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General relativity as an extended canonical gauge theory
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It is widely accepted that the fundamental geometrical law of nature should follow from an action
principle. The particular subset of transformations of a system’s dynamical variables that maintain the form
of the action principle comprises the group of canonical transformations. In the context of canonical field
theory, the adjective “extended” signifies that not only the fields but also the space-time geometry is subject
to transformation. Thus, in order to be physical, the transition to another, possibly noninertial frame of
reference must necessarily constitute an extended canonical transformation that defines the general
mapping of the connection coefficients, hence the quantities that determine the space-time curvature and
torsion of the respective reference frame. The canonical transformation formalism defines simultaneously
the transformation rules for the conjugates of the connection coefficients and for the Hamiltonian. As will
be shown, this yields unambiguously a particular Hamiltonian that is form-invariant under the canonical
transformation of the connection coefficients and thus satisfies the general principle of relativity. This
Hamiltonian turns out to be a quadratic function of the curvature tensor. Its Legendre-transformed
counterpart then establishes a unique Lagrangian description of the dynamics of space-time that is not
postulated but derived from basic principles, namely the action principle and the general principle of
relativity. Moreover, the resulting theory satisfies the principle of scale invariance and is renormalizable.
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I. INTRODUCTION

The special principle of relativity states that the funda-
mental laws of physics must be form-invariant under Lorentz
transformations. This can be regarded as to require the
description of a system to be form-invariant under a global
transformation group, namely the Lorentz group. The
generalization to noninertial reference frames is referred
to as the general principle of relativity. According to this
principle, the description of a system is required to be form-
invariant under the corresponding local transformation
group, namely the diffeomorphism group that comprises
mappings of the local space-time geometry. In this regard,
the transition from the special to the general principle of
relativity meets the gauge principle. The latter requires a
physical system that happens to be form-invariant under a
characteristic global transformation group of the fields to be
rendered form-invariant under the corresponding local trans-
formation group, hence the corresponding explicitly space-
time dependent transformation group of the fields. For this
requirement to be met, a set of “gauge fields” must be added
to the system’s dynamics that obey a specific inhomo-
geneous transformation rule. In the case of General
Relativity, the local transformation group is constituted by
space-time dependent mappings of the local curvature and
possibly the local torsion of the reference frames. The “gauge
fields” are then given by the connection coefficients—also
referred to as Christoffel symbols for the particular case of a
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coordinate (holonomic) basis of the reference frame. The
connection coefficients also obey a specific inhomogeneous
transformation rule relating different reference frames.

The laws which govern the dynamics of classical systems
can be derived from Hamilton’s action principle. In this
context, adynamical system is described by a Lagrangian or
its Legendre transform, the Hamiltonian. From the action
principle, the dynamics of a classical particle or of a classical
field can be derived by integrating the Euler-Lagrange
equations or, equivalently, by integrating the canonical
equations. The subsequent theory of canonical transforma-
tions then isolates exactly the subset of those transformations
of the dynamical variables that maintain the form of the
action principle—and hence the general form of the canoni-
cal equations. As canonical transformations are not
restricted to point transformations, the canonical formalism
thus establishes the most general path to work out theories
that are supposed to be form-invariant under the action of a
transformation group of the fields while ensuring the action
principle to be maintained. In the extended canonical trans-
formation formalism, the space-time geometry is also subject
to transformation. With the space-time then treated as a
dynamic variable, a theory that is form-invariant as well
under the canonical mapping of the connection coefficients
then simultaneously maintains the action principle and
satisfies the general principle of relativity.

With this paper, a generalization of the Hamiltonian
gauge transformation formalism is reviewed [1] that
extends the requirement of form-invariance under a
local transformation group of the fields to also demand
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form-invariance under local transformation of the connec-
tion coefficients. Thereby, the well-known formal similar-
ities between non-Abelian gauge theories [2] and general
relativity ([3, p 409], [4, p 163]) are encountered. With the
transformation rules for the connection coefficients and
their respective canonical conjugates being derived from a
generating function, it is automatically assured that the
extended action principle is preserved, hence that the
actual space-time transformation is physical. No additional
assumptions need to be incorporated for setting up an
amended Hamiltonian that is locally form-invariant on
the basis of a given globally, hence Lorentz-invariant
Hamiltonian. In particular, the connection coefficients
are introduced in the most general way by only specifying
their transformation properties. No a priori assumptions are
incorporated. In particular, it is not assumed that the
connection coefficients are symmetric in their lower index
pair, hence that a torsion of space-time is excluded [5].
Furthermore, following Palatini’s approach [6], the corre-
lation of the connection coefficients with the metric emerges
from a canonical equation—or from an Euler-Lagrange
equation in the equivalent Lagrangian description—rather
than being postulated.

Prior to working out the general local space-time trans-
formation theory in the extended canonical formalism in
Sec. V, the formalism of extended Lagrangians and
Hamiltonians and their subsequent field equations is
presented in Secs. II and III. With the space-time treated
as a dynamical variable, the extended Lagrangians and
Hamiltonians are defined to also depend on the connection
coefficients and their respective conjugates. The general
space-time transformation theory in classical vacuum is
then based on an extended generating function that defines
the mapping of the connection coefficients in the transition
from one frame of reference to another. As an extended
generating function simultaneously defines the transforma-
tion rule for the canonical conjugates of the connection
coefficients as well as the transformation law for the
extended Hamiltonians, one directly encounters a particular
extended Hamiltonian that is form-invariant under the
required transformation law of the connection coefficients
while maintaining the action principle. The set of canonical
field equations following from the obtained gauge-invariant
Hamiltonian now establishes a field equation for the
Riemann curvature tensor that is no longer postulated,
but uniquely emerges from both the action principle and the
general principle of relativity.

II. EXTENDED LAGRANGIANS L, IN THE REALM
OF CLASSICAL FIELD THEORY

A. Variational principle, extended set of
Euler-Lagrange field equations

Similar to point dynamics, the Lagrangian formulation of
continuum dynamics (see, e.g., [7]) is based on a scalar
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Lagrange function £ that is supposed to contain the
complete information on the given physical system. In a
first-order scalar field theory, the Lagrangian £ is defined
to depend on [ =1, ..., N—possibly interacting—scalar
fields ¢;(x), on the vector of independent space-time
variables x#, and on the first derivatives of the scalar fields
¢; with respect to the independent variables, i.e., on the
covariant vectors (1-forms)

b <a¢, oy Oy aqs,)'

Ox% Ox! " Ox% Ox3

ox?

The Euler-Lagrange field equations are then obtained as the
zero of the variation 8S of the action functional over a
space-time region R

= % H| d4 L
S_/g£<¢1’8x”’x >d X, 05=0 (1)

as

0 oL ok _ 2)
ox o(9tyy - Oy

If the Lagrangian L is to describe the dynamics of a set of
vector fields aj(x) that possibly couple to the scalar fields
¢;, then the additional Euler-Lagrange equations take on
the similar form

o oc_oc_
8xfa(g_fg) ody

u
0. - c(cpl,%,a’;,gjj,xﬂ).

(3)

The derivatives of vectors do not transform as tensors. This
means that the Euler-Lagrange equations (2) and (3) are not
form-invariant under transformations of the space-time
metric. Any field equation emerging from Egs. (2) and
(3) that holds a local frame y must finally be rendered a
tensor equation in order for the theory described by £ to
hold in any reference frame. This is achieved by converting
all partial derivatives in the field equations into covariant
derivatives.

In analogy to the extended formalism of point mechanics
([8.,9]), the action integral from Eq. (1) can directly be cast
into a more general form by decoupling its integration
measure from a possibly explicit x*-dependence of the
Lagrangian £

S = /, £<¢1,%,x”> det Ad*y. (4)

Herein, det A # O stands for the determinant of the Jacobi
matrix A = (A¥) that is associated with a regular trans-
formation x*+—y* of the independent variables and the
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corresponding transformation R—R’ of the integration
region

oY ox
d_yo e W
A=) =|: . |
x3 3
0 3
detp = 20 g
O, ....y7)
Ox*(y) / oy* (x)
A#/ - ) Allj - k)
L) =5 (0 =5
ANy = NAY =& (5)

Here, the prime indicates the location of the new indepen-
dent variables, y*. As this transformation constitutes a
mapping of the space-time metric, the A’:, are referred to as
the space-time coefficients. The integrand of Eq. (4) can be
thought of as defining an extended Lagrangian L.,

(1 20 200

op1(y) Ay~
:E(qjl’ ayk oxv’

x”(y)> det A. (6)

In the language of tensor calculus, the conventional
Lagrangian £ represents an absolute scalar whereas the
extended Lagrangian L, transforms as a relative scalar of
weight w = 1 under a mapping of the independent varia-
bles, y*. With this property, £, is referred to as a scalar
density. Both, £ and L, have the dimension of Length™*
in natural units (¢ = 1). The now dependent variables
x%,...,x° in the argument list of L. can be regarded
as an extension of the set of fields ¢;,/ =1,...,N. In
other words, the x#(y) are treated on equal footing with the
fields ¢;(y). In terms of the extended Lagrangian L.,
the action integral over d*y from Eq. (4) is converted into
an integral over an autonomous Lagrangian, hence over a
Lagrangian that does not explicitly depend on its indepen-
dent variables, y*

8451 3)6”) 4
S= | L|brar. xO). 77 |dhy. 7
A , (451 oy ¥ 0) g |4 (7)

As this action integral has exactly the form of the initial one
from Eq. (1), the Euler-Lagrange field equations emerging
from the variation of Eq. (7) take on form of Eq. (2) (see
Appendix C)

0 0L, OL.
oy ok O

0 0L 0L g
0y 0(5%) ~ o

An extended Lagrangian L, that is correlated to a conven-
tional Lagrangian £ according to Eq. (6) is referred to as a
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trivial extended Lagrangian. Clearly, multiplying a conven-
tional Lagrangian £ by det A and expressing the x*-
derivatives of the fields by means of the chain rule in
terms of y”-derivatives does not add any information. The
system’s description in terms of a trivial £, is thus
equivalent to that provided by L.

Yet, a dynamical system that exhibits a dynamical space-
time is generally described by an extended Lagrangian
L. that does not have a conventional counterpart L.
Furthermore, is possible to define extended Lagrangians
L. that depend in addition on the connection coefficients
7" q(x) (see Appendix B) and their respective x*-derivatives
that describe the space-time curvature in the x reference
frame

_ %, 0oz i) O g

55 =0. (9)

This description follows the path of A. Palatini [6,10], who
treated the connection coefficients and the metric as a priori
independent quantities. Their correlation then follows from
the extended Lagrangian in Eq. (9) by means of the addi-
tional Euler-Lagrange equation (see Appendix C)

0 oL oL
— 0 ——==0. (10)
',
Ox/ 3(%) 07" e

Equations (8) and (10) must be simultaneously fulfilled in
order to minimize the action functional (9). This determines
uniquely the system’s dynamics which includes the dynam-
ics of the space-time geometry.

III. EXTENDED HAMILTONIANS H,
IN CLASSICAL FIELD THEORY

A. Extended canonical field equations

For a covariant Hamiltonian description, the momentum
fields 77 and 7% must be defined as the dual quantities of
the derivatives of the fields ¢; according to

oL oL
B = B = (1)
o o)

The momentum fields 7} emerging from the extended
Lagrangian density £, transform as

7 (0 oo 1
T(y) = m)(x) = det A & m4(x) = ,,;(y)a_yjm_

ox’
(12)

As indicated by the tilde, the 7} = 7% det A represent tensor
densities of weight w =1, whereas the z} transform as
absolute tensors.
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Corresponding to the momentum field 7% (y) that con-
stitutes the dual counterpart of the Lagrangian dynamical
variable 9¢;(y)/dy*, the canonical variable 7,* is defined
formally as the dual counterpart of Ox*/8y* and 7, (x) as
the dual counterpart of 8y7,(x)/0x*. Thus, 7,” and
7, (x) follow similarly to Eq. (11) from the respective

partial derivative of the extended Lagrangian density
L, as

. 0L -, Oy .. Oy
e = U b
H a(a)év(b ) ( )axﬂ ( )ax]

. (13)

7, (x) =
The nontensorial quantity y”,:(x) must be derived with
respect to the x” rather than with respect to y*. Its canonical
conjugate ?n“‘f”(x) then also refers to the space-time event
x. Possible symmetry properties in #,a,& of Oy",:/0x"
must agree with those of ?,7“5” in order for both quantities to
be actually dual to each other. The Hamiltonian H and the
correlated extended Hamiltonian H, can now be defined as

the covariant Legendre transform of the Lagrangian £ and
the pertaining extended Lagrangian £,

H(¢I’ Y, r, )C)
_ ﬂJ a¢1 i aynqi
Ox/

a¢ 87/ aé
_£<¢1’85’ya§’ Ox’ X
He(¢l’7~7:l’yv ;’x’ t)

_ 0 | - O - 0"
=iy T e T o

8¢1 aynaﬁ “" 8xﬂ
<¢[’a PR af’ axb , X ’ayl/ . (14)

The correlation (6) of conventional and extended
Lagrangians thus entails a corresponding correlation of
conventional and extended Hamiltonians,

104

50
H, = HdetA — a"ﬂ (15)

With this definition of the extended Hamiltonian H,,
one encounters an extended set of the canonical
equations. Calculating explicitly the partial derivatives of
‘H. from Eq. (14) with respect to all canonical variables
yields
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Obviously, an extended Hamiltonian H.—through its
&1, 7" 4> and X dependencies—only determines the diver-
gences Om)/dy’, OF,*/0x/, and 07,7/dy’ but not the
individual components 77, 7’,,”5”, and ?ﬂ” of the cano-
nical “momentum” tensor densities. Consequently, the
momenta are only determined by the Hamiltonian H, up
to divergence-free functions.

The action integral from Eq. (9) can be equivalently
expressed in terms of the extended Hamiltonian H. by
applying the Legendre transform (14)

_ - Ody | atj 91 ag or" at = - Ox!
5= /, <7rj oy’ T Ox/ i oy’

— He(dr 717, 7,x,f)>d4y. (17)

This representation of the action integral forms the basis on
which the extended canonical transformation formalism
will be worked out in Sec. IV.

In case that the extended Lagrangian describes the
dynamics of (covariant) vector fields, a,,(y), the canonical
momentum fields are to be defined as

oL,
day,
6( ay” )

) = (18)

Similar to Eq. (12), the tensor densities p}* then represent
the dual quantities of the y”-derivatives of the vector fields
ay, and hence the canonical conjugates of the ay,(y) in the
extended covariant Hamiltonian description.

IV. EXTENDED CANONICAL
TRANSFORMATIONS

A. Generating function of type F,

In the realm of field theory, the condition for defining
extended canonical transformations that include mappings
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X (y)—>X*(y) of the respective space-time reference
systems x* and X* and of the connection coefficients
Yae(X)>T",:(X) is based on the extended version of
the actlon functional (17). Specifically, the action prin-
ciple 5520 is again required to be conserved under the
action of the transformation, with y* denoting the
common independent variables of both reference frames.
Requiring the variation of the action functional to be
maintained implies the integrand to be determined
only up to the divergence of a 4-vector function F4 =
F (¢, ®r,7,T,x,X) on the original and the transformed
dynamical “field” variables. The generating function F
depends on the sets of original fields ¢; and transformed
fields ®; in conjunction with the connection coefficients
Yae(x), T",:(X) at the original space-time events x*(y)
and transformed ones, X*(y)

(9.?’ 0, O~ Ox%
— -1 7T] _rJ Ut&fk aé _ /} - H
Le £/+3J Jayj " Oxk “a/f ¢
~ . 0P o ox« 8.7:]
_ 1 J atk U ag B _
=1II dyi Rn a Ta —3 7 HL +—8 i
(19)

At this point, the tensor densities 7,%#(x) and k”"‘f" (X)
merely denote formally the respective canonical
conjugates of the connection coefficients, y”,:(x) and
I,:(X), whose dynamics—and hence whose physical
meaning—follows later from the corresponding canonical
equation. Since the independent variables y* are not
transformed, the divergence of the vector function
Fi(¢pr, @r,7,T,x,X) can be expressed locally as the
ordinary divergence

OF| OF|0¢; OF|0%; OF)| 0x 0yl

N OF! oxkor,. OFIoxi  OF! oX
oM, Oyl ox* — Ox' ay/  0X' y’”

(20)

Comparing the coefficients of Egs. (19) and (20), the
extended local coordinate representation of the trans-
formation rules induced by the extended generating
function F'(y) are

p P OF L, OFL 0w
B O, ’ e 0%, ’ o 57”0;5 3yj7
oot _ _ OF @ ;y”:_af’f, Tyﬂ:af’;
1 O e Dy’ ox¥ 0x
~ ,0X“ - OX”
e "detN — T,/ — =HdetA -7,/ —..
H, ="H, ‘H' de < 5P Hde < 557
(21)
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Note that the nontensor quantities y”,:(x) must always
refer to the original reference system, x, and, correspond-
ingly, I'",:(X) to the transformed reference system, X.
The reference systems of their local canonical conjugates,
hence the tensor densities 7, (x) and Rn"‘f"({() are
defined accordingly. The indices of ¢# and T,” in
Eq. (21) are related to different reference systems. The
upper index of 7,# and T, pertains to the reference
system y, whereas the lower index refers to the reference
systems x and X, respectively. In order to attribute these
quantities a definite space-time location, hence to convert
them into regular tensors, the transformations follow as

. . Ox! OF ! Ox*
H — 7] o — 1 i
el/ (‘x) 1 ay J 8)(1/ ay J )
- - OX* OF! ox+
JZ — T — 1 i
®I-/ (X ) v ay j a XD ay Jj

in agreement with the definition of 7,/ as the dual
quantity of 0x/Oy* from Eq. (13). As shown in
Appendix A, the tensor 6,#(x) represents the canonical
energy-momentum tensor of the original system if the
dynamical system is described by a frivial extended
Lagrangian L. or its corresponding Legendre-transform
that defines a trivial extended Hamiltonian, H,.
According to Egs. (21), the value of an extended
Hamiltonian H, is conserved under extended canonical
transformations. Hence, the transformed extended
Hamiltonian density H.(®;,I1;,T, R, X, T) is obtained
by expressing the original extended Hamiltonian
(qﬁ,,fr,,y,? x,1) in terms of the transformed fields
®,;, IT;, the transformed I e, R % and the transformed
space-time location X, and its canomcal conjugate, T,/

B. Generating function of type F,

The generating function of an extended canonical trans-
formation can alternatively be expressed in terms of a
function F% of the original fields ¢);, the connection
coefficients of the original system, y,:(x), and the original
space-time coordinates, x* in conjunction with the new
conjugate fields I1%, the R,™" as the duals to I +(X), and
the T,* as the duals to 8X” /Oy*. In order to derive the
pertaining transformation rules, the following extended
Legendre transformation is performed

fg(¢,,ﬁ1,y,k,x, T)
= }-’ll((ﬁl,q)h}’vr X, X) +©1ﬁl;

ay*

+ TR, 35 XITH. (22)

The resulting transformation rules are
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4 H J
P S O S R K
¢, oIy Y e Oy
)¢ _ 4 4
P 8t = 0F; 0X). i OFL  agp _ 0P
OR, I Oy ox" oT,"
o= HdeA TP den—ip O
y oy’
(23)

These transformation rules are equivalent to the set of
Egs. (21) if the Legendre transformation (22) is non-
singular, hence if the determinant of the Hesse matrix of
JF is nonzero.

V. GENERAL SPACE-TIME TRANSFORMATION
IN VACUUM

Given a classical vacuum system, i.e., a system with no
fields. An extended canonical transformation that maps the
space-time geometry from a space-time location x to X
under the transformation law of the connection coefficients
Ve (x)=>T" ¢ (X) in a coordinate basis (see Appendix B) is
generated by

oy*
axi

Y Oxk 0X* X5 Oxk 0X*0X¢ )’
(24)

F5(r.R.x,T) = =T ,'h*(x) + R,™

In this definition of an extended generating function of type
F5(y), the tensor density components R,***(X)dy*/oX*
denote formally the canonical conjugates of the connection
coefficients I',:(X) of the transformed system and hence
the dual quantities to the y*-derivatives of the I'",:(X). The
7" 4¢(x) stand for the connection coefficients of the original
system. The tensor density components R wH(X) =
R,*#(X)det A’ then represent the dual quantztzes of the
X" derivatives of the transformed connection coefficients

Fr’(lf (X)

R,**(X)

n

H Ol (X 17 (X
O Il) _ i) Tl8)

e = RX)

Likewise, the tensor density components 7, (x)=
r,®#(x)detA denote the dual quantities of the x*-
derivatives of the connection coefficients y”,:(x) of the
original system. No predication with respect to the physical
meaning of r,*# and R,*# is made at this point.

The particular generating function (24) entails the
following transformation rules according to the general
rules from Egs. (23)
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H J
I8t — 6}’-’2 OX
aRr’a{/ ayv
R
N Y oxk 0X*ox¢  ox* 0X*0X¢
2o OFS5Oxt o 0X" Ox' Ox/ Ox*
Foiin =
a0y Oxk OX“ 0XE X7
u>
xest = 272 _ gupyy
8Ta
< _8?’5
v Ox¥
=, Oh%(x) = e O
T _ R
¢ oxY Tox*
. 0 [ox" oxt Ox/
R AT G et
T oxv \ Oxk OX* 0X¢
Lo (oxn ot
Ox¥ \ Ox* 0X*0X¢
hence
OX" Ox' Ox/  9X" OPxk
(X)) = 7 .
el X) =700 5 xe ke T o axeoxE
OX" Ox' Ox) Ox*
7 iju agl
) = Ry ) 5.8 o o o
Xt = h*(x)
- -, 0X” et OV d (0X" Ox' Ox/
PH—TH —R - 77
v “ Oxv 1 oxt |7 i Ox* \ axk 9X* ox¢
0 [0X" 0*xk
— = ]]. 25
o <8xk axaaxf)} (25)

According to Eqgs. (23), the last rule yields the trans-
formation rule for the conventional Hamiltonians via

0K ox
o T oyP
= H'det A’ — H det A

— R aci Ox* 0 (0X" Ox' Ox7
1 ax | i oxv \ Oxk X* oX¢

0 [0X" 0*xk

— (=== 2

o <8xk axaaxfﬂ (26)

Yet, what is actually desired is the transformation rule for
the Hamiltonians as expressed in terms of their proper
dynamical variables y,r and I',R, respectively. This
requires to express all derivatives of the functions x*(y)
and X*(y) in (26) in terms of the original and transformed
connection coefficients y”ag( x) and I",:(X) and their
conjugates, 7, au andR by making use of the respective
canonical transformatlon rules (25). This calculation is
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worked out explicitly in Appendix D. Remarkably, the
transformation rule (26) can indeed completely and sym-
metrically be expressed in terms of the canonical variables
of the original and the transformed system as

7 pOX* 7P Ox?
o o
1. oy oy"
2 O ( 8xZ§ + axgﬂ — 7 el My TV ke ) -

Gathering original and transformed dynamical variables on
either side of the equation yields

ox*

1- o or ~
¢ af W1k k
2 (W*W‘F ol Wr"kf> %

Lo (070 OV, k
:Ern(&l <8x"+ axé: -7 aéy”ky+y auyrlkf _ta/a VN

The left- and right-hand sides of this equation can be
regarded as extended Hamiltonians M, and H,, respec-
tively, which satisfy the required transformation rule H, =
‘H. from Egs. (23). Obviously, the Hamiltonians not only
retain their values but are furthermore form-invariant
under the extended canonical transformation generated
by Eq. (24).

In order for the canonical equations following from the
Hamiltonians H, and H. to be compatible with the
canonical transformation rules (25), the above form-
invariant Hamiltonians must be amended, by “free field”
Hamiltonians

1
é:.dyn =~ ZRﬂag#R”!lfﬂ det A,
1
He,dyn = _Z r,7 5”7"7&5” det A.
Clearly, H, 4,, = Hcayn must hold under the rules (25) in

order for the final extended Hamiltonians to maintain the
required transformation rule H, = H,. This is ensured if
det A’ = det A, hence if

a(x°,....x3) B A(h°(x), ..., h*(x)) 1 (28)
ox0,...x%) o0, ..
Thus, the by now arbitrary function 4%(x) in the generating
function (24) must satisfy Eq. (28). The final form-invariant
extended Hamiltonian that is compatible with the extended
set of canonical transformation rules generated by (24) now
writes for the x reference frame
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ox* 1

Gy N=_F B " _ "7 a§
He(r’}/’t)_ ty ay[} 4}’” ”rqafﬂ
1. oyl Oy
—|—§r,7 < 8x;”+ ar Zé‘H’ an? ke =7 ac?

(29)

VI. CANONICAL EQUATIONS

The canonical equation for the connection coefficients
follows as

ayna.f o a,He
ox* 8?,7“‘5”
1
= =5 M
Ny | e k
( Ot 2+ O 7 ke =V 0k |-
Solved for ., one finds

n 6}/'70,” ayr] aé
r = -
T oxE o

-7 aéynkﬂ (30)

One thus encounters exactly the representation of
the Riemann curvature tensor in terms of the connec-
tion coefficients and their derivatives. The quantity
R,,”"f’1 (X)Oy*/0X* was formally introduced in the generat-
ing function (24) as the canonical conjugate of the con-
nection coefficient I'?,:(X) in order to yield the required
transformation law for y”,:(x). With Eq. (30), the quantity
rnaf" is now attributed a physical meaning. It is manifestly
skew-symmetric in the indices & and p. With Eq. (30) being
a tensor equation, the second canonical transformation
(25) rule is satisfied, which requires 77, to transform as a
tensor.

The divergence of ?n“‘f" follows from the derivative of H,
with respect to y",:

abp

N
n

P00 T Oy

= anﬂ;kaéﬂ - J/Gk/f;nkw .

(31)
On the other hand, the covariant divergence of a tensor
density 7,%% is given by
(;ﬂaéﬁ);/j — (;.naf/})ﬁ _ ykqﬁ;kafﬂ + yaﬂk;nkéﬂ 4 yfﬁk;”(lk/i
= k=
+ o = gt
The last two terms cancel as usual for the divergence of a

tensor density. The field equation (31) is thus equivalently
expressed in terms of the covariant derivative as

085030-7



J. STRUCKMEIER
(F,5P) 5 = 1Ty P+ g 9 4 i o
= (ks — V) Ty 5 — 1T . (32)

As 7, is skew-symmetric in k, /8 according to the first
canonical equation (30), the contraction with y¢ kp in the
rightmost term of Eq. (32) extracts the skew-symmetric part
of the connection coefficients, hence the forsion tensor
s°1s =% (F'xp — ¥*pi)- Thus, Eq. (32) is actually a tensor
equation

(7na§ﬁ);ﬂ
{ 2% 57,75 — 5%, 57,% in general

0 for a torsion-free space-time.
(33)

The canonical equation for the space-time coefficients
follows as

ox*  OH. Ox*

R

As a common feature of all trivial extended Hamiltonians,
no substantial equation for the space-time coefficients
emerges but only an identity that allows for arbitrary
space-time dynamics.

As H, does not depend on the x*, the canonical equation
for the 7,# follows as

o _ OM. _
oy*  Ox¥

(34)

The explicit representation of 7,* will be derived in Eq. (37)
from the Lagrangian £, that follows from H, by means of
the Legendre transformation prescription (14).

VII. FORM-INVARIANT LAGRANGIAN,
EULER-LAGRANGE EQUATIONS

The extended Lagrangian £, corresponding to the form-
invariant Hamiltonian from (29) is obtained by means of
the regular Legendre transformation

_ 5 aéu 8}/'70,5 - 5 0x*

Le=T, e .’ W —H.
— %;ﬂ by rﬂ(@ — _j alu
X (8;1;” - 567);::5 + }’kaﬂ}’ k=Y m:V"kM)
= R, (35)

Note that—in contrast to the Hamiltonian description—the

curvature tensor r7,, does not constitute a proper
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dynamical variable but only abbreviates the particular
combination (30) of the connection coefficients and their
respective derivatives—which comprise in conjunction
with the space-time coefficients the actual dynamical
variables of the Lagrangian description. The dependence
of L, on the space-time coefficients is expressed implicitly
in terms of metric tensors

87/ aé Oxt 1
£ <}’ aks 8” ’8)}) _—Zl"n a@,detA
1
- ngg/)’(lgﬂéfg{ﬂ rkﬂﬂg’r"afy det A.

(36)

The ?ﬂ” represent the duals of the space-time coefficients,
hence, their explicit form follows from £, according to the
general rule (13). Owing to the identities (A5) and (A6),
one finds for the Lagrangian (36)

L. 0L
o)

ay¥
“Sﬂr”a§ﬂ> Wdet A.
(37)
The explicit calculation is worked out in Appendix E. As

L, does not depend on x#, the divergence of 7,* vanishes
according to the Euler-Lagrange equation (8) and in

agreement with the canonical equation (34). With
Eq. (A4), its final form is then
O ( agk( U sty azp
W 7",7 (x)r O@(x) - 15”}’,1 r atp | = 0,
which has the corresponding tensor form
atk i 15k aépn =0 38
I e = g Oty ey | =0 (38)

To set up the Euler-Lagrange equation (10) for the con-
nection coefficients, the derivative of L. from Eq. (36) with
respect to the derivatives of the connection coefficients is to
be calculated first

8'Ce - 1; agu 2 agu or' au
o (x Tl or,;
a( yi)x”f )) 2 a( i)yx‘)
1 o
= = T, 681545 — 5.515%)
|
= _E(rkw — 77%)
= 4 (x). (39)
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The quantities dy*;;(x)/0x* and 7;'**(x) are thus dual to
each other in the system described by the extended
Lagrangian (36), in agreement with the corresponding
canonical equation (30).

The derivative of L, with respect to the connection
coefficients is

oL 1. o L
8}';- = - E rnaﬂ” (5i62{6{4yn§ﬁ + 5252’62},§ay
ij

— 8108y — SLBL31Y up)

= =2 (Fy Py + Py g — By — PP )
= ;/iijayﬂka + ;kaﬂj}/ia[;’-

In conjunction with Eq. (39) this yields the Euler-Lagrange
equation

OF 7
o'

which actually represents a fensor equation and agrees, as
expected, with the canonical equation from Eq. (31) and the
subsequent field equations (33). For a torsion-free space-
time, one gets in particular

- y/}k(l;/}ija - yia/} ;kaﬂj =0,

(r, "), =0, (40)

which is a sufficient condition for Egs. (38) to be satisfied
identically [11].

The coupled set of field equations (38) and (40) must be
simultaneously satisfied in order to minimize the action (9).
Equation (40) provides the correlation of the connection
coefficients with the metric, which here does not coincide
with the usual Levi-Civita connection of standard general
relativity.

VIII. FORM-INVARIANT LAGRANGIAN
INCLUDING MATTER

The canonical approach to general relativity suggests
that the dynamics of space-time may be described by an
extended Lagrangian scalar density that is quadratic in
the Riemann curvature tensor. Explicitly, this “quadratic
gravity” Lagrangian is proposed as

1
L3 = Lot RLydeth.  Lo= =7, D7 g det A,

(41)

with k a dimensionless coupling constant to the subsystem
Ly that describes a conventional dynamical system asso-
ciated with mass and/or energy. Therefore Ly det A defines
a trivial extended Lagrangian. Its derivative with respect to
the space-time coefficients then yields the canonical
energy-momentum tensor #,”(x) of the system described
by Ly, as derived in Eq. (A3). The derivative of £3° then
follows as
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oL
A(G)

1
= {r n )0 (%) = 3 00y 1 gy

- I?H”k(x)] gﬁ —det A.

If £y does not explicitly depend on the x*, then the
Euler-Lagrange equation for the space-time coefficients is
given by

0 I
By ([rnaf" () Mg (X) = 7 8ury ™ 1 gy

_ %0 k(x)} gy ~det A>

X

hence by virtue of Eq. (A4) in tensor form
a{krn 15k aéf ) k =0 42
Ty au = 2 Ouln T agp KOy e (42)

which generalizes the field equation of the matter-free
system from Eq. (38). As Ly, det A does not depend on the
connection coefficients, the corresponding Euler-Lagrange
equation of £ agrees with (40). Provided that the
conventional mass/energy Lagrangian Ly in (41) is
autonomous, hence does not explicitly depend on space-
time, then both groups of covariant derivatives of (42)
vanish separately

1
k k = k=
(r”aé Magu = 7 0T 2 "a:ﬂ> . 0. 07y =0

B

which states the local conservation of energy and momen-
tum for a closed system.

Equation (42) constitutes the equation of general rela-
tivity as derived from the extended canonical transforma-
tion of the connection coefficients. It is not assumed here
that the Levi-Civita connection applies for the independent
geometric quantities given by the Christoffel symbols and
the metric. Rather, the connection is established by Eq. (33)
or by the more special equation (40) in the case of a torsion-
free space-time.

IX. CONCLUSIONS

The gauge theory that is based on the extended canonical
transformation formalism suggests that general relativity is
described by the Lagrangian

1
£96 — <_Z R, PR 5 + chM> det A, (43)

with k a dimensionless coupling constant of the Riemann
curvature tensor term and Ly, the conventional matter/
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energy Lagrangian. Following Palatini’s approach, the
extended canonical formalism treats the Christoffel sym-
bols and the space-time coefficients implicitly contained in
(43) as independent quantities. This yields two independent
Euler-Lagrange equations that must be simultaneously
satisfied in order for the solutions to satisfy the action
principle. No a priori assumptions on a correlation of the
Christoffel symbols with the space-time coefficients—and
hence the metric—are made.

The extended Lagrangian (43) was obtained by
Legendre-transforming the form-invariant extended
Hamiltonian that emerged from an extended canonical
transformation. The underlying extended generating func-
tion F% was set up to yield the required transformation
rule for the connection coefficients. The latter act as “gauge
coefficients” that render globally (Lorentz-)invariant
systems form-invariant under the corresponding local
transformation group, i.e. the diffeomorphism group. The
form-invariant extended Hamiltonian could then be
deduced from the general rules for extended canonical
transformations in the realm of field theory.

As was noted by C. Lanczos [12], the Lagrangian of
general relativity should be a quadratic function of the
curvature tensor elements in order to obey the principle of
scale-independence, which means that the value of the action
integral (9) “should not depend on the arbitrary units
employed in measuring the lengths of the space-time mani-
fold.” The Lagrangian (43) derived here meets this require-
ment. Summarizing, the theory has the following properties

1. The space-time geometry is of Riemannian type,
with a forsion of space-time not excluded a priori.
Hence, the theory does not presuppose nor require
the equivalence principle—i.e. the equivalence of
gravitational and inertial mass—to hold strictly.

2. The theory is based on the action principle, which
yields field equations for the space-time and the
connection coefficients and hence the metric tensor.

3. The general principle of relativity is satisfied, hence,
the theory is form-invariant under the canonical
transformation of the connection coefficients and
their conjugates—which ensures the action principle
to be maintained. This can be regarded as the
realization of the gauge principle for a diffeomor-
phism-invariant theory, with the connection coeffi-
cients playing the role of “gauge fields.”

4. The principle of scale invariance holds, hence the
theory is form-invariant under transformations of the
length scales of the space-time manifold.

5. The theory is unambiguous in the sense that no other
functions of the Riemann curvature tensor emerge
from the canonical transformation formalism.

6. In contrast to standard general relativity that is based
on the postulated Einstein-Hilbert action, the Lagran-
gian (36) is derived, based on the requirement of its
form-invariance under the canonical transformation

PHYSICAL REVIEW D 91, 085030 (2015)

of the connection coefficients, and hence on the
general principle of relativity. Moreover, no ad hoc
assumption concerning the relation of the connection
coefficients with the metric is incorporated into the
formalism. Instead, it is the canonical equation (33)
that provides the correlation of the connection
coefficients with the metric.

7. For the source-free case (Ly; =0), the theory is
compatible with standard general relativity in the
torsion-free limit as it possesses then the Schwarzs-
child metric as a solution [11]. For Ly # 0, the
solution is expected to differ from that of standard
general relativity—especially if a torsion of space-
time is not to be excluded a priori.

8. A quantized theory that is based on the Lagrangian
(43) is renormalizable [13]. It is a well-known fact
that the energy of a gravitational field is not
localizable, hence that the energy-momentum
(pseudo-)tensor of the gravitational field depends
on the frame of reference. In a quantized theory of
gravity, this would mean that the hypothetical
interaction bosons (the “gravitons”) are the quanta
of a nontensorial classical “field” that is represented
by the connection coefficients F‘SW.

Remarkably, a Lagrangian of the form of Eq. (41) that is
quadratic in the curvature tensor was already proposed by A.
Einstein in a personal letter to Hermann Weyl, dated March
08, 1918 [14], reasoning analogies with other classical field
theories.

APPENDIX A: USEFUL IDENTITIES

In order to show that the conventional Lagrangian £
description of a dynamical system is compatible with the
corresponding description in terms of extended
Lagrangians, we must make use of the following identities

Oy _ Iy Dy
Ox“ ayt Ox“
N OGh) _ 0 _ 9y
a(%’g) Lox* Ox®
¢,
a(ax") o 84)1 N a¢l 5/4
8.!4 - i vYa — v a
T
ooyt A 9oy
oykoxr 8(‘3;;) Ox* Ox+
Oy ov e ov oyt
OxFOXE Dy* Oyl Oyk Oxt Ox*
OGe) _OGw) OGy) Oy Oyl 0y _ oy 9y
8((‘% a(a_i’) ﬁ(g’y‘:) 0y’ OxH Ox“* Ox* Ox*
(A1)
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Frequently, the derivative of the Jacobi determinant with
respect to the space-time coefficients needs to be inserted.
This quantity is easiest calculated on the basis of the
general formula for a determinant of an n X n matrix
A = (a;). With S, the set of all permutations 7 of the
numbers 1, ..., n, the determinant is given by the sum over
alr e s,

detA =

ngnn . al,[(l

n€Ees,

Ve Uuz(n)-

Herein, sgnz = 1 depending on the permutation to
consist of an even or odd number of elementary trans-
positions of pairs of numbers. In the first case, sgnz = +1

whereas sgnz = —1 in the latter. This means for det A
oxY ox"
detA = Z sgnrz - LA
”GSrHrl ay ay”(n)

With the sum over all a, the expression

Odet A Ox¥
(%) "
_ ( Z sen- OxY Ox#=1 ‘. it ox" )
et ayﬂ(O) ay (u=1) ay a(utl) aylr(n)
X@x”
oy*
Z sen- o ox*=1 oxv  Oxtt! o
R D T O R e

is either zero for v # u as the derivative of x* then occurs
twice or equal to det A for v = u as the derivative of x* is
recovered and thus yields the initial expression for the
determinant det A. Thus

Odet A Ox¥
——— = §“det A,
oGz o~
hence
deth _ 0" 40 A. (A2)
8(3’2) OxH
y

The correlation (6) of the trivial extended Lagrangian £,
and conventional Lagrangian £ emerges from the require-
ment of Eq. (4) to yield the identical action S, hence to
describe the same physical system. The derivative of a
trivial extended Lagrangian with respect to the space-time
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coefficients yields the canonical energy-momentum tensor.
Explicitly,

triv o 8450{
aﬁaiu -2 d;;A aai (giﬂ) detA
a(ayv) a(g)y ) a(axvlf) a(c’)y”>
oy IL 0, 0y
La 7 det tA- a(%)@ﬁ eth

s oL 9, Oy

= <5ﬂ£ 8(%) —Hx”> g det A
oy” oy”

= —0,"(x) g det A = =0,(x) 7.

(A3)

where 6,” denotes the energy-momentum tensor, and éﬂ”
the corresponding tensor density at the same space-time
location.

A frequently used identity follows as

tA>

0 OdetA 0 <8y

oy aGm) oy \ow

Oy Oxb Oy*ddetA 9*x'
- B Ay X! i Yy
OxFOxP Dy Oxt a(g_)]) 0y’ dy
Py oxP 0y* oyl 0
pr— — — " " A
<8x" OxP oy* T o o Oy 9y ) det

(Al g2ya 5 p

T aaP oy

ll
e

(A4)

This identity is used for setting up the extended set of
Euler-Lagrange equations.

The derivative of the contravariant metric with respect to
the space-time coefficients follows as

99" (y) _ G(W)ay oy a(dx/)
Ox* =9 (X) ox“” o J Ox! ox“*
a(ay/f) 0 Dy 7) Ox X 0(3},/1)
oy 20 (ot oo o
=7 ay AP \ 9xe axi Oxl | Ox' Ox% Oxl
=) 2 ) 2
v v P 8yj
—<6';gﬂ )+ 37 0) 22 (a9

The derivative of the covariant metric with respect to the
space-time coefficients is then
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99, 0) _ o {a(gw ox  ox a(‘”")]
G 7710 Oy 9y O(5)
_ oy“ 8)’ ; pax Ox!
_gab( )8)6 8)CJ (5(}55 8 a M a5ﬁ>
oy’
= (89, (v) + g, () et (A6)

APPENDIX B: CONNECTION COEFFICIENTS

The derivatives of a vector a, do not transform as tensors

da,(X)  Oa;(x) Ox/ Ox' (x) 0x!
ox  ox oxvoxk Y oxroxv

(B1)

provided that the reference system x(y) is curved with
respect to the reference system X (y), which means that not
all second derivatives of the x* in (B1) vanish.

Equation (B1) can be converted into a tensor equation by
introducing connection coefficients y* ,5(x) and I'* ;5(X)

da,(X)  Ox/ 0x' da;(x) +a () 0 xt
ax*  ox*ox* ox | Y oxrax
_ Ox) Ox" (Day(x) .
- XY OXH < Ox/ - k( )}’ zj(x)>
+ ap (X)), (X).

Then

Oa,(X)
(;Xy —ak(X)FkW(X)
_ Ox) Ox' (Da;(x) .
T OXY OXH ( I/ - ak(x)y ij(x)>’

which shows that the quantity

(B2)

transforms as a tensor, provided that the connection
coefficients transform as

O*xk oxk .
a(x) i a(x) erﬂu(x)
Ox/ Ox!
- Wwak(x”/kij(x)'

As this equation holds for arbitrary a;(x), it follows that

Oxk oxt Ox/ O%xk

o0 =71 gy T axaxe (B3

Fj;w( )

and finally after contraction with 9X*/0x*,
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" Oxt Ox/ OX? 0*xk  9x“
Fu(X) =745 gy o ok T 9X0X7 ok -

(B4)

This equation provides the uniqgue correlation of the space-
time coefficients and their derivatives with the connection
coefficients. The connection coefficients are symmetric in
their lower indices for torsion-free space. Otherwise, their
skew-symmetric part define the forsion tensor.

APPENDIX C: EULER-LAGRANGE EQUATIONS
FOR SPACE-TIME COEFFICIENTS AND
CONNECTION COEFFICIENTS

Given an extended Lagrangian that depends on the
space-time event, the connection coefficients, and their
respective space-time derivatives. The action functional
over a space-time region R is then

Oy aé 336) !
S= [ £ (y:0), 2% ), 2 ) dty,  s5=0.
[ (0. 555 w00, 55 )
1)

The variation of L, follows as

oL, L, [(0x*\ OL
5L, = — =5 5",
ox* 3(3%) (ayﬂ> +87’”a§ Fee
L. [0y,
* T‘3< 5 f)-
a( ay/;) Y

As the independent variables y* are not varied, the differ-
entiation with respect to y” may be interchanged with the
variation. This yields the equivalent representations of 6L,

0L, oL, 9(6x*) 0L,
5£e 6 « + Ay + 6 "(l
0x" 0@5) o o
&Ce 8(5}/’70,5)
W\ OyP
a( 0y? ) Y
and
oL 0 0L 0 oL
5L. = ( e__%)axa+_<%5xa>
oxt 0y () 0y’ \o(5)

(9L 0 oL,
Ore 0 o))

L0 < OLe o, )
oy \ 07 et |-
Oy’ \o(L5)

According to Gauss’ theorem, the divergence terms can be
converted into surface terms in the action functional. This
means explicitly
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B 0L, OLe o ads As the variations 6x* and &y",: are arbitrary and mutually
ayﬂ d 9% Y= R 3(0 ) L+ op independent, this condition can only be satisfied if the

expressions in parentheses vanish simultaneously
_ d*y = % ——F 5y .dS,,
/ . ( 87’ _ a-f) y= R a(aﬂa:) 7 acU0p

ay?
with dSj denoting the # component of the normal vector on 9 0L, 8ﬁe _ 0 0L, oL, _
the boundary surface OR of the volume R. Both surface 0yP Fo (o = ;) Ox* ’ oyP 3(37 Ulag) 6}/’70,5
integrals vanish since on the boundary of the space-time o
region R

6x%|g = 0, 57" aelor = 0, . .
These equations are the Euler-Lagrange equations for the

which implies that the space-time geometry is flat on OR.  space-time and the connection coefficients.
The action principle 6S=0 then reduces to

0L / K@ﬁ 9 0L, ) S APPENDIX D: EXPLICIT CALCULATION OF
ox* 0y 9(5) THE TRANSFORMATION RULE (27)
<8£ 0 0L, ) v } &y In expanded form, Eq. (26) reads
7] a.p at
U'ae 0¥ O(FF)

AU g gl (008 00 0B o000 o0 0
O ) A Y\ Oxkoxr OXH OX* 09X OXOXF Ox* 0X¢  OX0XH Ox* OX“
O*X" 9*xk Oxv Pxk oxn
OxkOx DXTOXEOXF | DXTOXEOXH DX

(D1)

This expression is now split into a skew-symmetric and a symmetric part of f(’n‘@’ in the indices &, 4 according to

- 1 -~ - 1 -~ - - -
Rﬂaéﬂ _ 5 (Rnacfu _ Rnaﬂf) + 3 (Rna-fu + Rﬂ&ﬂf) _ Rﬂa[ﬁfﬂ] + R’Ia<§”)'
For the skew-symmetric part, Rn“[é”], the two terms in (D1) symmetric in &, ¢ vanish, hence
B aleul [k O’X" Ox¥ Ox' Ox/ N Oxt OX" Ox/ N O*XT Ox¥ 9*xk
1|V oxkax ox¥ 0x° oxE T 9X“0X* 0xk 0XE) T Oxkoxt OX* X OXE

R [ O°XT Ox ([ O OF  OxE N\, OPxT OX'Ox)
1 | oxfoxr oxr U U oxe oxE " axeaxt) T U ax ox¥ ox* oxt
el [ X1 oxkoxv . OPxT OX"Ox
R acH Ja —__+ l—__
T oxkoxr 0x7 oxr T T U 9xadXH oxk OXE
~ [ - O0X" OxF Ox¥ oxt . Ox® OxP\ 0X" Ox/
— R.aé | i -1 ko(pe 2,0 27 7 )27
1o e <y b xT OXI OXF fﬂ) T ,,< wgxe e gxa 6X") OxF axf]
- . . Ox¢ Oxb X" Ox’ o OX" Oxk oxr o O0X" OxF Oxv
—RAeH | i . ik T2 T TR TN i 20 T T i 28 P P
d ( o in 1 ab¥ i e X ok OXE R g axiaxr T W R BT X axf)

b
- —R aléulpi y Y ar R aliu] Ox? 0x" OX" Ox/

s abl i gxa gxE oxk oXH
= —Rna[éﬂ]r iaérniﬂ + ;ka[bj]yiabykij = _Rn [éﬂ}rlaérﬂm + ;na[éﬂvaé}’”iu

I~ ) . 1. . .
= _ERnafy (Flafrniu - rl(x,urr]if) + 5 rnagﬂ (yl(xfyniy - 7la/4yni§)'

The two mixed terms in I', y cancel each other due to the skew-symmetry of I}n(’[‘f"] in &, u.
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The contribution of (26) emerging from the symmetric
part Rn“(‘f") can be expressed in terms of the derivatives of
the connection coefficients, whose transformation rule is

Ol o OX* _ Oy*i; OX" Ox' O
OX< Ox*  Ox* Ox* 0X? X%
g 0 (OX10x 00
Vi 5 \ 9xk 0X° OXE
o (ox0 o
Ox¥ \ Ox* 0X°0X¢)"
Thus
Rt OX [ 0 (0X1Ox' )
T OXH ”8x oxk 90X 9x¢é
L0 (o o
Ox* \ Ox* 9X*9X*¢
afen) 9% 8Fnaiaxk_a}’kijaX” Ox' Ox/
T 9xr\ OX* Ox*  Ox¥ Oxk 0X*0X¢
YO oty - M~ e 01"
—paen et s i) poalgn) T ab 5 a(gn) ZF ag
=R, G =R e
or . o 1 0 o
__p au aé ap 7 au 7V as Y au
2R’7 (8Xﬂ * 8X5> 2 (axu + 3x§)'

The total transformation rule (D1) expressed in terms of
connection coefficients is then
|

oL, 1 9en(Y) 40 2z 22
o e G 4

1

_(5591/1_’_57'941/)‘9’“19/30{915+61j{gkngﬁagiég{r]

1 ay’
= —detA8 m

f()Kﬂ¢§¢,+a¢
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F X0
a a /)7 a 8)}/}
~ or o 4
_ o aé ap
= ER’?{&“ < OXH + ox¢ ol + Flaﬂrnié)

1. ayﬂac_f 87/ ap
—Ernafﬂ( Ot + 8x‘f —}’agif iu +7/ (lﬂy i

APPENDIX E: EXPLICIT CALCULATION OF
THE EULER-LAGRANGE EQUATION (38)

The form-invariant extended Lagrangian describing the
source-free space-time dynamics is given by

Oy e Ox*
E(“‘f’a” o)

= - nggﬁagﬂ‘:gé‘rrk/}/lé’rnafr det A,

with g,, denoting the covariant metric tensor and g its
contravariant counterpart. In this description, the curvature
tensor r*,-—as defined by Eq. (30)—only depends on the
connection coefficients and their space-time derivatives.
Thus, only the metric tensors and det A have derivatives
with respect to the space-time coefficients dx*/Jy*. These
derivatives were worked out explicitly with Egs. (AS),
(A6), and (A2). The derivative of L. with respect to the
space-time coefficients follows as

WD g + 2

GG+ o)

G TG

a(5%)

oy’
s Qe (5, 0, (4 030 — G+ 50

( r ”/Mgr nafrgjngﬁ 0’9’1 5957 —r mgr” agrnggﬁ 0’9’1 EQ{T +r jacr na.frgkr].gv aff 5gﬁ +r K/Mgr'] j.f‘[gKi’]gﬂ ”9/1 gggz

+r* ﬁer a(frgkr/d}agvég& + rK/MCrnajTgKr/d}agingT + rKﬁ/ljr"a(frgkr/gﬂagAggw + rK/MCrﬂaéngngﬂagMgcb

_61/'rx/ﬂé'rr’af‘rglmgﬁagﬂ‘fg&)

1 ay’
Zd tAa (=

1 1
=\ =3 e 5 e 1

1 . 1 . . 1 oy”
N <_§r/“'ffr natr +§rmfrr ge T 1y, nagu _Zé’]‘ Pty na?) |

) ru(1§1 rjaff + 2 rnyafr rr/j§‘r + 2 phave rnajf + 2 rna&/ r ol — 51{ rr/a§r rnafr)

1 v act a
rnaéj_zéjr” 4 rqa§,>| B #detA

g ——detA.

The first two terms cancel under the precondition that 7 is skew-symmetric also in its first index pair. This is ensured if a
metric is present ([15, p 324]), which is assumed in the actual context. The final result is thus
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