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Within the Dirac model for the electronic excitations of graphene, we calculate the full polarization
tensor with finite mass and chemical potential. It has, besides the (00)-component, a second form factor,
which must be accounted for. We obtain explicit formulas for both form factors and for the reflection
coefficients. Using these, we discuss the regions in the momentum-frequency plane where plasmons may
exist and give numeric solutions for the plasmon dispersion relations. It turns out that plasmons exist for
both, transverse electric and transverse magnetic polarizations over the whole range of the ratio of mass to
chemical potential, except for zero chemical potential, where only a TE plasmon exists.
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I. INTRODUCTION

At present, graphene is still an object of highly actual
interest, especially for its optical properties and plasmonics.
There is an enormous number of papers on, for recent
reviews see [1] and [2]. One of the approaches to the
theoretical description of its electronic excitations rests on
the random phase approximation (RPA) for the density-
density correlation function and for the conductivity.
Usually, these quantities are calculated in some approxi-
mation, the nondispersive limit for example. Another
approximation rests on the smallness of the Fermi velocity,
vF, which is 300 times smaller than the speed of light. As
shown below, this smallness allows formally to neglect one
of the two form factors entering the polarization tensor.
The electronic properties of graphene are equally well

described by the Dirac model, consisting of a relativistic
spinor in a (2þ 1)-dimensional space-time (the plane of
graphene). It has its own Lorentz group with vF in place of
c. The coupling to the (3þ 1)-dimensional electromagnetic
field is the usual one. In this way, one has a modified
quantum electrodynamics (QED), to which the well-known
formalisms can be applied. For instance, one calculates the
photon polarization tensor Πμν. In the language of quantum
field theory (QFT) it consists of a fermion loop (if
restricting to one loop approximation). This has been done
in quite a number of papers, for instance in [3] and related
papers (mainly in application to external magnetic field).
For a kind of review we refer to [4]. In fact, this approach is
in principle equivalent to RPA, where, however, one makes
some approximations for the very beginning. The formulas
obtained using the polarization tensor allow to calculate the

Casimir force between graphene and, say a conducting
wall, ideal [5] or real [6], and to investigate surface
plasmons, e.g., in the TE mode [7]. Surface plasmons
were considered earlier using expressions for the conduc-
tivity obtained in RPA. For instance, in [8], using a high
frequency approximation for the conductivity, a TE mode
plasmon was predicted.
In the present paper, the approach from QFT is taken.

The complete polarization tensor is calculated for both,
mass m (gap parameter) and chemical potential μ, nonzero.
In this case, like with finite temperature, the polarization
tensor, which is transverse for gauge invariance, has two
form factors, and both are accounted for. Also, the complete
frequency and momentum dependence is kept. All approx-
imations, usually done within the RPA approach can be
obtained afterwards as special cases.
The polarization tensor was previously calculated in a

number of special cases. First of all one needs to mention
that the calculations in the RPA approach deliver special
cases for components of the polarization tensor. So in
[9,10], in fact the (00)-component of the polarization
tensor, which is responsible for static screening and for
the TE mode plasmon, was calculated in the massless case.
In the QFT approach, this component was calculated with
chemical potential and mass in [11].
In application to graphene, the second form factor was

calculated in [12] with mass, temperature and chemical
potential, however restricted to Matsubara values of its
argument, i.e., to discrete imaginary frequencies. It was
applied to the calculation of the Casimir effect. Recently, it
was calculated for finite temperature and mass for all,
including non-Matsubara and real, frequencies [13], but
without chemical potential. From these papers, a repre-
sentation with mass and chemical potential for real
frequencies, as it is needed for plasmons, cannot be derived
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in any simple way. Here we fill this gap and calculate the
complete polarization tensor for both nonzero, mass and
chemical potential, for real frequencies.
We apply this polarization tensor to the investiga-

tion of surface plasmons. For this we start from the
generic formulas for the electromagnetic field in (3þ 1)-
dimensions and insert the polarization tensor resulting from
the (2þ 1)-dimensional fermions. We show that this
polarization tensor, which involves the Fermi speed vF,
can be expressed in terms of the same polarization tensor
calculated with unit speed. The actual calculation is done in
the Appendix. Further we (re-)derive the equations for the
reflection coefficients in terms of the two form factors,
Eq. (32), and, which is equivalent, in terms of Π00 and Πtr,
Eq. (38). Further, we solve the equations for the plasmon
dispersions numerically and represent the results graphi-
cally for the TE and TM-modes.
Throughout the paper we use units with α ¼ e2=ð4πÞ for

the coupling and v ¼ vF=c for the Fermi speed and refer to

α ∼
1

137
; v ∼

1

300
; ð1Þ

as the physical values of the parameters.

II. ELECTRODYNAMICS WITH POLARIZATION
TENSOR FROM GRAPHENE

By the Dirac equation model, the interaction of the
electromagnetic field with the long wavelength electronic
excitations in graphene can be described by relativistic
quantum electrodynamics. In this formalism, the Dirac
equation is

ði∂ − eA −mÞψ ¼ 0; ð2Þ
where

∂ ¼ ~γμ
∂
∂xμ ; A ¼ ~γμAμ; ~γμ ¼ ημμ0γ

μ0 ;

ημμ0 ¼ diagð1; v; vÞ; ð3Þ

with the usual gamma matrices γμ and the Fermi speed v.
The resulting polarization tensor is

~ΠμνðpÞ ¼ ie2
Z

dq0d2q
ð2πÞ3 tr

1

iq−m
~γμ

1

iq− ip−m
~γν; ð4Þ

where we used momentum representation. Assuming the
graphene sheet located at z ¼ 0, the momenta are in the
directions μ ¼ 0; 1; 2. It can be reduced to the polarization
tensorΠμνðpÞ, defined by the same formula but with v ¼ 1,
by the substitution qi → qi=v (i ¼ 1; 2) in the integration,

~ΠμνðpÞ ¼ 1

v2
ημμ0Π

μ0ν0 ð~pÞηνν0 ; ð5Þ

where the vector p is substituted by ~p. This vector is
defined by

~pμ ¼ ημμ0p
μ0 : ð6Þ

We will use the notation with a tilde for vectors with the
Fermi speed v in the spatial components and for the
polarization tensor (4) throughout the paper.
In the four dimensional formulation of electrodynamics,

the Maxwell equations with polarization tensor (which we
denote by a “hat”), read

∂μFμν þ Π̂νμAμ ¼ 0: ð7Þ

These can be viewed as effective Maxwell equations, which
appear, e.g., integrating out the spinor fields in a functional
integral representation. Rewritten in terms of induced
current,

jμ ¼ −c
4π

Π̂μνAν; ð8Þ

these equations are ∂μFμν ¼ ð4π=cÞjν.
Switching to 3-dimensional notations with μ ¼ ð0; kÞ

(k ¼ 1; 2; 3),

jμ ¼ ðcρ; ~jÞ; Aμ ¼ ðΦ; ~AÞ; ~E ¼ − ~∇Φ − ∂0
~A;

ð9Þ

we get from the transversality of the polarization tensor

Π̂μνAμ ¼ Π̂νk∂−1
0 Ek; ð10Þ

and the induced charge density and current,

ρ ¼ −1
4π

Π̂0k∂−1
0 Ek;

jk ¼
−c
4π

Π̂kl∂−1
0 El: ð11Þ

We would like to mention that from this formula the con-
ductivity tensor can be defined as σkl ¼ ð−c=4πÞΠ̂kl∂−1

0 .
The Maxwell equations (5) read now

div~E ¼ 4πρ;

ð−∂2
0 þ Δ −∇ ∘∇Þ~E ¼ 4π

c
∂0
~j; ð12Þ

or, substituting Gauss’s law,

ð−∂2
0 þ ΔÞ~E ¼ 4π

c
ð∇cρþ ∂0

~jÞ: ð13Þ

Inserting from (11), the right-hand side can be expressed in
terms of the polarization tensor,
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ð−∂2
0 þ ΔÞEk ¼ −ð∇kΠ̂0l∂−1

0 þ Π̂klÞEl: ð14Þ

These are general formulas. For graphene we have to insert

Π̂μν ¼
�
δðzÞ ~ΠμνðpÞ for μ; ν ¼ 0; 1; 2;

0 for μ ¼ 3 or ν ¼ 3;
ð15Þ

with ~ΠμνðpÞ from (4).
In momentum representation we assume all relevant

quantities ∼ exp ð−iωtþ ikxÞ and define the vectors in the
plane of graphene by

k ¼
�
k1
k2

�
; x ¼

�
x1
x2

�
; ð16Þ

and similar for other vectors. Further we need to define the
vector

pμ ¼ ðω;k; 0Þ; p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2

p
: ð17Þ

Now we split equations (13) into two with n;m ¼ 1; 2, i.e.,
parallel to the plane of graphene, and a third in the
perpendicular direction,

ðp2 þ ∂2
zÞEnðp; zÞ ¼ δðzÞΞnmEmðp; 0Þ;

ðp2 þ ∂2
zÞE3ðp; zÞ ¼ ∂zδðzÞ

1

iω
~Π0nðpÞEnðp; 0Þ; ð18Þ

where we introduced the notation

Ξnm ¼ pn

ω
~Π0mðpÞ − ~ΠnmðpÞ; ð19Þ

appearing in the right side in (14). In (18), we have to solve
the equations for the components Enðp; zÞ of the electric
field parallel to the plane, whereas E3ðp; zÞ follows from
Enðp; zÞ by integration.
Now we need a more specific expression for the

polarization tensor for graphene. From (5) we get

~Π00ðpÞ ¼ 1

v2
Π00ð ~pÞ;

~Πtr ¼
1 − v2

v2
Π00ð ~pÞ þ Πtrð ~pÞ; ð20Þ

where we defined

Πtrð ~pÞ ¼ gμνΠμνð ~pÞ; ~ΠðpÞtr ¼ gμν ~ΠðpÞ ð21Þ

for the traces.
The polarization tensor is calculated in the Appendix for

v ¼ 1. There it is represented in terms of form factors AðpÞ
and BðpÞ, Eqs. (A9), where we have to insert with (6)

~pμ ¼ ðω; vk; 0Þ; ~p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − ðvkÞ2

q
ð22Þ

in the form factors and in the tensor structures, (A10). For
these we note

~P0mð ~pÞ ¼ −
ωkm
~p2

; ~Pnmð ~pÞ ¼ −δnm −
v2knkm

~p2
;

~M0mð ~pÞ ¼ v2k2km
ω ~p2

; ~Mnmð ~pÞ ¼ v2knkm
~p2

: ð23Þ

Accounting also for the ημμ0 we get from (5)

~Π0m ¼ −ωkm
~p2

�
Að ~pÞ − v2k2

ω2
Bð ~pÞ

�
;

~Πnm ¼ −
�
δnm þ v2knkm

~p2

�
Að ~pÞ þ v2knkm

~p2
Bð ~pÞ: ð24Þ

This allows us to rewrite (19) in the form

Ξnm ¼
�
δnm − ð1 − v2Þ knkm

~p2

�
Að ~pÞ − v2p2knkm

ω2 ~p2
Bð ~pÞ:

ð25Þ

The form factors AðpÞ and BðpÞ are calculated in the
Appendix, Eqs. (A12) and (A53), (A65).
Next we introduce the polarizations for the electric field.

We consider only the components En with n ¼ 1; 2,

Enðp; zÞ ¼
�−k2

k1

�
ΦTE þ

�
k1
k2

�
ΦTM; ð26Þ

where, up to a normalization, we have ETE ¼ ΦTE and
ETM ¼ ∂zΦTM. We do not need to consider here the third
component, E3, since it follows with (18) from En. Now,
Eq. (18) is diagonal in the polarizations, i.e., the graphene
does not mix these. So we get with (26) from (18)

ðp2 þ ∂2
zÞΦTXðp; zÞ ¼ δðzÞΞTXΦTXðp; 0Þ: ð27Þ

Here the subscript ‘TX’ stands for one of the polarizations
and

ΞTE ¼ 1

k2

�−k2
k1

�
n

Mnm

�−k2
k1

�
m

¼ Að ~pÞ;

ΞTM ¼ 1

k2

�
k1
k2

�
n

Mnm

�
k1
k2

�
m

;

¼ p2

~p2

�
Að ~pÞ − v2

k2

ω2
Bð ~pÞ

�
: ð28Þ

Finally, we rewrite the equation (27) for z ¼ 0 in terms of
matching conditions,
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ΦTXðz ¼ þ0Þ − ΦTXðz ¼ −0Þ ¼ 0;

∂zΦTXðz ¼ þ0Þ − ∂zΦTXðz ¼ þ0Þ ¼ ΞTXΦTXðz ¼ 0Þ;
ð29Þ

for both polarizations, i.e., the functions are continuous and
their derivatives jump. In a standard scattering setup, the
solutions are

ΦTXðzÞ ¼ ðeipz þ rTXe−ipzÞΘð−zÞ þ tTXeipzΘðzÞ ð30Þ

and the reflection and transmission coefficients are

rTX ¼ −1
1þQ−1

TX
; tTX ¼ 1

1þQTX
; ð31Þ

with

QTE ¼ −1
2ip

Að ~pÞ;

QTM ¼ −p
2i ~p2

�
Að ~pÞ − v2

k2

ω2
Bð ~pÞ

�
:

ð32Þ

These are the final formulas for the coefficients. Similar
formulas were derived earlier, e.g., Eq. (23) in [12].

III. SURFACE PLASMONS

A. General formulas

Surface plasmons appear if the reflection and trans-
mission coefficients (31) have a pole. So these are solutions
of the equations

1þQTX ¼ 0: ð33Þ

We look for them in the frequency region

vk < ω < k: ð34Þ

The upper bound implies a frequency below the con-
tinuous spectrum in order to get a wave function (30)
decreasing to both sides of the graphene sheet. In this
region the momentum p is imaginary and we use the
notation

p ¼ iη≡ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ω2 þ k2

p
ð35Þ

and get from (32)

QTE¼
1

2η
Að ~pÞ; QTM¼ −η

2 ~p2

�
Að ~pÞ−v2

k2

ω2
Bð ~pÞ

�
: ð36Þ

Here we insert from (A12),

Að ~pÞ ¼ ~p2

v2k2
Π00ð ~pÞ þ Πtrð ~pÞ;

Bð ~pÞ ¼ 2ω2 ~p2

v4k4
Π00ð ~pÞ þ ω2

v2k2
Πtrð ~pÞ: ð37Þ

These form factors can be inserted into (36) and we get

QTE ¼ 1

2η

�
~p2

v2k2
Π00ð ~pÞ þ Πtrð ~pÞ

�

¼ 1

2η

�
p2

k2
~Π00ðpÞ þ ~ΠtrðpÞ

�
;

QTM ¼ η

2v2k2
Π00ð ~pÞ ¼ η

2k2
~Π00ðpÞ; ð38Þ

where we also displayed the expressions in terms of the
~ΠμνðpÞ, Eq. (4), using (20). Eqs. (38) are the final formulas
for the investigation of the equations (33). The components
of the polarization tensor ΠμνðpÞ are given by Eqs. (A54)
and (A65). These coincide with Eq. (24) in [12], or Eq. (12)
in [13], where, however, different notations are used.
It is meaningful to check the case μ ≤ m, which we

considered in [7]. In that case we have B ¼ 0 for the second
form factor and from (A19) the relation

Πtrð ~pÞ ¼
−2 ~p2

v2k2
Π00ð ~pÞ ð39Þ

holds. From (37) we get

Að ~pÞ ¼ −
~p2

v2k2
Π00ð ~pÞ: ð40Þ

In the notations of [7] the polarization tensor is expressed in
terms of the function

Φð ~pÞ ¼ 2

~p

�
2m ~p − ð ~p2 þ 4m2Þarctanh ~p

2m

�
ð41Þ

by

Π00ð ~pÞ ¼ −
e2

4π

v2k2

2 ~p2
Φð ~pÞ ð42Þ

delivering

QTE ¼ α

2η

1

2
Φð ~pÞ; QTM ¼ −

αη

2 ~p2

1

2
Φð ~pÞ: ð43Þ

This coincides with Eq. (18) in [7].

B. Formulas for the surface plasmon
in the massless case

Frequently, graphene is considered with zero gap widths,
which seems justified given the small value of the gap
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widths. In the Dirac model this translates into the massless
case. For m ¼ 0, the formulas (31) and (38) remain
unchanged whereas those for the polarization tensor
simplify. We collected them in the Appendix B. With
the substitution p → ~p we get from (B2) and (38)

QTE ¼ 4α

η

�
ω2μ

ðvkÞ2 −
~p
4

1

2

X
λ1¼�1

signðQÞ
�
x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p

þ arccoshðxÞ
�	

;

QTM ¼ 4αη

ðvkÞ2
�
μ −

ðvkÞ2
4~p

1

2

X
λ1¼�1

signðQÞ
�
x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p

− arccoshðxÞ
�	

: ð44Þ

The variables are

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − ω2

p
; ~p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − ðvkÞ2

q
;

x ¼ 2μ − λ1ω

vk
; Q ¼ ~p2 þ 2λ1ωμ: ð45Þ

As said above, surface plasmons appear as solutions of the
equation (33). Now, inserting numbers using (50) shows
that for the TE polarizations the solutions start with k > 0,
whereas for the TM case the solutions start from k ¼ 0. In
this case, the solution can be considered for small k. A
direct expansion of (44) in powers of k gives

QTM ¼ −α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − ω2

p

ω
ln
2μþ ω

2μ − ω
þOðkÞ: ð46Þ

This expression is in agreement with Eq. (8) in [8], which
turns out to be the approximation for small k and ω.
Equation (33) with (46) can be solved for small k by
iteration. First we rewrite the equation in the form

ω ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − ω2

p
ln
2μþ ω

2μ − ω
þOðkÞ: ð47Þ

Next we insertω ¼ 0 in the right side and getω ¼ ωsfðkÞ in
the left side with

ωsfðkÞ ¼ αkþOðk2Þ: ð48Þ
This solution confirms that we get small ωsfðkÞ for small k
as anticipated in the derivation of (53). It is interesting to
note, that this solution, because of vk < ωsfðkÞ < k, (34), is
consistent for

v < α < 1 ð49Þ
only, which is fulfilled for the physical values of the
parameters.

C. Regions in the ðk;ωÞ-plane
As said in Eq. (34), plasmons may exist in a region in the

ðk;ωÞ-plane below the continuous spectrum. In addition,
the polarization tensor must be real. Since we are in the
Minkowskian region, it is real below the threshold at

ωs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvkÞ2 þ ð2mÞ2

q
; ð50Þ

i.e., for ω < ωs. In the case without chemical potential, i.e.,
for μ ¼ 0, this is the only region where the polarization
tensor is real. With chemical potential there is also above
the threshold a region of realness. It is bounded from above
by the condition (A68), which reads

ω < ω−þ ð51Þ

with

ω−þ ¼ μþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ ðvkÞ2 − 2vkkF

q
ð52Þ

written in the notations used here. Combining (34) and
(51), we get

vk < ω < minðk;ω−þÞ; ð53Þ

which defines the region in the ðk;ωÞ-plane, where
plasmons may exist.
This region is shown in Fig. 1.1 It looks different for

different ratios m=μ. For m ¼ 0 it is shown in Fig. 1(a).
Here ω−þ degenerates, ω−þ ¼ μþ jμ − vkj, and the region
(53) becomes a triangle. Since here ωs ¼ vk holds, all
solutions are automatically above the threshold.
For m > 0 we introduce the following notations,

ks ¼
2mffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; km ¼ 2ðμ − vkFÞ
1 − v2

; kt ¼
2kF
v

;

ð54Þ

where kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
is the Fermi momentum. In (54), ks

is the intersection k ¼ ωs, km is the intersection k ¼ ω−þ,
and kt is the touching point ω−þ ¼ ωs. For m ¼ mt, with

mt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
μ; ð55Þ

these coincide,

ks ¼ km ¼ kt ¼ 2μ ðm ¼ mtÞ: ð56Þ

The case m < mt is shown in Fig. 1(b) and mt < m < μ is
shown in Fig. 1(d). It must be mentioned that the last region
is very narrow,

1All plots are made for μ ¼ 1.
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μ −mt

μ
∼ 5 × 10−6; ð57Þ

and mt ¼ 0.999994μ for physical values of the parameters.

D. TM mode surface plasmons

TM mode surface plasmons are solutions of the equa-
tion (33),

1þQTM ¼ 0; ð58Þ

where QTM is given by (A54) and Π00ð ~pÞ by (A58) with ~p
inserted for p.
We start with the case m ¼ 0. Here, QTM is given by

(50). As said above, the solution exists in the triangular
region shown in Fig. 1(a). Examples are shown in Fig. 2,
left panel, for several values of α and v ¼ 1=300. These
solutions start in k ¼ 0 and terminates on the line
ω ¼ 2μ − vk. Since these solutions are all restricted to
k < v=μ, the spatial extend of the solutions in the sense of
expð−ϰjzjÞ is determined by ϰ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − ω2

p
. It is shown in

Fig. 2 in the inset. For the physical value α ¼ 1=137, the

(a)

(b)

FIG. 2. Left: Transverse magnetic plasmon with m ¼ 0, μ ≠ 0, and v ¼ 1=300, for different values of α. The inset shows ϰ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − ω2

TM

p
as a function of vk=μ for α ¼ 1=137. Right: Transverse electric plasmon. These plots are very close one to the other

differing significantly only by their endpoints. The inset (a) is the zoom of TE curves. The nearly horizontal dashed line is ω ¼ 2μ − vk.
The inset (b) shows

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − ω2

TE

p
as a function of vk=μ.

(a) (b)

(c) (d)

FIG. 1. The ðk;ωÞ-plane with the curves for vk, k, ωs and ω−þ for (a) m ¼ 0, (b) m ¼ 0.6, (c) m ¼ 0.999984μ, i.e., m < mt, and
(d) m ¼ 0.999997, i.e., mt < m < μ, for physical values of the parameters. The region (53), where a plasmon may exist, is shaded. In
panel (b), kt ≫ km and outside the graph. The curves ωp and ωs appear as straight lines and the line vk nearly coincides with the k-axis.
The inset shows the same picture for larger k such that kt is seen. Now the line ω ¼ k nearly coincides with the ω axis. Panel (d)
corresponds to the narrow region mt < m < μ, where the touching point kt is below ks and km.
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TM solution bends closer to vk. A similar picture may be
found in [14].
For m > 0, the plasmon solution exists in the regions

shown in Fig. 1, (b)–(d). The curve ω−þ separates from
ω ¼ vk and in the gap between them a new branch of the
solution appears for large k, as shown in Fig. 3, panel (a).
Obviously this branch and the lower one are parts of a

single solution which, however in the gap between these
branches is not real. When further increasing m, starting
from m ¼ m0, these branches merge, see Fig. 3, panel (b).
The mass, for which the solution touches the curve ω−þ at its
minimum, kmin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
=2, is denoted bym0. It can be

found by substituting kmin and ω−þðkminÞ ¼ mþ μ, into
Eq. (58). With physical values of the parameters, this
equation yields m0 ¼ 0.23235μ.
The solution has an endpoint,

kmax ¼
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8α2μðμ −mÞð1 − v2Þ þ 3m2v2

p
2αv

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p −
3m

2α
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ;

ð59Þ

which moves down to smaller k when further increasing m,
see Fig. 3, panel (c). Finally, for m → μ, i.e., when the
chemical potential disappears, this endpoint goes down to
k ¼ 0, and the solution disappears.
For small k it is possible to find the solution explicitly.

For this, we rewrite Eq. (58) in the form

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 4v2k4Π−2

00

q
; ð60Þ

which allows for iteration with inserting ω ¼ k in the
right side,

ω ¼ k −
v4

8α2μ2
1�

1 − μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2v2þμ2ð1−v2Þ

p
�
2
k3 þOðk4Þ: ð61Þ

The coefficient in front of k3 is negative, showing that
the solution goes indeed below ω ¼ k, i.e., below the
border of the continuous spectrum. This coefficient is
small, proportional to ðv2=αÞ2∼2.3×10−6, unless m→μ,
where it becomes infinite and the expansion breaks down
[expansion (48) holds instead].

E. TE mode surface plasmon

TE mode surface plasmons are solutions of the
equation (33),

1þQTE ¼ 0; ð62Þ
where QTE is given by (38) with (A54) and (A65) with ~p
inserted for p. The TE mode surface plasmon solution has a
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FIG. 3. TM-plasmon dispersion law for physical values of the parameters. Panel (a) shows the solution withm ¼ 0.1 < m0 consisting
of two branches. Panel (b) presents the plot for m ¼ m0 ¼ 0.232347, corresponding to the mass when two branches of the solution
merge. For this mass kmax ¼ 597.863. Panel (c) with m ¼ 0.6 demonstrates that with increasing mass the endpoint moves toward the
origin. The curves for ω−þ, ωs and vk (from top to bottom) are shown as dashed lines.
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FIG. 4. The starting point k0 of the TE-plasmon as a function of
m for physical values of α and v, together with ks and km.
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nonzero staring point, which we denote by k0. It can be
found as a solution of the equation 1þQTEjω¼k

¼ 0. For
k < k0, the solution goes into the continuous spectrum. It is
shown in Fig. 4, together with ks and km, Eq. (54), as a
function of m. The intersection of these curves in the left
panel is denoted by m0. This means, for m > m0, that the
starting point in the ðk;ωÞ-plane, see Fig. 1, is to the left of
ks and for m < m0 to the right. The latter implies that the
starting point is above the threshold.
In the case m ¼ 0, as mentioned above, the solution

exists in the triangular region shown in Fig. 1, panel (a).
Examples are shown in Fig. 2, right panel, for several
values of α and v ¼ 1=300. The TE solution goes
close to ω ¼ k. Its frequency lies in the band
1.667 < ω=μ < 1.9934. This is in agreement with [8].
The starting point lies at ω ¼ k and does not depend on
α. The endpoint is situated on the line ω ¼ 2μ − vk and
depends on α, see the inset. With decreasing α it tends
to km ¼ 2μ=ð1þ vÞ.
Form < mt, the solution ends on the line ω−þ, thus above

the threshold. Such solutions are shown in Fig. 5 for several
m < mt. In the ðk;ωÞ-plane, all appear nearly on one and
the same line. Therefore we represented them in the
ðk;ω=kFÞ-plane. Close to the end, these lines have a knee.
This is shown in Fig. 5 in the right panel for a particular
value of m using smaller values of α enlarging this part.
Further increasing m, for m > mt, the endpoint appears

below the threshold and it goes to larger k the closer m
comes to μ. At the same time the starting point goes to zero,
see Fig. 4. For m → μ, which is the transition to the case
without chemical potential, the starting point is zero and the
endpoint goes to infinity. The picture turns into that shown
on Fig. 2 in [7].

IV. CONCLUSIONS

In the foregoing sections we calculated the polarization
tensor for graphene with mass and chemical potential using
formalism and notations of quantum field theory.

The actual calculation of the polarization tensor is
carried out in the Appendix, for unit speed of light. In
the case considered here, all integrations can be carried out
and explicit formulas for the complete polarization tensor
emerge. It is seen that it does not have an ultraviolet
divergence, which is the expected result from the interplay
of gauge invariance and dimensionality.
The polarization tensor with m and μ has 2 form factors.

The result is given in terms of these. Formulas of this kind
for the polarization tensor were obtained previously, but
never in such completeness as here. Especially, in [11],
only one form factor, Π00ð ~pÞ, was calculated.
It should be mentioned, that the second form factor,

Πtrð ~pÞ, Eq. (A13), frequently gives only a small contribu-
tion. This can be seen from the upper line in Eq. (38), where
Πtrð ~pÞ enters with a relative weight proportional to v ∼
1=300 as compared to Π00ð ~pÞ. In other cases, its contri-
bution is essential. For example, for μ ≤ m, from (39),
Πtrð ~pÞ gives twice the contribution as Π00ð ~pÞ and has
opposite sign. Thus dropping Πtrð ~pÞ in QTE, Eq. (38),
changes even the sign, which results in the disappearing of
the TE plasmon in this case.
The explicit form of the final formulas looks different in

different regions in the ðk;ωÞ-plane. All these are related by
corresponding analytic continuation, which can be best
understood in terms of the left side of Eq. (A37), viewed as
an integral representation of the result. For the regions
relevant for plasmons, i.e, where the polarization tensor is
real, we gave explicit expressions in terms of real functions,
Eqs. (A54), (A65) for frequencies below the threshold, and
Eqs. (A70), (A71) for above. Also, we gave in Appendix B
explicit formulas for the massless case.
In Sec. II we started from the general 4-dimensional

notations of QED, used the effective Maxwell equations
and related these to the (3þ 1)-dimensional formulation
with (2þ 1)-dimensional polarization tensor. This allowed,
after separation of the polarizations into TE and TM, to
formulate a scattering setup for the electromagnetic field
and to relate the scattering coefficients with the form factors

0 1 2 3 4

2
s

0.9

0 1 2 3 4 5 6
k

2

FIG. 5. Left panel: TE-plasmon dispersion laws for physical values of the parameters (solid lines) for several values of the mass,
m ¼ 0, 0.4, 0.6, 0.8, 0.9, as function of k=kF. The uppermost curve corresponds to zero mass and is the same as in Fig. 2, right panel.
Right panel: the same form ¼ 0.9, for several values of the coupling, α ¼ 1, 0.5, 0.2, 1=137. The knee at the end of the curves in the left
panel becomes visible only for coupling stronger than its physical value. The curves for ω−þ and ωs are shown as dashed lines. These are
nearly horizontal. Also the straight lines for ω ¼ k are shown as dashed lines. The corresponding line for vk coincides in the plot with
the k-axis.
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of the polarization tensor. We represented the whole
derivation in necessary detail to make the paper self
contained. Also, at the end of the section, we discussed
the restoration of v ≠ 1, including the mixing of the form
factors, Eq. (20). Finally, in Sec. III. A, from the reflection
coefficients, we derived the equations for the plasmons,
including the simplifications appearing for m ¼ 0,
Sec. III. B.
In the remaining part of Sec. III, we investigated the

plasmons. There, a quite sophisticated number of cases
appeared. First of all, the regions in the ðk;ωÞ-plane, where
plasmons exist, quite strongly depend on m in the interval
0 ≤ m ≤ μ, see Fig. 1. In the massless case, we reproduce
known results, see Fig. 2. When the mass starts to grow,
these pictures deform, see Figs. 3 and 5. Finally, form ¼ μ,
i.e., when the chemical potential disappears, we turn into
the case considered in [7].
A general property of these solutions is that there are

always (except for μ ¼ 0) solutions for both polarizations
present. Thereby, for small m, the TM solution is present
starting from ω ∼ k ≥ 0 and the TE solution only for larger
k and ω, see Fig. 2. Form closer to μ, the range of k, where
the TM solution exists, shrinks, Fig. 3, panel (c), whereas
the TE solution extends to larger k-intervals, see Fig. 5,
right panel. Roughly speaking, for m ¼ 0, μ ≠ 0, there is a
TM solution and for m ≠ 0, μ ¼ 0, there is a TE solution.
It must be mentioned that, possibly, not all solutions

considered here, are physical in the sense that some, e.g.,
Fig. 3, left panel, exist only for k exceeding the range of
validity of the Dirac model for graphene. Another obser-
vation is that the smallness of the physical parameters,
enters in different way. Besides the general proportionality
to α of the polarization tensor, and to the Fermi speed v in
the range (34), the combination v2=α enters, Eq. (61). The
combination α=v, which is of order of unity, did not play
any pronounced role.
It would be interesting to carry on a similar analysis of

the plasmons for finite temperature without and with
chemical potential.
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APPENDIX A: POLARIZATION TENSOR
IN ð2þ 1Þ DIMENSIONS WITH

CHEMICAL POTENTIAL

In this appendix we display the calculation of the
polarization tensor. We consider a space-time with metric
gμν ¼ diagð1;−1;−1Þ with Greek indices μ; ν ¼ 0.1.2. For
the spatial part we use Latin indices i; j ¼ 1; 2. As said in
Sec. II, a metric with a Fermi speed vF ≠ 1 can be restored
afterwards. Following [5,12,15], the polarization tensor is

ΠμνðpÞ ¼ i2e2
Z

dq0d2q
ð2πÞ3 trSðqÞγμSðq − pÞγν ðA1Þ

with the spinor propagator

SðqÞ ¼ iqþm
q2 −m2 − i0

ðA2Þ

and for the 4-dimensional gamma matrices fγμ; γνg ¼ 2gμν

holds. The factor 2 in front comes from the number Nf ¼ 2
of flavors. In this appendix vectors are denoted by

pμ ¼ ðp0; p̄Þ; p̄ ¼ ðp1; p2Þ;
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 − p̄2

q
; p̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ p2

2

q
: ðA3Þ

In this appendix we use lower indices for the time
components, Π00 ¼ Π00, for convenience. The units are
taken such that α ¼ e2=4π holds. Carrying out the trace in
(A1) we get

ΠμνðpÞ ¼ i8e2
Z

dq0d2q
ð2πÞ3

Zμν

N
; ðA4Þ

where

Zμν ¼ qμðqν − pνÞ þ ðqμ − pμÞqν − qðq − pÞgμν þm2gμν;

N ¼ ðq2 −m2 þ i0Þððq − pÞ2 −m2 þ i0Þ; ðA5Þ

with qμ ¼ ðq0;qÞ, q̄ ¼ jqj. For instance, we note

Z00 ¼ q0ðq0 − p0Þ þ qðq − pÞ þm2: ðA6Þ

The q0-integration in (A1) is specified by the causal
0þi00-description. The polarization tensor (A1) is trans-
versal,

pμΠμνðpÞ ¼ 0: ðA7Þ

Before carrying out the integration this manifests itself in the
structure of the numerator which can be written as

pμZμν ¼ −ððq − pÞ2 −m2Þqν þ ðq2 −m2Þðq − pÞν:
ðA8Þ

In each term a factor from the denominator (A5) cancels and
the remaining integrals correspond to tadpole diagrams and
vanish due to parity.
In case of chemical potential or temperature, the

polarization tensor depends, besides on pμ, also on an
additional vector nμ ¼ ð1; 0; 0Þ. From transversality we
have 2 independent tensor structures,

ΠμνðpÞ ¼ PμνðpÞAðpÞ þMμνðpÞBðpÞ; ðA9Þ

with
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PμνðpÞ ¼ gμν −
pμpν

p2
;

MμνðpÞ ¼ pμpν

p2
−
pμnν þ nμpν

np
þ nμnν

p2

ðnpÞ2 : ðA10Þ

Below we will need the special cases

P00ðpÞ ¼ −
p̄2

p2
; M00ðpÞ ¼

p̄4

p2
0p

2
;

gμνPμνðpÞ ¼ 2; gμνMμνðpÞ ¼ −
p̄2

p2
0

: ðA11Þ

The form factors can be obtained from (A9),

AðpÞ ¼ p2

p̄2
Π00ðpÞ þ ΠtrðpÞ;

BðpÞ ¼ 2
p2
0p

2

p̄4
Π00ðpÞ þ

p2
0

p̄2
ΠtrðpÞ; ðA12Þ

where

ΠtrðpÞ≡ gμνΠμνðpÞ ðA13Þ

is the trace over the Lorentz indices. We will use this
subscript also for other tensors. Further we note

Π0n ¼ p0pn

p̄2
Π00; ðA14Þ

which is a direct consequence of the transversality (A7).
For the calculation of Πtr we mention with (A5)

Ztr ¼ −qðq − pÞ þ 3m2

¼ −
1

2
ðq2 −m2 þ ðq − pÞ2 −m2Þ þ 1

2
ðp2 þ 4m2Þ;

ðA15Þ

where in the second line the q-dependent terms are written
in a way cancelling the corresponding factors in the
denominator, and a term, which is independent of q. In
this way we get

ΠtrðpÞ ¼ −Σtp þ
p2 þ 4m2

2
ΣðpÞ; ðA16Þ

where

Σtp ¼ i8e2
Z

dq0d2q
ð2πÞ3

1

q2 −m2 þ i0
ðA17Þ

corresponds to a tadpole graph and

ΣðpÞ

¼ 4ie2
Z

dq0d2q
ð2πÞ3

1

ðq2 −m2 þ i0Þððq − pÞ2 −m2 þ i0Þ
ðA18Þ

is the scalar loop.
We mention that in case there is no vector nμ in Pμν, the

tensor structure is given by the first term in (A9) alone and
the relation

Π00ðpÞ ¼ −
p̄2

2p2
ΠtrðpÞ ðA19Þ

must hold. In this way, the calculation of the full polari-
zation tensor can be reduced to the calculation of Π00 or of
the scalar loop Σ and the tadpole Σtp.
Next we calculate Π00 and Πtr directly. In the calculation

we consider Π00, Σ and Σtp in parallel since most steps in
the calculation are the same for them. Starting from here we
include the chemical potential μ. For this we include for a
moment temperature too using the Matsubara representa-
tion. Thus we substitute p0 by the Euclidean momentum,
p0 ¼ ip4 with p4 ¼ 2πlT (l integer) and we turn the q0-
integration to the imaginary axis and include the chemical
potential, q0¼ iq4−μ with q4¼2πðnþ1=2ÞT (n-integer).
Indicating μ in the argument we get

Π00ðp; μÞ ¼ −8e2T
X
n

Z
d2q
ð2πÞ2

×
ðiq4 − μÞðiq4 − ip4 − μÞ þ qðq − pÞ þm2

½ðiq4 − μÞ2 − Γ2
1�½ðiq4 − ip4 − μÞ2 − Γ2

2�
;

Σtpðp; μÞ ¼ −8e2T
X
n

Z
d2q
ð2πÞ2

1

ðiq4 − μÞ2 − Γ2
1

;

Σðp; μÞ ¼ −8e2T
X
n

Z
d2q
ð2πÞ2

×
1

½ðiq4 − μÞ2 − Γ2
1�½ðiq4 − ip4 − μÞ2 − Γ2

2�
ðA20Þ

with the notations

Γ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

q
; Γ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq − pÞ2 þm2

q
: ðA21Þ

We mention, that Π00 in (A20) coincides up to an overall
factor with Eq. (A.3) in [11].
Further in this paper we restrict ourselves to T ¼ 0.

So we go back from the Matsubara summation to
the integration, T

P
n →

R
dq4=ð2πÞ. To proceed, we

rewrite Π00ðp; μÞ and Σðp; μÞ in a form with denominators
linear in q4,
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Π00ðp; μÞ ¼ −8e2
Z

dq4d2q
ð2πÞ3

1

4

X
λ1;λ2¼�1

×
Mλ1λ2

½iq4 − μþ λ1Γ1�½iq4 − ip4 − μþ λ2Γ2�
;

Σðp; μÞ ¼ −8e2
Z

dq4d2q
ð2πÞ3

1

4

X
λ1;λ2¼�1

λ1λ2
Γ1Γ2

×
1

½iq4 − μþ λ1Γ1�½iq4 − ip4 − μþ λ2Γ2�
;

ðA22Þ

with

Mλ1λ2 ¼ 1þ λ1λ2
Γ1Γ2

ðqðq − pÞ þm2Þ: ðA23Þ

This rewriting is done in such a way, that the momentum q4
appears in the denominator only.
Now, in order to proceed, we need to handle the

ultraviolet divergence. In general, there are none in the
polarization tensor in ð2þ 1Þ dimensions. This is obvious
from power counting in (A20). We have 3 powers from
the integration and -2 powers from the propagators. Due
to the gauge invariance, 2 divergent powers drop out and a
convergent expression is left. However, in intermediate
steps, before the compensation due to transversality is on
work, there are divergences. Therefore we assume a
regularization not breaking the gauge invariance and not
affecting the q4-integration. Obviously this is possible. An
example is dimensional regularization in the spatial
directions.
With such regularization assumed we carry out the q4-

integration in (A22) using

Z
∞

−∞

dx
ðixþ aÞðixþ bÞ ¼ π

sgnðReðaÞÞ − sgnðReðbÞÞ
−aþ b

;

ðA24Þ

which follows simply with the Cauchy theorem. With
a → −μþ λ1Γ1 and b → −ip4 − μþ λ2Γ2 we get

Π00ðp; μÞ ¼ −8e2
Z

d2q
ð2πÞ2

1

8

X
λ1;λ2¼�1

Mλ1λ2

×
sgnð−μþ λ1Γ1Þ − sgnð−μþ λ2Γ2Þ

−λ1Γ1 − ip4 þ λ2Γ2

;

Σðp; μÞ ¼ −8e2
Z

d2q
ð2πÞ2

1

8

X
λ1;λ2¼�1

λ1λ2
Γ1Γ2

×
sgnð−μþ λ1Γ1Þ − sgnð−μþ λ2Γ2Þ

−λ1Γ1 − ip4 þ λ2Γ2

:

ðA25Þ

The signs factor in the numerators can be rewritten as

sgnð−μþ λ1Γ1Þ − sgnð−μþ λ2Γ2Þ
¼ λ1 − λ2 − 2ðλ1Θðλ1μ − Γ1Þ − λ2Θðλ2μ − Γ2ÞÞ ðA26Þ

using the step function. Now, for μ ≤ m, the expression
in the parentheses vanishes and only the contribution
without chemical potential is left. This allows us to
separate the contributions from the chemical potential,

Π00ðp; μÞ ¼ Πð0Þ
00 ðpÞ þ ΔμΠ00ðpÞ;

Σðp; μÞ ¼ Σð0ÞðpÞ þ ΔμΣðpÞ; ðA27Þ

where the superindex “(0)” denotes the vacuum part and

ΔμΠ00ðpÞ ¼ −8e2
Z

d2q
ð2πÞ2

1

4

X
λ1;λ2¼�1

Mλ1λ2

×
λ1Θðλ1μ − Γ1Þ − λ2Θðλ2μ − Γ2ÞÞ

ip4 þ λ1Γ1 − λ2Γ2

;

ΔμΣðpÞ ¼ −8e2
Z

d2q
ð2πÞ2

1

4

X
λ1;λ2¼�1

×
λ1λ2
Γ1Γ2

λ1Θðλ1μ − Γ1Þ − λ2Θðλ2μ − Γ2Þ
ip4 þ λ1Γ1 − λ2Γ2

:

ðA28Þ

are the additional contributions from the chemical
potential. Similar separation takes place for the tadpole
contribution which, however, will be calculated later
directly.
In the above expression, the momentum integration is

bounded by Γ1 ≤ jμj, Γ2 ≤ jμj and the integration is
finite. This is in line with the general situation that in
the polarization tensor in an external field (e.g., a
magnetic field) or with temperature can be separated
into the vacuum part and the field or temperature
dependent part, which is free of ultraviolet divergences
(at least in one loop).
Once the momentum integration is bounded, we can

remove any regularization and calculate the integrals
directly. For this we exchange in the second term in the
numerators Γ1 ↔ Γ2, λ1 ↔ λ2. The exchange of the Γ’s
appears from the substitution q̄ → p̄ − q̄ of the inte-
gration variable in (A28). We mention that this is in
general not possible if a regularization, a momentum
cutoff for example, is present. From (A28) we get this
way
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ΔμΠ00ðpÞ ¼ −8e2
Z

d2q
ð2πÞ2

1

4

X
λ1;λ2¼�1

Mλ1λ2Θðλ1μ − Γ1Þ

×

�
−λ1

ip4 − λ1Γ1 þ λ2Γ2

þ λ1
ip4 þ λ1Γ1 − λ2Γ2

	
;

ΔμΣðpÞ ¼ −8e2
Z

d2q
ð2πÞ2

1

4

X
λ1;λ2¼�1

λ1λ2
Γ1Γ2

Θðλ1μ − Γ1Þ

×

�
−λ1

ip4 − λ1Γ1 þ λ2Γ2

þ λ1
ip4 þ λ1Γ1 − λ2Γ2

	
:

ðA29Þ

Next, we reorder the summation by substituting
λ2 ¼ σλ1,

ΔμΠ00ðpÞ ¼−8e2
Z

d2q
ð2πÞ2

1

4

X
λ1;σ¼�1

MσΘðλ1μ−Γ1Þ

×

�
−λ1

ip4 − λ1Γ1þ λ1σΓ2

þ λ1
ip4þ λ1Γ1− λ1σΓ2

	
;

ΔμΣðpÞ ¼−8e2
Z

d2q
ð2πÞ2

1

4

X
λ1;σ¼�1

σ

Γ1Γ2

Θðλ1μ−Γ1Þ

×
�

−λ1
ip4 − λ1Γ1þ λ1σΓ2

þ λ1
ip4þ λ1Γ1− λ1σΓ2

	
:

ðA30Þ

Now the expression in the square bracket is in fact
independent on λ1 which takes values �1 only. Thus
the sum over λ1 goes only over the step function and
becomes

X
λ1¼�1

Θðλ1μ − Γ1Þ ¼ Θðμ2 − Γ2
1Þ ðA31Þ

(again we used Γ1 > 0). We arrive at

ΔμΠ00ðpÞ ¼ −8e2
Z

d2q
ð2πÞ2Θðμ

2 − Γ2
1Þ
1

4

X
λ1;σ¼�1

Mσ

×
−λ1

ip4 − λ1Γ1 þ λ1σΓ2

;

ΔμΣðpÞ ¼ −8e2
Z

d2q
ð2πÞ2Θðμ

2 − Γ2
1Þ
1

4

X
λ1;σ¼�1

σ

Γ1Γ2

×
−λ1

ip4 − λ1Γ1 þ λ1σΓ2

: ðA32Þ

Now it is meaningful to turn to polar coordinates for
the integration. For this we need to remove the square
roots containing the cosine which can be done using

−λ1
ip4 − λ1Γ1 þ λ1σΓ2

¼ Γ1 − iλ1p4 þ σΓ2

ðip4 − λ1Γ1Þ2 − Γ2
2

: ðA33Þ

Carrying out the summation over σ we get

ΔμΠ00ðpÞ ¼ −8e2
Z

d2q
ð2πÞ2Θðμ

2 − Γ2
1Þ
1

2

X
λ1¼�1

1

Γ1

Z
N
;

ΔμΣðpÞ ¼ −8e2
Z

d2q
ð2πÞ2Θðμ

2 − Γ2
1Þ
1

2

X
λ1¼�1

1

Γ1

1

N
;

ðA34Þ

with

Z ¼ Γ1ðΓ1 − iλ1p4Þ þ qðq − pÞ þm2;

N ¼ ðip4 − λ1Γ1Þ2 − Γ2
2: ðA35Þ

The angular dependence is in qp ¼ q̄p̄ cosφ and in
Γ2
2 ¼ Γ2

1 þ p̄2 − 2q̄p̄ cosφ and we rewrite

Z ¼ 1

2
ð−N þ ð2Γ1 − iλ1p4Þ2 − p̄2Þ;

N ¼ −p2
4 − p̄2 − 2iλ1p4Γ1 þ 2q̄p̄ cosφ≡Qþ a cosφ:

ðA36Þ

Now the angular integration can be carried out by the
formula

Z
dφ
2π

1

Qþ a cosφ
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 − a2
p ; ðA37Þ

and we get

ΔμΠ00ðpÞ ¼
−8e2

2π

Z
μ

m
dΓ1

1

2

X
λ1¼�1

1

2

×

�
−1þ ð2Γ1 − iλ1p4Þ2 − p̄2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 − a2
p �

;

ΔμΣðpÞ ¼
−8e2

2π

Z
μ

m
dΓ1

1

2

X
λ1¼�1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 − a2

p ; ðA38Þ

where dqq ¼ dΓ1Γ1 was used. The square root is
uniquely defined at least for both real, Q and a, with
jQj > jaj. For complex Q as in (A36) the sign of the
imaginary part of the square root follows the sign of
the imaginary part of Q, i.e., it is −λ1.
In fact we started the calculation of the polarization

tensor in the Minkowskian region and turned to Euclidean
momenta only temporarily. Now, after carrying out the
q4-integration we turn back by substituting p4 ¼ −ip0.
Then Q in (A36) becomes Q ¼ p2 − 2λ1p0Γ1, where (A3)
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was used. The radicand in the denominators in (A38) can
be rewritten,

Q2 − a2 ¼ p2p̄2

��
2Γ1 − λ1p0

p̄

�
2

þ 4m2 − p2

p2

	
≡ p2p̄2ðx2 þ x20Þ ðA39Þ

with

x ¼ 2Γ1 − λ1p0

p̄
; x20 ¼

4m2

p2
− 1: ðA40Þ

Under the rotation p4 ¼ −ip0, for λ1 ¼ þ1, the Q moves
toward the real axis. For jQj > a, which we assume in the

following, the square root
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 − a2

p
becomes real and its

sign follows the sign of Q. Thus we get

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 − a2

p
→ signðQÞpp̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x20

q
ðA41Þ

and the last square root must be taken positive. Rewriting in
the first line in (A38),

ð2Γ1 − iλ1p4Þ2 − p̄2 ¼ p̄2

��
2Γ1 − λ1p0

p̄

�
2

− 1

	
¼ p̄2ðx2 − 1Þ; ðA42Þ

we get from (A38)

ΔμΠ00ðpÞ ¼
−8e2

2π

Z
μ

m
dΓ1

1

2

X
λ1¼�1

1

2

×

�
−1þ signðQÞ p̄

p
ðx2 − 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x20

p �
;

ΔμΣðpÞ ¼
−8e2

2π

Z
μ

m
dΓ1

1

2

X
λ1¼�1

signðQÞ
pp̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x20

p : ðA43Þ

Now the last integration can be carried out using the
indefinite integrals

Z
dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x20

p ¼ arcsinh
x
x0

;

Z
dx

x2 − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x20

p ¼ 1

2

�
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x20

q
− ð2þ x20Þarcsinh

x
x0

	

ðA44Þ

and dΓ1 ¼ dxp̄=2.
Denoting the indefinite integrals by Π00ðp;Γ1Þ and

Σðp;Γ1Þ we get

Π00ðp;Γ1Þ ¼
−8e2p̄
8π

1

2

X
λ1¼�1

�
−xþ signðQÞ p̄

2p

×

�
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x20

q
− ð2þ x20Þarcsinh

x
x0

�	
;

Σðp;Γ1Þ ¼
−8e2

4πp
1

2

X
λ1¼�1

signðQÞarcsinh x
x0

: ðA45Þ

Taken in the corresponding boundaries these give

ΔμΠ00ðpÞ ¼ Π00ðp; μÞ − Π00ðp;mÞ;
ΔμΣðpÞ ¼ Σðp; μÞ − Σðp;mÞ: ðA46Þ

Wewill see that with the functions (A45) just that functions
appear which were defined in (A20).
For this to show we consider these functions for Γ1 ¼ m

and show that they coincide with the corresponding
vacuum expressions in (A27). In (A45), the dependence
on Γ1 is in the variable x, defined in (A39), only. For
Γ1 ¼ m, which is equivalent to q ¼ 0 [see (A21)], we get
x ¼ ð2m − λ1p0Þ=p̄ and note

x2 þ x20 ¼
Q2

p2p̄2
: ðA47Þ

This follows with (A21) from (A36) for q ¼ 0. We have to
take the square root,

signðQÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x20

q
¼ Q

pp̄
; ðA48Þ

where the sign follows from (A41). Further, with Γ ¼ m
and p4 ¼ −iω, we get from (A36)

Q ¼ p2 − 2λ1p0m; ðA49Þ

where p2 ¼ p2
0 − p̄2 from (A3). These formulas allow to

express

signðQÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x20

p
x

¼ p2 − 2λ1p0m
pð2m − λ1p0Þ

: ðA50Þ

Further we use arcsinhz ¼ arccoth
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z−2 þ 1

p
and

arccoth a−b
1−ab ¼ arctanha − arccoth 1

b to get

arcsinh
x
x0

¼ arccoth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x20

p
x

;

¼ signðQÞarccoth p2 − 2λ1p0m
pð2m − λ1p0Þ

;

¼ arctanh
p
2m

− λ1arctanh
p
p0

: ðA51Þ

Using the above relations we rewrite (A45),
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Π00ðp;mÞ ¼ −8e2p̄
8π

1

2

X
λ1¼�1

�
−
2m − λ1p0

p̄

�
1 −

p̄
2p

p2 − 2λ1p0m
pp̄

�
−

p̄
2p

�
1þ 4m2

p2

��
arctanh

p
2m

− λ1arctanh
p
p0

�	
;

Σðp;mÞ ¼ −8e2

4πp
1

2

X
λ1¼�1

�
arctanh

p
2m

− λ1arctanh
p
p0

�
: ðA52Þ

The summation simplifies these expressions,

Π00ðp;mÞ ¼ −8e2p̄2

16πp3

�
2mp − ðp2 þ 4m2Þarctanh p

2m

�
;

Σðp;mÞ ¼ −8e2

4πp
arctanh

p
2m

: ðA53Þ

Now the statement is that Eqs. (A53) give just the vacuum contributions in Eq. (A27). For both expression this can be
verified easily, especially for the scalar contribution. For the polarization tensor we mention Eqs. (6) and (7) in [5] and
Eq. (A.16) in [11] (with vF ¼ 1).
In this way, when adding (A45) with the vacuum expression in (A27), the latter cancel and we are left with the final

representations

Π00ðp; μÞ ¼

8>><
>>:

8e2
4π

h
μ − 1

2

P
λ1¼�1

signðQÞp̄2

4p

�
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x20

p
− ð2þ x20Þarcsinh x

x0

�i
ðμ > mÞ;

−8e2p̄2

16πp3 ð2mp − ðp2 þ 4m2Þarctanh p
2mÞ ðμ ≤ mÞ;

ðA54Þ

and

Σðp; μÞ ¼
8<
:

−8e2
4πp

1
2

P
λ1¼�1

signðQÞarcsinh x
x0

ðμ > mÞ;

−8e2
4πp arctanh p

2m ðμ ≤ mÞ;
ðA55Þ

where now

x ¼ 2μ − λ1p0

p̄
; x20 ¼

4m2

p2
− 1; Q ¼ p2 þ 2λ1ωμ:

ðA56Þ

It remains to calculate the tadpole contribution in (A20).
We rewrite it for T ¼ 0,

Σtpðp; μÞ ¼ −8e2
Z

dq4
2π

Z
d2q
ð2πÞ2

×
1

ðiq4 − μþ Γ1Þðiq4 − μ − Γ1Þ
; ðA57Þ

where we wrote the denominator as a product. Now we
apply Eq. (A24),

Σtpðp;μÞ ¼ −8e2
Z

d2q
ð2πÞ2

1

2

sgnð−μþΓ1Þ− sgnð−μ− Γ1Þ
−2Γ1

:

ðA58Þ

The sign factors can be rewritten in the form

sgnð−μþ Γ1Þ − sgnð−μ − Γ1Þ ¼ 2 − 2Θðμ2 − Γ2
1Þ;

ðA59Þ

allowing us to split into the vacuum part,

Σð0Þ
tp ðpÞ ¼ −8e2

Z
d3−2εq
ð2πÞ3−2ε

1

−q24 − q̄2 −m2
; ðA60Þ

and the addendum

ΔμΣtpðpÞ ¼
−8e2

2

Z
d2q
ð2πÞ2 :

Θðμ2 − Γ2
1Þ

Γ1

ðA61Þ

In the vacuum part we introduced dimensional regulariza-
tion since the integral is divergent. Direct integration gives

Σð0Þ
tp ðpÞ ¼ 8e2

Γðε − 1=2Þ
ð4πÞ3=2−ε ¼ −8e2

4π
mþOðεÞ: ðA62Þ

As usual, in even space dimension the dimensional regu-
larization does not give a pole contribution.
In (A61), there is no angular dependence in the integrand

and the q-integration is trivial,

ΔμΣtpðpÞ ¼
−8e2

4π
ðμ −mÞ: ðA63Þ
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Putting (A62) and (A63) together we get

Σtp ¼
−8e2

4π
maxðμ; mÞ; ðA64Þ

which is the final result for the tadpole contribution.
Now, from (A16) with (A62) and (A61) we get for the trace of the polarization tensor

Πtrðp; μÞ ¼

8>><
>>:

8e2
4π

�
μ − p2þ4m2

2p
1
2

P
λ1¼�1

signðQÞarcsinh x
x0

�
; ðμ > mÞ;

8e2
8πp

�
2mp − ðp2 þ 4m2Þarctanh p

2m

�
; ðμ ≤ mÞ:

ðA65Þ

By Eqs. (A55) and (A65) we have explicit expressions for the two form factors of the polarization tensor. In the course of
the derivation, after Eq. (A38), we turned from the Euclidean to the Minkowski region. Thereby, especially in Eq. (A44), we
assumed x0 to be real. With (A40) this implies p2 < ð2mÞ2, i.e., the region below the threshold, which is, in terms of
frequency at p0 ¼ ωs with ωs ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̄2 þ 4m2

p
. Thus, Eqs. (A55) and (A65), as written, are in this region in terms of real

functions.
The above formulas allow for an easy analytic continuation to the region above threshold, i.e., to p0 > ωs. In the complex

p0-plane, the polarization tensor has a cut starting from ωs. We consider the continuation in the upper half plane, i.e., for
ℑp0 > 0. Thereby we have

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mÞ2
p2
0 − p̄2

− 1

s
→ −iy0 with y0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 − ðp̄2 þ ð2mÞ2Þ

p2
0 − p̄2

s
: ðA66Þ

Note p2
o > p̄2 because we are in the Minkowskian region.

For the continuation in Eqs. (A55) and (A65) we use the
relations

arcsinhðizÞ ¼¼ signðzÞ
�
i
π

2
þ arccoshðjzjÞ

�
;

arctanhðizÞ ¼ i
π

2
þ arctanh

�
1

z

�
ðA67Þ

ðjzj > 1Þ, where we have to insert z → x
y0
. Using (A41) we

note x2 − y20 ¼ ðQ2 − a2Þ=ðp2p̄2Þ, thus jx=y0j > 1. Using
Eqs. (A56) and (A36) (for a), Q2 − a2 can be seen to be a
fourth order polynom in p0. Its roots are

ωσ
σ0 ðλÞ ¼ λμþ σ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ p̄2 þ 2σp̄kF

q
ðσ; σ0 ¼ �1Þ ðA68Þ

Analyzing these roots, the restriction p0 < ω−þ follows,
together with p̄ < p0. Further we need the sign of Q,

Eq. (A56). It is a second order polynom in p0 and from
analyzing its roots under the above restrictions, signðQÞ ¼
λ1 follows.
Using now (A67) in the upper lines of Eqs. (A55) and

(A65), and accounting for the sum over λ1, the imaginary
contributions cancel. As a result we get

X
λ1

signðQÞarcsinh
�
x
x0

�
→

X
λ1

λ1arccosh

�



 xy0





�

ðA69Þ

for the transition to above the threshold. In all other places
in (A55) and (A65) we substitute simply x20 → −y20.
In the expressions for m > μ, i.e., in the second lines of

Eqs. (A55) and (A65), we use the second line in (A67).
Together, the final formulas for the from factors of the
polarization tensor above the threshold read

Π00ðp; μÞ ¼

8>><
>>:

8e2
4π

�
μþ p̄2

4p
1
2

P
λ1¼�1

λ1ðx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − y20

p
− ð2 − y20Þarccoshðj x

y0
jÞÞ

	
ðμ > mÞ;

−8e2p̄2

16πp3 ð2mp − ðp2 þ 4m2Þði π
2
þ arctanh 2m

p ÞÞ ðμ ≤ mÞ;
ðA70Þ

and
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Πtrðp; μÞ ¼

8>><
>>:

8e2
4π

�
μþ p2þ4m2

p
1
2

P
λ1¼�1

λ1arccoshðj x
y0
jÞ
�
; ðμ > mÞ;

8e2
8πp ð2mp − ðp2 þ 4m2Þði π

2
þ arctanh 2m

p ÞÞ; ðμ ≤ mÞ:
ðA71Þ

The upper lines of these equations are real for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̄2 þ ð2mÞ2

q
< p0 < ω−

1 : ðA72Þ

This defines the region where the polarization tensor is real
which is of relevance for the plasmons. In all other regions,
one has either an imaginary part or, for physical values of α
and v, the frequency is outside the validity region of the
Dirac model.
As for the lower lines, i.e., form > μ which is equivalent

to no chemical potential, there is the usual imaginary part
above threshold resulting from particle creation.

APPENDIX B: THE CASE m ¼ 0

Her we specify the formulas (A54) and (A65) for the
case m ¼ 0. In this case only the upper lines of these

formulas apply. For the variable x still (A56) applies. For x0
we get x20 ¼ −1 and taking ω with positive imaginary part,
x0 ¼ −i. Further we need

arcsinhðixÞ ¼
�
i arcsinðxÞ; for jxj < 1;

signðxÞðiπ
2
þ arccoshðjxjÞÞ; for jxj > 1:

ðB1Þ

For jxj < 1 we observe imaginary parts from this formula
and from the square root in (A54) as well and in this region
we cannot expect a stable solution. In opposite, for jxj > 1,
the expressions become real after the sum over λ1 is done,
which makes the contribution from iπ=2 vanishing.
Further, if we consider μ > 0 only, we have x > 1 and
can drop the signs in (B1). In this way, in the massless case
the polarization tensors become

Π00ðp; μÞ ¼
2e2

π

�
μ −

p̄2

4p
1

2

X
λ1¼�1

signðQÞðx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
− arccoshðxÞÞ

	
;

Πtrðp; μÞ ¼
2e2

π

�
μ −

p
2

1

2

X
λ1¼�1

signðQÞarccoshðxÞ
	
; ðB2Þ

with

x ¼ 2μ − λ1p0

p̄
ðB3Þ

which is the same as (A56).
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