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The purpose of this work is to understand the relation between the trivial vacuum in light-front field
theory and the nontrivial vacuum in canonical representations of quantum field theory and the role of zero-
modes in this relation. The role of the underlying field algebra in the definition of the vacuum is exploited to
understand these relations. The trivial vacuum defined by an annihilation operator defines a linear
functional on the algebra of fields restricted to a light front. This is extended to a linear functional on the
algebra of local fields. The extension defines a unitary mapping between the physical representation of the
local algebra and a sub-algebra of the light-front Fock algebra. The dynamics appears in the mapping and
the structure of the sub-algebra. This correspondence provides a formulation of locality and Poincaré
invariance on the light-front Fock space. Zero modes do not appear in the final mapping, but may be needed
in the construction of the mapping using a local Lagrangian.

DOI: 10.1103/PhysRevD.91.085043 PACS numbers: 03.70.+k, 11.10.-z

I. INTRODUCTION

The light-front [1] representation of quantum field theory
has a number of properties that make it advantageous for
some applications, particularly for applications involving
electroweak probes of the strong interaction and non-
perturbative treatments of the strong interaction [2]. The
properties of the light-front representation of quantum field
theory that lead to these advantages are as follows: (1) there
is a seven-parameter subgroup of the Poincaré group that is
free of interactions, (2) there is a three-parameter group of
Lorentz boosts that is also free of interactions, (3) the
generator of translations in the x− direction tangent to the
light front is free of interactions and satisfies a spectral
condition, and (4) the vacuum of the interacting theory is
the same as the vacuum of the free-field theory.
This is in contrast to the canonical formulation of

quantum field theory, where the six-parameter Euclidean
group is free of interactions, boosts depend on interactions
and do not form a subgroup, the spectrum of the trans-
lation generators is the real line, and the vacuum of
the interacting theory is not a vector in the free-field
Fock space.
These differences have motivated many investigations

into the nature of the light-front vacuum [3–13].
While the light-front formulation of quantum field theory

has advantages in these applications, the predictions should
be independent of the representation of the theory. It is
found that some light-front calculations require additional
“zero-mode” contributions in order to maintain the equiv-
alence with covariant perturbation theory [14,15].
This work has two goals. The first is to understand how

the vacuum can be trivial in one representation of field
theory and not in another equivalent representation of the
same theory. A second goal is to understand the role of zero
modes in the light-front vacuum.

It is instructive to consider what happens in the case of
a free scalar field theory. The ground state of a harmonic
oscillator is uniquely determined by the condition that it
is annihilated by the annihilation operator. Free scalar
fields behave like infinite collections of harmonic oscil-
lators. The analogy suggests that the vacuum of the free-
field theory is defined by the condition that it is
annihilated by a collection of annihilation operators,
where the annihilation operators are labeled by the
three-momentum. Free fields can be expressed as inte-
grals over the three-momentum that are linear in the
creation and annihilation operators. A change of variables
gives an equivalent expression for the same field as an
integral over the light-front components of the momenta.
The resulting light-front and canonical creation and
annihilation operators are related by a multiplicative
factor, which is the square root of the Jacobian of the
variable change from the three-momenta to the three
light-front components of the four-momentum. The
multiplication of the annihilation operator by a
Jacobian should not impact the linear equation that
defines the vacuum, except possibly for momenta where
the Jacobian becomes singular. This perspective suggests
that both representations of the free-field theory should
have the same vacuum.
If two free scalar fields with different masses are

restricted to the light front, the masses do not appear in
representations of fields or in the commutators of the
creation and annihilation operators. In addition, the fields
restricted to the light front are irreducible in the sense that it
is possible to extract both the creation and annihilation
operators directly from the field restricted to the light front.
It follows from these properties that the two scalar fields
with different masses restricted to the light front and their
associated vacuum vectors are unitarily equivalent [3].
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On the other hand, two free scalar fields with different
masses are related by a canonical transformation that
expresses the annihilation operator for the mass-1 field
theory as a linear combination of creation and annihilation
operators for the mass-2 field theory. It was explicitly
shown by Haag [16] that, while this canonical trans-
formation can be represented by a unitary transformation
for finite numbers of degrees of freedom, this is no longer
true for canonical free fields. For free fields of different
mass, the transformation is unitary if there is a momentum
cutoff; however, when the cutoff is removed the generator
of this unitary transformation becomes ill defined in the
sense that it maps every vector in the mass-1 representation
of the Hilbert space, including the vacuum, to a vector with
infinite norm. In this case the theories are not related by a
unitary transformation and the vacua live in different
Hilbert space representations. This is the well-known
problem of inequivalent representations of the canonical
field algebra for theories of an infinite number of degrees
of freedom [17–19].
These observations imply that the conventional mass-1

annihilation operator is related to the corresponding light-
front annihilation operator by a trivial Jacobian, which is
unitarily equivalent to the mass-2 light-front annihilation
operator. This operator is in turn related to the conventional
mass-2 annihilation operator by another Jacobian. This
suggests that the vacua for both theories are the same, or at
least unitarily related; however, this contradicts the obser-
vation that the annihilation operators of the conventional
free-field theories are related by a canonical transformation
that cannot be realized unitarily.
The virtue of free fields is that they are well understood.

Others [4,12,20] have used free fields to develop insight
into various aspects of this problem. Algebraic methods
provide a resolution of the apparent inconsistency dis-
cussed above. They were used in the seminal work of
Leutwyler, Klauder and Streit [3] and Schlieder and Seiler
[4]. This will be discussed in more detail in the subsequent
sections.
The problem is that the requirement that the vacuum is

the state annihilated by an annihilation operator does not
give a complete characterization of the vacuum of a local
field theory. In a local field theory the vacuum is also a
positive invariant linear functional on the field algebra.
The relevant algebra is the algebra of local observables,
which is not the same as the canonical equal-time algebra or
the algebra generated by fields restricted to a light front.
While the desired positive linear functional can be
expressed by taking vacuum expectation values of elements
of the algebra with the vacuum defined by the annihilation
operator, the definition of the vacuum functional also
depends on the choice of algebra. Specifically, functionals
that agree on a subalgebra do not have to agree on the
parent algebra. The physically relevant algebra for a
quantum field theory must be large enough to be

Poincaré invariant and to contain local observables. Both
the canonical and light-front algebras (which are defined
later) are irreducible in the sense that they can be used to
build both the Hilbert space and operators on the Hilbert
space, but they are not closed under Poincaré transforma-
tions and do not contain local observables. While they are
not subalgebras of the local algebra, for the case of free
fields the irreducibility allows the linear functional that
defines the vacuum on these algebras to be extended to the
local algebra. In the case of the canonical equal-time
algebra, the extension is essentially unique [21,22], while
in the case of the light-front algebra, there are many
extensions that lead to inequivalent representations of
the local algebra. These extensions define a unitary map
that relates the local algebra and physical vacuum to a
subalgebra of the light-front algebra with the free Fock
vacuum.
In the light-front case the extension to the local algebra

requires additional attention to what happens when the þ
component of the momentum is 0. For free fields the
extension to the local algebra regularizes apparent singu-
larities that are associated with pþ ¼ 0.
The algebraic methods discussed for free fields can also

be applied to interacting fields by first representing them
using a Haag expansion [16,23,24] as a series in a complete
set of normal products of asymptotic (in or out) fields. The
asymptotic fields are free fields, and each of them can be
expressed as an extension of a free field restricted to the
light front. This results in an extension of the light-front
algebra to the local algebra generated by the interact-
ing field.
The coefficients of the Haag expansion of the interacting

Heisenberg field are invariant (covariant) functions [23].
Additional properties of these functions follow because
the Heisenberg fields and asymptotic fields are operator-
valued tempered distributions. When the asymptotic fields
in the Haag expansion are replaced by the extensions of
free fields on the light front to the asymptotic fields, the
result is an expansion of the Heisenberg fields in terms of
normal products of free fields restricted to a light front.
The coefficient functions in this expansion regulate the
pþ ¼ 0 behavior of the free light-front fields.
More singular behavior can occur in operators, like

Poincaré generators, that involve products of fields at the
same point on the light front. These products are ill
defined, and a renormalization is necessary for them to
make sense as operators. Divergences appear for large
momenta as well as pþ ¼ 0. The resulting finite theory
needs to be independent of the orientation of the light
front. Invariance under change of orientation of the light
front is equivalent to rotational covariance of the theory
[25–30]. Since pþ ¼ 0 for one light front corresponds to
some component of p becoming infinite with a different
light-front, rotational covariance necessarily puts impor-
tant constraints on the renormalization.
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This also suggests that the zero mode issue is more
complicated in 3þ 1-dimensional theories than 1þ 1-
dimensional theories, where rotational covariance plays
no role. Specifically, the extension to the local algebra must
recover both the rotational covariance and locality of the
theory.
In the next section we define our notation and

conventions. In Sec. III we discuss inequivalent represen-
tations. In Sec. IV we discuss the light-front vacuum. In
Sec. V we introduce four different field algebras that we use
in this paper. Section VI discusses the light-front Fock
algebra. In Sec. VII we discuss the meaning of equivalent
theories. In Sec. VIII we discuss extensions of the light-
front Fock algebra. In Sec. IX we discuss dynamical
theories. Zero modes are discussed in Sec. X. The results
are summarized in Sec. XI.

II. NOTATION

This section defines the notation and conventions that
will be used in the remainder of the paper. The signature of
the Minkowski metric is ð−;þ;þ;þÞ. Space-time compo-
nents of four-vectors, x, have Greek indices

xμ ≔ ðx0;xÞ: ð1Þ

A light front is a three-dimensional hyperplane in
Minkowski space satisfying

xþ ≔ x0 þ n̂ · x ¼ 0 ð2Þ

where n̂ is a fixed unit vector. Points on the light front have
either a spacelike or lightlike separation. Coordinates of
points on the light front are

~x ¼ ðx−;x⊥Þ ð3Þ

where

x− ¼ x0 − n̂ · x and x⊥ ¼ x − n̂ðn̂ · xÞ: ð4Þ

The light-front components of a four-vector x are

x ¼ ðxþ; x−;x⊥Þ: ð5Þ

The Lorentz invariant scalar product of two four-vectors in
terms of their light-front components is

x · y ¼ −
1

2
xþy− −

1

2
x−yþ þ x⊥ · y⊥: ð6Þ

The Fourier transform of a Schwartz test function fðxÞ ∈
SðR4Þ is

fðpÞ ¼ 1

ð2πÞ2
Z

e−ip·xfðxÞ 1
2
dxþdx−d2x⊥

¼ 1

ð2πÞ2
Z

e−ip·xfðxÞd4x ð7Þ

fðxÞ ¼ 1

ð2πÞ2
Z

eix·pfðpÞ 1
2
dpþdp−d2p⊥

¼ 1

ð2πÞ2
Z

eix·pfðpÞd4p ð8Þ

where d4x ¼ 1
2
dxþdx−d2x⊥. A “mathematically imprecise”

notation is used to represent functions fðxÞ and their Fourier
transforms fðpÞ, which are related by (7) and (8). In what
follows, p; k and q represent momentum variables and x; y
and z represent coordinate variables. It is useful to define

~p ≔ ðpþ;p⊥Þ ~x · ~p ≔ −
1

2
x−pþ þ x⊥ · p⊥ ð9Þ

and

d ~x ≔ dx−dx⊥ d ~p ≔ dpþdp⊥: ð10Þ

In this notation the three-dimensional Fourier transforms of
functions ~fð ~xÞ in the light-front variables are

~fð ~pÞ ¼ 1

21=2ð2πÞ3=2
Z

e−i ~p· ~x ~fð ~xÞd ~x ð11Þ

and

~fð ~xÞ ¼ 1

21=2ð2πÞ3=2
Z

ei ~p· ~x ~fð ~pÞd ~p: ð12Þ

The ~ indicates functions supported on the light front and
their Fourier transforms.
The light front is invariant under a seven-parameter

subgroup, called the light-front kinematic subgroup of
the Poincaré group. This subgroup is generated by the
three-parameter subgroup of translations tangent to the
light front,

~x∶→ ~x0 ¼ ~xþ ~a; ð13Þ

a three-parameter subgroup of light-front preserving
boosts,

xþ → xþ0 ¼ qþxþ x⊥ → x0⊥ ¼ x⊥ þ q⊥xþ; ð14Þ

x− → x−0 ¼ 1

qþ
ðx− þ q2⊥xþ þ 2q⊥ · x⊥Þ ð15Þ

and rotations about the n̂ axis.
Light-front boosts applied to points on the light front

only transform x−:
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x⊥ → x0⊥ ¼ x⊥; ð16Þ

x−0 ¼ 1

qþ
ðx− þ 2q⊥ · x⊥Þ: ð17Þ

However, the conjugate momentum variables ~p can take
on any value under these transformations provided pþ ≠ 0:

pþ → pþ0 ¼ qþpþ p⊥ → p0⊥ ¼ p⊥ þ q⊥pþ: ð18Þ

When pþ ¼ 0 the light-front boosts leave ~p unchanged.
The light-front inner product is defined by

ð ~f; ~gÞ ¼
Z

d ~pθðpþÞ
pþ ~f�ð ~pÞ~gð ~pÞ: ð19Þ

This inner product is invariant with respect to the kinematic
subgroup because (1) the measure is invariant and
(2) ~p → ~p0 does not involve p−. This inner product has
a logarithmic singularity for functions ~fð ~pÞ that are non-
zero at pþ ¼ 0.

III. INEQUIVALENT REPRESENTATIONS

Free fields look like collections of uncoupled harmonic
oscillators. For a single oscillator the Hamiltonian in
dimensionless variables is

H ¼ 1

2
ðx2 þ p2Þ ¼ a†aþ 1

2
ð20Þ

where

½x; p� ¼ i a ≔ ðxþ ipÞ=
ffiffiffi
2

p
½a; a†� ¼ 1: ð21Þ

The equation

aj0i ¼ 0 ð22Þ

determines the ground state j0i of the oscillator.
The canonical transformation

x → x0 ¼ αx; p → p0 ¼ p
α

ð23Þ

preserves ½x; p� ¼ ½x0; p0� ¼ i, and leads to a linear relation
between the original and transformed annihilation oper-
ators:

a0 ¼ 1

2

�
αþ 1

α

�
aþ 1

2

�
α −

1

α

�
a†

¼ coshðηÞaþ sinhðηÞa†: ð24Þ

This canonical transformation can be implemented by the
unitary operator U:

a0 ¼ UaU† U ¼ e
η
2
ðaa−a†a†Þ ¼ eiG: ð25Þ

The transformed Hamiltonian

H0 ¼ 1

2
ðx02 þ p02Þ ¼ a0†a0 þ 1

2
ð26Þ

has the same eigenvalues as H. The transformed ground
state vector is related to the original ground state vector by

j00i ¼ Uj0i: ð27Þ

The canonical transformation (23) is the single-oscillator
version of the canonical transformation that changes the
mass in a free-field theory.
The canonically conjugate operators in a free scalar field

theory have the form

ϕðxÞ ¼ ð2πÞ−3=2
Z
dp

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωmðpÞ

p ðaðpÞeip·x þ a†ðpÞe−ip·xÞ;

ð28Þ

πðxÞ ¼ −ið2πÞ−3=2
Z

dp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωmðpÞ

2

r
ðaðpÞeip·x − a†ðpÞe−ip·xÞ

ð29Þ

where x is restricted to t ¼ 0 and p0 ¼ ωmðpÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
is the energy.

The canonical transformation that changes the mass
m → m0 involves multiplying the integrand of ϕðxÞ by

αðpÞ ¼
ffiffiffiffiffiffiffiffiffiffi
ωmðpÞ
ωm0 ðpÞ

q
and the integrand of πðxÞ by 1=αðpÞ. This

has the same structure as the single oscillator canonical
transformation (23) except in this case the parameter α
depends on the momentum.
As in the case of the single oscillator, define ηðpÞ by

coshðηðpÞÞ ¼ 1

2

�
αðpÞ þ 1

αðpÞ
�

sinhðηðpÞÞ ¼ 1

2

�
αðpÞ − 1

αðpÞ
�
: ð30Þ

By analogy with (25), the formal generator G of the
canonical transform that changes the mass is

G → −i
Z

ηðpÞ
2

ðaðpÞaðpÞ − a†ðpÞa†ðpÞÞdp: ð31Þ

A simple calculation shows
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∥Gj0i∥2 ¼ 1

4

Z
ηðpÞ2dpδð0Þ ¼ ∞ ð32Þ

which implies that the domain of G is empty.
The consequence is that the canonical transformation

relating free-field theories with different masses cannot be
realized by a unitary transformation. The second is that the
canonical vacuum vectors characterized by

aiðpÞj0ii ¼ 0 i ∈ f1; 2g ð33Þ

are not unitarily related. The existence of unitarily
inequivalent representations of the canonical commuta-
tion for systems of an infinite number of degrees of
freedom is well known [17]. The example above was
discussed by Haag [16].
The interest in this example is that, in contrast to

canonical equal-time fields, for free fields restricted to a
light front, the vacuum vectors and annihilation operators
for free fields of different mass are unitarily related [3].

IV. LIGHT-FRONT VACUUM

In light-front field theory the generator Pþ of translations
in the x− direction is a kinematic operator satisfying the
spectral condition, Pþ ≥ 0. The dynamical operator P−,
which generates translations normal to the light front, is the
light-front Hamiltonian. It can formally be expressed as the
sum of a noninteracting term and an interaction

P− ¼ P−
0 þ V: ð34Þ

Kinematic translational invariance of P− and P−
0 on the

light front requires that the interaction commutes with Pþ:

½Pþ; V� ¼ 0: ð35Þ

It follows that

PþVj0i ¼ VPþj0i ¼ 0 ð36Þ

for a light-front translationally invariant vacuum.
Because Pþ is kinematic Pþ is the sum of the single

particle generators. It satisfies a spectral condition Pþ ¼P
iP

þ
i ≥ 0. If V can be expressed as a kernel integrated

against creation and annihilation operators, then the coef-
ficient of the pure creation terms in the interaction must
vanish unless pþ

i ¼ 0 for each creation operator. If this
kernel is a continuous function of pþ the interaction will
necessarily leave the vacuum unchanged. This does not rule
out singular contributions at pþ ¼ 0 which are associated
with zero modes of the theory.
For the special case of a free field of mass m, the light-

front representation of the field is obtained by changing the
integration variable from p to the three light-front compo-
nents of the four-momentum. The result is

ϕðxÞ ¼ ð2πÞ−3=2
Z

dpþdp⊥θðpþÞffiffiffiffiffiffiffiffiffi
2pþp

×

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωmðpÞ

p
pþ aðpÞeip·x þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωmðpÞ
pþ

s
a†ðpÞe−ip·x

!
:

ð37Þ

This leads to the following relation between the light-front
and canonical annihilation operators

alfð ~pÞ ≔ alfðpþ;p⊥Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωmðpÞ
pþ

s
aðpÞ ð38Þ

which satisfy

½alfðpþ;p⊥Þ; a†lfðqþ;q⊥Þ� ¼ δð ~p − ~qÞ
¼ δðpþ − qþÞδðp⊥ − q⊥Þ:

ð39Þ

As in the canonical case, the light-front vacuum is
characterized by the condition that it is annihilated by
the annihilation operator

alfððpþ;p⊥Þj0i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωmðpÞ
pþ

s
aðpÞj0i ¼ 0: ð40Þ

If this field is restricted to the light front xþ ¼ 0, the mass-
dependent factors disappear both from the field (37) and
from the commutation relations (39) of alf and a†lf. In this
case vacuum expectation values of a product of fields
smeared with functions supported on the light front are all
identical, independent of mass.
Equation (40) is the same for all free scalar fields.

V. FIELD ALGEBRAS

An obvious question is how these different character-
izations of the vacuum of a free field of mass m are related.
If the vacuum is uniquely characterized by the annihilation
operator, like it is for a single harmonic oscillator, the
arguments of Sec. III imply that the vacua for free fields
with different masses are inequivalent. On the other hand,
the arguments of the previous section imply that the light-
front vacuum is identical to the canonical vacuum and light-
front vacuum vectors for different masses are unitarily
related. The resolution of these apparently conflicting
results can be understood by giving up the assumption
that the vacuum is uniquely characterized by the annihi-
lation operator.
The critical observation is that each of the vacua

discussed above is implicitly defined on different algebras
of operators. The relevant algebra for a local quantum field
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theory must be invariant with respect to Poincaré trans-
formation and contain observables associated with arbi-
trarily small space-time volumes. These two conditions are
not satisfied by both the light-front and canonical fixed-
time field algebras, even though both of these algebras are
irreducible.
This suggests that the characterization of the vacuum by

an annihilation operator is incomplete. The vacuum func-
tionals generated by both the light-front and canonical
annihilation operators require nontrivial extensions in order
to define linear functionals on a Poincaré invariant algebra
of local observables.
Different algebras are generated by smeared fields of

the form

ϕðfÞ ¼
Z

ϕðxÞfðxÞd4x ð41Þ

where we limit our considerations to the case where ϕðxÞ is
a scalar field. The field algebra consists of polynomials in
ϕðfÞ or eiϕðfÞ. The difference is that the exponential form is
bounded so there are no issues with domains; however, this
distinction is not important in this paper. What is relevant is
that for a given scalar field there are different algebras that
are distinguished by different choices of the space of test
functions.
It is useful to identify the following four free-field

algebras.
We call the algebra generated by local observables, i.e.,

fields smeared with Schwartz functions in four space-time
variables,

fϕðfÞjfðxÞ ∈ SðR4Þg; ð42Þ

the local algebra.
The algebra generated by fields smeared with Schwartz

functions in three coordinates on the light front,

fϕðfÞjfðxÞ ¼ δðxþÞfð~xÞ; fð~xÞ ∈ SðR3Þg; ð43Þ

is called the light-front algebra. The algebra generated by
fields and their time derivatives smeared with Schwartz
functions in three spatial coordinates,

fϕðfÞjfðxÞ ¼ δðtÞfðxÞ;−_δðtÞfðxÞ; fðxÞ ∈ SðR3Þg;
ð44Þ

is called the canonical algebra. Integrating the field over
these test functions gives the canonically conjugate ϕð·Þ
and πð·Þ fields restricted to the t ¼ 0 hyperplane. The
algebra generated by fields smeared with Schwartz func-
tions in three light-front coordinates, restricted to have a
zero x− integral,

n
ϕðfÞjfðxÞ¼ δðxþÞfð ~xÞfð ~xÞ∈ SðR3Þ;

Z
fð ~xÞdx−¼ 0

o
;

ð45Þ

is called the Schlieder-Seiler algebra [4]. The restriction on
the test functions means that their Fourier transform
vanishes at pþ ¼ 0, which makes the light-front inner
product (19) finite.
The local algebra is the only one of these four algebras

that is preserved under the Poincaré group and contains
observables that can be localized in any space-time volume.
The light-front and Schlieder-Seiler algebras are preserved
under the kinematic subgroup of the light front, and the
canonical algebra is preserved under the three-dimensional
Euclidean group. The reason for distinguishing the light-
front and Schlieder-Seiler algebras is that the light-front
Fock vacuum is not defined on the light-front algebra,
while it is well behaved on the Schlieder-Seiler algebra.
A vacuum on any of these algebras is a positive linear

functional L. The positivity condition means that

L½A†A� ≥ 0 ð46Þ

for any element A of the algebra. Each such positive linear
functional L½·� can be used to construct a Hilbert-space
representation of the algebra with inner product

hBjAi ¼ L½B†A�: ð47Þ

Formally, the Hilbert space representation is constructed by
identifying vectors whose difference has zero norm and
completing the space by adding Cauchy sequences. This is
the standard GNS construction which is discussed in many
texts [31]. There are additional constraints on the linear
functional for it to represent a vacuum vector. One of these
properties is that when L½·� is invariant with respect to the
group that preserves the algebra, then the Hilbert space
representation of the group is unitary.
Another property of all of these algebras is that they are

irreducible. This means that any bounded linear operators
on the Hilbert space can also be formally expressed in terms
of operators in the algebra.
Acceptable candidates for vacuum vectors are invariant

positive linear functionals on the algebra. While the
vacuum expectation value of an element of the algebra
with the vector annihilated by the annihilation operator
defines a linear functional, the definition of the functional
also depends on the algebra. Specifically, since positivity
on a subalgebra does not imply positivity on the parent
algebra, and a restricted symmetry on a subalgebra does not
imply the full symmetry on the parent algebra, it follows
that the characterization of the vacuum as a positive
invariant linear functional depends on the choice of algebra.
While this is different than the characterization in terms of
annihilation operators, it does not preclude the possibility
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of using a vacuum characterized by a particular annihilation
operator, but the linear functional must be extended to the
local algebra.
While the canonical, light-front, and Schlieder-Seiler

algebras for free fields are not subalgebras of the local free-
field algebra, these algebras are related to the local algebra
by the standard expressions for the field operator, ϕðxÞ.
While local algebras exist for free or interacting

Heisenberg fields because fields are operator-valued dis-
tributions, the other three algebras may not exist, in general,
because the “test functions” (43)–(45) have a distributional
component. However, for the case of free fields these
restrictions are defined, and the formal representation of the
fields in terms of creation and annihilation operators
provides explicit relations among these four algebras.

VI. LIGHT-FRONT FOCK ALGEBRA

In this section we give a more complete description of
the light-front and Schlieder-Seiler algebras and review
some properties [3,4] of these algebras.
The light-front Fock algebra is the algebra of free-field

operators smeared with Schwartz functions in the light-
front coordinates ~x with xþ ¼ 0. A free scalar field of mass
m expressed in terms of light-front coordinates has the form

ϕðxÞ ¼ 1

ð2πÞ3=2
Z

d ~pθðpþÞffiffiffiffiffiffiffiffiffi
2pþp ðalfð ~pÞeip·x þ a†lfð ~pÞe−ip·xÞ

ð48Þ

where the mass m only enters in e�ip·x for xþ ≠ 0:

p− ¼ p2⊥ þm2

pþ : ð49Þ

On the light front, when xþ ¼ 0, all information about the
mass is lost. The creation and annihilation operators satisfy

½alfð ~pÞ; a†lfð ~kÞ� ¼ δð ~p − ~kÞ; ð50Þ

which is also independent of mass.
Equation (49) is where the free-field dynamics enters;

it extends the field restricted to a light front to a field,
ϕðxÞ, on the local algebra that satisfies the Klein-Gordon
equation [32]

ð□ −m2ÞϕðxÞ ¼ 0: ð51Þ

Each mass defines a distinct and inequivalent extension of
the light-front free-field algebra to different local algebras.
The Fourier transform of the field restricted to the light

front can be decomposed into terms with positive and
negative values of pþ:

~ϕð ~pÞ ≔ 1

ð2Þ1=2ð2πÞ3=2
Z

d ~xe−i ~p· ~xϕð0; ~xÞ

¼ θðpþÞ ~ϕð ~pÞ þ θð−pþÞ ~ϕð ~pÞ

¼ θðpþÞ
ffiffiffiffiffiffi
1

pþ

s
alfð ~pÞ þ θð−pþÞ

ffiffiffiffiffiffi
−1
pþ

s
a†lfð− ~pÞ:

ð52Þ

This decomposition only makes sense for pþ ≠ 0, which
means that the decomposition is only defined on the
Schlieder-Seiler algebra, where the test functions vanish
at pþ ¼ 0.
This decomposition can be used to separate the creation

and annihilation operators:

alfð ~pÞ ¼ θðpþÞ
ffiffiffiffiffiffi
pþ

2

r
1

ð2πÞ3=2
Z

d ~xe−i ~p· ~xϕð0; ~xÞ ð53Þ

and

a†lfð ~pÞ ¼ θðpþÞ
ffiffiffiffiffiffi
pþ

2

r
1

ð2πÞ3=2
Z

d ~xei ~x· ~pϕð0; ~xÞ: ð54Þ

This property, for which one can extract both creation and
annihilation operators from the field restricted to the light
front, is not shared with fields restricted to a spacelike
hyperplane. On a spacelike hyperplane, both the field and
its time derivative (which requires knowing about the field
off of the fixed-time hyperplane) are needed to independ-
ently extract the creation and annihilation operators.
Equation (52) implies that the field restricted to the light

front can be decomposed into parts corresponding to the
sign of pþ in the Fourier transform

~ϕð ~xÞ ≔ ϕð0; ~xÞ ¼ ϕþð0; ~xÞ þ ϕ−ð0; ~xÞ ð55Þ

where

~ϕ�ð ~xÞ ¼ 1

ð2Þ1=2ð2πÞ3=2
Z

d ~pei ~p· ~x ~ϕ�ð ~pÞ ð56Þ

and

~ϕþð ~pÞ ≔ θðpþÞffiffiffiffiffiffi
pþp alfð ~pÞ ~ϕ−ð ~pÞ ≔ θð−pþÞffiffiffiffiffiffiffiffiffiffi

−pþp a†lfð− ~pÞ:

ð57Þ

Next we argue that the spectral condition on pþ leads to an
algebraic definition of normal ordering. By this we mean
that vacuum expectation values are not explicitly needed to
define the normal product of light-front field operators.
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To see this, note that translational covariance of the field

eiP
þa− ~ϕð ~xÞe−iPþa− ¼ ~ϕð ~xþ a−Þ ð58Þ

implies

½Pþ; ~ϕ�ð ~pÞ� ¼ ∓jpþj ~ϕ�ð ~pÞ: ð59Þ

It follows that if jqþi is an eigenstate of Pþ with eigenvalue
qþ then

Pþ ~ϕ�ð ~pÞjqþi ¼ ð½Pþ; ~ϕ�ð ~pÞ� þ ~ϕ�ð ~pÞPþÞjqþi
¼ ðqþ∓jpþjÞ ~ϕ�ð ~pÞjqþi: ð60Þ

This shows that application of ~ϕþð ~pÞ to any eigenstate of
Pþ results in an eigenstate of Pþ with a lower eigenvalue of
Pþ. Since kinematic translational invariance in the x−

direction implies that any vacuum is an eigenstate of Pþ
with eigenvalue 0, the spectral condition Pþ ≥ 0 implies
that ~ϕþð ~pÞ must annihilate that vacuum as long as the
support of ~p does not contain the point pþ ¼ 0. This is
always the case for the Schlieder-Seiler algebra. This is a
consequence of the algebra—it holds for any Hilbert space
representation of the light-front Schlieder-Seiler algebra.
It is important to note that the only property of the vacuum
that was used was translational invariance, which is a
property of any light-front invariant vacuum. The decom-
position (55) makes no use of the vacuum.
It follows that there is an algebraic notion of normal

ordering on the free-field light-front Schlieder-Seiler
algebra. The rule is to decompose every field operator
~ϕð ~fÞ ¼ ~ϕ−ð ~fÞ þ ~ϕþð ~fÞ, and then move all of the ~ϕþð ~fÞ
parts of the field to the right of the ~ϕ−ð ~fÞ parts of the
fields. We use the standard double dot ∷ notation to
indicate algebraic normal ordering. We refer to it as
“algebraic” because a vacuum is not needed to make the
decomposition (55).
The light-front vacuum for free fields is uniquely

determined by the algebraic normal ordering on the
Schlieder-Seiler algebra. To see this, note that it follows
from the decomposition (57) that

Uð ~fÞ ¼ ei ~ϕð ~fÞ ¼ ei ~ϕþð ~fÞþi ~ϕ−ð ~fÞ ¼ ei ~ϕ−ð ~fÞei ~ϕþð ~fÞe1
2
ðf;fÞ

≕ ei ~ϕð ~fÞ∶e1
2
ð ~f; ~fÞ ð61Þ

which expresses Uð ~fÞ as an algebraically “normal ordered
operator” multiplied by the known coefficient function,

e
1
2
ð ~f; ~fÞ. If the vacuum expectation value of the normal

product ∶eiϕð ~fÞ∶ is 1, then the vacuum functional on this
algebra is given by

h0jUð ~fÞj0i ¼ e
1
2
ð ~f; ~fÞ: ð62Þ

Since ð ~f; ~fÞ is ill defined for functions that do not vanish at
pþ ¼ 0, this vacuum is only defined on the Schlieder-Seiler
algebra. Furthermore, on the Schlieder-Seiler algebra the

vacuum expectation value of the normal product ∶ei ~ϕð ~fÞ∶ is
1 as a result of (60) and the fact that the Schlieder-Seiler test
functions vanish for pþ ¼ 0.
It follows that for free fields of any mass, the Schlieder-

Seiler algebras are unitarily equivalent [3]. This is because
the vacuum expectation values of any number of smeared
fields are identical.
The formal irreducibility of this algebra follows because

it has the structure of a Weyl algebra [33,34], but in this
case the algebra has no local observables and the class of
test functions is too small to determine any dynamical
information. The Weyl structure is contained in the unitary
operators

Uð ~fÞ ¼ ei ~ϕð ~fÞ: ð63Þ

Products of field operators are replaced by products of
bounded operators of the form (63). Products of two such
operators can be computed using the Campbell-Baker-
Hausdorff theorem [35]. The result is

Uð ~fÞUð~gÞ ¼ Uð ~f þ ~gÞe−1
2
½ ~ϕð ~fÞ; ~ϕð~gÞ�

¼ Uð ~f þ ~gÞe−1
2
ðð ~f;~gÞ−ð~g; ~fÞÞ; ð64Þ

which is another operator of the same form multiplied by
the scalar coefficient, e−

1
2
ðð ~f;~gÞ−ð~g; ~fÞÞ.

To put (64) in the form of a Weyl algebra, first
decompose the Fourier transform of a real Schlieder
Seiler test function into real and imaginary parts: ~f ¼
~fr þ i ~fi. Defining

Uð ~fÞ ¼ Uð ~fr; ~fiÞ ð65Þ

Eq. (64) becomes

Uð ~fr; ~fiÞUð~gr; ~giÞ ¼ Uð ~fr þ ~gr; ~fi þ ~giÞe−i
2
ðð ~fr;~giÞ−ð~gr; ~fiÞÞ:

ð66Þ

This has the same form as the Weyl algebra for the
canonical fields if we use

Uðf; gÞ ≔ eiϕðfÞþiπðgÞ ð67Þ

where the light-front inner product is replaced by the
ordinary L2ðR3Þ inner product.
While the light-front inner product (19) is singular for

functions that do not vanish at pþ ¼ 0, the difference
ð ~fð− ~pÞ~gð ~pÞ − ~gð− ~pÞ ~fð ~pÞÞ vanishes for pþ ¼ 0 for all
values of p⊥. This means that ½ϕð ~fÞ;ϕð~gÞ� can be extended
to the light-front algebra; however, the decomposition (55)
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and the algebraic normal ordering discussed above are no
longer well defined on the full light-front Fock algebra.
In the case of the canonical field algebra, defining a

vacuum functional on the Weyl algebra uniquely deter-
mines the Hamiltonian [21,22] and hence the dynamics
needed to uniquely extend the algebra to the local algebra.
This does not happen in the light-front case.
In the light-front case the representations of the Weyl

algebras discussed above are unitarily equivalent [3] for
different mass fields.

VII. EQUIVALENCE

In this section the meaning of the equivalence of two
field theories is discussed. We emphasize that it is impor-
tant to distinguish the equivalence of the theories and the
equivalence of the corresponding Weyl representations.
The choice of field algebra plays an important role in this
characterization.
The relevant algebra for a field theory is the local algebra,

which is distinguished from the light-front, canonical and
Schlieder-Seiler algebras by being closed under Poincaré
transformations. In addition, it contains operators that are
localized in finite space-time regions, which are needed to
formulate locality conditions. The GNS construction using a
Poincaré invariant vacuum functional leads to a unitary
representation of the Poincaré group on the GNS Hilbert
space. Theories that have identical Wightman functions are
unitarily equivalent, since the Wightman functions are
kernels of the Hilbert space inner product, which means
that the correspondence between the fields and vacuum in
the Wightman functions preserves all inner products.
It is possible for two theories to have Wightman

functions that are generally different but nevertheless are
identical on a subalgebra. An instructive example for the
case of two-scalar fields with different masses was given by
Schlieder and Seiler [4]. In this example they consider a
subalgebra of the local field algebra.
Let ϕ1ðxÞ and ϕ2ðxÞ be free scalar fields with different

masses,m1 andm2. If fðxÞ and gðxÞ have Fourier transforms
fðpÞ and gðpÞ that agree on the mass shell for the field of
mass m1, then ϕ1ðfÞ ¼ ϕ1ðgÞ. The condition that two
functions agree on a given mass shell divides the space of
test functions into disjoint equivalence classes of functions.
In general, if two test functions have Fourier transforms

that agree on one mass shell, their Fourier transforms are
generally unrelated on any other mass shell. However, out
of the class of all test functions, there is a subspace of test
functions fðpÞ that satisfy

fð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ p2
p

;pÞ
ðm2

1 þ p2Þ1=4 ¼ fð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ p2
p

;pÞ
ðm2

2 þ p2Þ1=4 : ð68Þ

For test functions in this class, calculations imply that

1h0jϕ1ðfÞϕ1ðgÞj0i1 ¼ 2h0jϕ2ðfÞϕ2ðgÞj0i2: ð69Þ

On this restricted subalgebra the two-point functions of both
fields are identical. In addition, the decomposition of this set
of functions into disjoint equivalence classes is identical for
both fields. Finally, for free fields, everyn-point function is a
product of two-point functions. Because the two-point
Wightman functions for the different mass fields on this
subalgebra are identical, the correspondence ϕ1ðfÞ →
ϕ2ðfÞ and j0i1 → j0i2 is unitary. On the other hand, this
algebra is not invariant under Poincaré transformations.
While this is a very restrictive class of test functions, it is

still large enough to be irreducible. To see this, note that
given any gðpÞ (not necessarily in this class), there is a
function f1ðpÞ in this class satisfying ϕ1ðf1Þ ¼ ϕ1ðgÞ (they
only have to have Fourier transforms that agree on the mass
shell). There is also an f2ðpÞ in this class satisfying
ϕ2ðf2Þ ¼ ϕ2ðgÞ. However, there is no relation between
ϕ1ðgÞ and ϕ2ðgÞ or ϕ1ðf1Þ and ϕ2ðf2Þ.
Thus, by limiting the space of test functions to a class

that is not closed under Poincaré transformations, one gets
irreducible unitarily equivalent representations of a sub-
algebra of the full four-dimensional algebra for scalar fields
with different mass. This equivalence is not preserved when
the algebra is extended to the local algebra.
While the light-front algebra is not a subalgebra of the

local algebra, it has a limited set of test functions that
cannot distinguish fields of different mass, which are,
however, large enough to be irreducible.
Theories with different masses become inequivalent

when the light-front Fock algebra is extended to the local
algebra. This will be discussed in the next section.
Another example that makes the role of the underlying

algebra clear is comparing the two-point function of the
local algebra restricted to the light front to the two-point
function constructed from the light-front Fock algebra.
The textbook representation for the two-point function

of a scalar field of mass m in the local algebra can be
found in [36],

h0jϕðxÞϕðyÞj0i ¼ −i
ϵðz0Þδðz20 − z2Þ

4π
þ imθðz20 − z2Þ
8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz20 − z2Þ

p
×

�
ϵðz0ÞJ1

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz20 − z2Þ

q �

− iN1

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz20 − z2Þ

q
Þ
�

−
mθðz2 − z20Þ
4π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − z20

p K1

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − z20

q �
ð70Þ

where zμ ¼ xμ − yμ. Because this is Lorentz invariant, it is
a function of z2, so when zþ ¼ 0, there can be no z−

dependence (except for the sign), and this becomes

h0jϕðxÞϕðyÞj0i → −i
ϵðz−Þδðz2⊥Þ

4π
−

m

4π2
ffiffiffiffiffiffi
z2⊥

p K1

�
m

ffiffiffiffiffiffi
z2⊥

q �
:

ð71Þ
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This can be compared to the direct construction of this
quantity using the light-front Fock algebra, which knows
nothing about the Lorentz symmetry. The result is

1

ð2πÞ3
Z

d ~pθðpþÞ
2pþ ei ~p·~z: ð72Þ

This is a well-behaved distribution on the Schlieder-Seiler
algebra, and it has a nontrivial dependence on z−. On the
other hand, the Lorentz invariance of (71) means that it
has no dependence on z−. Furthermore, Eq. (71) is not
even a distribution on the Schlieder-Seiler functions
because the integral behaves like 1

z2⊥
at the origin [12].

The difference in (71) and (72) is from the order of the
light-front limit and integral matter.

VIII. EXTENSION TO THE LOCAL ALGEBRA

The explicit representation of the free scalar field in
terms of the light-front creation and annihilation operators,
Eq. (48), and the light-front creation and annihilation
operators in terms of the fields restricted to the light front,
Eqs. (53) and (54), can be combined to get the following
expression for the field on the local algebra in terms of the
field restricted to the light front:

ϕðyÞ ¼ 1

2ð2πÞ3
Z

d ~xd ~ke−
i
2

k2⊥þm2

kþ yþþi ~k·ð~y− ~xÞ ~ϕð ~xÞ ð73Þ

where in this expression the kþ integral is over both
positive and negative values. This provides the desired
extension from the light-front or Schlieder-Seiler algebras
to the local algebra of the free field.
When yþ ¼ 0 this becomes a delta function in the light-

front coordinates and one recovers the field ~ϕð ~xÞ restricted
to the light front. The specification of the mass m in
Eq. (73) puts the dynamical information in ϕðyÞ.

Equation (73) has the structure

ϕðyÞ ¼
Z

d ~xFmðyþ∶ ~y − ~xÞ ~ϕð ~xÞ: ð74Þ

If fðyÞ is a Schwartz function in four-space-time variables
and we define

~gfð ~xÞ ≔
Z

d4yfðyÞFmðyþ∶ ~y − ~xÞ; ð75Þ

then

ϕðfÞ ¼
Z

ϕðxÞfðxÞd4x ¼
Z

~gfð ~xÞ ~ϕð ~xÞd ~x ¼ ~ϕð~gfÞ
ð76Þ

where ~gf is a function of variables on the light-front
hyperplane. This shows that the local free-field algebra
can be expressed in terms of the free-field light-front
algebra.
The kernel Fmðyþ∶ ~y − ~xÞ satisfies the Klein-Gordon

equation for a given mass. Thus, it restores full Lorentz
covariance. The choice of Fm also provides a dynamical
distinction between free fields with different masses. It is
responsible for the physical inequivalence of free-field
theories with different masses. This inequivalence is
preserved if we use this to generate the canonical algebra
by integrating against test functions in three variables
multiplied by delta functions in time and their derivatives.
A free-field theory is completely defined by its two-point

Wightman function. To compute the two-point Wightman
function it is also necessary to have the vacuum functional
in addition to the algebra.
If the vacuum is annihilated by the light-front annihila-

tion operator, then (74) can be used to calculate the two-
point Wightman function in terms of the restriction to the
light front,

h0jϕðxÞϕðyÞj0i ¼ 1

8ð2πÞ9
Z

d ~x1d~y1d ~kd ~p
d ~q
qþ

θðqþÞe−i
p2⊥þm2

2pþ xþþi ~p·ð ~x− ~x1Þe−i
k2⊥þm2

2kþ yþþi ~k·ð~y−~y1Þei ~q·ð ~x1−~y1Þ

¼ 1

2ð2πÞ3
Z

d ~q
qþ

θðqþÞe−i
q2⊥þm2

2qþ ðxþ−yþÞþi ~qð ~x−~yÞ

¼ 1

ð2πÞ3
Z

θðqþÞδðq2 þm2Þeiq·ðx−yÞd4q ð77Þ

which is the standard representation of the two-point
Wightman function.
The interesting property of expression (77) is that while

the 1=qþ denominator is log divergent for qþ near zero,

e−i
q2⊥þm2

qþ xþ undergoes violent oscillations in the neighbor-
hood of qþ ¼ 0. These oscillations regularize the 1=qþ

divergences. To see that this happens, note that near the
origin the integral has the same form as

Z
a

0

eic=q

q
dq ¼

Z
∞

c=a

eiu

u
du ¼ π

2
− ðCiðc=aÞ þ iSiðc=aÞÞ

ð78Þ
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where we have substituted u ¼ c=q and used Eqs. (5.5),
(5.5.27) (5.5.26) in [37] to get this result. The finiteness of
this expression shows that the oscillations in the exponent
regulate the singularity at qþ ¼ 0. It follows that the sharp
restriction to the light front turns this “regulator” off. It is
not something that can be continuously turned on.
This shows that smearing with a test function in xþ leads

to an additional pþ dependence that makes the 1=pþ in the
light-front inner product (19) harmless.
To see this, it is constructive to consider a test function

that is a product of a test function in xþ and a test function
in the light-front coordinates ~x of the form

fðxÞ ¼ f1ðxþÞf2ð ~xÞ: ð79Þ

It follows that ~gfð ~xÞ defined by (75) has a Fourier transform
of the form

gfð ~pÞ ¼ f1

�
p2⊥ þm2

pþ

�
f2ð ~pÞ: ð80Þ

Thus, even if f2ð0;p⊥Þ ≠ 0, if f1ðp−Þ is a Schwartz
function, gfð ~pÞ will vanish faster than any power of pþ

as pþ → 0.
This means that for free-field theories, Fm maps all

Schwartz test functions in four variables into Schlieder-
Seiler functions on the light-front hyperplane. This
uniquely fixes the light-front vacuum by (61).
To understand the significance of the mapping

fðxÞ → gfð ~xÞ, note that the operators ~ϕð~gfÞ for fðxÞ ∈
SðR4Þ generate a subalgebra of the Schlieder-Seiler algebra.
On this subalgebra we have the identity

mh0jϕðf1Þ � � �ϕðfnÞj0im ¼ lfh0j ~ϕð~gf1Þ � � � ~ϕð~gfnÞj0ilf
ð81Þ

which means that this correspondence preserves all
Wightman distributions on the local algebra. This defines
a unitary mapping between the physical representation of
the local algebra and this representation of this subalgebra
of the Schlieder-Seiler Fock algebra.
This unitary transformation maps the vacuum of the local

free-field theory to the light-front Fock vacuum. If f1 and
f2 have spacelike separated support, then this correspon-
dence implies

½ ~ϕð~gf1Þ; ~ϕð~gf2Þ� ¼ 0: ð82Þ
In addition, fiðxÞ → f0iðxÞ ¼ fiðΛxþ aÞ implies that

lfh0j ~ϕð~gf1Þ � � � ~ϕð~gfnÞj0ilf ¼ lfh0j ~ϕð~gf01Þ � � � ~ϕð~gf0nÞj0ilf:
ð83Þ

These equations show how locality and a unitary represen-
tation of the Poincaré group are realized in this light-front

Fock representation of this subalgebra of the Schlieder-Seiler
algebra.
Free fields of different mass involve different maps

that map to different subalgebras of the Schlieder-Seiler
algebra.

IX. DYNAMICS

In this section we discuss the extension of these results to
the case of interacting theories. In particular, we show how
the local algebra generated by the Heisenberg field oper-
ators of an interacting theory can be mapped into a
subalgebra of the light-front Fock algebra.
The asymptotic completeness of the S matrix means that

the theory has an irreducible set of asymptotic fields. These
are the “in” or “out” fields of the theory. They are local free
fields with the masses of physical one-particle states of the
theory. In general, there may also be local asymptotic fields
[38] for composite particles.
In [16,23] it is shown under mild assumptions that any

linear operator A on the Hilbert space can be expanded as
a series of normal products of asymptotic fields. This
expansion is referred to as the Haag expansion [24]. For the
Heisenberg field of an interacting theory, the Haag expan-
sion has the form

ϕðxÞ ¼
X∞
n¼0

1

n!

Z
d4x1 � � � d4xnLnðx; x1;…; xnÞ

∶ϕinðx1Þ � � �ϕinðxnÞ∶: ð84Þ
This expansion is nontrivial—the masses in asymptotic
fields are physical particle masses, and in general, there are
asymptotic fields for both composite and elementary
particles.
The Poincaré covariance of the Heisenberg and asymp-

totic fields means that the coefficient functions
Lnðx; x1;…; xnÞ are invariant,

Lnðx; x1;…; xnÞ ¼ LnðΛxþ a;Λx1 þ a;…;Λxn þ aÞ;
ð85Þ

under Poincaré transformations ðΛ; aÞ. For higher spin
composite fields the invariance is replaced by an obvious
covariance.
Furthermore, if the Heisenberg field ϕðxÞ is an operator-

valued tempered distribution, then ϕðfÞ should be a Hilbert
space operator when fðxÞ is a Schwartz function. For the
Hagg expansion of ϕðfÞ to also be an operator, the smeared
coefficient functions

Lnðf; x1;…; xnÞ ≔
Z

fðxÞLnðx; x1;…; xnÞd4x ð86Þ

should behave like Schwartz test functions in 4n variables,
since the asymptotic fields are all operator-valued tempered
distributions.
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Using (73)–(74), each of the asymptotic fields can be
expressed as the extension of a light-front field, with the
kernels Fmðxþ; ~x − ~yÞ. Using these in the Haag expansion
gives the following representation of the Heisenberg field
in terms of products of algebraically normal-ordered fields
restricted to a light front:

ϕðxÞ ¼
X∞
n¼0

1

n!

Z
d4x1 � � � d4xnLnðx; x1;…; xnÞ

× Fm1
ðxþ1 ; ~x1 − ~y1Þ � � �Fmn

ðxþn ; ~xn − ~ynÞ
× d~y1 � � �d~yn∶ ~ϕ10ð~y1Þ � � � ~ϕn0ð~ynÞ∶: ð87Þ

If ϕðxÞ is smeared with a Schwartz function, fðxÞ, and
Lnðf; x1;…; xnÞ is a Schwartz function in 4n variables,
then the pþ ¼ 0 behavior of the light-front fields will be
suppressed in (87) by the mechanism (78). In this repre-
sentation the vacuum functional is fixed by (61), as it is in
the case of the free field. The nontrivial aspects of the
dynamics appear in the extension to the full Heisenberg
algebra.
It follows that elements of the local Heisenberg algebra

can be expressed as elements of the light-front Fock algebra

ϕðfÞ ¼
X 1

n!

Z
~Lnðf; ~y1;…; ~ynÞ

× d~y1 � � � d~yn∶ ~ϕ10ð~y1Þ � � � ~ϕn0ð~ynÞ∶ ð88Þ

where

~Lnðf; ~y1;…; ~ynÞ

¼
Z

~Lnðx; ~y1;…; ~ynÞd4xfðxÞ

¼
Z

d4x1 � � � d4xnLnðf; x1;…; xnÞ

× Fm1
ðxþ1 ; ~x1 − ~y1Þ � � �Fmn

ðxþn ; ~xn − ~ynÞ: ð89Þ

As in the free-field case, this correspondence generates a
unitary mapping from the local algebra of the Heisenberg
field to a subalgebra of the Schlieder-Seiler algebra.
Specifically, this correspondence has the form

ϕðfÞ → ~A½f� ð90Þ

where ~A½f� is the right-hand side of (88), which is an
element of the light-front Schlieder Seiler algebra. The
correspondence

h0jϕðfÞ1 � � �ϕðfnÞj0i ¼ lfh0jA½f1� � � �A½fn�j0ilf ð91Þ

defines a unitary map from the Hilbert space generated by
the local field ϕðfÞ to the Hilbert space generated by the
A½f� on the light-front Fock vacuum.

This correspondence relates the Heisenberg vacuum to
the light-front Fock vacuum. It preserves local commuta-
tion relations, the subalgebra is Poincaré invariant, and the
Fock vacuum is also Poincaré invariant on this subalgebra.
In this case all of the dynamical information is contained

in the mapping which defines the subalgebra of the light-
front Fock algebra. All of the dynamical information is
removed from the vacuum.
This discussion does not directly apply to QCD. In the

case of QCD the asymptotic fields are composite and color
singlets. See Ref. [39] for a discussion. While these
asymptotic fields generate the physical Hilbert space, they
do not generate the nonsinglet part of the Hilbert space.
One possible advantage of the expansion (88) is that the
light-front fields that appear in the expansion do not carry
information about asymptotic masses, so they might
provide a means to extend the light-front “Haag expansion”
(85) to the nonsinglet sectors, where there are no asymp-
totic fields.

X. ZERO MODES

In the previous section we demonstrated that it is
possible to express a smeared interacting Heisenberg field
as an expansion in terms of algebraically normal-ordered
free fields restricted to a light front, where the vacuum is
the free light-front Fock vacuum. In this expansion con-
tributions associated with pþ ¼ 0 are suppressed by the
coefficient functions, ~Lnðf; ~x1 � � � ~xnÞ, which are Schlieder-
Seiler functions on the light front.
Unfortunately, the operators that appear in dynamical

equations, like the Poincaré generators, involve local
products of fields rather than products of smeared fields.
A characteristic property of any quantum field theory is that
local products of local fields are not defined. This is
because the fields are operator-valued distributions and
products of distributions are not always defined.
The leading term in the Haag expansion is

ϕðxÞ ¼ ZϕinðxÞ þ � � � ¼ Z
Z

Fmðxþ; ~x − ~yÞϕ0ð~yÞd~yþ � � �

ð92Þ

where Z is a constant that relates the normalization of ϕðxÞ
to the normalization of the asymptotic field. The presence
of ZϕinðxÞ in this expansion means that singularities of
local products of Heisenberg fields on the light front are
determined in part by the singularities of the corresponding
local products of asymptotic fields on the light front:

ϕðxÞn → ZnϕinðxÞn þ � � � ð93Þ

What is relevant is that local products of extensions of the
fields do not suppress pþ ¼ 0 singularities.
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Recall that previously we showed that for Schlieder-
Seiler test functions the vacuum was given by a functional
of the form

E½f� ≔ h0jei ~ϕð ~fÞj0i ¼ h0j∶eiϕð ~fÞ∶j0ie1
2
ð ~f; ~fÞ: ð94Þ

If we expand this out,

h0jei ~ϕð ~fÞj0i ¼
X∞
m¼0

in

n!
h0j ~ϕð ~fÞnj0i; ð95Þ

all of the fields are smeared with Schlieder-Seiler test
functions before computing the vacuum expectation value.
Removing the test functions by taking functional deriv-

atives with respect to the Schlieder-Seiler functions gives
kernels that represent Schlieder-Seiler distributions. These
are not sensitive to what happens at pþ

i ¼ 0 for Schlieder-
Seiler test functions. In order to deal with local operator
products the vacuum functional needs to be extended to
treat points with pþ ¼ 0. The two-point function on the
light front in the light-front algebra is, up to a constant, the
ill-defined light-front scalar product.
This has a logarithmic singularity at pþ ¼ 0. The scalar

product can be regularized in a number of ways. For example,

ð ~f; ~fÞ →
Z

dpþdp⊥θðpþÞ
pþ ~fð− ~pÞ ~fð ~pÞ

−
dpþdp⊥θðpþÞ

pþ ~fð0;−p⊥Þ ~fð0;p⊥Þe−βpþ
: ð96Þ

This recovers the expected result on Schlieder-Seiler func-
tions, but it is well defined on test functions that do not
vanish at pþ ¼ 0. One apparent problem with this regulari-
zation is that it breaks boost invariance in the n̂ direction.
This means that the extension to the local algebra plus
renormalization must be designed to recover both rotational
invariance and longitudinal boost invariance.
Once the space of test functions is extended to include

functions that do not vanish at pþ ¼ 0, it is possible to
have

h0j∶ei ~ϕð ~fÞ∶j0i ≠ 1: ð97Þ

While the algebraic normal ordering means that this is 1 for
functions with positive pþ support, one can extend this
functional to include additional contributions that are
concentrated at pþ ¼ 0. To minimize the effort needed
to recover exact Poincaré invariance in the extension to the
local algebra, it is advantageous to work with pþ ¼ 0
contributions that have the full kinematic symmetry on the
light front. Allowed contributions that are invariant with
respect to the seven-parameter kinematic subgroup have
the form

h0j∶ei ~ϕð ~fÞ∶j0i

¼
X in

n!
h0j∶ ~ϕð ~fÞn∶j0i

¼ e
P

in
n!h0j∶ ~ϕð ~fÞn∶j0ic

¼ e
P

in
n!

R
wc
nðp1⊥;…;pn⊥Þ ~fð0;p1⊥Þ��� ~fð0;pn⊥ÞδðPpn⊥Þdp1⊥���dpn⊥

ð98Þ

where the subscript c indicates the connected part of
the n-point function which is defined in terms of the
distributions of the form

wc
nðp1⊥;…;pn⊥Þ: ð99Þ

The construction of the dynamical extension to the local
algebra must recover exact Poincaré invariance. Since the
regularization of the scalar product (96) that allows test
functions that do not vanish at pþ ¼ 0 breaks scale
invariance in the longitudinal direction, restoration of scale
invariance may require pþ ¼ 0 contributions with the same
six-parameter symmetry. A large class of expressions with
this property are given in [8].
These do not exhaust the possible zero-mode contribu-

tions; distributions of the form

wc
nð ~f; � � � ~fÞ ¼

Z
wnðp1⊥; � � �pn⊥; ξ1; � � � ξnÞδ

�X
i

pþ
i

�
δ

�X
ξj − 1

�Y
θðξkÞ

Yn
i¼1

fð ~piÞd ~pi; ð100Þ

where the ξk are light-front momentum fractions, can also
be considered. What is relevant is that the extension to the
local algebra must recover the full Poincaré symmetry.
It is clear that the need for zero modes is related to

renormalization of operator products. This is nontrivial
because both ultraviolet and infrared singularities must be
treated together in a manner that preserves the rotational
and n̂-boost covariance of the theory and preserves the

positivity of the Hilbert space inner product. The presence
of zero modes defines an extension of the light-front Fock
vacuum. These extensions may be needed in perturbative
expansions of expressions that involve local products of
fields. While they may play a role in constructing the
coefficient functions in the light-front Haag expansion, they
do not directly contribute to the final representation of the
smeared Heisenberg operators.
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XI. SUMMARY

The goal in this paper was to understand (1) why the
light-front vacuum of an interacting theory is the same as
the Fock vacuum while the vacua differ in the conventional
formulation of field theory and (2) the role of zero modes in
the light-front vacuum.
The first issue involves determining the meaning of the

vacuum. For free fields the characterization of the vacuum
by an annihilation operator is incomplete. The physically
relevant characterization of the vacuum is as a positive
linear functional of an algebra of field operators.
When the vacuum is characterized as a linear functional

on an algebra of operators, the choice of algebra matters. In
order to realize Poincaré symmetry manifestly, or localize
field observables to finite regions of space-time, the space of
test functions of the algebra should include functions with
support in finite space-time volumes and should be invariant
under space-time translations and Lorentz transformations.
From a physics point of view, the relevant algebra is

generated by fields smeared with test functions of four
space-time variables. This algebra is Poincaré invariant.
In this work we showed that the local algebra of both free

and interacting fields could be mapped into subalgebras of

the Schlieder-Seiler algebra. We also showed that the
vacuum is trivial and uniquely defined on the Schlieder-
Seiler algebra. This mapping moves the dynamics in the
light-front vacuum into the mapping. The mapping defines a
unitary transformation from the physical representation of
the local algebra generated by a scalar field to a subalgebra
of the Schlieder-Seiler algebra with the Fock vacuum. This
unitary correspondence leads to a formulation of locality and
Poincaré invariance on a subspace of the light-front Fock
space. Subalgebras of the Schlieder-Seiler algebra associated
with different local fields are not unitarily related.
The Schlieder-Seiler algebra has no place for zero

modes, but extension to include zero modes may be
required to treat local operator products that arise in
perturbation theory. A large class of zero-mode contribu-
tions is possible, but they are restricted by positivity and
Poincaré invariance.
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