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We investigate the effects of the anomalous magnetic moment (AMM) in the equation of state (EOS) of a
system of charged fermions at finite density in the presence of a magnetic field. In the region of strong
magnetic fields (eB > m2), the AMM is found from the one-loop fermion self-energy. In contrast to the
weak-field AMM found by Schwinger, in the strong magnetic field region the AMM depends on the
Landau level and decreases with it. The effects of the AMM in the EOS of a dense medium are investigated
at strong and weak fields using the appropriate AMM expression for each case. In contrast with what has
been reported in other works, we find that the AMM of charged fermions makes no significant contribution
to the EOS at any field value.
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I. INTRODUCTION

The fact that strong magnetic fields populate the vast
majority of the astrophysical compact objects and that they
can significantly affect several properties of the star have
served as motivation for many works focused on the study
of the equation of state (EOS) of magnetized systems of
fermions and their astrophysical implications [1–6].
In the presence of a magnetic field B, the dispersion

relation of charged fermions takes the form E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ 2eBlþm2

p
, exhibiting the Landau quantization

of the cyclotron frequencies characterized by the
Landau-level number l ¼ 0; 1; 2;… [7]. A magnetic field
also affects the density of states which now becomes
proportional to the field, so the three-momentum integrals
change as

2

Z
d3p
ð2πÞ3 →

X
l

gðlÞ eB
ð2πÞ2

Z
dpz: ð1Þ

The factor gðlÞ ¼ ½2 − ðδl0Þ� takes into account the double
spin degeneracy of all the Landau levels except l ¼ 0. In
addition, a magnetic field breaks the rotational SO(3)
symmetry, giving rise to an anisotropy in the energy-
momentum tensor [8] and producing a pressure splitting
in two distinguishable components, one along the field (the
longitudinal pressure) and another in the perpendicular
direction (the transverse pressure). As a consequence, a
system of fermions in a constant and uniform magnetic
field exhibits an anisotropic EOS [4–6].
Besides modifying the one-particle Dirac Hamiltonian, a

magnetic field can also affect the radiative corrections of

the fermion self-energy because it introduces an additional
tensor Fμν in the theory that gives rise to new independent
structures like 1

2
T σμνFμν, with σμν ¼ i

2
½γμ; γν�. This new

term corresponds to the coupling between the field and the
fermion anomalous magnetic moment (AMM) T [9],
which in general can be a function of the magnetic field.
It induces a Zeeman splitting in the fermion dispersion that
removes the spin degeneracy [10], and the following
change in the density of states,

X
l

gðl; σÞ eB
ð2πÞ2

Z
dpz; gðl; σÞ ¼ δl0 þ ð1 − δl0Þ

X
σ¼�1

;

ð2Þ

with the spin projections σ ¼ �1.
As shown by Schwinger [9] many years ago, at weak

fields (eB ≪ m2), one can make an expansion of the
fermion self-energy in powers of the magnetic field and
find that the leading contribution proportional to σμν is
linear in the field and given (in natural units) by T B with
T ¼ ðα=2πÞμB, where μB ¼ e=2m is the Bohr magneton.
In this approximation, T is simply independent of the
magnetic field. At the strong field, however, the coefficient
of the σμν structure varies as a square logarithm of the field
[11] and, hence, cannot be expanded in powers of the
magnetic field. At finite temperature and/or density, the
concept of weak field needs to be revisited, as the field may
be strong with respect to one of the scales, but weak with
respect to the others.
Charged and massive fermions always possess magnetic

moments which, in principle, can produce interesting
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physical effects via the modification of the self-energy.
Moreover, massless charged fermions in the presence of a
magnetic field can acquire a dynamical magnetic moment
[12–16] through the phenomenon of magnetic catalysis of
chiral symmetry breaking (MCχSB) [17]. The mechanism
responsible for this effect is related to the dimensional
reduction of the infrared dynamics of the particles in the
lowest Landau level (LLL). Such a reduction favors the
formation of a chiral condensate because there is no energy
gap between the infrared fermions in the LLL and the LLL
antiparticles in the Dirac sea. This effect has been actively
investigated for the last two decades [12–19]. In the original
studies of the MCχSB phenomenon [17–19], the catalyzed
chiral condensate was assumed to generate only a fermion
dynamical mass. Recently, however, it has been shown that
in QED [12–13], as well as in quark systems with [15] and
without [16] finite density, the MCχSB inevitably leads to a
dynamical AMM together with a dynamical fermion mass.
In massless QED, the dynamical AMM gives rise to a
nonperturbative Lande g factor, a Bohr magneton propor-
tional to the inverse of the dynamical mass, and to the
realization of a nonperturbative Zeeman effect [12–13].
The AMM term in the Hamiltonian changes the energy

spectrum of the fermions and can affect, in principle, the
properties of the system. Notice that certain neutral
particles which, like the neutron, are composed by charged
particles (charged quarks in this case) can also have
nonzero AMM. The effects of the nucleons’ and quarks’
AMM on the statistics of magnetized matter have been
discussed in many works [2,3]. The AMM has been linked
among other strong-field effects to stiffening the EOS in
magnetized stars and to a dramatic variation of the particle
fraction, which at very high magnetic fields would lead, for
example, to pure neutron matter (in Refs. [2,3] one or both
of these findings are discussed). However, when inves-
tigating the effects of the AMM in any physical process, we
should be careful in using the analytic expression of the
AMM that is consistent with the magnetic-field strength
under consideration. In particular, as we will discuss in
detail below, considering a linear-in-B approach, which is
the approximation used throughout all the Refs. [2,3], is
only consistent in the region of weak magnetic fields where
a large number of Landau levels are occupied because

ffiffiffiffiffiffi
eB

p
is smaller than all the other energy scales like mass,
temperature, and chemical potential.
The critical field, below which theweak approximation is

reliable then depends on the content of the stellar matter, the
temperature and the density. If one can ignore T and μ, the
critical field separating the weak- and strong-field regions is
determined by the particle mass. For each particle species,
the critical field can then be obtained by equating the
magnetic energy ℏωc, where ωc ¼ qB=mc is the cyclotron
frequency in cgs units, to the corresponding rest-energymc2.
The range of critical fields is then quite wide. For example,

for electrons, BðeÞ
c ¼ 4.4 × 1013 G, for quark matter formed

byu andd quarkswith currentmassesmu¼md¼5MeV=c2,

it is Bðu;dÞ
c ¼ 102BðeÞ

c ¼ 4.4 × 1015 G, for protons, whose

mass is 938 MeV=c2, one findsBðpÞ
c ¼ 1.6 × 1020 G, while

charged hyperons, which are much heavier, will have a
critical field 2 orders of magnitude larger than that of the
protons. At zero temperature and density, a field larger than
the critical one for that type of particlewill constraint them to
their LLL. In a systemwith different types of particles, a field
may be strong; hence, over the critical field for some of them
andweak, below the critical, for others, so caremust be taken
when using weak- and strong-field approximations to
consider such subtleties.
In the present paper, we are interested in revising the role

of the AMM in the EOS of systems of charged fermions,
under both weak and strong magnetic fields. This is a due
task given that, in several of the works that have studied the
effects of the AMM in the thermodynamical properties, one
can point out several issues in the way the results have been
obtained. One of these issues is that the strong-field region
has been explored inconsistently considering Schwinger’s
result for the AMM of all the particles, thus ignoring the
existence of different critical fields and the fact that the
Schwinger’s approximation for the AMM breaks down for
fields of the order of or larger than the critical one, as
pointed out many years ago in Ref. [11]. Second, when
calculating the pressure, some works have ignored the
existence of a pressure anisotropy [4–6] in a strong
magnetic field, so the results were obtained basically using
a single pressure. Third, some papers neglected the con-
tribution of the Maxwell magnetic pressure proportional to
B2=2 and claimed that the Schwinger AMM produced a
significant contribution to the statistical quantities, but they
concluded this by considering a region of fields where the
Schwinger approximation not only breaks down, but the
magnetic pressure can dominate the matter pressure and
erase any possible effect of the AMM, as will be shown in
this paper. Fourth, the pressure of the magnetized vacuum,
that is, the contribution that does not depend on temper-
ature or density, was also neglected at strong fields where it
can be important. To clarify all these issues, we shall
analyze, through analytical and numerical calculations, the
significance of the AMM contribution to the main stat-
istical quantities of the magnetized system in the weak- and
strong-field approximations, as well as to the EOS of dense
systems with an interest for astrophysical applications.
With this goal in mind, we shall investigate the weight of
each of the participating contributions (Maxwell pressure,
vacuum pressure, etc.) into the system EOS for different
field values. As will be demonstrated, our thorough
analysis leads us to conclude that, when working consis-
tently, the quantum effect of the AMM of charged particles
is negligibly small for the EOS of the magnetized system at
both weak and strong fields.
The paper is organized as follows. In Sec. II we give the

one-loop self-energy of a charged fermion system in the
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presence of a constant and uniform magnetic field using
the Ritus’s method [20], and find the AMM analytical
expression for the different Landau levels (LLs) in the
strong-field limit. In Sec. III, it is calculated the one-loop
thermodynamical potential depending on the AMM in the
strong-field approximation. The result is given as the sum
of the renormalized vacuum contribution, the contribution
at zero temperature and finite density and the thermal
contribution. In Sec. IV, for the sake of completeness, we
calculate the AMM in the weak-field approximation using a
combination of Ritus eigenfunction method and proper-
time representation. In Sec. V, we calculate the one-loop
thermodynamic potential in the weak-field approximation
including the AMM found in that approximation. The
renormalized vacuum contribution and the zero-temperature
finite-density contribution are presented up to OððeBÞ4Þ
order. In Sec. VI, we present the numerical results for the
main thermodynamic quantities, which depend on the
AMM, in the weak- and strong-magnetic-filed limits.
There, we make a thoughtful analysis to determine the
significance of the AMM for the EOS of strongly and
weakly magnetized systems of charged fermions. Finally, in
Sec. VII we state our concluding remarks. We also include
four Appendixes. In Appendix A, we give details on the
calculation of the thermodynamical potential in the strong-
field approximation at T ≠ 0 and μ ≠ 0. In Appendix B, we
discuss some issues in the calculation of the effective
potential at B ≠ 0 in Dittrich’s approach. In Appendix C,
we derive the Schwinger propagator at B ≠ 0, starting from
Ritus’s formalism. In Appendix D, the details of the
calculation of the thermodynamic potential in the weak-
field approximation at T ≠ 0 and μ ≠ 0 are given.

II. AMM IN THE STRONG-FIELD
APPROXIMATION

The radiative corrections to the magnetic moment of a
charged particle in the presence of a magnetic field can be
found from the one-loop fermion self energy

Σðx; x0Þ ¼ −ie2γμGðx; x0ÞγνDμνðx − x0Þ; ð3Þ

Gðx; x0Þ denotes the fermion’s propagator in the presence of
a uniform and constant magnetic field and Dμνðx − x0Þ is
the photon propagator.
One can transform the self-energy to momentum space

by using Ritus’s approach

Σðp; p0Þ ¼
Z

d4xd4yĒl
pðxÞΣðx; yÞEl

p0 ðyÞ

¼ ð2πÞ4δ̂ð4Þðp − p0ÞΠðlÞ ~Σlðp̄Þ: ð4Þ

Index l denotes the Landau-level number; ΠðlÞ ¼
ΔðsgnðeBÞÞδl0 þ Ið1 − δl0Þ is a projector that separates
the LLL (l ¼ 0), with a single spin projection, from the rest

(l > 0) with two; δ̂ð4Þðp − p0Þ ¼ δll
0
δðp0 − p0

0Þ×
δðp2 − p0

2Þδðp3 − p0
3Þ. The Ritus eigenfuntions [20] are

given by

El
pðxÞ ¼

X
σ¼�1

Eσ
pðxÞΔðσÞ; Ēl

p ≡ γ0ðEl
pÞ†γ0 ð5Þ

with

Δð�Þ ¼ I � iγ1γ2

2
; ð6Þ

spin up (þ) and down (−) projectors, and

Eþ
p ðxÞ ¼ Nle−iðp0x0þp2x2þp3x3ÞDlðρÞ;

E−
pðxÞ ¼ Nl−1e−iðp0x0þp2x2þp3x3ÞDl−1ðρÞ ð7Þ

with normalization constant Nl ¼ ð4πeBÞ1=4= ffiffiffiffi
l!

p
, and

DlðρÞ are the parabolic cylinder functions of argu-
ment ρ ¼ ffiffiffiffiffiffiffiffi

2eB
p ðx1 − p2=eBÞ.

In momentum space the general structure of the self
energy is [19]

Σlðp̄Þ ¼ Zl
∥p̄

μ
∥γ

∥
μ þ Zl⊥p̄

μ
⊥γ⊥μ þMlI þ iT lγ

1γ2: ð8Þ

Notice the separation between parallel p̄ν
∥ ¼ ðp0; 0; 0; p3Þ

and perpendicular p̄ν⊥ ¼ ð0; 0; ffiffiffiffiffiffiffiffiffiffi
2eBl

p
; 0Þ components due

to the spatial symmetry breaking in a magnetic field that
only leaves intact the subgroup of rotations along the field
direction. In (8), Zl

∥, Z
l⊥ are the wave function’s renorm-

alization coefficients. The coefficients Ml and T l are,
respectively, the radiative corrections to the mass and the
magnetic moment. Each of them has to be determined as a
solution of the Schwinger-Dyson equations of the theory at
the given approximation.
In the one-loop approximation, the Schwinger-Dyson

equation leads to an infinite set of couple equations that
take the form [12–14]

Σlðp̄ÞΠðlÞ ¼ −ie2ð2eBÞΠðlÞ
Z

d4q̂
ð2πÞ4

e−q̂
2⊥

q̂2

× ½Ll þ Llþ1 þ Ll−1�; l ¼ 0; 1; 2;…;

ð9Þ

with

Ll ¼ γ∥μGlðp − qÞγ∥μ;
Ll�1 ¼ Δð�Þγ⊥μ Gl�1ðp − qÞγ⊥μ Δð�Þ ð10Þ

and fermion propagator

Glðp̄Þ ¼ p̄ · γ þm
p̄2 −m2

ΠðlÞ: ð11Þ
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Here, we introduced the notation q̂μ ¼ qμ=
ffiffiffiffiffiffiffiffiffiffiffi
2jeBjp

, p̄μ ¼
ðp0; 0;−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jeBjlp

; p3Þ and ðp − qÞμ ¼ ðp0 − q0; 0;

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jeBjlp

; p3 − q3Þ. Henceforth, we assume eB > 0. As
it will become clear below, the representation (9) of the
self-energy is particularly convenient for strong-field
calculations.
From Eqs. (8) and (9), we can extract the equations for

the AMM at each LL. In Euclidean space they are

E0 ¼ ðM0 þ T 0Þ ¼ e2mð4eBÞ
Z

d4q̂
ð2πÞ4

e−q̂
2⊥

q̂2

×

�
1

ðp − qÞ20 þm2
þ 1

ðp − qÞ21 þm2

�
; ð12Þ

T l ¼ −e2mð2eBÞ
Z

d4q̂
ð2πÞ4

e−q̂
2⊥

q̂2

:

�
1

ðp − qÞ2lþ1 þm2
−

1

ðp − qÞ2l−1 þm2

�
; l ≥ 1:

ð13Þ

Equation (12) reflects the single spin orientation of
the fermions in the LLL (l ¼ 0) and hence the impos-
sibility of determining M0 and T 0 independently
[12,13]. Thus, E0 cannot be interpreted as an AMM
term, but as the radiative correction to the rest-energy
of the LLL particles. Notice, that E0 will not produce
any Zeeman splitting in the modes of the LLL
quasiparticles.
In the infrared limit p0 ¼ 0; p3 → 0, and considering the

strong-field approximation, the leading contributions to
(12) and (13) for l ¼ 1 are, respectively, given by

E0 ¼ M0 þ T 0 ≃ e2m
8π3

Z
dq̂2∥dq̂

2⊥
e−q̂

2⊥

q̂2
1

q̂2∥ þ m̂2

¼ m
α

4π
ln2ðm2=2eBÞ; ð14Þ

T 1 ≃ e2m
16π3

Z
dq̂2∥dq̂

2⊥
e−q̂

2⊥

q̂2
1

q̂2∥ þ m̂2
¼ m

α

8π
ln2ðm2=2eBÞ:

ð15Þ

Note that the leading contribution in (15) comes from
the spin-down particles in the first LL (the term l − 1 in
(13) for l ¼ 1), since

ffiffiffiffiffiffiffiffiffiffi
2eBl

p
acts, for l ≥ 1, as a

suppressing factor in the denominator of the fermion
propagator. The result (14) coincides with that obtained
many years ago in Ref. [11] using a different method.
As in massless-QED [12,13], the relation T 1 ¼ E0=2 is
satisfied here too.

For the remaining T l, l > 1, we have

T l ¼ −
αm
16π2

e−M̂
2
lþ1f−γΓ½0;−M̂2

lþ1� þ e2γΓ½0;−M̂2
l−1�

− iπe2 ln M̂2
l−1 − e2EiðM̂2

l−1Þ ln M̂2
l−1 þ iπ ln M̂2

lþ1

þ EiðM̂2
lþ1Þ ln M̂2

lþ1 −G3;0
2;3

�
1; 1

0; 0; 0

���� − M̂2
lþ1

�

þ e2G3;0
2;3

�
1; 1

0; 0; 0

���� − M̂2
l−1

��
; ð16Þ

with M̂2
l�1 ¼ m̂2 þ ðl� 1Þ, γ ≃ 0.577216 is the Euler’s

constant, Ei½z� denoting the exponential integral function,
Γ½0; z� is the incomplete gamma function and
Gm;n

p;q ða1;…;ap
b1;…;bq

jzÞ the Meijer G-function [21].

In Fig. 1 we show how the AMM’s for l > 1 decrease
with respect to T 1 as the LL increases. Notice that the
AMM at strong field is relevant only for the first Landau
level, where it grows as the square logarithm of the field. As
seen in Fig. 1, already in the second LL the AMM
decreases in 2 orders with respect to its value at l ¼ 1,
T 2=T 1 ∼ 0.0668 for m̂ ¼ 0.1.
One can explicitly see from (14)–(16) that, in contrast to

the AMM found by Schwinger [9] in the weak-field limit,
which was the same for all LLs and had a linear dependence
with the field, at strong field the AMM does not depend
linearly on the field and is different for each LL. Clearly,

FIG. 1. Comparison between the AMMs T l and T 1 in the
strong-field region for Landau levels l > 1. The plot shows a
sharp decrease of the ratio T l>1=T 1 with increasing Landau
levels for two field values. The largest values of T l>1 occur for
the lowest (l > 1) value, but they are still 2 orders of magnitude
smaller than T 1. The stronger the field, the smaller the values of
T l>1 for the same Landau level, and the quicker they approach to
their asymptotic negligible value.
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using the Schwinger AMM in the strong-field region would
be totally inconsistent and care should be taken not to draw
any physical conclusions obtained with such a wrong
approach.

III. THERMODYNAMIC POTENTIAL WITH AMM
IN THE STRONG-FIELD REGION

To investigate the effects of the AMM in the EOS we
consider an effective theory on which the fermion propa-
gator is dressed by the one-loop fermion self-energy in the
magnetic field, which depends on the AMM. The lack of
Zeeman splitting [see Eq. (2)] in the LLL separates the
propagator in the LLL from those in the rest of the levels, so
the dressed propagators take the form

G−1
0 ðp̄Þ ¼ ðp̄∥ · γ∥ −mÞΔðþÞ ð17Þ

and

G−1
l ðp̄Þ ¼ p̄ · γ −m − iT lγ

1γ2; ð18Þ

with p̄ ¼ ðip4; 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jeBjlp

; p3Þ for l ¼ 0; 1; 2;… in
Euclidean space. Notice that in (17) we do not include
the correction E0, neither in (18) the one-loop corrections to
the mass, as they are negligible compared to the renor-
malized mass at B ¼ 0,m. However, since T l gives rise to a
new Lorentz structure, it is included in (18).
The fermion contribution to the thermodynamic potential

of this effective theory is

ΩðB; μ; TÞ ¼ −
eB
β

�X
p4

Z
∞

−∞

dp3

ð2πÞ2 ln detG
−1
0 ðp̄�Þ

þ
X
σ¼�1

X∞
l¼1

X
p4

Z
∞

−∞

dp3

ð2πÞ2 ln detG
−1
l ðp̄�Þ

�
:

ð19Þ

Here,β ¼ 1=T denotes the inverse temperature,μ the fermion
chemical potential and p̄� ¼ ðip4 − μ; 0;

ffiffiffiffiffiffiffiffiffiffi
2eBl

p
; p3Þ.

Performing the sum in Matsubara frequencies and
calculating the determinants in Eq. (19), we obtain

ΩðB; μ; TÞ ¼ −
eB
4π2

X
ησl

Z
dp3

1

β
ln

�
cosh

β

2
ðEησl − μÞ

�
;

ð20Þ

which can be rewritten as

ΩðB; μ; TÞ ¼ −
1

2

eB
4π2

Z
∞

−∞
dp3

X
ησl

jEησl − μj

−
eB
4π2

Z
∞

−∞
dp3

X
ησl

1

β
lnð1þ e−βjEησl−μjÞ: ð21Þ

In these expressions the sum in the energies Eησl include
particles/antiparticles (η ¼ �), up/down spin (σ ¼ �), and
Landau level l indices. For the LLL, only one spin
projection contributes and the energy becomes

Eη;0 ¼ η
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þm2

q
l ¼ 0; η ¼ �1: ð22Þ

For each l ≠ 0, the AMM separates the energies of up
and down spin (σ ¼ �) as

Eησl ¼ η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eBlþm2

p
þ σT lÞ2

q
;

l ≥ 1; σ ¼ �1; η ¼ �1: ð23Þ

Adding and subtracting the vacuum term in (21), one can
write the thermodynamic potential as the sum of vacuum
(Ωvac), zero-temperature (Ωμ), and finite-temperature (Ωβ)
contributions,

ΩðB; μ; TÞ ¼ Ωvac þ Ωμ þ Ωβ; ð24Þ

with

Ωvac ¼ ΩðB; 0; 0Þ ¼ −
eB
8π2

Z
∞

−∞
dp3

X
ησl

jEησlj; ð25Þ

Ωμ ¼ ΩðB; μ; 0Þ ¼ −
eB
8π2

Z
∞

−∞
dp3

X
ησl

ðjEησl − μj − jEησljÞ;

ð26Þ

Ωβ ¼ ΩðB; μ; TÞ ¼ −
eB
4π2

Z
∞

−∞
dp3

X
ησl

1

β
lnð1þ e−βjEησl−μjÞ:

ð27Þ

As shown in Sec. II, in the strong-field approximation all
the T l for l > 1 are very small and can be neglected. In this
approximation all the energy modes, except for l ¼ 1,
reduce to the modes of the undressed theory.
In Appendix A, we give details on the calculation and

carry out the renormalization of the vacuum term (25) in the
strong-field region to obtain the following renormalized
thermodynamic potential in the strong-field approximation,

ΩS
R ¼ ΩSðRÞ

vac þ ΩS
μ þΩS

β; ð28Þ

with

ΩSðRÞ
vac ¼ 1

8π2

Z
∞

1=Λ2

ds
e−sm

2

s3

�
eBs cothðeBsÞ − 1 −

ðeBsÞ2
3

�

þ eB
4π2

T 2
1

�
ln
2eB
m2

þ 2

�
; ð29Þ
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ΩS
μ ¼ −

eB
4π2

	
θðμ −mÞ

�
μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

q
−m2 ln

μþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
m

�

þ θðμ −Mþ
1 Þ
�
μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −Mþ

1
2

q
−Mþ

1
2 ln

μþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −Mþ

1
2

p
Mþ

1

�

þ θðμ −M−
1 Þ
�
μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −M−

1
2

q
−M−

1
2 ln

μþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −M−

1
2

p
M−

1

�

þ 2
X∞
l¼2

θðμ −MlÞ
�
μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −Ml

2

q
−Ml

2 ln
μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −Ml

2
p
Ml

��
; ð30Þ

and

ΩS
β ¼ −

eB
2π2β

Z
∞

0

dp3 lnð1þ e−βj
ffiffiffiffiffiffiffiffiffiffiffi
p2
3
þm2

p
þμjÞð1þ e−βj

ffiffiffiffiffiffiffiffiffiffiffi
p2
3
þm2

p
−μjÞ

−
eB
2π2β

Z
∞

0

dp3 lnð1þ e−βj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3
þMþ

1
2

p
þμjÞð1þ e−βj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3
þMþ

1
2

p
−μjÞ

−
eB
2π2β

Z
∞

0

dp3 lnð1þ e−βj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3
þM−

1
2

p
þμjÞð1þ e−βj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3
þM−

1
2

p
−μjÞ

−
eB
π2β

X∞
l¼2

Z
∞

0

dp3 lnð1þ e−βj
ffiffiffiffiffiffiffiffiffiffiffiffi
p2
3
þMl

2
p

þμjÞð1þ e−βj
ffiffiffiffiffiffiffiffiffiffiffiffi
p2
3
þMl

2
p

−μjÞ; ð31Þ

where

M�
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eBþm2

p
� T 1; Ml ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eBlþm2

p
: ð32Þ

The leading vacuum contribution to Ω in the strong-field
approximation (see Appendix A for details) is then

ΩSðRÞ
vac ¼ −

αB2

6π
ln

�
eB
m2

�
þ eB
4π2

T 2
1

�
ln
2eB
m2

þ 2

�

¼ −
αB2

6π
ln

�
eB
m2

�
þ eB
4π2

��
αm
8π

�
ln2
�
2eB
m2

��
2

×
�
ln
2eB
m2

þ 2

�
; ð33Þ

where in the second line T 1 was evaluated using (15), and
the first term was obtained in [22] calculating the effective
potential at strong field and neglecting the AMM.
Here the following comment is in order. The contribution

of the AMM to the vacuum part of the thermodynamic
potential has been previously calculated in [23] with the
help of the Green’s function. In the strong-field region, the
result reported in [23] was

Ω̂SðRÞ
vac ¼ −

αB2

6π
ln

�
eB
m2

�
−
ðeBÞ2
32π2

�
α

2π

�
2

ln

�
eB
m2

�
: ð34Þ

Clearly, there is a discrepancy between (34) and (33), the
origin of which can be traced back to some inconsistencies

in the treatment followed in [23] to obtain the strong-field
result. On the one hand, Ref. [23] considered the AMM
found by Schwinger and used it in calculations at arbitrary
field strength, including the strong-field region, despite that
as already discussed, in this region the AMM becomes a
very different function of the magnetic field and depends on
the LL. On the other hand, as described in Appendix B,
several steps of the calculations done in [23] were only
valid for weak fields; however, they were used indistinctly
for weak and strong fields. The calculations of Ref. [23] are
then reliable in the weak-field region, but fail to describe
the AMM-dependent terms in the strong-field case.

IV. AMM IN THE WEAK-FIELD
APPROXIMATION

To get the AMM in the weak-field limit, it will be
convenient, for the sake of clarity and to shade light in our
discussion, to use an alternative method that combines
Ritus’s approach, where the LL contributions are explicit,
and the proper time formalism. The result has to coincide
with that found by Schwinger [24] by using an independent
method. In doing this, we will stress the steps where the
weak-field approximation becomes a basic element of the
derivation. Also, it will be apparent the different behavior
of the AMM’s for the different LLs in each approximation.
Due to the fact that the energy separation between

consecutive LLs is proportional to
ffiffiffiffiffiffiffiffi
2eB

p
, it is expected

that at weak field all Landau levels will contribute on equal
footing to the fermion self-energy. Then, we will find
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convenient, in order to take into account the contributions
of all the LLs into the fermion self-energy, to work with the
self-energy operator in the configuration space (3) with the
field dependent fermion Green’s function given in Ritus’s
approach as

Gðx; yÞ ¼
XZ d4p

ð2πÞ4 EpðxÞGlðp̄ÞĒpðyÞ; ð35Þ

where

Glðp̄Þ ¼ 1

p̄ −m
ΠðlÞ ð36Þ

is the fermion propagator in momentum space and we
introduced the notation

XZ d4p
ð2πÞ4 ≡

X∞
l¼0

Z
dp0dp2dp3

ð2πÞ4 : ð37Þ

We can rewrite the electron propagator in (35) as

Gðx; yÞ ¼ ðΠx þmÞ
XZ d4p

ð2πÞ4
EpðxÞΠðlÞĒpðyÞ

p̄2 −m2
; ð38Þ

where Πx
μ ¼ i∂x

μ − eAμ and we used the property,
ΠxEpðxÞ ¼ EpðxÞp̄, satisfied by the Ritus eigenfunctions,
EpðxÞ, defined in (5)–(7).
Now, to perform the summation over all Landau levels,

we use the proper-time representation and the integral
representation for the parabolic cylinder functions, so we
get (see Appendix C for details)

Gðx; yÞ ¼ −ðΠx þmÞΦðx; yÞð4πÞ2
Z

∞

0

eBds
s sinðeBsÞ

× e−isðm2−iϵÞe−i½
1
4sðx−yÞ2∥− eB

4 tanðeBsÞðx−yÞ2⊥�

× ½eieBsΔðþÞ þ e−ieBsΔð−Þ�; ð39Þ

where Φðx; yÞ ¼ exp½i eB
2
ðx2 − y2Þðx1 þ y1Þ� is the well-

known Schwinger’s phase (recall that F21 ¼ B) [25].
In the weak-field approximation ðeB ≪ m2Þ, we can

perform a Taylor expansion up to linear terms in eB in the
integrand of Eq. (39) to find

Gðx; yÞ≃ −
Φðx; yÞ
ð4πÞ2

Z
∞

0

ds
s2

e−isðm2−iϵÞe−i
ðx−yÞ2

4s

×

�
x − y
2s

þ e
2
γμFμνðx − yÞν þm

�
× ½1þ ieBsðΔðþÞ − Δð−ÞÞ�; ð40Þ

where we used the fact that the Schwinger phase satisfies
the identity

Πx
μΦðx; yÞ ¼

e
2
Fμνðx − yÞνΦðx; yÞ: ð41Þ

With the help of the identities eBðΔðþÞ − Δð−ÞÞ ¼
− e

2
σμνFμν and ½γρ; σμν�FμνXρ ¼ −4iγμFμρXρ with Xρ an

arbitrary four-vector, we rewrite Eq. (40) as

Gðx; yÞ ¼ −
Φðx; yÞ
ð4πÞ2

Z
∞

0

ds
s2

e−isðm2−iϵÞe−i
ðx−yÞ2

4s

×

�
x − y
2s

þ 1

4

�
x − y; i

e
2
σμνFμν

�
þm

�

×

�
1 − si

e
2
σμνFμν

�

≃ −
Φðx; yÞ
ð4πÞ2

Z
∞

0

ds
s2

e−isðm2−iϵÞe−i
ðx−yÞ2

4s

×

�
x − y
2s

−
1

4

	
x − y; i

e
2
σμνFμν

�

þm −msi
e
2
σμνFμν

�
; ð42Þ

where in the last line we kept up to linear terms in eB, in
agreement with the weak-field approximation.
To find the fermion self-energy, we have to substitute in

(3) the photon propagator in configuration space,

Dμνðx − yÞ ¼ −igμν
ð4πÞ2

Z
∞

0

dt
t2
e−i

ðx−yÞ2
4t ; ð43Þ

together with the fermion propagator (42). Then, after
using the identities γμγργμ ¼ −2γρ, γμγαγβγμ ¼ 4gαβ, and
γμγργαγβγμ ¼ −2γβγαγρ, the fermion self-energy reduces to

Σðx; yÞ ¼ i
e2Φðx; yÞ
ð4πÞ4

Z
∞

0

dsdt
s2t2

e−isðm2−iϵÞe−ið1sþ1
tÞðx−yÞ

2

4

×
�
−
x − y
s

−
1

2

	
x − y; i

e
2
σμνFμν

�
þ 4m

�
:

ð44Þ

Now we introduce a new variable defined as

1

w
¼ 1

s
þ 1

t
ð45Þ

to rewrite Eq. (44) as follows:

Σðx; yÞ ¼ i
e2Φðx; yÞ
ð4πÞ4

Z
∞

0

ds
s2

Z
s

0

dw
w2

e−isðm2−iϵÞe−i
ðx−yÞ2
4w

×

�
−
x − y
s

−
1

2

	
x − y; i

e
2
σμνFμν

�
þ 4m

�
:

ð46Þ
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On the other hand, from Eq. (41) we have

�
Πx −

1

4

�
x − y; i

e
2
σμνFμν

��
Φðx; yÞe−iðx−yÞ

2

4w

¼ Φðx; yÞe−iðx−yÞ
2

4w

�
x − y
2w

�
: ð47Þ

Thus, solving this self-consistent equation iteratively in
the weak-field limit, the leading terms have the form

Φðx; yÞe−iðx−yÞ
2

4w ½x − y�≃ 2w

�
Πx −

1

4

�
2wΠx; i

e
2
σμνFμν

��

× Φðx; yÞe−iðx−yÞ
2

4w : ð48Þ

Replacing Eq. (48) into Eq. (46), we obtain

Σðx; yÞ≃ i
e2

ð4πÞ2
Z

∞

0

ds
s2

Z
s

0

dwe−isðm2−iϵÞ

×

�
−
2w
s

�
Πx −

w
2

�
Πx; i

e
2
σμνFμν

��

−
1

2

	
2wΠx; i

e
2
σμνFμν

�
þ 4mÞeiwe

2
σμνFμνhxjUjyi;

ð49Þ

where we used that the space-representation of the proper-
time evolution operator U ¼ eiHw, with H ¼ ðΠμÞ2, is
given by

hxjUjyi≡ 1

ð4πÞ2w2
Φðx; yÞe−iðx−yÞ

2

4w e−iw
e
2
σμνFμν

: ð50Þ

Multiplying Eq. (49) by ψðyÞ, a solution of the Dirac
equation, ½Π −m�ψ ¼ 0, and integrating over y, we
arrive at

Z
d4yΣðx; yÞψðyÞ ¼ i

e2

ð4πÞ2
Z

∞

0

ds
s2

Z
s

0

dwe−isðm2−iϵÞ

×

�
−
2w
s

�
Πx −

w
2

�
Πx; i

e
2
σμνFμν

��

−w
	
Πx; i

e
2
σμνFμν

�
þ 4m

�

× eiw
e
2
σμνFμν

ψðxÞeiwm2

; ð51Þ

where we used the fact thatZ
d4yhxjUjyiψðyÞ ¼

Z
d4yhxjUjyihyjψi

¼ hxjUjψi ¼ hxjψieiwm2

: ð52Þ

Bearing in mind the identity ½A;B�≡ fA;Bg − 2BA,
Eq. (51) becomes

Z
d4yΣðx; yÞψðyÞ ¼ i

e2

ð4πÞ2
Z

∞

0

dsdw
s2

e−isðm2−iϵÞ

×

�
4m −

2w
s
Πx þ 4mwi

e
2
σμνFμν

− w

�
1þ w

s

�	
Πx; i

e
2
σμνFμν

��

× ψðxÞeiwm2

: ð53Þ

Next, using once again that Πψ ¼ mψ in (53), we have

Z
d4yΣðx; yÞψðyÞ

¼ i
e2

ð4πÞ2
Z

∞

0

dsdw
s2

e−isðm2−iϵÞ

×

�
2m

�
2 −

w
s

�
þ 2mw

�
1 −

w
s

�
i
e
2
σμνFμν

�
ψðxÞeiwm2

;

ð54Þ

where we kept only the leading contribution in the
magnetic field OðeBÞ.
Equation (54) can be written as

ΣðxÞψðxÞ ¼ ðmI − T iγ1γ2ÞψðxÞ: ð55Þ

Here, the two terms corresponding to the two indepen-
dent Dirac structures are the radiative mass and AMM,
respectively, given by

m≡m0 þ Σ ð56Þ

¼ m0 þ
α

2π
m
Z

∞

0

ds
s2

Z
s

0

dwe−iðs−wÞðm2−iϵÞ
�
2 −

w
s

�
ð57Þ

T ≡ α

2π

Z
∞

0

dsdw
s

e−iðs−wÞðm2−iϵÞ w
s

�
1 −

w
s

�
eBm; ð58Þ

with m0 the electron bare mass. These two equations
coincide with Schwinger’s results for the mass and
AMM Ref. [24].
Following Ref. [24], the last two equations can be

evaluated by using a new variable u≡ 1 − w=s and making
the replacement s → −is, so we arrive at

m ¼ m0 þ
3

4

α

π
m

�Z
∞

0

ds
s
e−sm

2 þ 5

6

�
ð59Þ
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T ¼ α

2π

eB
2m

; ð60Þ

where m is the electron’s renormalized mass.
As we can explicitly see in the derivations of this section,

the formula (60) for the AMM is only valid in the weak-
field limit (eB < m2).

V. THERMODYNAMIC POTENTIAL WITH AMM
IN THE WEAK-FIELD LIMIT

In this section we aim to find the thermodynamic
potential of the effective theory in a weak magnetic field.
Since the field is weak, all the LLs contribute to the AMM,
so the AMM entering in the effective theory is now the one
found by Schwinger many years ago and given by Eq. (60).
It is well known that the Euler-Heisenberg Lagrangian (i.e.,

the vacuum contribution to the thermodynamic potential)
for charged fermions in the weak-field limit contains
divergences associated with the renormalization of the
field and charge [24]. A peculiarity of the present case
is the appearance of new divergencies connected to
the AMM.
Following the same approach of Sec. III, we can

write the renormalized thermodynamic potential in the

weak-field limit as the sum of the vacuum (ΩWðRÞ
vac ),

zero-temperature (ΩW
μ ), and finite-temperature (ΩW

β )
contributions,

ΩW
R ¼ ΩWðRÞ

vac þΩW
μ þ ΩW

β ; ð61Þ

where

ΩWðRÞ
vac ¼ −

1

2ð2πÞ2
Z

∞

0

ds
s3

e−sðm2þT 2Þ
	
−jeBjs sinhð2sT mÞ þ

ffiffiffi
π

p
2πi

Z
γþi∞

γ−i∞

dt

t
1
2

etþs2T 2m2

t jeBjs coth
�
s

�
1 −

sT 2

t

�
eB

�

−
�
1þ sT 2 þ 2s2m2T 2 − 2ms2T eB −

1

6
s2T 4 þ ðeBsÞ2

3

��
; ð62Þ

ΩW
μ ¼ −

jeBj
ð2πÞ2

Z
dp3

	
ðμ − εþþ0Þθðμ − εþþ0Þ

þ
X
σ¼�1

X∞
l¼1

ðμ − εþσlÞθðμ − εþσlÞ
�
; ð63Þ

and

ΩW
β ¼ −

jeBj
ð2πÞ2β

Z
dp3 ln ð1þ e−βjεþþ0þμjÞð1þ e−βjεþþ0−μjÞ

−
jeBj

ð2πÞ2β
X
σ¼�1

X∞
l¼1

Z
dp3 ln ð1þ e−βjεþσlþμjÞ

× ð1þ e−βjεþσl−μjÞ; ð64Þ

with

εησl ≡ η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2leB

p
þ σT Þ2

q
; ð65Þ

and T given in (60). The details of these calculations are
given in Appendix D.
Note that in the above equations, the AMM does not

contain any dependence on the LLs. This is one of the main
differences with respect to the strong-field case.
In the weak-field expansion, the leading terms of the

renormalized potential (62), taken up to OððeBÞ4Þ order
and α2 correction, are (see Appendix D)

ΩWðRÞ
vac ðB; 0; 0Þ ¼ 1

2ð2πÞ2
	ðeBÞ4
45m4

þ ðeBÞ2T 2

3m2

�
: ð66Þ

Here, we should mention that if in the effective potential
found in Ref. [23] we take the weak-field limit up to the
same order we are considering here, we obtain the same
result, although in the calculation carried out in Ref. [23]
there are certain inconsistencies as we discuss in
Appendix B. This is indicating that the inconsistencies
in the calculations of [23] did not affect the results in the
weak-field limit, but only those at strong field.
Similarly, the leading terms in the weak-field approxi-

mation up toOððeBÞ2Þ order and α2 correction of the finite-
density, zero-temperature thermodynamic potential reads

ΩW
μ ¼−

1

8π2

	
2

3
μp3

F −m2μpF þm4 ln

�
pF þ μ

m

��
θðμ−mÞ

−
T 2

4π2

�
μpF þm2 ln

�
pF þμ

m

��
θðμ−mÞ

þ jeBjmT
2π2

ln

�
pF þμ

m

�
θðμ−mÞ

−
jeBj2
12π2

ln

�
pF þμ

m

�
θðμ−mÞ; ð67Þ

where pF ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
. In the above equation the first

three terms are the contribution to the thermodynamic
potential at B ¼ T ¼ 0 of a system of fermions at finite
density [26]. The next three terms are the AMM
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contributions to the magnetized fermion thermodynamic
potential at finite density and zero temperature. Finally, the
last term accounts for the pure magnetic contribution.
Comparing (66) and (67), we can see that at weak field
(eB ≪ μ2), the vacuum contribution can be neglected with
respect to the finite-density contribution at zero
temperature.

VI. EQUATION OF STATE WITH AMM

In this section we will investigate the effect of the AMM
in the EOS. We will separate the analysis for the weak-field
and strong-field regimes using the expressions of the
thermodynamic potential at T ¼ 0 found in each limit,
as well as the corresponding formula of the AMM. Also, to
show the consequences of using the wrong prescription of
taking the AMM in the Schwinger approximation when one
is dealing with strong-field calculations, we will find the
deviation in the parallel pressure produced by using T in
place of T 1.
As pointed out in the Introduction, the breaking of the

rotational symmetry produced by a uniform magnetic field
gives rise to an anisotropy in the energy-momentum tensor
[8] that leads to a splitting of the pressure into two different
components [4–6], one along the field (longitudinal pres-
sure, P∥) and another in the perpendicular direction (trans-
verse pressure, P⊥). Those pressures and the energy density
are, respectively, given by

P∥ ¼ −ΩR
f − B2=2; P⊥ ¼ −ΩR

f − BMþ B2=2;

ϵ ¼ ΩR
f þ μN þ B2=2: ð68Þ

Here, ΩR
f represents the fermion renormalized thermody-

namic potential, given below in the strong-field, ΩR
S , and

weak-field, ΩR
W , approximations; M ¼ −ð∂ΩR

f =∂BÞ is the
system magnetization; N ¼ −ð∂ΩR

f =∂μÞ its particle num-
ber density; and the terms proportional to B2=2 are the
renormalized Maxwell contributions [6,27]. In the

following considerations, we consider the zero-temperature
limit, which is of particular interest for astrophysical
applications.

A. EOS in the strong-field approximation

The zero-temperature limit of the thermodynamic poten-
tial in the strong-field limit, ΩR

S , is determined by the first
two terms of (28), which are given by Eqs. (33) and (30),
respectively,

ΩSðRÞðT ¼ 0Þ ¼ ΩSðRÞ
vac þ ΩS

μ ¼ −
ðeBÞ2
24π2

ln

�
eB
m2

�
þ eB

π2
T 2

1 −
eB
4π2

	
θðμ −mÞ

�
μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

q
−m2 ln

μþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
m

�

þ θðμ −Mþ
1 Þ
�
μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −Mþ

1
2

q
−Mþ

1
2 ln

μþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −Mþ

1
2

p
Mþ

1

�

þ θðμ −M−
1 Þ
�
μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −M−

1
2

q
−M−

1
2 ln

μþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −M−

1
2

p
M−

1

��
: ð69Þ

To ensure that only the zero and first LLs are populated
for the considered magnetic-field values, we should satisfy
the condition m < μ <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4eBþm2

p
. Using the thermody-

namic potential (69), we find from (68) the parallel and

transverse pressures in the strong-field approximation.
Their graphical representations as a function of the mag-
netic field are given in Fig. 2, without the Maxwell term.
There we compare the cases where the vacuum term is

FIG. 2 (color online). Vacuum effects on the parallel and
transverse pressures. Profile of the parallel and transverse
pressures versus B=Be

c in the strong-field region, for μ ¼
10.0 MeV and m=μ≃ 0.051. All the plots include the AMM,
but ignore the Maxwell pressure. Plots with vacuum contribution
included (black) and ignored (red) are compared. The figure
shows that the vacuum terms in the two pressures become
progressively relevant with increasing magnetic field. In the
region of very strong fields, the vacuum terms are big enough to
produce a sizable negative contribution to the perpendicular
pressure.
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included and ignored. As can be seen, the vacuum term in
the strong-field regime produces a remarkable contribution
leading to a quicker turn of the transverse pressure toward
negative values.
In Fig. 3 we compare the parallel and transverse

pressures, with and without the inclusion of the AMM.
In both cases the vacuum and medium contributions are
included, but the Maxwell term is ignored. As can be seen
in the zooms of the right panel, the AMM in the strong-field
regime makes a negligibly small contribution to the
pressures, since it enters as an α correction in the thermo-
dynamic potential.
The transverse pressure in Figs. 2 and 3 displays a de

Haas–van Alphen oscillation associated with the transition
of the fermion filling from the Landau level l ¼ 1 to the
LLL as the magnetic field increases. De Haas–van Alphen
oscillations are also present in the energy density (Fig. 4)
and in the magnetization (Fig. 5). The size of the de Haas–
van Alphen oscillations are not large enough in the parallel
pressure to be observable at the scales under consideration.
It is also evident from Figs. 4 and 5 that the AMMmakes no
significant contribution to the energy density or the
magnetization.
The effects of the Maxwell term on the pressures in the

strong-field region are explored in Fig. 6. Without the B2=2
term, the parallel pressure increases with the field (see

FIG. 3 (color online). AMM effects on the parallel and transverse pressures. Profile of the parallel and transverse pressures with the
field in the strong-field region including vacuum contribution, but ignoring the Maxwell pressure. The values μ ¼ 10.0 MeV and
m=μ≃ 0.051were used. Black (red) curve indicates AMM ≠ 0 (AMM ¼ 0). The zooms in the right panels show that the AMMmakes a
negligibly small contribution to each pressure in the strong-field regime.

FIG. 4 (color online). AMM effects on the energy density.
Energy density in the strong-field region including the vacuum
contribution and ignoring the Maxwell one, for μ ¼ 10.0 MeV
and m=μ≃ 0.051. Black curves indicate AMM ≠ 0, red curves
indicate AMM ¼ 0. The zoom shows that the AMM makes no
significant contribution to the energy density.
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Figs. 2 and 3). However, once this contribution is added, it
wins over the rest of the terms in the thermodynamic
potential and the field dependence is inverted, eventually
becoming negative for strong enough fields. For the
transverse pressure, the opposite effect occurs. On the
other hand, the Maxwell contribution completely erases
any difference produced by the AMM among the parallel
and transverse pressures. In a similar fashion, a Maxwell
term modifies the profile of the energy density with the
field in the strong-field region, making it to increase with
the field as seen in Fig. 7. All these results underline that
once the field becomes of the order or larger than the
chemical potential, the Maxwell term dominates the
behavior of all the thermodynamical quantities.
Now, to show the implications of erroneously using the

Schwinger formula for the AMM (60) in the strong-field
approximation, let us substitute T 1 in (69) with T ¼
ðα=2πÞðeB=2mÞ and find the parallel pressure including
the vacuum term, which we denote as P∥ðSchwÞ. Let us
define now the ratio,

ΔSchw

ΔAMM
¼ jP∥ðSchwÞ − P∥ðAMM ¼ 0Þj

jP∥ðAMMÞ − P∥ðAMM ¼ 0Þj ; ð70Þ

FIG. 5 (color online). AMM effects on the magnetization.
Magnetization versus magnetic field in the strong-field region
including the vacuum contribution and ignoring the Maxwell one,
for μ ¼ 10.0 MeV and m=μ≃ 0.051. Black curves indicate
AMM ≠ 0, red curves indicate AMM ¼ 0. The zoom shows
that the AMM makes no significant contribution to the mag-
netization.

FIG. 6 (color online). Maxwell term effects on the pressures. Profile of the parallel and transverse pressures versus the magnetic field
in the strong-field region including vacuum and Maxwell contributions and using μ ¼ 10.0 MeV and m=μ≃ 0.051. Black curves
indicate AMM ≠ 0, red curves indicate AMM ¼ 0. The Maxwell term totally changes the profile of the pressures, as can be seen by
comparing these plots with those shown in Figs. 2 and 3. At sufficiently high B, the Maxwell contribution, which enters with different
signs on each pressure, has a magnitude large enough to produce a noticeable decrease (increase) in the parallel (transverse) pressure.
The zooms in the right-hand panels show how the Maxwell pressure practically erases the already small differences between the pressure
with and without the AMM.
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where P∥ðAMMÞ is the parallel pressure defined from (69)
with T 1 taken from (15), and P∥ðAMM ¼ 0Þ with T 1 ¼ 0.
From Fig. 8 we see that the net effect of erroneously using

the Schwinger AMM in the strong-field approximation is to
change in 1 order of magnitude the contribution of the AMM
to the parallel pressure. That is, although the Schwinger’s
AMM makes an α contribution into the thermodynamic
potential, its linear dependence on the field produces a larger
effect at strong field than the square logarithmic behavior
found for the AMM in the strong-field approximation in
(15). The kink appearing in Fig. 8 corresponds to the field
value where the de Haas–van Alphen oscillation takes place
in Figs. 2 and 3. Thus, for the scale used in Fig. 8, the de
Haas–van Alphen oscillation of the parallel pressure
becomes apparent. The effect of the Schwinger’s AMM is
to stiffer both pressures. Nevertheless, when the Maxwell
contributions are added, one can see that at such high fields
the effect of the Schwinger’s AMM also becomes negligible.
In this analysis we were considering only the parallel
pressure to make contact with other results in the literature,
because the parallel pressure is what has been usually
considered when the pressure splitting has been ignored,
but if we repeat the calculation for the transverse pressure,
the result will be identical.

B. EOS in the weak-limit approximation

In the weak-field approximation, the thermodynamic
potential at zero temperature is given by the sum of the

renormalized leading vacuum term (66) and the medium
contribution (67),

ΩWðRÞðT ¼ 0Þ

¼ ΩWðRÞ
vac þΩW

μ ¼ 1

8π2

	ðeBÞ4
45m4

þ ðeBÞ2T 2

3m2

�

−
1

8π2

	
2

3
μp3

F −m2μpF þm4 ln

�
pF þ μ

m

��
θðμ −mÞ

−
T 2

4π2

�
μpF þm2 ln

�
pF þ μ

m

��
θðμ −mÞ

þ jeBjmT
2π2

ln

�
pF þ μ

m

�
θðμ −mÞ

−
jeBj2
12π2

ln

�
pF þ μ

m

�
θðμ −mÞ: ð71Þ

Here the AMM T is taken in the Schwinger approxima-
tion (60).
We can now use (71) to calculate the parallel and

transverse pressures in the weak-field region. We plot
them, ignoring the Maxwell term, as functions of the
magnetic field in Fig. 9. For comparison, we also plotted
the corresponding pressures with no AMM. It can be
gathered from the figure that the AMM fails to produce
a significant effect on the pressures also in the weak-field
case (B≲ Be

c=10). This is easy to understand since at weak

FIG. 7 (color online). Maxwell term effects on the energy
density. Energy density versus the magnetic field in the strong-
field region including vacuum and Maxwell contributions and
using μ ¼ 10.0 MeV and m=μ≃ 0.051. Black (red) curve
indicates AMM ≠ 0 (AMM ¼ 0). The Maxwell term completely
changes the behavior of the energy density with the field, as can
be gathered by comparing these plots with those of Fig. 4. The
zoom shows that there are no substantial differences when the
AMM is present.

FIG. 8. Ratio of the variation of the parallel pressures
with AMMs a la Schwinger and in the strong-field limit,
ΔSchw=ΔAMM¼jP∥ðSchwÞ−P∥ðAMM¼0Þj=jP∥ðAMMÞ −P∥×
ðAMM¼0Þj, for magnetic fields in the strong-field regime.
Notice that the consequence of erroneously using the Schwinger
AMM in the strong-field approximation is to change the con-
tribution of the AMM to the parallel pressure in 1 order of
magnitude. The kink corresponds to the field value where the
transition of the fermion filling from the first LL to the LLL takes
place.
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field, T ∼ αðeB=2mÞ makes a small correction to the
thermodynamic potential. In contrast to the strong-field
regime results, in the weak-field range (eB < m2 < μ2) the
two pressures remain positive.
Similarly to what happens at strong fields, once the

Maxwell pressure is included any effect of the AMM is
erased and the dependence of the pressures on the magnetic
field is inverted with respect to the case without it. As
shown in Fig. 10, with the Maxwell contribution inserted,
the transverse pressure increases with the field, while the
parallel pressure decreases. However, the latter decreases
slowly and does not become negative.
We can express the percentage splitting between the

parallel and transverse pressures in the weak-field region as

Δ½%� ¼ ∣P⊥ − P∥∣
∣P∥ðeB ∼ 0Þ∣ × 100: ð72Þ

All the quantities in this formula contain the Schwinger
AMM denoted by T . As can be gathered from Figs. 8 and
9, at very weak fields (B ≪ Be

c) the two pressures coincide,
so we have denoted them in this region by a common
symbol P∥ðeB ∼ 0Þ).
A plot of the percentage splitting (72) as a function of the

magnetic field is given in Fig. 11 using μ ¼ 10.0 MeV.
Here we included the Maxwell contribution. We can see
that for fields up to B ∼ Be

c the splitting is much smaller
than 2%. For strong fields it can be 10 times larger [6].
Thus, we conclude that in the weak-field regime the
pressure splitting is negligibly small and the inclusion of
the AMM makes no difference.

FIG. 10 (color online). Effects of the Maxwell term on the
parallel and transverse pressures in the weak-field region. Profile
of the parallel and transverse pressures with the field in the weak-
field region including vacuum and Maxwell contributions. The
values μ ¼ 10.0 MeV and m=μ≃ 0.051 were used. Black (red)
curve indicates AMM ≠ 0 (AMM ¼ 0). Due to the Maxwell
contribution the transverse pressure increases with the field, while
the parallel pressure decreases, but it does not cross zero. As in
the strong-field case, the AMM effects are totally erased by the
Maxwell contribution.

FIG. 9 (color online). AMM effects on the parallel and trans-
verse pressures in the weak-field region without the Maxwell
term. Profile of the parallel and transverse pressures with the
magnetic field in the weak-field region including vacuum con-
tribution, but ignoring the Maxwell pressure. The values μ ¼
10.0 MeV and m=μ≃ 0.051 were used. Black (red) curve
indicates AMM ≠ 0 (AMM ¼ 0). Notice that the AMM does
not produce any significant effect on the pressures. In the region
of interest the two pressures remain positive.

FIG. 11. Profile of the pressure splitting percentage versus the
magnetic field. Pressure splitting [Eq. (72)] vs magnetic field
including the Maxwell pressure for μ ¼ 10.0 MeV. Notice that
the splitting percentage is smaller than 2, so in the weak-field
regime the pressure splitting is negligibly small.
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VII. CONCLUSIONS

In this paper we presented a thorough study of the EOS
of charged fermions endowed with AMM in a dense
medium. The calculations were done in the strong and
weak-field limits, including on each case, the correspond-
ing AMM previously obtained in those approximations.
To obtain the AMM in the strong- and weak-field limits,

we took advantage of Ritus’s approach, which allows
diagonalizing the self-energy in momentum space and
separating the different LL contributions. We found that
at strong field, the particle gets an AMM that depends on
the LLs, with a noticeable difference between the value of
the AMM for l ¼ 1, which is proportional to the square
logarithm of the magnetic field and equal to half the rest
energy of the LLL, and the AMM for the remaining levels
l > 1, which is much smaller and decreases very rapidly
with the field. In sharp contrast, in the weak-field approxi-
mation the AMM is independent of the LL and grows
linearly with the field.
We calculated the different contributions to the thermo-

dynamic potential: vacuum, medium, and Maxwell terms,
and found how they affected the energy density and the
parallel and transverse pressures in the presence of a
magnetic field. We then investigated the role on the
EOS of each of these contributions, with and without
the inclusion of the particle’s AMM in the strong- as well as
in the weak-field approximations.
Our main conclusion is that the AMM of charged

fermions makes no difference in the EOS, either at strong
or at weak magnetic fields. This statement contradicts some
claims in the literature [3] about the significant effects of
the AMM at strong fields. We believe that the origin of the
discrepancy is connected to using Schwinger’s result to
describe the AMM of all the fermion species entering in the
theory and assuming this is a good approach for arbitrary
values of the magnetic field. Such an inconsistent treatment
to study the effects of the AMM on the thermodynamics of
the system is a common element of several works of
Ref. [3], so the claims about the important role of the AMM
in the EOS should be taken with a grain of salt, at least for
the cases where the claims are connected to the role of the
AMM of charged fermions, since our results, and hence our
criticism, applies only to the effects of the AMM of charged
fermions. It would be interesting in the near future to
undertake a similar study about the effect of the AMM of
neutral composite fermions.
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APPENDIX A: THERMODYNAMIC POTENTIAL
IN THE STRONG-FIELD APPROXIMATION

1. Vacuum contribution

We are interested here in the vacuum contribution to the
thermodynamic potential in the strong-field region ΩS

vac. It
is obtained from Ωvac in (24), after taking into account that
at strong field all T l with l > 1 can be neglected and,
hence, the energy modes Eησl become

E�þ0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þm2

q
;

E�σ1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2eB

p
þ σT 1Þ2

q
;

E�σðl>1Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þm2 þ 2eBl

q
: ðA1Þ

Therefore,

ΩS
vac ¼ −

eB
8π2

Z
∞

−∞
dp3

X
ησl

jEησlj

¼ −
eB
4π2

Z
∞

−∞
dp3

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þm2

q

þ
X
σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2eB

p
þ σT 1Þ2

q

þ 2
X∞
l¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þm2 þ 2eBl

q i
: ðA2Þ

If we add and subtract 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þm2 þ 2eB

p
, it can be

written as

ΩS
vac ¼ −

eB
4π2

Z
∞

−∞
dp3

�X
σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2eB

p
þ σT 1Þ2

q

− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þm2 þ 2eB

q

þ
X∞
l¼0

ð2 − δl0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þm2 þ 2eBl

q �
: ðA3Þ

Performing the sum in LLs, integrating in momentum,
and introducing the proper-time representation, we obtain
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ΩS
vac ¼

eB
8π2

Z
∞

1=Λ2

ds
s2

½e−sð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ2eB

p
þT 1Þ2 þ e−sð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ2eB

p
−T 1Þ2

− 2e−sðm2þ2eBÞ þ e−sm
2

cothðeBsÞ�: ðA4Þ

The terms without the cothðeBsÞ can be integrated using
the formula [28]Z

eax

x2
dx ¼ −

eax

x
þ aEiðaxÞ; ðA5Þ

where EiðaxÞ is the exponential integral function.
Evaluating in the limits of integration and using the
formula

EiðaxÞ ¼ ln jaxj þ
X∞
k¼1

ðaxÞk
k!k

; ðA6Þ

which is valid for jaxj < 1, we obtain that the leading
contribution in the limit of large Λ isZ

∞

1=Λ2

ds
s2

½e−sð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ2eB

p
þT 1Þ2 þ e−sð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ2eB

p
−T 1Þ2

− 2e−sðm2þ2eBÞ�

≃ 4T 2
1 þ 2T 2

1 ln

�
m2

Λ2

�
þ 2T 2

1 ln

�
2eB
m2

�
: ðA7Þ

The term proportional to cothðeBsÞ in (A4) has ultra-
violet divergencies that can be identified by expanding it
in powers of s. They reduce to two terms,

1

8π2

Z
∞

1=Λ2

ds
s3

e−sm
2

; ðA8Þ

and

1

8π2

Z
∞

1=Λ2

ds
s3

e−sm
2 ðeBsÞ2

3
; ðA9Þ

To eliminate these divergences, one can add and subtract
(A8) and (A9) to (A4) [24]. The divergence (A8), which
depends on the renormalized mass, is then incorporated
into a renormalized vacuum constant, while (A9) is
absorbed into the bare Maxwell energy to define renor-
malized field and charge. Then mass, charge and mag-
netic field are all renormalized in the standard way. The
second term in the rhs of (A7) is divergent though.
Keeping in mind that the parameter T 1 is finite, since it
is given by the AMM found from the renormalized one-
loop self-energy of the original theory, hence was
introduced in the effective theory as a given finite
parameter, we can treat this term in the same way done
in [24] with (A8) and incorporate it into the renormalized
vacuum constant.

Therefore, the renormalized vacuum contribution to the
thermodynamic potential in the strong-field limit takes the
form

ΩSðRÞ
vac ¼ 1

8π2

Z
∞

1=Λ2

ds
e−sm

2

s3

�
eBs cothðeBsÞ − 1 −

ðeBsÞ2
3

�

þ eB
4π2

T 2
1

�
ln
2eB
m2

þ 2

�
: ðA10Þ

To extract the strong-field contribution to the integral in
(A10), one separates it in two pieces,

Z
∞

1=Λ2

ds ¼
Z

1=eB

1=Λ2

dsþ
Z

∞

1=eB
ds: ðA11Þ

The first integral can be done expanding the coth in
powers of its argument and gives a negligible contribu-
tion in the limit Λ → ∞. The second integral is finite. Its
leading contribution is given by − αB2

6π lnðeBm2Þ, which
coincides with the strong-field result found in [29].
Then, keeping just the leading-in-α terms in the
strong-field approximation, the renormalized vacuum
potential reduces to

ΩSðRÞ
vac ¼ −

αB2

6π
ln

�
eB
m2

�
þ eB
4π2

T 2
1

�
ln
2eB
m2

þ 2

�
: ðA12Þ

Substituting T 1 with the result (28), we obtain

ΩSðRÞ
vac ¼ −

αB2

6π
ln

�
eB
m2

�
þ eB
4π2

��
αm
8π

�
ln2
�
2eB
m2

��
2

×

�
ln
2eB
m2

þ 2

�
; ðA13Þ

so clearly the leading vacuum contribution is mainly
determined by the strong-field contribution at zero AMM
[22], given by the first term in the rhs of (A13).

2. Finite-density contribution

At zero temperature the contribution of the fermions
in the Fermi sphere to the thermodynamic potential is
given by

ΩS
μ ¼ −

eB
8π2

Z
∞

−∞
dp3

X
ησl

ðjEησl − μj − jEησljÞ; ðA14Þ

with energy spectrum given in (A1).
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Summing in η we get

ΩS
μ ¼ −

eB
8π2

X
σl

Z
∞

−∞
dp3½jEþσl − μj − 2Eþσl þ ðEþσl þ μÞ�

¼ −
eB
8π2

X
σl

Z
∞

−∞
dp3½Eþσl − μþ Eþσl þ μ − 2Eþσl�θðEþσl − μÞ

−
eB
8π2

X
σl

Z
∞

−∞
dp3½μ − Eþσl þ Eþσl þ μ − 2Eþσl�θðμ − EþσlÞ

¼ −
eB
4π2

X
σl

Z
∞

−∞
dp3ðμ − EþσlÞθðμ − EþσlÞ: ðA15Þ

Then, after integration in momentum and summing in spin, we obtain

ΩS
μ ¼ −

eB
4π2

θðμ −mÞ
�
μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

q
−m2 ln

�
μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
m

��

−
eB
4π2

X∞
l¼1

θðμ −Mþ
l Þ
"
μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ðMþ

l Þ2
q

− ðMþ
l Þ2 ln

 
μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ðMþ

l Þ2
q

Mþ
l

!#

−
eB
4π2

X∞
l¼1

θðμ −M−
l Þ
"
μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ðM−

l Þ2
q

− ðM−
l Þ2 ln

 
μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ðM−

l Þ2
q

M−
l

!#
ðA16Þ

with

M�
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eBlþm2

p
� T l; l ≥ 1; ðA17Þ

where we have neglected the radiative corrections to the mass for all LLs, including the LLL. As already mentioned, in the
strong-field limit, T l ≪ T 1 for l > 1 (see Fig. 1), which allows us to neglect in (A17) the contribution of T l for l > 1.
Hence, (A16) reduces to

ΩS
μ ¼ −

eB
4π2

θðμ −mÞ
�
μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

q
−m2 ln

�
μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
m

��

−
eB
4π2

θðμ −Mþ
1 Þ
�
μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ðMþ

1 Þ2
q

− ðMþ
1 Þ2 ln

�
μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ðMþ

1 Þ2
p

Mþ
1

��

−
eB
4π2

θðμ −M−
1 Þ
�
μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ðM−

1 Þ2
q

− ðM−
1 Þ2 ln

�
μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ðM−

1 Þ2
p

M−
1

��

−
eB
2π2

X∞
l¼2

θðμ −MlÞ
�
μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ðMlÞ2

q
− ðMlÞ2 ln

�
μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ðMlÞ2

p
Ml

��
; ðA18Þ

where

Ml ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eBlþm2

p
; l > 1: ðA19Þ

Expression (A18) coincides with Eq. (30).
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3. Finite-temperature contribution

The contribution at finite temperature is given by

ΩS
β ¼ −

eB
4π2

Z
∞

−∞
dp3

X
ησl

1

β
lnð1þ e−βjEησl−μjÞ: ðA20Þ

After summing in η and σ, and taking into account the corresponding spectra (A1), we obtain

ΩS
β ¼ −

eB
2π2β

Z
∞

0

dp3 lnð1þ e−βj
ffiffiffiffiffiffiffiffiffiffiffi
p2
3
þm2

p
þμjÞð1þ e−βj

ffiffiffiffiffiffiffiffiffiffiffi
p2
3
þm2

p
−μjÞ

−
eB
2π2β

Z
∞

0

dp3 lnð1þ e−βj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3
þMþ

1
2

p
þμjÞð1þ e−βj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3
þMþ

1
2

p
−μjÞ

−
eB
2π2β

Z
∞

0

dp3 lnð1þ e−βj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3
þM−

1
2

p
þμjÞð1þ e−βj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3
þM−

1
2

p
−μjÞ

−
eB
π2β

X∞
l¼2

Z
∞

0

dp3 lnð1þ e−βj
ffiffiffiffiffiffiffiffiffiffiffiffi
p2
3
þMl

2
p

þμjÞð1þ e−βj
ffiffiffiffiffiffiffiffiffiffiffiffi
p2
3
þMl

2
p

−μjÞ: ðA21Þ

Here we are using the notation given in (A17) and (A19).

APPENDIX B: THERMODYNAMIC POTENTIAL
Á LA DITTRICH

In thisAppendix,wewill discuss the steps followed in [23]
to calculate the vacuum contribution of the thermodynamic
potential for charged fermions endowed with AMM in a
magnetic field. In doing that, we will call attention to some
issues we have found in those calculations that explain the
difference between the strong-field results (33) and (34).
Let us start by writing Eq. (2.1) of Ref. [23]�

m −
μ

2
σμνFμν þ γ · Π

�
Gðx; y;AÞ ¼ δðx − yÞ ðB1Þ

Taking into account that the fermion propagator can be
written in term of a scalar propagator, Δðx; y;AÞ, as

Gðx; y;AÞ ¼
�
m −

μ

2
σμνFμν − γ · Π

�
Δðx; y;AÞ; ðB2Þ

then, we can write Eq. (B1) in term of Δðx; y;AÞ, as��
m −

μ

2
σμνFμν þ γ · Π

��
m −

μ

2
σμνFμν − γ · Π

��
× Δðx; y;AÞ ¼ δðx − yÞ; ðB3Þ

which, with the help of the identity ½γρ; σμν�FμνΠρ ¼
4iγμFμρΠρ, simplifies to

��
m −

μ

2
σμνFμν

�
2

− ðγ · ΠÞ2−2μiγμFμνΠν

�
× Δðx; y;AÞ ¼ δðx − yÞ ðB4Þ

By comparing Eq. (B4) with Eq. (2.3) of Ref. [23], we can
see that the last term inside the squared parenthesis in (B4)
is missed in Ref. [23]. On the other hand, if we compare the
quasiparticle spectrum that corresponds to Eq.(2.3) of
Ref. [23]

p2
0 ¼ p2

3 þ 2leBþ ½m − T �2; ðB5Þ

with the very well-known one for charged particles with
magnetic moment in a uniform magnetic field, we have
that the spectrum (B5) can be found from (65) in the
limit

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2eBl

m2

r
≃ 1; ðB6Þ

which will be only valid at very weak field. Then, the
strong-field result (34), which was found after the
consideration (B6), is not valid.
To compare our thermodynamical potential with the one

reported in [23], let us rewrite our Eq. (D2) [see also
Eq. (D4)] as

ΩW
vac ¼ −

jeBj
2ð2πÞ2

Z
∞

0

ds
s2
X∞
l¼0

ð2 − δl0Þe−sðm2þp2⊥þT 2Þ

× cosh


2sT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥

q �
þ jeBj
2ð2πÞ2

Z
∞

0

ds
s2

e−sðm2þT 2Þ sinhð2sT mÞ ðB7Þ
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Applying in Eq. (B7) the approximation (B6), we obtain

ΩW
vac ≈ −

jeBj
2ð2πÞ2

Z
∞

0

ds
s2
X∞
l¼0

ð2 − δl0Þe−sðm2þp2⊥þT 2Þ

× cosh ð2sT mÞ þ jeBj
2ð2πÞ2

×
Z

∞

0

ds
s2

e−sðm2þT 2Þ sinhð2sT mÞ ðB8Þ

Once we perform the summation over all Landau levels, we
arrive at

ΩW
vac ¼ −

jeBj
2ð2πÞ2

Z
∞

0

ds
s2

e−sðm2þT 2Þ

× fcoth ðeBsÞ cosh ð2sT mÞ − sinh ð2sT mÞg ðB9Þ

In [23], expression (B9) was simplified even more
considering that T ≪ eB and then taking the small-T
limit for the functions cosh and sinh to obtain, after
renormalization, the expression (2.10) of Ref. [23],

Ω ¼ −
1

2ð2πÞ2
Z

∞

0

ds
s3

e−sðm2þT 2Þ

×

�
eBs coth ðeBsÞ − 1 −

1

3
ðeBsÞ2

�
: ðB10Þ

In our calculation, we went beyond the leading term in the
expansion at small-T of the cosh and sinh functions, since
there are some extra T -dependent terms that contribute to
the divergency. Then, in addition to the usual renormaliza-
tion subtraction carried out in (B10), we had to subtract
several T -dependent terms [see Eqs. (D7)–(D9)].
Nevertheless, in the leading weak-field approximation
taken up to OððeBÞ4Þ order and in the α2 correction, the
effective potential (B10) reduces to the one we found in
(D10) for the weak-field approximation.

APPENDIX C: FROM THE RITUS TO THE
SCHWINGER PROPAGATOR

To perform the summation over all LLs, let us rewrite
Eq. (38) by using the Schwinger proper-time representa-
tion,

Gðx; yÞ ¼ −iðΠx þmÞ
Z

∞

0

ds
XZ d4p

ð2πÞ4 e
isðp̄2−m2þiϵÞ

× EpðxÞΠðlÞĒpðyÞ: ðC1Þ

Now, writing the Ritus eigenfunctions explicitly in
Eq. (C1), we obtain

Gðx; yÞ ¼ −iðΠx þmÞ
Z

∞

0

ds
Z

dp0p2p3

ð2πÞ4 eisðp
2
∥−m

2þiϵÞ

× e−i½ðx0−y0Þp0−ðx2−y2Þp2−ðx3−y3Þp3�

×
X∞
l¼0

e−isð2eBlÞ
X
σ

N2
nDnðρxÞDnðρyÞΠðlÞΔðσÞ:

ðC2Þ

Replacing one parabolic cylinder function by its integral
representation in Eq. (C2), and after some manipulations,
we get

Gðx; yÞ ¼ −iðΠx þmÞ
Z

∞

0

ds
Z

dp0p2p3

ð2πÞ4
× eisðp

2
∥−m

2þiϵÞe−i½ðx0−y0Þp0−ðx2−y2Þp2−ðx3−y3Þp3�

×
ffiffiffiffiffiffiffiffi
2eB

p
e
1
4
ρ2x
X
r¼�1

Z
∞

0

dte−
1
2
t2eirρxt

X∞
l¼0

X
σ¼�1

×
ð−irtÞne−isð2eBlÞ

n!
DnðρyÞΠðlÞΔðσÞ: ðC3Þ

Performing the sum over σ and using the identity [30]

X∞
n¼0

tn

n!
DnðzÞ ¼ e−

1
4
z2þzt−1

2
t2 ðC4Þ

on each term of Eq. (C3), we obtain

Gðx; yÞ ¼ −iðΠx þmÞ
Z

∞

0

ds
Z

dp0p2p3

ð2πÞ4
× eisðp

2
∥−m

2þiϵÞe−i½ðx0−y0Þp0−ðx2−y2Þp2−ðx3−y3Þp3�

×
ffiffiffiffiffiffiffiffi
2eB

p
e
1
4
ðρ2x−ρ2yÞ

Z
∞

−∞
dte−

1
2
t2½1−ðe−ið2eBsÞÞ2�

× eit½ρx−ρye−ið2eBsÞ� × ½ΔðþÞ þ e−is2eBΔð−Þ�;
ðC5Þ

where in the last line we have performed the sum over r.
Once we perform the integration over t and in momen-

tum p, we arrive at the well-known result for the fermion
propagator in an external magnetic field,

Gðx; yÞ ¼ −ðΠx þmÞΦðx; yÞ 1

16π2

Z
∞

0

eBds
s sinðeBsÞ

× e−isðm2−iϵÞe−if
1
4sðx−yÞ2∥− eB

4 tanðeBsÞðx−yÞ2⊥g

× ½eieBsΔðþÞ þ e−ieBsΔð−Þ�; ðC6Þ

where

Φðx; yÞ ¼ ei
eB
2
ðx2−y2Þðx1þy1Þ ðC7Þ
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is thewell-knownSchwingerphase,which encodes all gauge
dependence of the fermion propagator (see Ref. [25]).
It is easy to prove that for the particular gauge AðzÞ ¼

Bz1ẑ2 and integrating along a straight-line path from y to x,
the Schwinger phase factor can be written as

eB
2
ðx2 − y2Þðx1 þ y1Þ ¼

Z
x

y
dz ·AðzÞ: ðC8Þ

APPENDIX D: THERMODYNAMIC POTENTIAL
IN THE WEAK-FIELD APPROXIMATION

1. Vacuum

By using the proper-time representation, we rewrite
Eq. (25) as

ΩW
vac ¼ −

jeBj
2

X
σ¼�1

Z
∞

0

ds
s

Z
d2p∥

ð2πÞ3

×

	
e−isfp

2
∥−ðm−T Þ2−iϵg − e−isfp

2
∥−ðmþσT Þ2−iϵg

þ
X∞
l¼0

ð2 − δl0Þe−isfp
2
∥−ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ2leB

p
þσT Þ2−iϵg

�
; ðD1Þ

where we are using the notation p2
∥ ¼ p0p0 þ p3p3.

Note that in (D1) we added and subtracted the term

e−isfp
2
∥−ðmþσT Þ2−iϵg, and that the factor ð2 − δl0Þ has been

conveniently introduced despite once T is present, there is
no spin degeneracy for higher Landau levels.
Working in Euclidean space, we now perform in (D1) the

integration over p∥ and the summation over σ, obtaining

ΩW
vac ¼ −

jeBj
2ð2πÞ2

Z
∞

0

ds
s2

e−sðm2þT 2Þ
	
− sinhð2sT mÞ

þ
X∞
l¼0

ð2 − δl0Þe−2sleB cosh ð2sT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2leB

p
Þ
�
:

ðD2Þ

By using the identity [21,31]

coshðxÞ ¼
ffiffiffi
π

p
2πi

Z
γþi∞

γ−i∞

dt

t
1
2

etþx2
4t ðD3Þ

with γ a positive number, we can easily perform the sum
over LLs to get

ΩW
vac ¼ −

jeBj
2ð2πÞ2

Z
∞

0

ds
s2

e−sðm2þT 2Þ
	
− sinhð2sT mÞ

þ
ffiffiffi
π

p
2πi

Z
γþi∞

γ−i∞

dt

t
1
2

etþ
s2T 2m2

t coth

�
s

�
1 −

sT 2

t

�
eB

��
:

ðD4Þ

This particular form of the effective potential allows us to
isolate all divergences by making a Taylor expansion in
powers of (eBs) and (T ) up to order OððeBÞ4; T 4Þ, it is

ΩW
vac ≈ −

1

2ð2πÞ2
Z

∞

0

ds
s3

e−sm
2

�
1 − sT 2 þ 1

2
s2T 4

�
jeBjs

×
	
−2smT þ

ffiffiffi
π

p
2πi

Z
γþi∞

γ−i∞

dt

t
1
2

et

×

�
1þ s2T 2m2

t
þ s4T 4m4

2t2

�

×

��
1

eBs
þ eBs

3
−
ðeBsÞ3
45

�

þ
�

1

ðeBsÞ2 −
1

3
þ ðeBsÞ2

15
−
2ðeBsÞ4
189

�
sT 2eBs

t
:

þ
�

1

ðeBsÞ3 −
eBs
15

þ 4ðeBsÞ3
189

� ðsT 2Þ2ðeBsÞ2
t2

��
:

ðD5Þ

Hence, the divergent terms are

ΩW
div ≈ −

1

2ð2πÞ2
Z

∞

0

ds
s3

e−sm
2

	
−2s2mT eB

þ
ffiffiffi
π

p
2πi

Z
γþi∞

γ−i∞

dt

t
1
2

et
�
1þ s

�
1

t
− 1

�
T 2

þ s2
�ðeBÞ2

3
þm2T 2

t
þ T 4

t2
−
T 4

t
þ T 4

2

���
: ðD6Þ

Integrating over t term by term, we arrive at

ΩW
div ¼ −

1

8π2

Z
∞

0

ds
s3

e−sm
2

	
1 − 2ms2T eBþ sT 2

þ 2s2m2T 2 −
1

6
s2T 4 þ ðeBsÞ2

3

�
; ðD7Þ

where we used the identity [31]

ffiffiffi
π

p
2πi

Z
γþi∞

γ−i∞

dt

t
1
2
þn

et ¼
ffiffiffi
π

p
Γð1

2
þ nÞ : ðD8Þ

Note that in (D7) there are several T -dependent divergen-
ces, similar to what we also found in the strong-field limit.
As in the T ¼ 0 case [24], where a vacuum term depending
on the renormalized mass was subtracted, now we subtract
the new magnetized vacuum term, which also depends on
the particle AMM. At T ¼ 0, the divergent term (D7)
reduces to that of Ref. [24]. The last term in the RHS of
(D7) is the usual divergent term proportional to B2

appearing at T; μ ¼ 0 and that can be absorbed in the
magnetic field renormalization function Z3 as is usually
done in the T ¼ 0 case.
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Then, following the Schwinger procedure of renormalization, we subtract Eq. (D7) to Eq. (D2), to obtain the
renormalized effective potential given by

ΩWðRÞ
vac ðB; 0; 0Þ ¼ −

1

2ð2πÞ2
Z

∞

0

ds
s3

e−sðm2þT 2Þ
	
−jeBjs sinhð2sT mÞ þ

ffiffiffi
π

p
2πi

Z
γþi∞

γ−i∞

dt

t
1
2

etþs2T 2m2

t jeBjs coth
�
s

�
1 −

sT 2

t

�
eB

�

−
�
1þ sT 2 þ 2s2m2T 2 − 2ms2T eB −

1

6
s2T 4 þ ðeBsÞ2

3

��
: ðD9Þ

Now e and B have their renormalized values that have
absorbed the divergent contribution Ωdiv. In the renormal-
ization procedure we are following, we consider that T is a
renormalized parameter, as it was considered in the strong-
field case in Appendix A, and for the mass in the T ¼ 0
case [24]. Then, the extracted divergency is considered as
part of the renormalization of the vacuum energy that now
also depends on the AMM.
In the weak-field expansion, the leading terms of the

renormalized potential (D9), taken up to OððeBÞ4Þ order
and α2 correction, are

ΩWðRÞ
vac ðB; 0; 0Þ ¼ 1

2ð2πÞ2
	ðeBÞ4
45m4

þ ðeBÞ2T 2

3m2

�
: ðD10Þ

2. Finite density at zero temperature

The finite density contribution to the thermodynamical
potential in the weak-field approximation is given by

ΩW
μ ¼ −

jeBj
ð2πÞ2

Z
dp3

	
ðμ − εþþ0Þθðμ − εþþ0Þ

þ
X
σ¼�1

X∞
l¼1

ðμ − εþσlÞθðμ − εþσlÞ
�
: ðD11Þ

In the weak-field limit, the sum over all LLs can be easily
done if we rewrite the above equation as follows:

ΩW
μ ¼ −

1

2

X
σ¼�1

jeBj
ð2πÞ2

Z
dp3

	
ðμ − εþþ0Þθðμ − εþþ0Þ

− ðμ − εþσ0Þθðμ − εþσ0Þ

þ
X∞
l¼0

ð2 − δl0Þðμ − εησlÞθðμ − εησlÞ
�
: ðD12Þ

Taking into account that the separation between LLs is
given by

ffiffiffiffiffiffiffiffi
2eB

p
, in the weak-field limit the LLs are so close

that we can consider that they form a continuous distribu-
tion. Therefore, this allows us to use the Euler-Maclaurin
formula [32],

jeBj
2

X∞
l¼0

ð2 − δl0Þfð2eBlÞ ≈
Z

∞

0

dxfðxÞ þ jeBj
2

fð∞Þ

þ
X∞
k¼1

ðeBÞ2k
ð2kÞ! B2kffð2k−1Þð∞Þ

− fð2k−1Þð0Þg; ðD13Þ

where x is a continuous variable and B2k are the Bernoulli
numbers with B0 ¼ 1, B1 ¼ − 1

2
and B2 ¼ 1

6
.

Thus, (D12) up to OððeBÞ2Þ can be expressed as

ΩW
μ ¼ −

1

ð2πÞ2
X
σ¼�1

	Z
d3p
ð2πÞ3 ðμ − εþσp⊥Þθðμ − εþσp⊥Þ

þ jeBj
2

Z
dp3½ðμ − εþþ0Þθðμ − εþþ0Þ

− ðμ − εþσ0Þθðμ − εþσ0Þ�

þ jeBj2
12

Z
dp3

mþ σT
mεþσ0

θðμ − εþσ0Þ
�
; ðD14Þ

where

εησp⊥ ≡ η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥

q
þ σT

�2r
; ðD15Þ

and we replaced x by p2⊥ in the first term of Eq. (D14).
Performing the integration over all momenta and Taylor

expanding inpowers ofT , the leadingcontribution isgivenby

ΩW
μ ¼ −

1

8π2

�
2

3
μp3

F −m2μpF þm4 ln

�
pF þ μ

m

��
θðμ −mÞ − T 2

4π2

�
μpF þm2 ln

�
pF þ μ

m

��
θðμ −mÞ

þ jeBjmT
2π2

ln

�
pF þ μ

m

�
θðμ −mÞ − jeBj2

12π2
ln

�
pF þ μ

m

�
θðμ −mÞ þOðjeBj4Þ; ðD16Þ

where pF ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
.
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3. Finite temperature

The finite-temperature thermodynamical potential reads

ΩW
β ¼ −

jeBj
ð2πÞ2β

Z
dp3

X
η¼�1

	
ln ð1þ e−βjεηþ0þμjÞ þ

X
σ¼�1

X∞
l¼1

ln ð1þ e−βjεησlþμjÞ
�

: ðD17Þ

Once we perform the sum over η, we get

ΩW
β ¼ −

jeBj
ð2πÞ2β

Z
dp3 ln ð1þ e−βjεþþ0þμjÞð1þ e−βjεþþ0−μjÞ − jeBj

ð2πÞ2β
Z

dp3

X
σ¼�1

X∞
l¼1

ln ð1þ e−βjεþσlþμjÞð1þ e−βjεþσl−μjÞ:

ðD18Þ
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