzÞ and FωðzÞ. These
functions should not have a singularity at z ¼ zh.

Expanding in powers of ω, the lowest order equation is
written as

ðgF0
0Þ0 ¼ 0; ð60Þ

whose general solution is

F0ðzÞ ¼ C1

Z
dz
gðzÞ þ C2: ð61Þ

One readily shows that C1 ¼ 0 to avoid a singularity at
z ¼ zh.

13 The next-to-lowest order equation in ω yields,
after a first integration,�

iω
4

�
1 −

z
zh

�
−iωzh

4
−1
C2 þ

�
1 −

z
zh

�
−iωzh

4

ωF0
ω

�
¼ C3

g
;

ð63Þ
leading to

F0
ω ¼ C3

ωg

�
1 −

z
zh

�iωzh
4

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼1þOðωÞ

−
iC2

4ð1 − z
zh
Þ : ð64Þ

Note that this equation implies that C3 ¼ OðωÞ by defi-
nition of our expansion. This leads to

Fω ¼
Z

C3dz
ωg

þ iC2zh
4

ln

�
1 −

z
zh

�
þ C4: ð65Þ

The second term has a singularity at z ¼ zh, but the first
term has one as well. If one chooses

FIG. 6 (color online). (a) Heavy quark diffusion coefficient for the polarization parallel toB as a function of applied magnetic field qB
for t ¼ 0.14. (b) Zoom in of the previous figure. For B ≈ 0, the diffusion constant remains constant. For a larger magnetic field, a linear
regime sets in.

FIG. 7 (color online). Heavy quark diffusion coefficient for the
polarization transverse to B as a function of applied magnetic
field qB for t ¼ 0.14.

13Even though the integral cannot be computed analytically,
the divergent part of it can, by extracting the finite parts from the
integrand as follows:Z

dzfðzÞhðzÞ ¼ fðz0Þ
Z

dzhðzÞ þ finite at z0 ð62Þ

for a finite function f and a function h, singular at z0.
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C3

ω

Lz2he
cz2h

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L4 þD2z4h

p ¼ iC2zh
4

; ð66Þ

the singularity vanishes. Finally C4 needs to be chosen such that Fωðz ¼ zhÞ vanishes, but its precise value will not be
needed. Combining these results, the expansion becomes

V3ðzÞ ¼ C2

�
1 −

z
zh

�
−iωzh

4

�
1þ iωe−cz

2
h

zhL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L4 þD2z4h

q Z
z

z�

dz
gðzÞ þ

iωzh
4

ln

�
1 −

z
zh

��
; ð67Þ

where z� incorporates C4 and is chosen such that Fωðz ¼ zhÞ ¼ 0. To get the retarded Green function, one needs V3∂zV3

z in
the z → 0 limit. Moreover, to get χD one should divide this expression by ω and take ω → 0.
First, the boundary value of V3 is given by

V3ðz ¼ 0Þ ¼ C2

�
1þ iωe−cz

2
h

zhL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L4 þD2z4h

q Z
0

z�

dz
gðzÞ

�
; ð68Þ

which determines C2. We can then write

∂zV3 ¼ C2

iω
4

�
1 −

z
zh

�
−iωzh

4
−1
�
1þ iωe−cz

2
h

zhL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L4 þD2z4h

q Z
z

z�

dz
gðzÞ þ

iωzh
4

ln

�
1 −

z
zh

��

þ C2

�
1 −

z
zh

�
−iωzh

4

�
iωe−cz

2
h

zhL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L4 þD2z4h

q
1

gðzÞ −
iω
4

1

1 − z=zh

�
: ð69Þ

Dropping the term quadratic in ω and taking z → 0, this
reduces to

∂zV3ðz ¼ 0Þ ¼ C2

�
iωe−cz

2
h

zhL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L4 þD2z4h

q
1

gð0Þ
�
þOðω2Þ:

ð70Þ

We hence finally obtain for χD∥:

χD∥ ∼ ℑlimω→0

1

ω
limz→0

V3∂zV3

z

∼ V3ðz ¼ 0ÞC2

�
e−cz

2
h

zhL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L4 þD2z4h

q
1

L

�

∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L4 þD2z4h

q
; ð71Þ

where we used gð0Þ ¼ L
z and the low ω limit implies also

that V3ðz ¼ 0Þ ≈ C2. Note that since D2 ∼ L4, the result is
independent of L, as has been argued previously.
Taking transverse polarizations entails an almost iden-

tical computation. The only difference is the value of C3 in
terms of C2 to avoid a singularity at z ¼ zh:

C3

ω

z2he
cz2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L4 þD2z4h

p
4L3

¼ iC2zh
4

: ð72Þ

In the end this simply leads to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L4 þD2z4h

q
→

L2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L4 þD2z4h

p : ð73Þ

Ignoring some prefactors, the final result we obtain is

6χD∥ ∼
e−cz

2
h

zhπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16π2ð2.29Þ4z4h

9
ðqBÞ2

r
; ð74Þ

6χD⊥ ∼
e−cz

2
h

zhπ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16π2ð2.29Þ4z4h
9

ðqBÞ2
q : ð75Þ

The ratio of longitudinal and transverse D becomes

D∥

D⊥
¼ L4 þD2z4h

L4
¼ 1þ 16π2ð2.29Þ4z4h

9
ðqBÞ2: ð76Þ

This analytic formula and the one obtained numerically
agree and both are plotted in Fig. 8. It is clear that both
methods yield the same outcome, supporting both our
numerical procedure and the above analytic results.
We find it quite remarkable that the final results can be

written down analytically even though the integration over
1=gðzÞ cannot be done analytically.
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VIII. CONCLUSION AND OUTLOOK

Summarizing, in this paper we have introduced an
extension of the original soft-wall AdS/QCD model that
is capable of describing the coupling of an external
magnetic field to the charged constituents of charmonia.
We employed the model to probe the melting properties of
the J=ψ in the presence of a magnetic field. Our main
finding is that the polarizations perpendicular, respectively
parallel, to the applied magnetic field melt faster, respec-
tively slower than in the case where no magnetic field is
present. As expected, the anisotropy brought in by the
magnetic field also induces an anisotropy in the melting of
the heavy vector meson. It is beyond doubt clear that the
magnetic field does influence the melting, and as such, it
gives support to the picture that the deconfinement tran-
sition depends on the applied magnetic field, although in a
more involved way than the Polyakov loop picture might
suggest [13]. Let us mention here that we did not need to
make the soft-wall background itself dependent on the
magnetic field to find a nontrivial effect. Although our
analysis might seem to correspond to a probe brane
approximation, this is actually to be loosely interpreted,
since it would be useless to consider the backreaction of the
magnetic field on the soft-wall metric, since the latter does
not itself solve Einstein’s equations.

As a further application, one might want to look at a
background electric field. However, a moment’s thought
shows that this immediately leads to an imaginary part in
the action, no matter how small the applied E field. In
general, one expects a Schwinger-type effect to take place
only as soon as the confining force is conquered by the
applied field [86–88]. The soft-wall DBI model is hence not
capable of predicting this expected phenomenon cor-
rectly.14 In general, soft-wall type models appear to be
less powerful in predicting properties directly related to the
confining force (Wilson loop with area law,15 electric
breakdown etc.), but its strength lies in the prediction of
the (linear) meson Regge trajectory, and it is our hope that
these poles have been qualitatively predicted using our DBI
modification of this model.
We also presented a preliminary analysis of the relative

heavy quark diffusion constants for longitudinal and trans-
versal modes. The former modes display a stronger
diffusion than the latter ones. It is tempting to speculate
that this observation might have interesting consequences
for the elliptic flow in the medium [89], which is anyhow
related to anisotropy. Since the collision process creates the
magnetic field, another proponent of anisotropy as we have
confirmed e.g. in the melting or transport properties of our
model, it looks worthwhile to pursue this in more detail.
This will encompass the effective computation of the heavy
quark number susceptibility.
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