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We study the tensor gauge fields (“notophs”) of ungauged N = 8, D = 4 supergravity in superspace.
These are described by 2-form potentials Bg in the adjoint representation of G = E;(,7). The consistency of

the natural candidates for the superspace constraints for their field strengths HY fixes the form of the

generalized Bianchi identities DHS = ...

and also requires the potentials Bg/ H with indices of G/H =

Eq(47y/SU (8) generators to be dual to the scalars of the NV = 8, D = 4 supergravity multiplet. In contrast, the
field strengths of the 2-form potentials corresponding to the SU(8) generators are dual to fermionic bilinears,
so that these potentials are auxiliary rather than physical fields. Their presence, however, is essential to
formulate a tensor hierarchy of V' = 8, D = 4 supergravity consistent with its U-duality group E7,7).
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I. INTRODUCTION

The action of the maximal N' = 8, D = 4 supergravity
was obtained in [1] by dimensional reduction of the
D = 11 supergravity [2] followed by dualization of 7
antisymmetric tensor gauge potentials B,’w originating
in the 11-dimensional 3-form, called “notophs” in 3],
to scalars. Then the complete set of 70(= 28 4 35+ 7)
scalars of the N/ =8, D = 4 supergravity multiplet was
found to parametrize the coset space E;(,7)/SU(8) [1].

The natural question is whether this duality can be
performed in an opposite direction, introducing a dual
notoph for each scalar of the theory. In this paper we study
this problem in the ' = 8, D = 4 superspace formulation
of supergravity. To be more precise, we search for a
“duality symmetric” formulation of the theory, containing
both the scalar fields and the notophs rather than trying to
replace everywhere the former by the latter (which is not
possible beyond the linear approximation in fields).

The motivation for such a study is twofold. On one hand,
we hope that our results will contribute to a deeper
understanding of the U-duality group of the N =38,
D = 4 supergravity, the exceptional Lie group E;(7).
The interest in this symmetry has remained high during
the nearly 36 years that have passed since its discovery in
[1], and, recently, a relation with the exceptional conver-
gence properties of its loop amplitudes has been proposed
(see Refs. [6] and references therein).

"“Notoph™ is “photon” read from the right to the left. Other,
more popular names are Kalb-Ramond field [4], 2-form potential,
and even B-field [5].
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On the other hand, the knowledge on existence of
(p + 1)-form gauge potentials in a supergravity superspace
might indicate the existence of supersymmetric extended
objects, p-branes, coupled electrically to these potentials. In
this sense our results imply the possible existence of a
family of supersymmetric strings in an N =8,D =4
supergravity superspace.2 The search for possible world-
volume actions of such hypothetical superstrings is one of
the natural applications of our results.

A first result showed by our study is that, to be consistent,
one has to introduce a 2-form potential for each of the
generators of the G = E; () group, BS = (BS'", BH), and
not just for the generators of the coset G/ H. This result can be
generalized to other theories with scalars parametrizing a
symmetric space [8]. An early example of how the dual-
ization of scalars requires the introduction of a (d — 2)-form
potential for each generator of the isometry group, even
though their numbers do not match, is the dualization of the
dilaton and Ramond-Ramond O-form of A" = 2B, D = 10
supergravity in [9] (see also [10]): the two real scalars
parametrize an SL(2,R)/SO(2) coset space and they are
dualized into a triplet of 8-forms transforming in the adjoint.
The existence of this triplet of 8-forms is required by the
symmetry algebra E; [11] and has clear implications in the
classification of the possible 7-branes of the theory [9,12—
14]. In the context of the embedding tensor formalism for
4-dimensional gauged supergravities [15-18] (bosonic,
spacetime) 2-form potentials in the adjoint representation
of the duality group have to be introduced for different

The BPS branes of the maximal supergravity theories were
studied originally in Refs. [7], but their worldvolume actions are,
in general, unknown.
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technical reasons, unrelated to the dualization of scalar fields,
and for the specific case of NV = 8, D = 4 supergravity this
was done some years ago in Refs. [18,19]. The general
duality rule between scalars and (d — 2)-forms was estab-
lished in Refs. [16,20,21] using the embedding tensor
formalism, but the results remain valid in the ungauged limit.

The study of supersymmetrization of these and other
higher-rank gauge potentials has received much less
attention® and in this paper we will start filling this gap
for the case of the notophs of N' = 8, D = 4 supergravity
using the superspace formalism. The knowledge of the
gauge and supersymmetry transformations of these fields is
a key ingredient in the construction of k-symmetric
worldvolume actions for possible associated supersymmet-
ric string (p-brane) models.

In superspace formalism the problem of duality symmetric
formulation, including the scalars and 2-form potentials dual
to them on the mass shell, can be posed as searching for a set
of constraints for 3-forms HY = dBY + --- which are
generalized field strengths of the corresponding 2-form
potentials BS defined on superspace. Below we present such
superspace constraints for the E7(,7)-algebra-valued 3-form
field strengths on the curved A/ = 8 superspace of maximal
D = 4 supergravity, and study their self-consistency con-
ditions: the generalized Bianchi identities (gBIs) dH g; =....

The explicit form of these gBIs are part of the definition
of the tensor hierarchy of the Cremmer-Julia (CJ) N' = 8
supergrawity.4 They reflect the group theoretical structure
associated to the E;(,7) symmetry of N = 8 supergravity
in the dual language. We will recover this piece of the
tensor hierarchy starting from the natural candidate for
superspace constraints for H 3G and requiring that the
algebraic part of the suitable gBIs, concentrated in their
lower-dimensional components, should be satisfied iden-
tically when the candidate constraints are taken into
account. At this stage we find, in particular, that the
standard Bianchi identities dH3G = 0, if imposed, would
lead to inconsistency and also that one cannot formulate a
consistent set of constraints for the 3-forms corresponding
to the coset generators, H3G/ H, without introducing simul-
taneously the 3-forms H% corresponding to the generators
of the stability subgroup H = SU(8) of the coset. In this
sense one of the messages of this paper is that the
superspace approach can be used in the search for a

*Some partial results on the supersymmetrization of the
2-forms dual to scalars in 4-dimensional A = 2,1 theories
can be found in [22,23]. Supersymmetry has, nevertheless, been
one of the main tools to find higher-rank potentials that can be
added to the 10-dimensional maximal supergravities [11,13,24], in
particular for (d — 1)- and d-form potentials.

The tensor hierarchy arises naturally in the democratic
gauging of theories using the embedding-tensor formalism
[15-18], but the fields still make sense when the embedding
tensor and any other deformation parameters are switched off, in
the ungauged, undeformed theory.
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consistent tensorial hierarchies of supergravity (as well
as of the theories invariant under rigid supersymmetry).
After this is done, we further study their higher-
dimensional components and show that the duality relations
between the field strengths of the notophs, H,?,,/ ,f] , and of the
scalar fields of N = 8 supergravity (generalized Cartan

forms P,(f/ ) are the consequences of our superspace con-
straints. The field strengths of the stability subgroup gen-
erators, H ;’y »» are found to be dual to fermionic bilinears;
this reflects the auxiliary character of the corresponding

notophs B,

II. N = 8 SUPERGRAVITY SUPERSPACE

A. Geometry of N = 8 superspace and Cartan
forms of E; 7

Let us denote the bosonic and fermionic supervielbein
forms of ' = 8, D = 4 superspace Z(*3?) by

EA = (E* E%) = (E* E¢, E¥) = dZMES,(Z).  (2.1)
Here ZM = (x#,09) are local bosonic and fermionic coor-
dinates of X2 4 =0,1,2,3 is Lorentz group vector
index, a = 1,2 and a = 1,2 are Weyl spinor indices of
different chirality (see Appendix A), i =1,...,8 is the
index of the fundamental representation of the SU(8)
R-symmetry group, and a is the 32-valued cumulative
index of SL(2,C) ® SU(8). In the case of world indices,
only the counterpart of this cumulative index seems to
make sense (until the Wess-Zumino gauge is fixed); it is
carried by the fermionic (Grassmann-odd) coordinate 6<.
Finally, u = 0,1, 2,3 is the world vector index carried by
bosonic (Grassmann-even) coordinate x*.

The curved superspace of A" =8, D = 4 supergravity
is endowed with a spin connection @™ = -’ =
dZM@$%(Z) and with the composite connection of the
SU(8) R-symmetry group, Q;/ =—(Q;")* =dZMQy/(Z),
Q' = 0; these are used to define the SL(2,C) ® SU(8)
covariant derivative D. The exterior covariant derivatives of
the supervielbein forms are called bosonic and fermionic
torsion 2-forms,

T := DE® = dE* — E* A w),¢ = %EB NETcg?  (2.2)
T% = DE? = dEf — E) A wy* — QJ N ES
= JEP A ET e, (23)
Téi = DR — gE& — EPi A W/_}a —EY A jS
_ lEB A ECT gy (2.4)

2

Here A denotes the exterior product of differential forms with
the basic properties
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E4 A Eb = —EY A E9, E2 A EX = EP A E2,

E“ N ES = —E% A EX,

and d is exterior derivative which acts from the right (see
Appendix B).

By construction, the torsion 2-forms obey the Bianchi
identities

19 := DT + E* A R, =0, (2.5)

I%:=DT¢+ E/ AR — R/ AE* =0, (2.6)

Ig‘i = DT&i + Eﬁl A Rﬁd + E&j A Rji = O, (27)

which involve the curvature of the spin connection

[waﬂ = A_lta)abaabaﬂ = (wdﬂ)*]a

1
Rab:(da)_a)/\a))“b:—Rba:—EC/\EDRDCab, (28)

1 1
R, = ZRabgabaﬂ =(do-wnAw)l = EEB AN E*Rypd,

(2.9)

, .
R/ = (RS)" = —ZRabUabﬂa =(do-onaw)/

1 ,
=_EB% A E*Rypil.

5 (2.10)

and also the curvature of the induced SU(8) connection,
R/ ==dQ/J — Q% A Q,/. The compositeness of Q;/ is
reflected by the fact that its curvature is expressed as [25]

) . 1 _ .
R/ = —(R})* =z Pip A PP,

3 (2.11)

where [P;j; is the covariant Cartan form of the
Eq(47)/SU(8) coset and P is its complex conjugate,
which is also its SU(8) dual up to an arbitrary constant
phase 3,

_ 1 ., ..
Pkl —= (Piju)" = Ee"/’g’f"”"f”[lj’pq”. (2.12)
The Cartan forms are covariantly closed,
D[I:Dijkl = d[pijkl - 4Q[l|p VAN Ppljkl] = O, Dlﬁ)ijkl = 0
(2.13)

Some further properties obeyed by these forms can be
found in Appendix B.

Equations (2.13), and (2.11) with P;;;; obeying (2.12),
are structure equations of the E7(,7) Lie group. These can
be solved providing the expressions for the covariant
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Cartan forms P;;;; and SU(8) connection Q;/ in terms
of scalar superfields of the N' = 8 supergravity, the explicit
form of which is not needed for our discussion below.

B. N =8, D = 4 superspace constraints
and their consequences

The constraints of A' = 8, D = 4 supergravity [25,26]
can be collected in the following expressions for the
bosonic and fermionic torsion 2-forms:

T4 = —iE% A E/ffa;ﬁ, (2.14)

7%= LB A Bihe, g 4+ B A EPT) 9 1 EC A BPIT,
) Bytijk Jjrpei pici

1
+5E A EMT (2.15)

. 1 P — ..
T = —EEf A Eleg "% + B A EJT) M + B A BTy, %

1 3
+ S ECAENT, (2.16)

Here ¢, = (7*/%)* is the main fermionic superfield of
N =8, D = 4 supergravity and the dimension 1 fermionic
torsion components have the expressions

A D N U
Typf= Z)(iklﬁ()(]klgb)a’ Ty, = Z)(/'}kl(gb)(jkl)aa

i i

_ p ~ et ]
Thivf = =5 0mMi; =505 Najpiy:
Ty = =20, M0 1 = 2N, (2.17)
in terms of the fermionic bilinears’
. e_i/j . ,
N;;j = 6-4! 81‘1[3][3 ])((l[?a]/},//}[f&'] ’
i
- e _ _ 3/
Najiy = =g g eoblsva 4 - (2.18)

and the bosonic superfields M;j,3 = M;jj(ap) = (MZﬂ)*

These appear as irreducible parts of the fermionic covariant
derivatives of the main fermionic superfield,

i i N ikl
D ((x)([)’)jkl = _Sé[ijl]a/}v Di(&)(/})'lkl = _36£]Mdé, (219)

The other irreducible components of these covariant
derivatives of the main superfield are expressed through
their bilinears,

T s _pl.p _ _np
58ij[3][3’])(£1 ]){}, ! = 8ijklmnpq)(§lm}(/}1 ‘
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ip .
. e _il2l_~
DY gja = ) €jkl[2][3])(,l'l[ e,

—ip
NaoJkl € j a
Dz =~ SN g/ [3])(,-[2])((1[3]- (2.20)
C. E7(7)/SU(8) Cartan forms in A =8
supergravity superspace
The covariantly constant Cartan 1-forms obey the
constraints

eiﬁ - _3
Pijie = 2E5 jktja = 2ZE“”€ijk1p[3])(£x] +EPyiju,  (2.21)

_ L o _
Pk =2 Egelikrbly i ~2Bgl 4+ P, (222)

These coincide with those in Refs. [25,26] up to the
constant phase parameter f. With the constraints (2.21),
(2.22) the Bianchi identities (2.13) imply

= . ; —jkl . o Bkl
Doyt ajir = 2065, Pgijkis Diyi ==2ic" PJ", (2.23)
The results of Eq. (2.13) are also of help to find the
expression Eq. (2.20) for D* Xaji and the duality relation
between the vector P,;;; and its conjugate Pk,

e’

[FDaijkl = Zeijklpqrs[ﬁ)gq”- (2.24)

Just after this stage the superspace 1-forms in Egs. (2.21)
and (2.22) become related by Eq. (2.12).

IIL. 1-FORM GAUGE POTENTIALS IN NV =8
SUPERGRAVITY SUPERSPACE

Although the supervielbein forms restricted by the
torsion constraints already contain all the fields of super-
gravity multiplets, including the vector fields and
their field strength, it is possible and also convenient to
introduce the corresponding 1-form gauge potentials in
superspace. As was found already in Ref. [25], to preserve
manifest SU(8) R-symmetry, one should introduce
the super-1-forms corresponding to both the “electric”
gauge fields of the supergravity multiplet and to their
magnetic duals, packed in the complex l-form A;; =
Ay =dZMAy;(Z) in the 28 representation of SU(8),
and its complex conjugate AV =Al=dZM A} (Z)=(A;;)*
in its 28 representation.

Their 2-form field strengths, which obey the gBIs

DFy; =Py A F¥,

DF” - ﬂﬁ)ijkl A Fkl? (31)

are restricted by the constraints
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) nled P 1 a vk ' 1 c b
Fij:_lEi /\Ejeaﬂ_EE ANE Guyyxl]k+§E ANE icij’

(3.2)

i N ] L pa N Bl gk 4 L pe A pPE
F' =—iFE AE«’ed/3+§E N Ejoa 0" +§E NEE..
(3.3)

The antisymmetric tensor superfield can be decomposed in
the two irreducible parts®

04400 Fapij = 2€apF s i — 26,4 F (3.4)

aa” g a apij

The Bianchi identities, including (3.1), imply, in particular,

i
Faﬁij = EMaﬁij’
P BB (35
wpii =3 é’/”ij__l12-4!€ij[3”3/]){d P ( . )

IV. 2-FORM GAUGE POTENTIALS IN N =8
SUPERGRAVITY SUPERSPACE

Now we are ready to turn to the main subject of this paper:
2-form gauge potentials B (notophs) in the complete
supersymmetric description of N' = 8, D = 4 supergravity.

As we discussed in the Introduction, although the
appearance of seven 2-form potentials after dimensional
reduction from D = 11 down to D = 4 is manifest and was
already noticed in [1], these were immediately dualized
to scalars. Only then does the global E;.;) duality
become manifest. The inverse transformations relating
all the scalars of A =8 supergravity, parametrizing
E7(47)/SU(8), to 2-form potential have not been studied,
at least in a complete form and especially in superspace;
this is our goal here. As we will see, in addition to the

2-forms associated to the coset generators, BZG / H, which
were expected as dual to the physical scalars parametrizing
G/H = E;(,7)/SU(8) (basically because there are 70 of
them), it is necessary to introduce $1(8)-valued 2-form
BY. These are auxiliary and do not correspond to any
dynamical degrees of freedom of N =8,D =4 super-
gravity. The general situation will be discussed in the
companion paper [8]. Here we adopt a more technical
superspace-based approach to establishing the content and
the structure of the tensorial hierarchy of N =8,D =4
supergravity.

A. Strategy

Our strategy to search for higher form potentials in
maximal supergravity is essentially superspace based: we

T oy 5 F i)
Notice that F .. = +31Fabij02};', = —(Fos)".
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begin by searching for an ansatz for possible superspace
constraints for 3-form field strengths H3 = dB3 + - -
suggested by the indices carried by the potentials.
Checking their consistency, we can find whether more
forms have to be introduced and what kind of “free
differential algebra” (FDA) they have to generate. This
is described by a set of gBIs DF;' = ... The further study
of the gBIs (FDA relations) for the constrained field
strength should result (provided the constraints are con-
sistent and the potentials are dynamical fields) in equations
of motion which, in the case of the 2-form potentials,
should have the form of duality of their field strength to the
covariant derivatives of the scalar fields. Since, in our
case, these are (the bosonic leading components of) the
covariant E7(7)/SU(8) Cartan forms, i.e. the complex self-
dual 1-forms P;j; = & & jwrP™/¥" in the 70 of SU(8)
(e7PPP ikt = % €iitipgrse PR in terms of bosonic
component of superforms), the “physical” 2-form poten-
tials are expected to be B, ;j; and its complex conjugate and
dual BYY.

However, as discussed in the Introduction, experience
suggests that when the scalars parametrize a coset space
G/H, it is not sufficient to introduce only the dual (D — 2)-
form potentials with indices of the generators of the coset:
the (D —2)-forms associated to the generators of the
subgroup H must be included as well (see [8] for a general
discussion). In our case, these correspond to the Hermitian
traceless matrix of 2-forms B,;/ = (B,;/)* with the gener-
alized field strength H3/ = dB,/ + - - -.

B. Constraints and generalized Bianchi identities
for 3-form field strengths

The natural candidate for the superspace constraints are

eiﬁ = ~ Bo—
Hs i = Ef A 6P Ly — oy Gkt e ET A Rl P
1
+§EC N EP N EH e ijuas (4.1)
where 0,/ = LEY A E40,,f = —(67;)", and

Hy/) = iE" A E? N EY6 404 — §5IJE” A Ez A Eakg”“&

1 .
+—E°ANE° AN EHy,. /.

5 (4.2)

Clearly, the leading term in the expression for Hs;jy
should be dB, ; ;- But the question to be answered is whether
other terms are also present, and the answer is affirmative.
Indeed, if we assume Hj;j; = dB,;j; [or, keeping the
SU(8) invariance, Hs,;j;; = DB, 1], the generalized field
strength should obey the simplest Bianchi identities
dH3ijkl =0 (or DH3ijkl = 4RMF A\ H3|jkl]p)’ and the
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constraints (4.1) are not consistent if consistency is expressed
by such a simple Bianchi identity.

Similarly one can check that no consistent FDA can be
formulated without introducing also the 81(8) valued field
strength Hs;/. It might also look tempting to omit the
tracelessness condition Hs;/ = 0 and thus to consider the
1(8) rather than 81(8) valued 3-form field strength,
obeying simpler constraints given by (4.2) without the
second term in the r.h.s. However, as we have checked,
this is also inconsistent with the superspace constraints of
N =8 supergravity. Thus the structure of the tensor
hierarchy of A/ = 8 supergravity is quite rigid.

To make a long story short, we have found that the
constraints (4.1) and (4.2) are consistent with the FDA
relations (generalized Bianchi identities)

4 , I D
I4i] 5=DH3,J+2F1']</\ij_Zéi]Fkl/\Fkl

1 o
+ = Hajppg A PP +§Hgk'“' AP

: 0 (43)

ikpqg =
and

Lyiju = DHjyjjig — 4H3[ij/ APy —3F; A Fiy

3¢’ it Ep
+ Teijkli’j’k’l’FU N F =0. (44)
Let us stress that:
(1) As long as H;, ! APMIP =Lk TRIF 0 A
Pjwrp, the identity (4.4) and the complex conjugate
identity for H3" = (Hs;;,)* are consistent with

the duality relation [cf. (2.12); notice the sign]

ijkl ¢ v ikl KT
H3 = —Tﬁ" K H3i’j’k’l" (45)

(2) When this property is taken into account, the traces
of last two terms in the r.h.s. of (4.3) cancel one
another.

(3) The terms quadratic in 2-form field strengths are
those that occur in the E;7) Noether-Gaillard-
Zumino current [27]. This current, whose compo-
nents are all conserved, even for the E;7
transformations which are not symmetries of the
action, may play an important role in the UV
finiteness of the theory [6].

To check the consistency of our ansatz for the gBIs (4.3)
and (4.4) one has to study the “identities for identities”
1 =DI§ =0,

Is;/ :=DI,;/ =0, Isiji == Dlygjjy = 0, (4.6)
taking into account the Ricci identities. In application to our
3-form the latter reads
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DDH;;/ =R? N Hy,/ —H3;” AR,

DDHjyjjy = 4R;17 N Hyp)jg)s (4.7)
and can be further specified substituting the explicit
expression (2.11) for the curvature of induced SU(8)
connection. In such a way, after some algebra, one can
prove that the proposed gBIs (4.3) and (4.4) are consistent
provided the following identity holds:

Py A P9 A Hyjjung = Pppijeg A PPEL A Hayppy

- Ipp[ijk AN Pl]D] A H3p[3] - 0 (48)
This equation is proven in Appendix B using only the
complex self-duality and anti-self-duality of P;;; and
H3 i, respectively.

C. Superfield duality equations

Substituting Eqs. (4.2) and (4.1) and using the super-
space supergravity constraints, we have checked that the
dim 2 and 5/2 components of the gBIs (4.4) and (4.3) are
satisfied. As far as dim 3 components are concerned, the
« Eb A ECA ES A EZ component of Eq. (4.4) is satisfied
identically [due to the basic constraints and properties of
main superfields, like (2.19) with (3.5)], while its < E? A

E* N ES A EP4 component shows that H ypeiji is dual to
the generalized Cartan form P¢,,

i
Hpeiju = Eeabcd[p%kl- (4.9)
The < E? A E“ A ES A Eha component of (4.4) shows that
H ,,.;/ is dual to a bilinear of fermionic superfields,

. . 1 _
H pei! & €apea <)(i[2]6d}(j[2] - g 6{)([3]6‘1)([3]) . (410)

This reflects the auxiliary character of the 81(8) (pseudo-)
notophs.

D. Identities for identities and the proof of the
consistency of the constraints

Instead of studying the higher-dimensional components
of the gBIs, we simplify our study by proving that they are
dependent and cannot produce independent consequences;
this implies that our constraints are consistent and all the
dynamical equations are contained as higher components in
the superfield duality equations (4.9) and (4.10).

To this end we solve the identities for identities (4.6),
0=1Y = (Is;ju. Is;’) = DI, with respect to the (Lh.s. of
the) gBIs, I,p, in the same manner as we solve Bianchi
identities for the torsion and curvature tensors (and also
gBIs for the 3-forms above), expressing them in terms of
the main superfields (see Ref. [28]).

PHYSICAL REVIEW D 91, 085031 (2015)

As we have already said, the lower dimensional, dim 2
and 5/2, components of the 4-form gBIs are satisfied
algebraically, without any involvement of superfields.
Setting these to zero, Ig;ﬁ A= 0, we obtain a counterpart
of the torsion constraints of supergravity. Substituting

1 | -
1% :ZEb AEY A ES AEéIggab +§E‘ NE" NE*NERIS,,

1
—|—ZEd/\EC/\Eb/\E“ISde (4.11)
into Eq. (4.6) and using the torsion constraints of A/ = 8,
D = 4 supergravity, Egs. (2.14), (2.15) and (2.16), we find

0=1§ = —2E" NEy NE A B

AE'SD6 16  + o« EP A E°.

aa” fyab (412)

Thus, the lowest-dimensional (dim 3) nontrivial compo-
nents of the identities for identities imply the following
algebraic equations for the Lh.s. of the dim 3 gBls:

G . .
0= 550§a1Gkﬁyzah + 550;(11 pa;’/lab + (ag = yl), (4.13)
0= 5{;63&1Gkﬂl;/ ab + 556[6;(11(;1}}/’& ab + 55]6?{11G]7clkﬂab’ (4 14)

plus the complex conjugate of Eq. (4.14). It is not difficult
to find that the latter as well as Eq. (4.14) have only trivial

solutions /%), = 0. In contrast, the general solution of

Eq. (4.13) reads I¢

antisymmetric 19, = jghc]. This implies that the only

= 6'62.1%,. with an arbitrary

adajbe Joaa

independent consequences for the superfields can be

obtained from 7%/ i 599 = (),
acjlbe” a

This is exactly what we have observed in the explicit
calculations of the dimension 3 Bianchi identities for H3 ;j;

(see Sec. IV C). Namely, we have found that

i
— P — _iSP ~C d
0= (14 ijkl)aécqab = —i0404 (Habc ijkl — ieabc‘d[pijkl)

(4.15)

which implies the superfield duality equation (4.9).

The above general statement allows one to escape the
exhausting algebraic calculations necessary to check
explicitly the cancellation of different terms in the equation
¢ apab = 0.

Furthermore, the higher-dimensional components of
identities for identities Eq. (4.12) show the dependence

of higher-dimensional Bianchi identities /¢, =0 and
18, ., = 0. This implies that their results can be obtained

by applying covariant derivatives to the results of the
dimension 3 gBIs, this is to say to the superfield duality
equations (4.9) and (4.10), with the use of the superspace
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constraints for torsion, Cartan forms and 2-form field
strength of the 1-form gauge fields and of their conse-
quences. The latter include the equations of motion of
N =8, D = 4 CJ supergravity.

E. Scalar (super)field equation of motion and
duality equation

To illustrate this statement let us consider the dimension 4
Bianchi identity corresponding to E7(,7)/SU(8) generators,

0 = Lijkiabea = 4DH peajijir + VO H [ape)[i’ P ik play

3¢ i ] Bl
— 18F(ijjjapF cayrn) + e Eijti 11 F g F ey

+ 6T (ap|; (G1ca 1))

eiﬂ ai _j/k/l/ ~
- Tgijkli’j’k’l’T[aM (Z U\cd])(;- (4-16)
Using (4.9) we can equivalently write this as

3i ab_ch

4i
DPyijit = =5 € Hane(iPjta)pa = 5 €aveak 5 Fi

ieiﬂ =i'7 =
+ 1—6fijkzi’/k’l'€adeF;iFIC]§/ + Tabﬁ'(aab)(jkl])a
eiﬁ vl (=i KT ~ab
+Igijkli’j’k’l’Tabm ("6
After using Eq. (4.10), this expression acquires the usual
form of the scalar (super)field equation of N =8, D =4
supergravity,

(4.17)

3i
DPyjju = —Egabch[ai?Fliﬁ
ie'f

+ 1—6€ijkli’j’k’l’gadeF;/i/F/c]y te (4.18)
where the dots stand for the terms bilinear in fermions.

To reflect the dependence of the higher-dimensional
Bianchi identities proved in the previous section
(Sec. IV D), the above line should be read in the opposite
direction: the results of the dimension 4 Bianchi identity
Eq. (4.16) can be obtained by taking the bosonic covariant
derivative of the duality equation (4.9) and using the scalar
(super)field equation (as obtained from the torsion con-
straints of [25,26]) and Eq. (4.10).

Thus, the results of Sec. IV C and the arguments of
Sec. IV D allow us to conclude that our constraints for the
3-form field strength are consistent and describe a set of
notophs dual to the scalar fields of N =8, D=4
supergravity.

V. CONCLUSION AND OUTLOOK

In this paper we have provided the complete super-
symmetric description of the notophs (2-form gauge
potentials) of the Cremmer-Julia N=8 D=4
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supergravity [1]. More specifically, we have presented the
set of superspace constraints for the 3-form field strengths of
the 2-form gauge potentials defined on N =8, D=4
supergravity superspace [25] and we have shown that these
are consistent and produce the duality relation between
the field strengths of the physical notophs and the scalar
fields of the N' = 8, D = 4 CJ supergravity parametrizing
the G/H = E(7(,7)/SU(8) coset. We have found that the
consistency, expressed by the generalized Bianchi iden-
tities, requires us to introduce also the auxiliary 2-form
potentials corresponding to the generators of the stability
subgroup H = SU(8) of the coset. In the companion
paper [8] we will discuss the reasons for this in detail.
Here we have adopted a purely superspace approach and
arrived at this conclusion starting from the natural candidate
for the superspace constraints and searching for their con-
sistency. The generalized Bianchi identities for the 3-form
field strengths of the notophs, which define the tensorial
hierarchy (or free differential algebra) of the A" = 8, D = 4
CJ supergravity, have been also obtained in this manner.
The list of natural directions of development of our
approach includes the studies of the superfield description
of the notophs of gauged N =38, D =4 supergravity
[15,29,30] using the torsion constraints of [31] and of the
supersymmetric aspects of the generalized notophs of the
exceptional field theories [32-34] in NV = 8, D = 4 super-
space enlarged by 56 bosonic “central charge” coordinates
(see [35]). Another obvious extension of this work is the
search for worldvolume actions of possible superstring
models carrying the “electric” charges with respect to the
antisymmetric tensor gauge fields. Probably the correct
posing of this problem may require us to work in the
Howe-Linmdstom enlarged A" = 8, D = 4 superspace.
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Note added—Recently, the superspace description of
higher-form gauge fields in D-dimensional maximal and
half-maximal supergravities has been discussed in [36],
where the cases of D =11 and D = 10 are elaborated
explicitly. For cases where 3 < D < 10 the representations
carried by higher forms in maximal and half-maximal
superspaces and their generalized Bianchi identities have
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been tabulated in Appendix A of [36]. Higher forms in
maximal and half-maximal D = 3 dimensional superspaces
were studied in [37].

APPENDIX A: 4D WEYL SPINORS AND
SIGMA MATRICES

We use the relativistic Pauli matrices Ol = €pa€y /;,5“/}“
which obey

(A1)

where % = diag(1,—1,—1,—1) is the Minkowski metric

and ecd = ¢labedl g the antisymmetric tensor with

0123 _ 1 _—
€ =1= —€0123-

The spinorial [SL(2, C)] indices are raised and lowered
by €% =—€e/"=iry=(9))=—€,5 obeying e,z =54
0, =€50" and 6" =e*0; The antisymmetrized
products 6¢° ;% =015t :=1 (696" - 6°6*) and 5'”bé‘/3 =5lag?)

abed

are self-dual and anti-self-dual, &% =360 4,

~ab _ __ i ,abcdr
6" = —3¢e" .

APPENDIX B: MORE ON DIFFERENTIAL
FORMS IN CURVED N = 8, D = 4 SUPERSPACE

1. Exterior derivative

The exterior derivative d acts on a g-form

Q, = %dZMq A NAZMQy, oy, (Z)
—%EAq A NENQy 4 (Z)
as
dQ, —%dZMa A NAZMY N dQy, o, (Z)
:ﬁdz%ﬂ A ... N dZM

A dZM (g + 10w, Qus..m,,,1(Z). (B1)

In action on the product of differential forms, e.g. the
g-form Q, and the p-form €, it obeys the Leibnitz rule

d(Q, A Q) =Q, A dQ, + (-)Pd2, AQ,. (B2)

The mixed brackets [---} denote the graded antisymmet-
rization of the enclosed indices with the weight unity,
so that (qJ’_l)la[MIQMZ...MqAI}(Z>:6M1QM2...MW1(Z)_
(_)s(Ml)e(Mz)aMZQMIM}NMqH(Z)_|_...’ g(M) =
e(ZM) is the Grassmann parity (fermionic number),
e(u) =e(x") =0, e(a) = £(6%) = 1.

where
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2. On E;7) Cartan forms

Using the complex self-duality of P;;;; Eq. (2.12) and the
antisymmetry of the exterior product of P one finds

PH]A @H]:;O. (B3)

Then, using Eq. (2.12) and this last property Eq. (B3) in
Pij A PHE one finds

p (B4)

_ 2 _
ijpg N PP = S8 P A PIE.

The Ricci identity
4 _
_ _ 3 _
DDP,jy = —4R;" APy, = —gpmv APBIP AP, =0

(BS)

is satisfied because, by virtue of Eq. (B4), the rh.s. is
equivalent to

Pogiiy A PP A Py, (B6)

pqlij

which vanishes automatically on account of the antisym-
metry of the wedge product and the symmetry under the
interchange of pairs of the SU(8) indices.

From Eq. (B4) it follows that the first term in Eq. (4.8)
can be reexpressed as

_ 3 iy
Py A PRI A Hajgg = =5 Ppyjig A PR A Hyyg).
(B7)

Using again the complex self-duality of P;j; and the
complex anti-self-duality of Hj,j,, the third term in
Eq. (4.8) can be reexpressed as

.00 — 1 4
Poije A Py A H3PP = _glpijkl A Py A Hj
3 — o1
= 7P A PRI A .
(B8)

The same properties and this last identity allow us to rewrite
the second term in Eq. (4.8) as

l|]3>.. P H-.¥
ijkl N P A 3

Ppiie) A PP A Hyg =3

3 .
= 7P A PP A Hijan.
(B9)

After rewriting the three terms of Eq. (4.8) using the above
identities, we find that Eq. (4.8) is identically satisfied.
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3. On E;( ) Cartan forms in A =8
supergravity superspace

Equations (2.20) can be derived also from (2.13)
with (2.21). To this end it is useful to notice the trivial
identity
é)-(dp[qi)?(kl] - gidp[ij)?’;l]q_

—[qu[i—:k[] _
7 =5 i T3

(B10)

Its 1.h.s. is antisymmetric, while the second term in its r.h.s
is symmetric. Hence

)—(&p[ij—:;l]q _ % o—(izn[qi)-(g"] +)-(f'lq[ﬂij(g‘”), (B11)
and
)—(apq[i)—(ék” _ % ()?dp[qi)—(gk” _)‘(0"4[1“';‘(?1]‘”). (B12)
As a consequence
8ijkli’j'k'1')—{zq[Md[j,k,l,] _ _25{11? eik21[3] )?31[211&[3]' (B13)

4. Curvature 2-forms of N/ = 8 superspace

The study of the Bianchi identities results in the
following expressions for the curvature of the spin
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connection (the “Riemann” curvature 2-form) (see
[25,26]):
o R = 25,/ R, +25,/R P, (B14)
1 1 . .
RY = ZRaba‘jf =S Bl NE (€N 426,555
1o, .. .
_EP M L E f
+2E "NEVe M+ E; ANEVR,
1
+ECNEPRy P +5 B A EPR,, %, (B15)

Rdﬁ: _%Rab&Z{;}
1 _
= —EEIZ A Ede,sM*P
1. .. _ Cae

. NP | .
+E{ ANEVR &P 4 EC A EER,_;C“/’ +5E A EPR, P

(B16)
Equations (3.4) and (3.5) can be combined as
1 af 1~('1/5
Fapij = 50aFapij + 50 Fapij
. . l/j
L g e M~  _M
= ZgugMa/}ij + ﬂgij[S][S/])(maabZB L (B17)
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