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We study the tensor gauge fields (“notophs”) of ungauged N ¼ 8; D ¼ 4 supergravity in superspace.
These are described by 2-form potentials BG

2 in the adjoint representation ofG ¼ E7ðþ7Þ. The consistency of
the natural candidates for the superspace constraints for their field strengths HG

3 fixes the form of the

generalized Bianchi identities DHG
3 ¼ … and also requires the potentials BG=H

2 with indices of G=H ¼
E7ðþ7Þ=SUð8Þ generators to be dual to the scalars of theN ¼ 8; D ¼ 4 supergravitymultiplet. In contrast, the
field strengths of the 2-form potentials corresponding to the SUð8Þ generators are dual to fermionic bilinears,
so that these potentials are auxiliary rather than physical fields. Their presence, however, is essential to
formulate a tensor hierarchy of N ¼ 8; D ¼ 4 supergravity consistent with its U-duality group E7ðþ7Þ.
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I. INTRODUCTION

The action of the maximal N ¼ 8; D ¼ 4 supergravity
was obtained in [1] by dimensional reduction of the
D ¼ 11 supergravity [2] followed by dualization of 7
antisymmetric tensor gauge potentials BI

μν originating
in the 11-dimensional 3-form, called “notophs” in [3],1

to scalars. Then the complete set of 70ð¼ 28þ 35þ 7Þ
scalars of the N ¼ 8; D ¼ 4 supergravity multiplet was
found to parametrize the coset space E7ðþ7Þ=SUð8Þ [1].
The natural question is whether this duality can be

performed in an opposite direction, introducing a dual
notoph for each scalar of the theory. In this paper we study
this problem in the N ¼ 8; D ¼ 4 superspace formulation
of supergravity. To be more precise, we search for a
“duality symmetric” formulation of the theory, containing
both the scalar fields and the notophs rather than trying to
replace everywhere the former by the latter (which is not
possible beyond the linear approximation in fields).
The motivation for such a study is twofold. On one hand,

we hope that our results will contribute to a deeper
understanding of the U-duality group of the N ¼ 8;
D ¼ 4 supergravity, the exceptional Lie group E7ðþ7Þ.
The interest in this symmetry has remained high during
the nearly 36 years that have passed since its discovery in
[1], and, recently, a relation with the exceptional conver-
gence properties of its loop amplitudes has been proposed
(see Refs. [6] and references therein).

On the other hand, the knowledge on existence of
ðpþ 1Þ-form gauge potentials in a supergravity superspace
might indicate the existence of supersymmetric extended
objects, p-branes, coupled electrically to these potentials. In
this sense our results imply the possible existence of a
family of supersymmetric strings in an N ¼ 8; D ¼ 4
supergravity superspace.2 The search for possible world-
volume actions of such hypothetical superstrings is one of
the natural applications of our results.
A first result showed by our study is that, to be consistent,

one has to introduce a 2-form potential for each of the
generators of the G ¼ E7ðþ7Þ group, BG

2 ¼ ðBG=H
2 ; BH

2 Þ, and
not just for thegenerators of the cosetG=H. This result can be
generalized to other theories with scalars parametrizing a
symmetric space [8]. An early example of how the dual-
ization of scalars requires the introduction of a ðd − 2Þ-form
potential for each generator of the isometry group, even
though their numbers do not match, is the dualization of the
dilaton and Ramond-Ramond 0-form of N ¼ 2B;D ¼ 10
supergravity in [9] (see also [10]): the two real scalars
parametrize an SLð2;RÞ=SOð2Þ coset space and they are
dualized into a triplet of 8-forms transforming in the adjoint.
The existence of this triplet of 8-forms is required by the
symmetry algebra E11 [11] and has clear implications in the
classification of the possible 7-branes of the theory [9,12–
14]. In the context of the embedding tensor formalism for
4-dimensional gauged supergravities [15–18] (bosonic,
spacetime) 2-form potentials in the adjoint representation
of the duality group have to be introduced for different

1“Notoph” is “photon” read from the right to the left. Other,
more popular names are Kalb-Ramond field [4], 2-form potential,
and even B-field [5].

2The BPS branes of the maximal supergravity theories were
studied originally in Refs. [7], but their worldvolume actions are,
in general, unknown.
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technical reasons, unrelated to the dualization of scalar fields,
and for the specific case ofN ¼ 8; D ¼ 4 supergravity this
was done some years ago in Refs. [18,19]. The general
duality rule between scalars and ðd − 2Þ-forms was estab-
lished in Refs. [16,20,21] using the embedding tensor
formalism, but the results remain valid in the ungauged limit.
The study of supersymmetrization of these and other

higher-rank gauge potentials has received much less
attention3 and in this paper we will start filling this gap
for the case of the notophs of N ¼ 8; D ¼ 4 supergravity
using the superspace formalism. The knowledge of the
gauge and supersymmetry transformations of these fields is
a key ingredient in the construction of κ-symmetric
worldvolume actions for possible associated supersymmet-
ric string (p-brane) models.
In superspace formalism the problemof duality symmetric

formulation, including the scalars and 2-form potentials dual
to them on the mass shell, can be posed as searching for a set
of constraints for 3-forms HG

3 ¼ dBG
2 þ � � � which are

generalized field strengths of the corresponding 2-form
potentialsBG

2 defined on superspace. Below we present such
superspace constraints for the E7ðþ7Þ-algebra-valued 3-form
field strengths on the curvedN ¼ 8 superspace of maximal
D ¼ 4 supergravity, and study their self-consistency con-
ditions: the generalized Bianchi identities (gBIs) dHG

3 ¼ ….
The explicit form of these gBIs are part of the definition

of the tensor hierarchy of the Cremmer-Julia (CJ) N ¼ 8
supergravity.4 They reflect the group theoretical structure
associated to the E7ðþ7Þ symmetry of N ¼ 8 supergravity
in the dual language. We will recover this piece of the
tensor hierarchy starting from the natural candidate for
superspace constraints for HG

3 and requiring that the
algebraic part of the suitable gBIs, concentrated in their
lower-dimensional components, should be satisfied iden-
tically when the candidate constraints are taken into
account. At this stage we find, in particular, that the
standard Bianchi identities dHG

3 ¼ 0, if imposed, would
lead to inconsistency and also that one cannot formulate a
consistent set of constraints for the 3-forms corresponding
to the coset generators, HG=H

3 , without introducing simul-
taneously the 3-forms HH

3 corresponding to the generators
of the stability subgroup H ¼ SUð8Þ of the coset. In this
sense one of the messages of this paper is that the
superspace approach can be used in the search for a

consistent tensorial hierarchies of supergravity (as well
as of the theories invariant under rigid supersymmetry).
After this is done, we further study their higher-

dimensional components and show that the duality relations
between the field strengths of the notophs,HG=H

μν ρ , and of the
scalar fields of N ¼ 8 supergravity (generalized Cartan
forms PG=H

μ ) are the consequences of our superspace con-
straints. The field strengths of the stability subgroup gen-
erators, HH

μν ρ, are found to be dual to fermionic bilinears;
this reflects the auxiliary character of the corresponding
notophs BH

μν.

II. N ¼ 8 SUPERGRAVITY SUPERSPACE

A. Geometry of N ¼ 8 superspace and Cartan
forms of E7ðþ7Þ

Let us denote the bosonic and fermionic supervielbein
forms of N ¼ 8; D ¼ 4 superspace Σð4j32Þ by

EA ≡ ðEa; EαÞ ¼ ðEa; Eα
i ; Ē

_αiÞ ¼ dZMEa
MðZÞ: ð2:1Þ

Here ZM ¼ ðxμ; θα̬ Þ are local bosonic and fermionic coor-
dinates of Σð4j32Þ, a ¼ 0; 1; 2; 3 is Lorentz group vector
index, α ¼ 1; 2 and _α ¼ 1; 2 are Weyl spinor indices of
different chirality (see Appendix A), i ¼ 1;…; 8 is the
index of the fundamental representation of the SUð8Þ
R-symmetry group, and α is the 32-valued cumulative
index of SLð2;CÞ ⊗ SUð8Þ. In the case of world indices,
only the counterpart of this cumulative index seems to
make sense (until the Wess-Zumino gauge is fixed); it is
carried by the fermionic (Grassmann-odd) coordinate θα

̬

.
Finally, μ ¼ 0; 1; 2; 3 is the world vector index carried by
bosonic (Grassmann-even) coordinate xμ.
The curved superspace of N ¼ 8; D ¼ 4 supergravity

is endowed with a spin connection ωab ¼ −ωba ¼
dZMωab

M ðZÞ and with the composite connection of the
SUð8Þ R-symmetry group, Ωi

j ¼−ðΩj
iÞ� ¼ dZMΩMi

jðZÞ,
Ωi

i ¼ 0; these are used to define the SLð2;CÞ ⊗ SUð8Þ
covariant derivative D. The exterior covariant derivatives of
the supervielbein forms are called bosonic and fermionic
torsion 2-forms,

Ta ≔ DEa ¼ dEa − Eb ∧ wb
a ¼ 1

2
EB ∧ ECTCB

a; ð2:2Þ
Tα
i ≔ DEα

i ¼ dEα
i − Eβ

i ∧ wβ
α −Ωi

j ∧ Eα
j

¼ 1

2
EB ∧ ECTCB i

α; ð2:3Þ

T _αi ≔ DĒ _αi ¼ dĒ _αi − Ē_βi ∧ w _β
_α − Ē _αj ∧ Ωj

i

¼ 1

2
EB ∧ ECTCB

_αi: ð2:4Þ

Here∧ denotes the exterior product of differential formswith
the basic properties

3Some partial results on the supersymmetrization of the
2-forms dual to scalars in 4-dimensional N ¼ 2; 1 theories
can be found in [22,23]. Supersymmetry has, nevertheless, been
one of the main tools to find higher-rank potentials that can be
added to the 10-dimensionalmaximal supergravities [11,13,24], in
particular for ðd − 1Þ- and d-form potentials.

4The tensor hierarchy arises naturally in the democratic
gauging of theories using the embedding-tensor formalism
[15–18], but the fields still make sense when the embedding
tensor and any other deformation parameters are switched off, in
the ungauged, undeformed theory.
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Ea ∧ Eb ¼ −Eb ∧ Ea; Eα ∧ Eβ ¼ Eβ ∧ Eα;

Ea ∧ Eα ¼ −Eα ∧ Ea;

and d is exterior derivative which acts from the right (see
Appendix B).
By construction, the torsion 2-forms obey the Bianchi

identities

Ia3 ≔ DTa þ Eb ∧ Rb
a ¼ 0; ð2:5Þ

I3i
α ≔ DTα

i þ Eβ
i ∧ Rβ

α − Ri
j ∧ Eα

j ¼ 0; ð2:6Þ

I _αi3 ≔ DT _αi þ Ē_βi ∧ R_β
_α þ Ē _αj ∧ Rj

i ¼ 0; ð2:7Þ

which involve the curvature of the spin connection
[ωα

β ¼ 1
4
ωabσabα

β ¼ ðω _α
_βÞ�],

Rab¼ðdω−ω∧ωÞab¼−Rba¼1

2
EC∧EDRDC

ab; ð2:8Þ

Rα
β ¼ 1

4
Rabσab α

β ¼ ðdω − ω ∧ ωÞαβ ¼
1

2
EB ∧ EARAB α

β;

ð2:9Þ

R _α
_β ¼ ðRα

βÞ� ¼ −
1

4
Rab ~σab

_β
_α ¼ ðdω − ω ∧ ωÞ _α _β

¼ 1

2
EB ∧ EARAB _α

_β; ð2:10Þ

and also the curvature of the induced SUð8Þ connection,
Ri

j ≔ dΩi
j − Ωi

k ∧ Ωk
j. The compositeness of Ωi

j is
reflected by the fact that its curvature is expressed as [25]

Ri
j ¼ −ðRj

iÞ� ¼ 1

3
Piklp ∧ P̄jklp; ð2:11Þ

where Pijkl is the covariant Cartan form of the
E7ðþ7Þ=SUð8Þ coset and P̄ijkl is its complex conjugate,
which is also its SUð8Þ dual up to an arbitrary constant
phase β,

P̄ijkl ¼ ðPijklÞ� ¼
1

4!
e−iβεijklpqrsPpqrs: ð2:12Þ

The Cartan forms are covariantly closed,

DPijkl ≔ dPijkl − 4Ω½ijp ∧ Ppjjkl� ¼ 0; DP̄ijkl ¼ 0:

ð2:13Þ

Some further properties obeyed by these forms can be
found in Appendix B.
Equations (2.13), and (2.11) with Pijkl obeying (2.12),

are structure equations of the E7ðþ7Þ Lie group. These can
be solved providing the expressions for the covariant

Cartan forms Pijkl and SUð8Þ connection Ωi
j in terms

of scalar superfields of theN ¼ 8 supergravity, the explicit
form of which is not needed for our discussion below.

B. N ¼ 8; D ¼ 4 superspace constraints
and their consequences

The constraints of N ¼ 8; D ¼ 4 supergravity [25,26]
can be collected in the following expressions for the
bosonic and fermionic torsion 2-forms:

Ta ¼ −iEα
i ∧ Ē_βiσa

α _β
; ð2:14Þ

Tα
i ¼

1

2
Ē_βj ∧ Ē_γkϵ_β _γχ

α
ijk þ Ec ∧ Eβ

jT
j
β c

α
i þ Ec ∧ Ē_βjT _βj c

α
i

þ 1

2
Ec ∧ EbTbc

α
i ; ð2:15Þ

T _αi ¼−
1

2
Eβ
j ∧Eγ

kϵβγχ̄
_αijkþEc ∧Eβ

jT
j
βc

_αiþEc ∧ Ē_βjT _βjc
_αi

þ 1

2
Ec ∧EbTbc

_αi: ð2:16Þ

Here χαijk ¼ ðχ̄ _αijkÞ� is the main fermionic superfield of
N ¼ 8; D ¼ 4 supergravity and the dimension 1 fermionic
torsion components have the expressions

Tj
β b

α
i ¼

1

4
χiklβðχ̄jkl ~σbÞα; T _βj b

_αi ¼ 1

4
χ̄ikl_β ð ~σbχjklÞ _α;

T _βj b
α
i ¼ −

i
2
σbβ _βM

αβ
ij −

i
2
~σ _αα
b N̄ _α _β ij;

Tj
βb

_αi ¼ −
i
2
σbβ _βM

_α _β ij −
i
2
~σ _αα
b Ni j

αβ; ð2:17Þ

in terms of the fermionic bilinears5

Ni j
αβ ¼

e−iβ

6 · 4!
εij½3�½30�χα½3�χβ½30�;

N̄ _α _β ij ¼ −
eiβ

6 · 4!
εij½3�½30�χ̄

½3�
_α χ̄½3

0�
_β
; ð2:18Þ

and the bosonic superfields Mijαβ ¼ M½ij�ðαβÞ ¼ ðM̄ij
_α _β
Þ�.

These appear as irreducible parts of the fermionic covariant
derivatives of the main fermionic superfield,

DiðαχβÞjkl¼−3δi½jMkl�αβ; D̄ið _αχ̄ _βÞ
jkl¼−3δ½ji M̄

kl�
_α _β
; ð2:19Þ

The other irreducible components of these covariant
derivatives of the main superfield are expressed through
their bilinears,

5εij½3�½30 �χ̄
½3�
_α χ̄½3

0 �
_β

≡ εijklmnpqχ̄
klm
_α χ̄npq_β

.
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Dαiχαjkl ¼ −
eiβ

12
εjkl½2�½3�χ̄

i½2�
_α χ̄ _α½3�;

D̄ _α
i χ̄

jkl
_α ¼ −

e−iβ

12
εjkl½2�½3�χαi½2�χα½3�: ð2:20Þ

C. E7ðþ7Þ=SUð8Þ Cartan forms in N ¼ 8
supergravity superspace

The covariantly constant Cartan 1-forms obey the
constraints

Pijkl¼ 2Eα
½iχjkl�α−2

eiβ

4!
Ē _αpεijklp½3�χ̄

½3�
_α þEaPaijkl; ð2:21Þ

P̄ijkl¼ 2
e−iβ

4!
Eα
pε

ijklp½3�χα½3�−2Ē _α½iχ̄jkl�_α þEaP̄ijkl
a : ð2:22Þ

These coincide with those in Refs. [25,26] up to the
constant phase parameter β. With the constraints (2.21),
(2.22) the Bianchi identities (2.13) imply

D̄ _αiχαjkl ¼ 2iσaα _αPaijkl; Di
αχ̄

jkl
_α ¼−2iσaα _αP̄

ijkl
a ; ð2:23Þ

The results of Eq. (2.13) are also of help to find the
expression Eq. (2.20) for Dαiχαjkl and the duality relation

between the vector Paijkl and its conjugate P̄ijkl
a ,

Paijkl ¼
eiβ

4!
εijklpqrsP̄

pqrs
a : ð2:24Þ

Just after this stage the superspace 1-forms in Eqs. (2.21)
and (2.22) become related by Eq. (2.12).

III. 1-FORM GAUGE POTENTIALS IN N ¼ 8
SUPERGRAVITY SUPERSPACE

Although the supervielbein forms restricted by the
torsion constraints already contain all the fields of super-
gravity multiplets, including the vector fields and
their field strength, it is possible and also convenient to
introduce the corresponding 1-form gauge potentials in
superspace. As was found already in Ref. [25], to preserve
manifest SUð8Þ R-symmetry, one should introduce
the super-1-forms corresponding to both the “electric”
gauge fields of the supergravity multiplet and to their
magnetic duals, packed in the complex 1-form Aij ¼
A½ij� ¼ dZMAM ijðZÞ in the 28 representation of SUð8Þ,
and its complex conjugate Āij¼Ā½ij�¼dZMĀij

MðZÞ¼ðAijÞ�
in its 28 representation.
Their 2-form field strengths, which obey the gBIs

DFij ¼ Pijkl ∧ F̄kl; DF̄ij ¼ P̄ijkl ∧ Fkl; ð3:1Þ

are restricted by the constraints

Fij ¼ −iEα
i ∧ Eβ

jϵαβ −
1

2
Ea ∧ Ē_γkσaγ _γχ

γ
ijk þ

1

2
Ec ∧ EbFbcij;

ð3:2Þ

F̄ij ¼ −iE _αi ∧ E_βjϵ _α _β þ
1

2
Ea ∧ Eγ

kσaγ _γ χ̄
_γijk þ 1

2
Ec ∧ EbF̄ij

bc:

ð3:3Þ

The antisymmetric tensor superfield can be decomposed in
the two irreducible parts6

σaα _ασ
b
β _β
Fab ij ¼ 2ϵαβF _α _β ij − 2ϵ _α _βFαβ ij: ð3:4Þ

The Bianchi identities, including (3.1), imply, in particular,

Fαβ ij ¼
i
2
Mαβ ij;

F _α _β ij ¼
i
2
N̄ _α _β ij ¼ −i

eiβ

12 · 4!
εij½3�½30�χ̄

½3�
_α χ̄½3

0�
_β
: ð3:5Þ

IV. 2-FORM GAUGE POTENTIALS IN N ¼ 8
SUPERGRAVITY SUPERSPACE

Nowwe are ready to turn to themain subject of this paper:
2-form gauge potentials B ~Σ

2 (notophs) in the complete
supersymmetric description of N ¼ 8; D ¼ 4 supergravity.
As we discussed in the Introduction, although the

appearance of seven 2-form potentials after dimensional
reduction fromD ¼ 11 down toD ¼ 4 is manifest and was
already noticed in [1], these were immediately dualized
to scalars. Only then does the global E7ðþ7Þ duality
become manifest. The inverse transformations relating
all the scalars of N ¼ 8 supergravity, parametrizing
E7ðþ7Þ=SUð8Þ, to 2-form potential have not been studied,
at least in a complete form and especially in superspace;
this is our goal here. As we will see, in addition to the
2-forms associated to the coset generators, BG=H

2 , which
were expected as dual to the physical scalars parametrizing
G=H ¼ E7ðþ7Þ=SUð8Þ (basically because there are 70 of
them), it is necessary to introduce suð8Þ-valued 2-form
BH
2 . These are auxiliary and do not correspond to any

dynamical degrees of freedom of N ¼ 8; D ¼ 4 super-
gravity. The general situation will be discussed in the
companion paper [8]. Here we adopt a more technical
superspace-based approach to establishing the content and
the structure of the tensorial hierarchy of N ¼ 8; D ¼ 4
supergravity.

A. Strategy

Our strategy to search for higher form potentials in
maximal supergravity is essentially superspace based: we

6Notice that F _α _β ij ¼ þ 1
4
Fab ij ~σ

ab
_α _β

¼ −ðF̄αβ
ijÞ�.
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begin by searching for an ansatz for possible superspace
constraints for 3-form field strengths H ~Σ

3 ¼ dB ~Σ
2 þ � � �

suggested by the indices carried by the potentials.
Checking their consistency, we can find whether more
forms have to be introduced and what kind of “free
differential algebra” (FDA) they have to generate. This
is described by a set of gBIs DFA

4 ¼ … The further study
of the gBIs (FDA relations) for the constrained field
strength should result (provided the constraints are con-
sistent and the potentials are dynamical fields) in equations
of motion which, in the case of the 2-form potentials,
should have the form of duality of their field strength to the
covariant derivatives of the scalar fields. Since, in our
case, these are (the bosonic leading components of) the
covariant E7ð7Þ=SUð8Þ Cartan forms, i.e. the complex self-
dual 1-forms Pijkl ¼ 1

4!
εijkli0j0k0l0P̄i0j0k0l0 in the 70 of SUð8Þ

(e−iβ=2Pa ijkl ¼ 1
4!
εijklpqrseiβ=2P̄

pqrs
a in terms of bosonic

component of superforms), the “physical” 2-form poten-
tials are expected to be B2 ijkl and its complex conjugate and

dual B̄ijkl
2 .

However, as discussed in the Introduction, experience
suggests that when the scalars parametrize a coset space
G=H, it is not sufficient to introduce only the dual ðD − 2Þ-
form potentials with indices of the generators of the coset:
the ðD − 2Þ-forms associated to the generators of the
subgroup H must be included as well (see [8] for a general
discussion). In our case, these correspond to the Hermitian
traceless matrix of 2-forms B2i

j ¼ ðB2i
jÞ� with the gener-

alized field strength H3i
j ¼ dB2i

j þ � � �.

B. Constraints and generalized Bianchi identities
for 3-form field strengths

The natural candidate for the superspace constraints are

H3 ijkl ¼ Eα
½i ∧ σð2Þαβχjkl�β −

eiβ

4!
εijkli0j0k0l0Ē _αi0 ∧ ~σð2Þ _β _αχ̄ _β

j0k0l0

þ 1

3!
Ec ∧ Eb ∧ EaHabc ijkl; ð4:1Þ

where σð2Þαβ ¼ 1
2
Eb ∧ Eaσabα

β ¼ −ð ~σð2Þ _β _αÞ�, and

H3 i
j ¼ iEa ∧ Eα

i ∧ E _αjσaα _α −
i
8
δi

jEa ∧ Eα
k ∧ E _αkσaα _α

þ 1

3!
Ec ∧ Eb ∧ EaHabc i

j: ð4:2Þ

Clearly, the leading term in the expression for H3 ijkl
should bedB2 ijkl. But the question to be answered iswhether
other terms are also present, and the answer is affirmative.
Indeed, if we assume H3 ijkl ¼ dB2 ijkl [or, keeping the
SUð8Þ invariance, H3 ijkl ¼ DB2 ijkl], the generalized field
strength should obey the simplest Bianchi identities
dH3 ijkl ¼ 0 (or DH3 ijkl ¼ 4R½ijp ∧ H3jjkl�p), and the

constraints (4.1) are not consistent if consistency is expressed
by such a simple Bianchi identity.
Similarly one can check that no consistent FDA can be

formulated without introducing also the suð8Þ valued field
strength H3i

j. It might also look tempting to omit the
tracelessness condition H3i

i ¼ 0 and thus to consider the
uð8Þ rather than suð8Þ valued 3-form field strength,
obeying simpler constraints given by (4.2) without the
second term in the r.h.s. However, as we have checked,
this is also inconsistent with the superspace constraints of
N ¼ 8 supergravity. Thus the structure of the tensor
hierarchy of N ¼ 8 supergravity is quite rigid.
To make a long story short, we have found that the

constraints (4.1) and (4.2) are consistent with the FDA
relations (generalized Bianchi identities)

I4 ij ≔DH3i
jþ2Fik ∧ F̄jk−

1

4
δi

jFkl ∧ F̄kl

þ1

3
H3ikpq∧ P̄jkpqþ1

3
H̄jkpq

3 ∧Pikpq ¼ 0 ð4:3Þ

and

I4 ijkl ≔ DH3 ijkl − 4H3½ij
0 ∧ Pjkl�j0 − 3F½ij ∧ Fkl�

þ 3eiβ

4!
εijkli0j0k0l0F̄i0j0 ∧ F̄k0l0 ¼ 0: ð4:4Þ

Let us stress that:
(1) As long as ~H3p

½i∧P̄jkl�p¼−e−iβ
4!
εijkli

0j0k0l0 ~H3i0
p∧

Pj0k0l0p, the identity (4.4) and the complex conjugate
identity for H̄3

ijkl ¼ ðH3 ijklÞ� are consistent with
the duality relation [cf. (2.12); notice the sign]

H̄ijkl
3 ¼ −

e−iβ

4!
εijkli

0j0k0l0H3 i0j0k0l0 : ð4:5Þ

(2) When this property is taken into account, the traces
of last two terms in the r.h.s. of (4.3) cancel one
another.

(3) The terms quadratic in 2-form field strengths are
those that occur in the E7ðþ7Þ Noether-Gaillard-
Zumino current [27]. This current, whose compo-
nents are all conserved, even for the E7ðþ7Þ
transformations which are not symmetries of the
action, may play an important role in the UV
finiteness of the theory [6].

To check the consistency of our ansatz for the gBIs (4.3)
and (4.4) one has to study the “identities for identities”
IG5 ¼ DIG4 ¼ 0,

I5 ij ≔ DI4 ij ¼ 0; I5ijkl ≔ DI4ijkl ¼ 0; ð4:6Þ

taking into account the Ricci identities. In application to our
3-form the latter reads
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DDH3 i
j ¼ Ri

p ∧ H3p
j −H3 i

p ∧ Rp
j;

DDH3ijkl ¼ 4R½ijp ∧ H3pjjkl�; ð4:7Þ

and can be further specified substituting the explicit
expression (2.11) for the curvature of induced SUð8Þ
connection. In such a way, after some algebra, one can
prove that the proposed gBIs (4.3) and (4.4) are consistent
provided the following identity holds:

P½3�½ij ∧ P̄½3�q ∧ H3jjkl�q − Pp½ijkj ∧ P̄p½3� ∧ H3jl�½3�

− Pp½ijk ∧ Pl�½3� ∧ H̄3
p½3� ¼ 0: ð4:8Þ

This equation is proven in Appendix B using only the
complex self-duality and anti-self-duality of Pijkl and
H3 ijkl, respectively.

C. Superfield duality equations

Substituting Eqs. (4.2) and (4.1) and using the super-
space supergravity constraints, we have checked that the
dim 2 and 5=2 components of the gBIs (4.4) and (4.3) are
satisfied. As far as dim 3 components are concerned, the
∝ Eb ∧ Ea ∧ Eα

p ∧ Eβ
q component of Eq. (4.4) is satisfied

identically [due to the basic constraints and properties of
main superfields, like (2.19) with (3.5)], while its ∝ Eb ∧
Ea ∧ Eα

p ∧ Ē_βq component shows that Habcijkl is dual to
the generalized Cartan form Pd

ijkl,

Habc ijkl ¼
i
2
ϵabcdPd

ijkl: ð4:9Þ

The ∝ Eb ∧ Ea ∧ Eα
p ∧ Ē_βq component of (4.4) shows that

Habci
j is dual to a bilinear of fermionic superfields,

Habci
j ∝ ϵabcd

�
χi½2�σdχ̄j½2� −

1

8
δjiχ½3�σ

dχ̄½3�
�
: ð4:10Þ

This reflects the auxiliary character of the suð8Þ (pseudo-)
notophs.

D. Identities for identities and the proof of the
consistency of the constraints

Instead of studying the higher-dimensional components
of the gBIs, we simplify our study by proving that they are
dependent and cannot produce independent consequences;
this implies that our constraints are consistent and all the
dynamical equations are contained as higher components in
the superfield duality equations (4.9) and (4.10).
To this end we solve the identities for identities (4.6),

0 ¼ IG5 ¼ ðI5 ijkl; I5ijÞ ¼ DIG4 , with respect to the (l.h.s. of
the) gBIs, IGABCD, in the same manner as we solve Bianchi
identities for the torsion and curvature tensors (and also
gBIs for the 3-forms above), expressing them in terms of
the main superfields (see Ref. [28]).

As we have already said, the lower dimensional, dim 2
and 5/2, components of the 4-form gBIs are satisfied
algebraically, without any involvement of superfields.
Setting these to zero, IGα β γ A ¼ 0, we obtain a counterpart
of the torsion constraints of supergravity. Substituting

IG4 ¼ 1

4
Eb ∧Ea ∧Eα ∧EβIGβαabþ

1

3!
Ec ∧Eb ∧Ea ∧EαIGαabc

þ 1

4!
Ed ∧Ec ∧Eb ∧EaIGabcd ð4:11Þ

into Eq. (4.6) and using the torsion constraints of N ¼ 8,
D ¼ 4 supergravity, Eqs. (2.14), (2.15) and (2.16), we find

0 ¼ IG5 ¼ −
i
2
Eb ∧ Eα

p ∧ E _αq ∧ Eβ

∧ Eγδpqσaα _αI
G
β γ abþ ∝ Eb ∧ Ea: ð4:12Þ

Thus, the lowest-dimensional (dim 3) nontrivial compo-
nents of the identities for identities imply the following
algebraic equations for the l.h.s. of the dim 3 gBIs:

0 ¼ δpqσaα _αI
Gk

β_γlab þ δkqσ
a
β _αI

Gp
α_γlab þ ð _αq ↦ _γlÞ; ð4:13Þ

0¼ δpqσaα _αI
Gk l

β γ ab þ δkqσ
a
β _αI

Glp
γ αab þ δlqσ

a
γ _αI

Gpk
αβab; ð4:14Þ

plus the complex conjugate of Eq. (4.14). It is not difficult
to find that the latter as well as Eq. (4.14) have only trivial
solutions IGk lβ γ ab ¼ 0. In contrast, the general solution of

Eq. (4.13) reads IGi α _αjbc ¼ δijσ
a
α _α
~IGabc with an arbitrary

antisymmetric ~IGabc ¼ ~IG½abc�. This implies that the only
independent consequences for the superfields can be
obtained from IGj α _αj½bc ~σ

α _α
a� ¼ 0.

This is exactly what we have observed in the explicit
calculations of the dimension 3 Bianchi identities forH3 ijkl
(see Sec. IV C). Namely, we have found that

0 ¼ ðI4 ijklÞpα _αq ab ≡ −iδpqσcα _α

�
Habc ijkl −

i
2
ϵabcdPd

ijkl

�
;

ð4:15Þ
which implies the superfield duality equation (4.9).
The above general statement allows one to escape the

exhausting algebraic calculations necessary to check
explicitly the cancellation of different terms in the equation
IG α β ab ¼ 0.

Furthermore, the higher-dimensional components of
identities for identities Eq. (4.12) show the dependence
of higher-dimensional Bianchi identities IGαabc ¼ 0 and
IGabcd ¼ 0. This implies that their results can be obtained
by applying covariant derivatives to the results of the
dimension 3 gBIs, this is to say to the superfield duality
equations (4.9) and (4.10), with the use of the superspace
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constraints for torsion, Cartan forms and 2-form field
strength of the 1-form gauge fields and of their conse-
quences. The latter include the equations of motion of
N ¼ 8, D ¼ 4 CJ supergravity.

E. Scalar (super)field equation of motion and
duality equation

To illustrate this statement let us consider the dimension 4
Bianchi identity corresponding to E7ðþ7Þ=SUð8Þ generators,
0 ¼ Iijkl abcd ¼ 4D½aHbcd�ijkl þ 16H½abcj½ipPjkl�pjd�

− 18F½ijj½abFcd�jkl� þ
3eiβ

4
εijkli0j0k0l0F̄

i0j0
½abF̄

0k0l0
cd�

þ 6T ½abjα½ijðσjcd�χjjkl�Þα

−
eiβ

4
εijkli0j0k0l0T ½abj _αi

0 ðχ̄j0k0l0 ~σjcd�Þ _α: ð4:16Þ

Using (4.9) we can equivalently write this as

DaPa ijkl ¼ −
4i
3
εabcdHabc½ipPjkl�pd −

3i
2
εabcdFab

½ijF
cd
kl�

þ ieiβ

16
εijkli0j0k0l0ε

abcdF̄i0j
abF̄

0k0l0
cd þ Tab

α
½iðσabχjkl�Þα

þ eiβ

4!
εijkli0j0k0l0Tab

_αi0 ðχ̄j0k0l0 ~σabÞ _α: ð4:17Þ

After using Eq. (4.10), this expression acquires the usual
form of the scalar (super)field equation of N ¼ 8, D ¼ 4
supergravity,

DaPa ijkl ¼ −
3i
2
εabcdFab

½ijF
cd
kl�

þ ieiβ

16
εijkli0j0k0l0ε

abcdF̄i0j0
ab F̄

0k0l0
cd þ � � � ; ð4:18Þ

where the dots stand for the terms bilinear in fermions.
To reflect the dependence of the higher-dimensional

Bianchi identities proved in the previous section
(Sec. IV D), the above line should be read in the opposite
direction: the results of the dimension 4 Bianchi identity
Eq. (4.16) can be obtained by taking the bosonic covariant
derivative of the duality equation (4.9) and using the scalar
(super)field equation (as obtained from the torsion con-
straints of [25,26]) and Eq. (4.10).
Thus, the results of Sec. IV C and the arguments of

Sec. IVD allow us to conclude that our constraints for the
3-form field strength are consistent and describe a set of
notophs dual to the scalar fields of N ¼ 8, D ¼ 4
supergravity.

V. CONCLUSION AND OUTLOOK

In this paper we have provided the complete super-
symmetric description of the notophs (2-form gauge
potentials) of the Cremmer-Julia N ¼ 8, D ¼ 4

supergravity [1]. More specifically, we have presented the
set of superspace constraints for the 3-form field strengths of
the 2-form gauge potentials defined on N ¼ 8, D ¼ 4
supergravity superspace [25] and we have shown that these
are consistent and produce the duality relation between
the field strengths of the physical notophs and the scalar
fields of the N ¼ 8, D ¼ 4 CJ supergravity parametrizing
the G=H ¼ Eð7ðþ7Þ=SUð8Þ coset. We have found that the
consistency, expressed by the generalized Bianchi iden-
tities, requires us to introduce also the auxiliary 2-form
potentials corresponding to the generators of the stability
subgroup H ¼ SUð8Þ of the coset. In the companion
paper [8] we will discuss the reasons for this in detail.
Here we have adopted a purely superspace approach and
arrived at this conclusion starting from the natural candidate
for the superspace constraints and searching for their con-
sistency. The generalized Bianchi identities for the 3-form
field strengths of the notophs, which define the tensorial
hierarchy (or free differential algebra) of theN ¼ 8, D ¼ 4
CJ supergravity, have been also obtained in this manner.
The list of natural directions of development of our

approach includes the studies of the superfield description
of the notophs of gauged N ¼ 8, D ¼ 4 supergravity
[15,29,30] using the torsion constraints of [31] and of the
supersymmetric aspects of the generalized notophs of the
exceptional field theories [32–34] in N ¼ 8, D ¼ 4 super-
space enlarged by 56 bosonic “central charge” coordinates
(see [35]). Another obvious extension of this work is the
search for worldvolume actions of possible superstring
models carrying the “electric” charges with respect to the
antisymmetric tensor gauge fields. Probably the correct
posing of this problem may require us to work in the
Howe-Linmdstöm enlarged N ¼ 8, D ¼ 4 superspace.
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Note added.—Recently, the superspace description of
higher-form gauge fields in D-dimensional maximal and
half-maximal supergravities has been discussed in [36],
where the cases of D ¼ 11 and D ¼ 10 are elaborated
explicitly. For cases where 3 ≤ D < 10 the representations
carried by higher forms in maximal and half-maximal
superspaces and their generalized Bianchi identities have
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been tabulated in Appendix A of [36]. Higher forms in
maximal and half-maximal D¼ 3 dimensional superspaces
were studied in [37].

APPENDIX A: 4D WEYL SPINORS AND
SIGMA MATRICES

We use the relativistic Pauli matrices σaβ _α ¼ ϵβαϵ _α _β ~σ
a _βα

which obey

σa ~σb ¼ ηab þ i
2
ϵabcdσc ~σd; ~σaσb ¼ ηab −

i
2
ϵabcd ~σcσd;

ðA1Þ
where ηab ¼ diagð1;−1;−1;−1Þ is the Minkowski metric
and ϵabcd ¼ ϵ½abcd� is the antisymmetric tensor with
ϵ0123 ¼ 1 ¼ −ϵ0123.
The spinorial [SLð2;CÞ] indices are raised and lowered

by ϵαβ ¼−ϵβα ¼ iτ2 ¼ ð 0
−1

1
0
Þ ¼−ϵαβ obeying ϵαβϵ

βγ ¼ δγα:
θα ¼ ϵαβθ

β and θα ¼ ϵαβθβ. The antisymmetrized
products σabβα¼σ½a ~σb�≔1

2
ðσa ~σb−σb ~σaÞ and ~σab _α _β¼ ~σ½aσb�

are self-dual and anti-self-dual, σab ¼ i
2
ϵabcdσcd,

~σab ¼ − i
2
ϵabcd ~σcd.

APPENDIX B: MORE ON DIFFERENTIAL
FORMS IN CURVED N ¼ 8, D ¼ 4 SUPERSPACE

1. Exterior derivative

The exterior derivative d acts on a q-form

Ωq ¼
1

q!
dZMq ∧ … ∧ dZM1ΩM1…Mq

ðZÞ

¼ 1

q!
EAq ∧ … ∧ EA1ΩA1…Aq

ðZÞ

as

dΩq ¼
1

q!
dZMq ∧ … ∧ dZM1 ∧ dΩM1…Mq

ðZÞ

¼ 1

ðqþ 1Þ! dZ
Mqþ1 ∧ … ∧ dZM2

∧ dZM1ðqþ 1Þ∂ ½M1
ΩM2…Mqþ1gðZÞ: ðB1Þ

In action on the product of differential forms, e.g. the
q-form Ωq and the p-form Ωp, it obeys the Leibnitz rule

dðΩq ∧ ΩpÞ ¼ Ωq ∧ dΩp þ ð−ÞpdΩq ∧ Ωp: ðB2Þ

The mixed brackets ½� � �g denote the graded antisymmet-
rization of the enclosed indices with the weight unity,
so that ðqþ1Þ!∂ ½M1

ΩM2…Mqþ1gðZÞ¼∂M1
ΩM2…Mqþ1

ðZÞ−
ð−ÞεðM1ÞεðM2Þ∂M2

ΩM1M3…Mqþ1
ðZÞþ���, where εðMÞ ≔

εðZMÞ is the Grassmann parity (fermionic number),
εðμÞ ≔ εðxμÞ ¼ 0, εðαÞ ¼ εðθαÞ ¼ 1.

2. On E7ðþ7Þ Cartan forms

Using the complex self-duality of Pijkl Eq. (2.12) and the
antisymmetry of the exterior product of P one finds

P½4� ∧ P̄½4� ¼ 0: ðB3Þ

Then, using Eq. (2.12) and this last property Eq. (B3) in
Pij½2� ∧ P̄kl½2� one finds

Pijpq ∧ P̄klpq ¼ 2

3
δ½i½kPj�½3� ∧ P̄l�½3�: ðB4Þ

The Ricci identity

DDPijkl¼−4R½ip ∧Pjkl�p ¼−
4

3
P½3�½i ∧ P̄½3�p ∧Pjkl�p ¼ 0

ðB5Þ
is satisfied because, by virtue of Eq. (B4), the r.h.s. is
equivalent to

Ppq½ij ∧ P̄pqrs ∧ Pkl�rs; ðB6Þ

which vanishes automatically on account of the antisym-
metry of the wedge product and the symmetry under the
interchange of pairs of the SUð8Þ indices.
From Eq. (B4) it follows that the first term in Eq. (4.8)

can be reexpressed as

P½3�½ij ∧ P̄½3�q ∧ H3jjkl�q ¼ −
3

2
P½2�½ijj ∧ P̄½2�½20� ∧ H3jkl�½20�:

ðB7Þ

Using again the complex self-duality of Pijkl and the
complex anti-self-duality of H3 ijkl, the third term in
Eq. (4.8) can be reexpressed as

Pp½ijk ∧ Pl�½3� ∧ H̄3
p½3� ¼ −

1

8
Pijkl ∧ P½4� ∧ H3

½4�

−
3

4
P½2�½ijj ∧ P̄½2�½20� ∧ H3jkl�½20�:

ðB8Þ

The same properties and this last identity allow us to rewrite
the second term in Eq. (4.8) as

Pp½ijkj ∧ P̄p½3� ∧ H3jl�½3� ¼
1

8
Pijkl ∧ P½4� ∧ H3

½4�

−
3

4
P½2�½ijj ∧ P̄½2�½20� ∧ H3jkl�½20�:

ðB9Þ

After rewriting the three terms of Eq. (4.8) using the above
identities, we find that Eq. (4.8) is identically satisfied.
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3. On E7ðþ7Þ Cartan forms in N ¼ 8
supergravity superspace

Equations (2.20) can be derived also from (2.13)
with (2.21). To this end it is useful to notice the trivial
identity

χ̄ _αpq½iχ̄jkl�_α ¼ 5

2
χ̄ _αp½qiχ̄jkl�_α −

3

2
χ̄ _αp½ijχ̄kl�q_α : ðB10Þ

Its l.h.s. is antisymmetric, while the second term in its r.h.s
is symmetric. Hence

χ̄ _αp½ijχ̄kl�q_α ¼ 5

6
ðχ̄ _αp½qiχ̄jkl�_α þ χ̄ _αq½piχ̄jkl�_α Þ; ðB11Þ

and

χ̄ _αpq½iχ̄jkl�_α ¼ 5

4
ðχ̄ _αp½qiχ̄jkl�_α − χ̄ _αq½piχ̄jkl�_α Þ: ðB12Þ

As a consequence

εijkli
0j0k0l0 χ̄ _α

pq½i0χ _α½j0k0l0� ¼ −2δ½p½i ε
jkl½2�½3�χ̄ _α

q�½2�χ _α½3�: ðB13Þ

4. Curvature 2-forms of N ¼ 8 superspace

The study of the Bianchi identities results in the
following expressions for the curvature of the spin

connection (the “Riemann” curvature 2-form) (see
[25,26]):

σaα _α ~σ
_ββ
b Ra

b ¼ 2δα
βR _α

_β þ 2δ _α
_βRα

β; ðB14Þ

Rαβ ¼ 1

4
Rabσαβab ¼

1

2
Eγ
i ∧Eδ

jðϵγδNαβijþ2δðγαδδÞβSijÞ

þ1

2
Ē_βi ∧ Ē_γjϵ_γ _δM

αβ
ij þEγ

i ∧ Ē_γjRi
γ _γj

αβ

þEc∧EβRβc
αβþ1

2
Ec ∧EbRbc

αβ; ðB15Þ

R _α _β ¼−
1

4
Rab ~σ _α _β

ab

¼−
1

2
Eγ
i ∧Eδ

jϵγδM̄
_α _β ij

−
1

2
Ē_βi ∧ Ē_γjðϵγδN̄ _γ _δ

ij þ 2δð_γ _αδ_δÞ
_βS̄ijÞ

þEγ
i ∧ Ē_γjRi

γ _γj
_α _β þEc ∧EβRβc

_α _β þ 1

2
Ec ∧EbRbc

_α _β:

ðB16Þ
Equations (3.4) and (3.5) can be combined as

Fab ij ¼
1

2
σαβabFαβ ij þ

1

2
~σ _α _β
abF _α _β ij

¼ i
4
σαβabMαβ ij þ

ieiβ

12 · 4!
εij½3�½30�χ̄½3� ~σabχ̄½3

0�: ðB17Þ
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