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It is widely accepted that the fundamental geometrical law of nature should follow from an action
principle. The particular subset of transformations of a system’s dynamical variables that maintain the form
of the action principle comprises the group of canonical transformations. In the context of canonical field
theory, the adjective “extended” signifies that not only the fields but also the space-time geometry is subject
to transformation. Thus, in order to be physical, the transition to another, possibly noninertial frame of
reference must necessarily constitute an extended canonical transformation that defines the general
mapping of the connection coefficients, hence the quantities that determine the space-time curvature and
torsion of the respective reference frame. The canonical transformation formalism defines simultaneously
the transformation rules for the conjugates of the connection coefficients and for the Hamiltonian. As will
be shown, this yields unambiguously a particular Hamiltonian that is form-invariant under the canonical
transformation of the connection coefficients and thus satisfies the general principle of relativity. This
Hamiltonian turns out to be a quadratic function of the curvature tensor. Its Legendre-transformed
counterpart then establishes a unique Lagrangian description of the dynamics of space-time that is not
postulated but derived from basic principles, namely the action principle and the general principle of
relativity. Moreover, the resulting theory satisfies the principle of scale invariance and is renormalizable.
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I. INTRODUCTION

The special principle of relativity states that the funda-
mental laws of physicsmust be form-invariant underLorentz
transformations. This can be regarded as to require the
description of a system to be form-invariant under a global
transformation group, namely the Lorentz group. The
generalization to noninertial reference frames is referred
to as the general principle of relativity. According to this
principle, the description of a system is required to be form-
invariant under the corresponding local transformation
group, namely the diffeomorphism group that comprises
mappings of the local space-time geometry. In this regard,
the transition from the special to the general principle of
relativity meets the gauge principle. The latter requires a
physical system that happens to be form-invariant under a
characteristic global transformation group of the fields to be
rendered form-invariant under the corresponding local trans-
formation group, hence the corresponding explicitly space-
time dependent transformation group of the fields. For this
requirement to be met, a set of “gauge fields”must be added
to the system’s dynamics that obey a specific inhomo-
geneous transformation rule. In the case of General
Relativity, the local transformation group is constituted by
space-time dependent mappings of the local curvature and
possibly the local torsionof the reference frames.The “gauge
fields” are then given by the connection coefficients—also
referred to as Christoffel symbols for the particular case of a

coordinate (holonomic) basis of the reference frame. The
connection coefficients also obey a specific inhomogeneous
transformation rule relating different reference frames.
The laws which govern the dynamics of classical systems

can be derived from Hamilton’s action principle. In this
context, a dynamical system is described by aLagrangian or
its Legendre transform, the Hamiltonian. From the action
principle, the dynamics of a classical particle or of a classical
field can be derived by integrating the Euler-Lagrange
equations or, equivalently, by integrating the canonical
equations. The subsequent theory of canonical transforma-
tions then isolates exactly the subset of those transformations
of the dynamical variables that maintain the form of the
action principle—and hence the general form of the canoni-
cal equations. As canonical transformations are not
restricted to point transformations, the canonical formalism
thus establishes the most general path to work out theories
that are supposed to be form-invariant under the action of a
transformation group of the fields while ensuring the action
principle to be maintained. In the extended canonical trans-
formation formalism, the space-timegeometry is also subject
to transformation. With the space-time then treated as a
dynamic variable, a theory that is form-invariant as well
under the canonical mapping of the connection coefficients
then simultaneously maintains the action principle and
satisfies the general principle of relativity.
With this paper, a generalization of the Hamiltonian

gauge transformation formalism is reviewed [1] that
extends the requirement of form-invariance under a
local transformation group of the fields to also demand*j.struckmeier@gsi.de
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form-invariance under local transformation of the connec-
tion coefficients. Thereby, the well-known formal similar-
ities between non-Abelian gauge theories [2] and general
relativity ([3, p 409], [4, p 163]) are encountered. With the
transformation rules for the connection coefficients and
their respective canonical conjugates being derived from a
generating function, it is automatically assured that the
extended action principle is preserved, hence that the
actual space-time transformation is physical. No additional
assumptions need to be incorporated for setting up an
amended Hamiltonian that is locally form-invariant on
the basis of a given globally, hence Lorentz-invariant
Hamiltonian. In particular, the connection coefficients
are introduced in the most general way by only specifying
their transformation properties. No a priori assumptions are
incorporated. In particular, it is not assumed that the
connection coefficients are symmetric in their lower index
pair, hence that a torsion of space-time is excluded [5].
Furthermore, following Palatini’s approach [6], the corre-
lation of the connection coefficients with themetric emerges
from a canonical equation—or from an Euler-Lagrange
equation in the equivalent Lagrangian description—rather
than being postulated.
Prior to working out the general local space-time trans-

formation theory in the extended canonical formalism in
Sec. V, the formalism of extended Lagrangians and
Hamiltonians and their subsequent field equations is
presented in Secs. II and III. With the space-time treated
as a dynamical variable, the extended Lagrangians and
Hamiltonians are defined to also depend on the connection
coefficients and their respective conjugates. The general
space-time transformation theory in classical vacuum is
then based on an extended generating function that defines
the mapping of the connection coefficients in the transition
from one frame of reference to another. As an extended
generating function simultaneously defines the transforma-
tion rule for the canonical conjugates of the connection
coefficients as well as the transformation law for the
extended Hamiltonians, one directly encounters a particular
extended Hamiltonian that is form-invariant under the
required transformation law of the connection coefficients
while maintaining the action principle. The set of canonical
field equations following from the obtained gauge-invariant
Hamiltonian now establishes a field equation for the
Riemann curvature tensor that is no longer postulated,
but uniquely emerges from both the action principle and the
general principle of relativity.

II. EXTENDEDLAGRANGIANSLe IN THEREALM
OF CLASSICAL FIELD THEORY

A. Variational principle, extended set of
Euler-Lagrange field equations

Similar to point dynamics, the Lagrangian formulation of
continuum dynamics (see, e.g., [7]) is based on a scalar

Lagrange function L that is supposed to contain the
complete information on the given physical system. In a
first-order scalar field theory, the Lagrangian L is defined
to depend on I ¼ 1;…; N—possibly interacting—scalar
fields ϕIðxÞ, on the vector of independent space-time
variables xμ, and on the first derivatives of the scalar fields
ϕI with respect to the independent variables, i.e., on the
covariant vectors (1-forms)

∂ϕI

∂xν ≡
�∂ϕI

∂x0 ;
∂ϕI

∂x1 ;
∂ϕI

∂x2 ;
∂ϕI

∂x3
�
:

The Euler-Lagrange field equations are then obtained as the
zero of the variation δS of the action functional over a
space-time region R

S ¼
Z
R
L
�
ϕI;

∂ϕI

∂xν ; x
μ

�
d4x; δS¼! 0 ð1Þ

as

∂
∂xj

∂L
∂ð∂ϕI∂xjÞ

−
∂L
∂ϕI

¼ 0: ð2Þ

If the Lagrangian L is to describe the dynamics of a set of
vector fields aμI ðxÞ that possibly couple to the scalar fields
ϕI , then the additional Euler-Lagrange equations take on
the similar form

∂
∂xj

∂L
∂ð∂aμI∂xjÞ

−
∂L
∂aμI ¼ 0; L ¼ L

�
ϕI;

∂ϕI

∂xν ; a
μ
I ;
∂aμI
∂xν ; x

μ

�
:

ð3Þ

The derivatives of vectors do not transform as tensors. This
means that the Euler-Lagrange equations (2) and (3) are not
form-invariant under transformations of the space-time
metric. Any field equation emerging from Eqs. (2) and
(3) that holds a local frame y must finally be rendered a
tensor equation in order for the theory described by L to
hold in any reference frame. This is achieved by converting
all partial derivatives in the field equations into covariant
derivatives.
In analogy to the extended formalism of point mechanics

([8,9]), the action integral from Eq. (1) can directly be cast
into a more general form by decoupling its integration
measure from a possibly explicit xμ-dependence of the
Lagrangian L

S ¼
Z
R0
L
�
ϕI;

∂ϕI

∂xν ; x
μ

�
det Λd4y: ð4Þ

Herein, detΛ ≠ 0 stands for the determinant of the Jacobi
matrix Λ ¼ ðΛμ

ν0 Þ that is associated with a regular trans-
formation xμ↦yμ of the independent variables and the
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corresponding transformation R↦R0 of the integration
region

Λ ¼ ðΛμ
ν0 Þ ¼

0
BBB@

∂x0
∂y0 … ∂x0

∂y3

..

. . .
. ..

.

∂x3
∂y0 … ∂x3

∂y3

1
CCCA;

detΛ ¼ ∂ðx0;…; x3Þ
∂ðy0;…; y3Þ ≠ 0

Λμ
ν0 ðyÞ ¼

∂xμðyÞ
∂yν ; Λμ0

ν ðxÞ ¼ ∂yμðxÞ
∂xν ;

Λα
ν0Λ

μ0
α ¼ Λμ

α0Λ
α0
ν ¼ δμν : ð5Þ

Here, the prime indicates the location of the new indepen-
dent variables, yμ. As this transformation constitutes a
mapping of the space-time metric, the Λμ

ν0 are referred to as
the space-time coefficients. The integrand of Eq. (4) can be
thought of as defining an extended Lagrangian Le,

Le

�
ϕI;

∂ϕIðyÞ
∂yν ; xμðyÞ; ∂x

μðyÞ
∂yν

�

¼ L
�
ϕI;

∂ϕIðyÞ
∂yk

∂yk
∂xν ; x

μðyÞ
�
detΛ: ð6Þ

In the language of tensor calculus, the conventional
Lagrangian L represents an absolute scalar whereas the
extended Lagrangian Le transforms as a relative scalar of
weight w ¼ 1 under a mapping of the independent varia-
bles, yμ. With this property, Le is referred to as a scalar
density. Both, L and Le have the dimension of Length−4

in natural units (c ¼ 1). The now dependent variables
x0;…; x3 in the argument list of Le can be regarded
as an extension of the set of fields ϕI; I ¼ 1;…; N. In
other words, the xμðyÞ are treated on equal footing with the
fields ϕIðyÞ. In terms of the extended Lagrangian Le,
the action integral over d4y from Eq. (4) is converted into
an integral over an autonomous Lagrangian, hence over a
Lagrangian that does not explicitly depend on its indepen-
dent variables, yμ

S ¼
Z
R0
Le

�
ϕI;

∂ϕI

∂yν ; x
μðyÞ; ∂x

μ

∂yν
�
d4y: ð7Þ

As this action integral has exactly the form of the initial one
from Eq. (1), the Euler-Lagrange field equations emerging
from the variation of Eq. (7) take on form of Eq. (2) (see
Appendix C)

∂
∂yj

∂Le

∂ð∂ϕI∂yjÞ
−
∂Le

∂ϕI
¼ 0;

∂
∂yj

∂Le

∂ð∂xμ∂yjÞ
−
∂Le

∂xμ ¼ 0: ð8Þ

An extended Lagrangian Le that is correlated to a conven-
tional Lagrangian L according to Eq. (6) is referred to as a

trivial extended Lagrangian. Clearly, multiplying a conven-
tional Lagrangian L by det Λ and expressing the xν-
derivatives of the fields by means of the chain rule in
terms of yν-derivatives does not add any information. The
system’s description in terms of a trivial Le is thus
equivalent to that provided by L.
Yet, a dynamical system that exhibits a dynamical space-

time is generally described by an extended Lagrangian
Le that does not have a conventional counterpart L.
Furthermore, is possible to define extended Lagrangians
Le that depend in addition on the connection coefficients
γηαξðxÞ (see Appendix B) and their respective xν-derivatives
that describe the space-time curvature in the x reference
frame

S ¼
Z
R0
Le

�
ϕI;

∂ϕI

∂yν ; γ
η
αξðxÞ;

∂γηαξ
∂xν ; xμðyÞ; ∂x

μ

∂yν
�
d4y;

δS¼! 0: ð9Þ

This description follows the path of A. Palatini [6,10], who
treated the connection coefficients and the metric as a priori
independent quantities. Their correlation then follows from
the extended Lagrangian in Eq. (9) by means of the addi-
tional Euler-Lagrange equation (see Appendix C)

∂
∂xj

∂Le

∂ð∂γηαξ∂xj Þ
−

∂Le

∂γηαξ ¼ 0: ð10Þ

Equations (8) and (10) must be simultaneously fulfilled in
order to minimize the action functional (9). This determines
uniquely the system’s dynamics which includes the dynam-
ics of the space-time geometry.

III. EXTENDED HAMILTONIANS He
IN CLASSICAL FIELD THEORY

A. Extended canonical field equations

For a covariant Hamiltonian description, the momentum
fields πνI and ~πνI must be defined as the dual quantities of
the derivatives of the fields ϕI according to

πνIðxÞ ¼
∂L

∂ð∂ϕI∂xνÞ
; ~πνIðyÞ ¼

∂Le

∂ð∂ϕI∂yνÞ
: ð11Þ

The momentum fields ~πνI emerging from the extended
Lagrangian density Le transform as

~πνIðyÞ ¼ πjIðxÞ
∂yν
∂xj detΛ ⇔ πνIðxÞ ¼ ~πjIðyÞ

∂xν
∂yj

1

detΛ
:

ð12Þ
As indicated by the tilde, the ~πνI ¼ πνI detΛ represent tensor
densities of weight w ¼ 1, whereas the πνI transform as
absolute tensors.
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Corresponding to the momentum field ~πνIðyÞ that con-
stitutes the dual counterpart of the Lagrangian dynamical
variable ∂ϕIðyÞ=∂yν, the canonical variable ~tμν is defined
formally as the dual counterpart of ∂xμ=∂yν and ~rηαξνðxÞ as
the dual counterpart of ∂γηαξðxÞ=∂xν. Thus, ~tμν and
~rηαξνðxÞ follow similarly to Eq. (11) from the respective
partial derivative of the extended Lagrangian density
Le as

~tμν ¼ −
∂Le

∂ð∂xμðyÞ∂yν Þ
¼ ~tjνðyÞ

∂yj
∂xμ ¼ ~tμjðxÞ

∂yν
∂xj ;

~rηαξνðxÞ ¼
∂Le

∂ð∂γηαξðxÞ∂xν Þ
: ð13Þ

The nontensorial quantity γηαξðxÞ must be derived with
respect to the xν rather than with respect to yν. Its canonical
conjugate ~rηαξνðxÞ then also refers to the space-time event
x. Possible symmetry properties in η; α; ξ of ∂γηαξ=∂xν
must agree with those of ~rηαξν in order for both quantities to
be actually dual to each other. The Hamiltonian H and the
correlated extended HamiltonianHe can now be defined as
the covariant Legendre transform of the Lagrangian L and
the pertaining extended Lagrangian Le

HðϕI; πI; γ; r; xÞ

¼ πjJ
∂ϕJ

∂xj þ rηαξj
∂γηαξ
∂xj

− L
�
ϕI;

∂ϕI

∂xν ; γ
η
αξ;

∂γηαξ
∂xν ; xμ

�

HeðϕI; ~πI; γ; ~r; x; ~tÞ

¼ ~πjJ
∂ϕJ

∂yj þ ~rηαξj
∂γηαξ
∂xj − ~tαβ

∂xα
∂yβ

− Le

�
ϕI;

∂ϕI

∂yν ; γ
η
αξ;

∂γηαξ
∂xν ; xμ;

∂xμ
∂yν

�
: ð14Þ

The correlation (6) of conventional and extended
Lagrangians thus entails a corresponding correlation of
conventional and extended Hamiltonians,

He ¼ H detΛ − ~tαβ
∂xα
∂yβ : ð15Þ

With this definition of the extended Hamiltonian He,
one encounters an extended set of the canonical
equations. Calculating explicitly the partial derivatives of
He from Eq. (14) with respect to all canonical variables
yields

∂He

∂ ~πνI ¼ ∂ ~πjJ
∂ ~πνI

∂ϕJ

∂yj ¼ δIJδ
j
ν
∂ϕJ

∂yj ¼ ∂ϕI

∂yν
∂He

∂ ~rηαξν ¼
∂ ~rηαξj
∂ ~rηαξν

∂γηαξ
∂xj ¼ δjν

∂γηαξ
∂xj ¼ ∂γηαξ

∂xν
∂He

∂~tμν ¼ −
∂~tij
∂~tμν

∂xi
∂yj ¼ −δjνδμi

∂xi
∂yj ¼ −

∂xμ
∂yν

∂He

∂ϕI
¼ −

∂Le

∂ϕI
¼ −

∂
∂yj

∂Le

∂ð∂ϕI∂yjÞ
¼ −

∂ ~πjI
∂yj

∂He

∂γηαξ ¼ −
∂Le

∂γηαξ ¼ −
∂
∂xj

∂Le

∂ð∂γηαξ∂xj Þ
¼ −

∂ ~rηαξj
∂xj

∂He

∂xμ ¼ −
∂Le

∂xμ ¼ −
∂
∂yj

∂Le

∂ð∂xμ∂yjÞ
¼ ∂~tμj

∂yj : ð16Þ

Obviously, an extended Hamiltonian He—through its
ϕI , γηαξ, and xμ dependencies—only determines the diver-
gences ∂ ~πjI=∂yj, ∂ ~rηαξj=∂xj, and ∂~tμj=∂yj but not the
individual components ~πνI , ~rηαξν, and ~tμν of the cano-
nical “momentum” tensor densities. Consequently, the
momenta are only determined by the Hamiltonian He up
to divergence-free functions.
The action integral from Eq. (9) can be equivalently

expressed in terms of the extended Hamiltonian He by
applying the Legendre transform (14)

S ¼
Z
R0

�
~πjJ

∂ϕJ

∂yj þ ~rηαξj
∂γηαξ
∂xj − ~tij

∂xi
∂yj

−HeðϕI; ~πI; γ; ~r; x; ~tÞ
�
d4y: ð17Þ

This representation of the action integral forms the basis on
which the extended canonical transformation formalism
will be worked out in Sec. IV.
In case that the extended Lagrangian describes the

dynamics of (covariant) vector fields, aIμðyÞ, the canonical
momentum fields are to be defined as

~pμν
I ðyÞ ¼ ∂Le

∂ð∂aIμ∂yν Þ
: ð18Þ

Similar to Eq. (12), the tensor densities ~pμν
I then represent

the dual quantities of the yν-derivatives of the vector fields
aIμ and hence the canonical conjugates of the aIμðyÞ in the
extended covariant Hamiltonian description.

IV. EXTENDED CANONICAL
TRANSFORMATIONS

A. Generating function of type F 1

In the realm of field theory, the condition for defining
extended canonical transformations that include mappings
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xμðyÞ↦XμðyÞ of the respective space-time reference
systems xμ and Xμ and of the connection coefficients
γηαξðxÞ↦Γη

αξðXÞ is based on the extended version of
the action functional (17). Specifically, the action prin-
ciple δS¼! 0 is again required to be conserved under the
action of the transformation, with yμ denoting the
common independent variables of both reference frames.
Requiring the variation of the action functional to be
maintained implies the integrand to be determined
only up to the divergence of a 4-vector function F μ

1 ¼
F μ

1ðϕI;ΦI; γ;Γ; x; XÞ on the original and the transformed
dynamical “field” variables. The generating function F μ

1

depends on the sets of original fields ϕI and transformed
fields ΦI in conjunction with the connection coefficients
γηαξðxÞ, Γη

αξðXÞ at the original space-time events xνðyÞ
and transformed ones, XνðyÞ

Le ¼ L0
e þ

∂F j
1

∂yj ⇔ ~πjJ
∂ϕJ

∂yj þ ~rηαξk
∂γηαξ
∂xk − ~tαβ

∂xα
∂yβ −He

¼ ~Πj
J
∂ΦJ

∂yj þ ~Rη
αξk ∂Γη

αξ

∂Xk − ~Tα
β ∂Xα

∂yβ −H0
e þ

∂F j
1

∂yj :
ð19Þ

At this point, the tensor densities ~rηαξμðxÞ and ~Rη
αξμðXÞ

merely denote formally the respective canonical
conjugates of the connection coefficients, γηαξðxÞ and
Γη

αξðXÞ, whose dynamics—and hence whose physical
meaning—follows later from the corresponding canonical
equation. Since the independent variables yμ are not
transformed, the divergence of the vector function
F μ

1ðϕI;ΦI; γ;Γ; x; XÞ can be expressed locally as the
ordinary divergence

∂F j
1

∂yj ¼
∂F j

1

∂ϕI

∂ϕI

∂yj þ
∂F j

1

∂ΦI

∂ΦI

∂yj þ
∂F j

1

∂γηαξ
∂xk
∂yj

∂γηαξ
∂xk

þ ∂F j
1

∂Γη
αξ

∂Xk

∂yj
∂Γη

αξ

∂Xk þ∂F j
1

∂xi
∂xi
∂yjþ

∂F j
1

∂Xi

∂Xi

∂yj : ð20Þ

Comparing the coefficients of Eqs. (19) and (20), the
extended local coordinate representation of the trans-
formation rules induced by the extended generating
function F μ

1ðyÞ are

~πμI ¼
∂F μ

1

∂ϕI
; ~Πμ

I ¼ −
∂F μ

1

∂ΦI
; ~rηαξμ ¼

∂F j
1

∂γηαξ
∂xμ
∂yj ;

~Rη
αξμ ¼ −

∂F j
1

∂Γη
αξ

∂Xμ

∂yj ; ~tνμ ¼ −
∂F μ

1

∂xν ; ~Tν
μ ¼ ∂F μ

1

∂Xν

H0
e ¼He; H0 detΛ0 − ~Tα

β ∂Xα

∂yβ ¼HdetΛ− ~tαβ
∂xα
∂yβ :
ð21Þ

Note that the nontensor quantities γηαξðxÞ must always
refer to the original reference system, x, and, correspond-
ingly, Γη

αξðXÞ to the transformed reference system, X.
The reference systems of their local canonical conjugates,
hence the tensor densities ~rηαξμðxÞ and ~Rη

αξμðXÞ are
defined accordingly. The indices of ~tνμ and ~Tν

μ in
Eq. (21) are related to different reference systems. The
upper index of ~tνμ and ~Tν

μ pertains to the reference
system y, whereas the lower index refers to the reference
systems x and X, respectively. In order to attribute these
quantities a definite space-time location, hence to convert
them into regular tensors, the transformations follow as

~θν
μðxÞ ¼ ~tνj

∂xμ
∂yj ¼ −

∂F j
1

∂xν
∂xμ
∂yj ;

~Θν
μðXÞ ¼ ~Tν

j ∂Xμ

∂yj ¼ ∂F j
1

∂Xν

∂Xμ

∂yj ;

in agreement with the definition of ~tνμ as the dual
quantity of ∂xν=∂yμ from Eq. (13). As shown in
Appendix A, the tensor θν

μðxÞ represents the canonical
energy-momentum tensor of the original system if the
dynamical system is described by a trivial extended
Lagrangian Le or its corresponding Legendre-transform
that defines a trivial extended Hamiltonian, He.
According to Eqs. (21), the value of an extended

Hamiltonian He is conserved under extended canonical
transformations. Hence, the transformed extended
Hamiltonian density H0

eðΦI; ~ΠI;Γ; ~R;X; ~TÞ is obtained
by expressing the original extended Hamiltonian
HeðϕI; ~πI; γ; ~r; x; ~tÞ in terms of the transformed fields
ΦI, ~Πμ

I , the transformed Γη
αξ, ~Rη

αξμ and the transformed
space-time location Xν, and its canonical conjugate, ~Tν

μ.

B. Generating function of type F 2

The generating function of an extended canonical trans-
formation can alternatively be expressed in terms of a
function F μ

2 of the original fields ϕI, the connection
coefficients of the original system, γηαξðxÞ, and the original
space-time coordinates, xμ in conjunction with the new
conjugate fields ~Πμ

I , the ~Rη
αξμ as the duals to Γη

αξðXÞ, and
the ~Tν

μ as the duals to −∂Xν=∂yμ. In order to derive the
pertaining transformation rules, the following extended
Legendre transformation is performed

F μ
2ðϕI; ~ΠI; γ; ~R; x; ~TÞ
¼ F μ

1ðϕI;ΦI; γ;Γ; x; XÞ þ ΦI
~Πμ
I

þ Γη
αξ
~Rη

αξj ∂yμ
∂Xj − Xj ~Tj

μ: ð22Þ

The resulting transformation rules are

GENERAL RELATIVITY AS AN EXTENDED CANONICAL … PHYSICAL REVIEW D 91, 085030 (2015)

085030-5



~πμI ¼
∂F μ

2

∂ϕI
; ΦIδ

μ
ν ¼ ∂F μ

2

∂ ~Πν
I

; ~rηαξμ ¼
∂F j

2

∂γηαξ
∂xμ
∂yj ;

Γη
αξδ

μ
ν ¼ ∂F μ

2

∂ ~Rη
αξj

∂Xj

∂yν ; ~tνμ ¼ −
∂F μ

2

∂xν ; Xαδμν ¼ −
∂F μ

2

∂ ~Tα
ν

H0
e ¼He; H0 detΛ0 − ~Tα

β ∂Xα

∂yβ ¼HdetΛ− ~tαβ
∂xα
∂yβ :
ð23Þ

These transformation rules are equivalent to the set of
Eqs. (21) if the Legendre transformation (22) is non-
singular, hence if the determinant of the Hesse matrix of
F 1 is nonzero.

V. GENERAL SPACE-TIME TRANSFORMATION
IN VACUUM

Given a classical vacuum system, i.e., a system with no
fields. An extended canonical transformation that maps the
space-time geometry from a space-time location x to X
under the transformation law of the connection coefficients
γηαξðxÞ↦Γη

αξðXÞ in a coordinate basis (see Appendix B) is
generated by

F μ
2ðγ; ~R; x; ~TÞ ¼ − ~Tα

μhαðxÞ þ ~Rη
αξλ ∂yμ

∂Xλ

×

�
γkij

∂Xη

∂xk
∂xi
∂Xα

∂xj
∂Xξ þ

∂Xη

∂xk
∂2xk

∂Xα∂Xξ

�
:

ð24Þ

In this definition of an extended generating function of type
F μ

2ðyÞ, the tensor density components ~Rη
αξλðXÞ∂yμ=∂Xλ

denote formally the canonical conjugates of the connection
coefficients Γη

αξðXÞ of the transformed system and hence
the dual quantities to the yμ-derivatives of the Γη

αξðXÞ. The
γηαξðxÞ stand for the connection coefficients of the original
system. The tensor density components ~Rη

αξμðXÞ≡
Rη

αξμðXÞ detΛ0 then represent the dual quantities of the
Xμ-derivatives of the transformed connection coefficients
Γη

αξðXÞ

~Rη
αξλðXÞ ∂y

μ

∂Xλ

∂Γη
αξðXÞ
∂yμ ¼ Rη

αξλðXÞ ∂Γ
η
αξðXÞ
∂Xλ detΛ0 ∈ R:

Likewise, the tensor density components ~rηαξμðxÞ≡
rηαξμðxÞ detΛ denote the dual quantities of the xμ-
derivatives of the connection coefficients γηαξðxÞ of the
original system. No predication with respect to the physical
meaning of rηαξμ and Rη

αξμ is made at this point.
The particular generating function (24) entails the

following transformation rules according to the general
rules from Eqs. (23)

Γη
αξδ

μ
ν ¼ ∂F μ

2

∂ ~Rη
αξj

∂Xj

∂yν

¼ δμν

�
γkij

∂Xη

∂xk
∂xi
∂Xα

∂xj
∂Xξ þ

∂Xη

∂xk
∂2xk

∂Xα∂Xξ

�

~rkijμ ¼
∂F κ

2

∂γkij
∂xμ
∂yκ ¼ ~Rη

αξλ ∂Xη

∂xk
∂xi
∂Xα

∂xj
∂Xξ

∂xμ
∂Xλ

Xαδμν ¼ −
∂F μ

2

∂ ~Tα
ν
¼ δμνhαðxÞ

~tνμ ¼ −
∂F μ

2

∂xν
¼ ~Tα

μ ∂hαðxÞ
∂xν − ~Rη

αξλ ∂yμ
∂Xλ

×

�
γkij

∂
∂xν

�∂Xη

∂xk
∂xi
∂Xα

∂xj
∂Xξ

�

þ ∂
∂xν

�∂Xη

∂xk
∂2xk

∂Xα∂Xξ

��

hence

Γη
αξðXÞ ¼ γkijðxÞ

∂Xη

∂xk
∂xi
∂Xα

∂xj
∂Xξ þ

∂Xη

∂xk
∂2xk

∂Xα∂Xξ

~rkijμðxÞ ¼ ~Rη
αξλðXÞ ∂X

η

∂xk
∂xi
∂Xα

∂xj
∂Xξ

∂xμ
∂Xλ

Xμ ¼ hμðxÞ

~tνμ ¼ ~Tα
μ ∂Xα

∂xν − ~Rη
αξλ ∂yμ

∂Xλ

�
γkij

∂
∂xν

�∂Xη

∂xk
∂xi
∂Xα

∂xj
∂Xξ

�

þ ∂
∂xν

�∂Xη

∂xk
∂2xk

∂Xα∂Xξ

��
: ð25Þ

According to Eqs. (23), the last rule yields the trans-
formation rule for the conventional Hamiltonians via

~Tα
β ∂Xα

∂yβ − ~tαβ
∂xα
∂yβ

¼ H0 detΛ0 −H detΛ

¼ ~Rη
αξλ ∂xν

∂Xλ

�
γkij

∂
∂xν

�∂Xη

∂xk
∂xi
∂Xα

∂xj
∂Xξ

�

þ ∂
∂xν

�∂Xη

∂xk
∂2xk

∂Xα∂Xξ

��
: ð26Þ

Yet, what is actually desired is the transformation rule for
the Hamiltonians as expressed in terms of their proper
dynamical variables γ; r and Γ; R, respectively. This
requires to express all derivatives of the functions xμðyÞ
and XμðyÞ in (26) in terms of the original and transformed
connection coefficients γηαξðxÞ and Γη

αξðXÞ and their
conjugates, ~rηαξμ and ~Rη

αξμ, by making use of the respective
canonical transformation rules (25). This calculation is
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worked out explicitly in Appendix D. Remarkably, the
transformation rule (26) can indeed completely and sym-
metrically be expressed in terms of the canonical variables
of the original and the transformed system as

~Tα
β ∂Xα

∂yβ − ~tαβ
∂xα
∂yβ

¼ 1

2
~Rη

αξμ

�∂Γη
αξ

∂Xμ þ ∂Γη
αμ

∂Xξ − Γk
αξΓη

kμ þ Γk
αμΓη

kξ

�

−
1

2
~rηαξμ

�∂γηαξ
∂xμ þ ∂γηαμ

∂xξ − γkαξγ
η
kμ þ γkαμγ

η
kξ

�
:

Gathering original and transformed dynamical variables on
either side of the equation yields

1

2
~Rη

αξμ

�∂Γη
αξ

∂Xμ þ∂Γη
αμ

∂Xξ −Γk
αξΓη

kμþΓk
αμΓη

kξ

�
− ~Tα

β∂Xα

∂yβ

¼1

2
~rηαξμ

�∂γηαξ
∂xμ þ∂γηαμ

∂xξ −γkαξγ
η
kμþγkαμγ

η
kξ

�
− ~tαβ

∂xα
∂yβ :
ð27Þ

The left- and right-hand sides of this equation can be
regarded as extended Hamiltonians H0

e and He, respec-
tively, which satisfy the required transformation rule H0

e ¼
He from Eqs. (23). Obviously, the Hamiltonians not only
retain their values but are furthermore form-invariant
under the extended canonical transformation generated
by Eq. (24).
In order for the canonical equations following from the

Hamiltonians He and H0
e to be compatible with the

canonical transformation rules (25), the above form-
invariant Hamiltonians must be amended, by “free field”
Hamiltonians

H0
e;dyn ¼ −

1

4
Rη

αξμRη
αξμ detΛ0;

He;dyn ¼ −
1

4
rηαξμrηαξμ detΛ:

Clearly, H0
e;dyn ¼ He;dyn must hold under the rules (25) in

order for the final extended Hamiltonians to maintain the
required transformation rule H0

e ¼ He. This is ensured if
detΛ0 ¼ detΛ, hence if

∂ðX0;…; X3Þ
∂ðx0;…; x3Þ ¼ ∂ðh0ðxÞ;…; h3ðxÞÞ

∂ðx0;…; x3Þ ¼ 1: ð28Þ

Thus, the by now arbitrary function hαðxÞ in the generating
function (24) must satisfy Eq. (28). The final form-invariant
extended Hamiltonian that is compatible with the extended
set of canonical transformation rules generated by (24) now
writes for the x reference frame

Heð~r;γ;~tÞ¼−~tαβ
∂xα
∂yβ−

1

4
~rηαξμrηαξμ

þ1

2
~rηαξμ

�∂γηαμ
∂xξ þ∂γηαξ

∂xμ þγkαμγ
η
kξ−γkαξγ

η
kμ

�
:

ð29Þ

VI. CANONICAL EQUATIONS

The canonical equation for the connection coefficients
follows as

∂γηαξ
∂xμ ¼ ∂He

∂ ~rηαξμ

¼ −
1

2
rηαξμ

þ 1

2

�∂γηαμ
∂xξ þ ∂γηαξ

∂xμ þ γkαμγ
η
kξ − γkαξγ

η
kμ

�
:

Solved for rηαξμ one finds

rηαξμ ¼
∂γηαμ
∂xξ −

∂γηαξ
∂xμ þ γkαμγ

η
kξ − γkαξγ

η
kμ: ð30Þ

One thus encounters exactly the representation of
the Riemann curvature tensor in terms of the connec-
tion coefficients and their derivatives. The quantity
~Rη

αξλðXÞ∂yμ=∂Xλ was formally introduced in the generat-
ing function (24) as the canonical conjugate of the con-
nection coefficient Γη

αξðXÞ in order to yield the required
transformation law for γηαξðxÞ. With Eq. (30), the quantity
rηαξμ is now attributed a physical meaning. It is manifestly
skew-symmetric in the indices ξ and μ. With Eq. (30) being
a tensor equation, the second canonical transformation
(25) rule is satisfied, which requires rηαξμ to transform as a
tensor.
The divergence of ~rηαξμ follows from the derivative ofHe

with respect to γηαξ

ð~rηαξβÞ;β ≡
∂ ~rηαξβ
∂xβ ¼ −

∂He

∂γηαξ ¼ γkηβ ~rkαξβ − γαkβ ~rηkξβ:

ð31Þ

On the other hand, the covariant divergence of a tensor
density ~rηαξμ is given by

ð~rηαξβÞ;β ¼ ð~rηαξβÞ;β − γkηβ ~rkαξβ þ γαβk ~rηkξβ þ γξβk ~rηαkβ

þ γββk ~rηαξk − γkkβ ~rηαξβ:

The last two terms cancel as usual for the divergence of a
tensor density. The field equation (31) is thus equivalently
expressed in terms of the covariant derivative as
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ð~rηαξβÞ;β ¼ γαkβ ~rηkβξ þ γαβk ~rηkξβ þ γξβk ~rηαkβ

¼ ðγαkβ − γαβkÞ~rηkβξ − γξkβ ~rηαkβ: ð32Þ

As ~rηαkβ is skew-symmetric in k; β according to the first
canonical equation (30), the contraction with γξkβ in the
rightmost term of Eq. (32) extracts the skew-symmetric part
of the connection coefficients, hence the torsion tensor
sξkβ ¼ 1

2
ðγξkβ − γξβkÞ. Thus, Eq. (32) is actually a tensor

equation

ð~rηαξβÞ;β

¼
�
2sαkβ ~rηkβξ−sξkβ ~rηαkβ in general

0 for a torsion-free space-time:

ð33Þ

The canonical equation for the space-time coefficients
follows as

∂xν
∂yμ ¼ −

∂He

∂~tνμ ¼ ∂xν
∂yμ :

As a common feature of all trivial extended Hamiltonians,
no substantial equation for the space-time coefficients
emerges but only an identity that allows for arbitrary
space-time dynamics.
AsHe does not depend on the xν, the canonical equation

for the ~tνμ follows as

∂~tνα
∂yα ¼ −

∂He

∂xν ¼ 0: ð34Þ

The explicit representation of ~tνα will be derived in Eq. (37)
from the Lagrangian Le that follows from He by means of
the Legendre transformation prescription (14).

VII. FORM-INVARIANT LAGRANGIAN,
EULER-LAGRANGE EQUATIONS

The extended Lagrangian Le corresponding to the form-
invariant Hamiltonian from (29) is obtained by means of
the regular Legendre transformation

Le ¼ ~rηαξμ
∂γηαξ
∂xμ − ~tαβ

∂xα
∂yβ −He

¼ 1

4
~rηαξμrηαξμ −

1

2
~rηαξμ

×

�∂γηαμ
∂xξ −

∂γηαξ
∂xμ þ γkαμγ

η
kξ − γkαξγ

η
kμ

�

¼ −
1

4
~rηαξμrηαξμ: ð35Þ

Note that—in contrast to the Hamiltonian description—the
curvature tensor rηαξμ does not constitute a proper

dynamical variable but only abbreviates the particular
combination (30) of the connection coefficients and their
respective derivatives—which comprise in conjunction
with the space-time coefficients the actual dynamical
variables of the Lagrangian description. The dependence
of Le on the space-time coefficients is expressed implicitly
in terms of metric tensors

Le

�
γηαξ;

∂γηαξ
∂xν ;

∂xμ
∂yν

�
¼ −

1

4
rηαξμrηαξμ detΛ

¼ −
1

4
gκηgβαgλξgζμrκβλζrηαξμ detΛ:

ð36Þ

The ~tμν represent the duals of the space-time coefficients,
hence, their explicit form follows from Le according to the
general rule (13). Owing to the identities (A5) and (A6),
one finds for the Lagrangian (36)

−~tμν ¼
∂Le

∂ð∂xμ∂yνÞ

¼
�
rηαξkðxÞrηαξμðxÞ −

1

4
δkμrηαξβrηαξβ

� ∂yν
∂xk detΛ:

ð37Þ

The explicit calculation is worked out in Appendix E. As
Le does not depend on xμ, the divergence of ~tμν vanishes
according to the Euler-Lagrange equation (8) and in
agreement with the canonical equation (34). With
Eq. (A4), its final form is then

∂
∂xk

�
rηαξkðxÞrηαξμðxÞ −

1

4
δkμrηαξβrηαξβ

�
¼ 0;

which has the corresponding tensor form

�
rηαξkrηαξμ −

1

4
δkμrηαξβrηαξβ

�
;k
¼ 0: ð38Þ

To set up the Euler-Lagrange equation (10) for the con-
nection coefficients, the derivative of Le from Eq. (36) with
respect to the derivatives of the connection coefficients is to
be calculated first

∂Le

∂ð∂γkijðxÞ∂xλ Þ
¼ −

1

2
~rηαξμ

∂rηαξμ
∂ð∂γkij∂xλ Þ

¼ −
1

2
~rηαξμδ

η
kðδiαδλξδjμ − δiαδ

j
ξδ

λ
μÞ

¼ −
1

2
ð~rkiλj − ~rkijλÞ

¼ ~rkijλðxÞ: ð39Þ
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The quantities ∂γkijðxÞ=∂xλ and ~rkijλðxÞ are thus dual to
each other in the system described by the extended
Lagrangian (36), in agreement with the corresponding
canonical equation (30).
The derivative of Le with respect to the connection

coefficients is

∂Le

∂γkij ¼ −
1

2
~rηαβμðδξkδiαδjμγηξβ þ δiξδ

j
βδ

η
kγ

ξ
αμ

− δξkδ
i
αδ

j
βγ

η
ξμ − δiξδ

j
μδ

η
kγ

ξ
αβÞ

¼ − 1
2
ð~rηiβjγηkβ þ ~rkαjμγiαμ − ~rηijμγηkμ − ~rkαβjγiαβÞ

¼ ~rβijαγβkα þ ~rkαβjγiαβ:

In conjunction with Eq. (39) this yields the Euler-Lagrange
equation

∂ ~rkijλ
∂xλ − γβkα ~rβijα − γiαβ ~rkαβj ¼ 0;

which actually represents a tensor equation and agrees, as
expected, with the canonical equation from Eq. (31) and the
subsequent field equations (33). For a torsion-free space-
time, one gets in particular

ðrηαξkÞ;k ¼ 0; ð40Þ
which is a sufficient condition for Eqs. (38) to be satisfied
identically [11].
The coupled set of field equations (38) and (40) must be

simultaneously satisfied in order to minimize the action (9).
Equation (40) provides the correlation of the connection
coefficients with the metric, which here does not coincide
with the usual Levi-Civita connection of standard general
relativity.

VIII. FORM-INVARIANT LAGRANGIAN
INCLUDING MATTER

The canonical approach to general relativity suggests
that the dynamics of space-time may be described by an
extended Lagrangian scalar density that is quadratic in
the Riemann curvature tensor. Explicitly, this “quadratic
gravity” Lagrangian is proposed as

LQG
e ¼ Le þ κ̄LM detΛ; Le ¼ −

1

4
rηαξβrηαξβ detΛ;

ð41Þ
with κ̄ a dimensionless coupling constant to the subsystem
LM that describes a conventional dynamical system asso-
ciated with mass and/or energy. Therefore LM detΛ defines
a trivial extended Lagrangian. Its derivative with respect to
the space-time coefficients then yields the canonical
energy-momentum tensor θμνðxÞ of the system described
by LM, as derived in Eq. (A3). The derivative of LQG

e then
follows as

∂LQG
e

∂ð∂xμ∂yνÞ
¼

�
rηαξkðxÞrηαξμðxÞ −

1

4
δkμrηαξβrηαξβ

− κ̄θμ
kðxÞ

� ∂yν
∂xk detΛ:

If LM does not explicitly depend on the xμ, then the
Euler-Lagrange equation for the space-time coefficients is
given by

∂
∂yν

��
rηαξkðxÞrηαξμðxÞ −

1

4
δkμrηαξβrηαξβ

− κ̄θμ
kðxÞ

� ∂yν
∂xk detΛ

�

¼ 0;

hence by virtue of Eq. (A4) in tensor form

�
rηαξkrηαξμ −

1

4
δkμrηαξβrηαξβ − κ̄θμ

k

�
;k
¼ 0; ð42Þ

which generalizes the field equation of the matter-free
system from Eq. (38). As LM detΛ does not depend on the
connection coefficients, the corresponding Euler-Lagrange
equation of LQG

e agrees with (40). Provided that the
conventional mass/energy Lagrangian LM in (41) is
autonomous, hence does not explicitly depend on space-
time, then both groups of covariant derivatives of (42)
vanish separately

�
rηαξkrηαξμ −

1

4
δkμrηαξβrηαξβ

�
;k
≡ 0; θμ

k
;k ≡ 0;

which states the local conservation of energy and momen-
tum for a closed system.
Equation (42) constitutes the equation of general rela-

tivity as derived from the extended canonical transforma-
tion of the connection coefficients. It is not assumed here
that the Levi-Civita connection applies for the independent
geometric quantities given by the Christoffel symbols and
the metric. Rather, the connection is established by Eq. (33)
or by the more special equation (40) in the case of a torsion-
free space-time.

IX. CONCLUSIONS

The gauge theory that is based on the extended canonical
transformation formalism suggests that general relativity is
described by the Lagrangian

LQG
e ¼

�
−
1

4
Rη

αξβRη
αξβ þ κ̄LM

�
detΛ; ð43Þ

with κ̄ a dimensionless coupling constant of the Riemann
curvature tensor term and LM the conventional matter/
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energy Lagrangian. Following Palatini’s approach, the
extended canonical formalism treats the Christoffel sym-
bols and the space-time coefficients implicitly contained in
(43) as independent quantities. This yields two independent
Euler-Lagrange equations that must be simultaneously
satisfied in order for the solutions to satisfy the action
principle. No a priori assumptions on a correlation of the
Christoffel symbols with the space-time coefficients—and
hence the metric—are made.
The extended Lagrangian (43) was obtained by

Legendre-transforming the form-invariant extended
Hamiltonian that emerged from an extended canonical
transformation. The underlying extended generating func-
tion F μ

2 was set up to yield the required transformation
rule for the connection coefficients. The latter act as “gauge
coefficients” that render globally (Lorentz-)invariant
systems form-invariant under the corresponding local
transformation group, i.e. the diffeomorphism group. The
form-invariant extended Hamiltonian could then be
deduced from the general rules for extended canonical
transformations in the realm of field theory.
As was noted by C. Lanczos [12], the Lagrangian of

general relativity should be a quadratic function of the
curvature tensor elements in order to obey the principle of
scale-independence, whichmeans that thevalue of the action
integral (9) “should not depend on the arbitrary units
employed in measuring the lengths of the space-time mani-
fold.” The Lagrangian (43) derived here meets this require-
ment. Summarizing, the theory has the following properties

1. The space-time geometry is of Riemannian type,
with a torsion of space-time not excluded a priori.
Hence, the theory does not presuppose nor require
the equivalence principle—i.e. the equivalence of
gravitational and inertial mass—to hold strictly.

2. The theory is based on the action principle, which
yields field equations for the space-time and the
connection coefficients and hence the metric tensor.

3. The general principle of relativity is satisfied, hence,
the theory is form-invariant under the canonical
transformation of the connection coefficients and
their conjugates—which ensures the action principle
to be maintained. This can be regarded as the
realization of the gauge principle for a diffeomor-
phism-invariant theory, with the connection coeffi-
cients playing the role of “gauge fields.”

4. The principle of scale invariance holds, hence the
theory is form-invariant under transformations of the
length scales of the space-time manifold.

5. The theory is unambiguous in the sense that no other
functions of the Riemann curvature tensor emerge
from the canonical transformation formalism.

6. In contrast to standard general relativity that is based
on the postulated Einstein-Hilbert action, the Lagran-
gian (36) is derived, based on the requirement of its
form-invariance under the canonical transformation

of the connection coefficients, and hence on the
general principle of relativity. Moreover, no ad hoc
assumption concerning the relation of the connection
coefficients with the metric is incorporated into the
formalism. Instead, it is the canonical equation (33)
that provides the correlation of the connection
coefficients with the metric.

7. For the source-free case (LM ≡ 0), the theory is
compatible with standard general relativity in the
torsion-free limit as it possesses then the Schwarzs-
child metric as a solution [11]. For LM ≠ 0, the
solution is expected to differ from that of standard
general relativity—especially if a torsion of space-
time is not to be excluded a priori.

8. A quantized theory that is based on the Lagrangian
(43) is renormalizable [13]. It is a well-known fact
that the energy of a gravitational field is not
localizable, hence that the energy-momentum
(pseudo-)tensor of the gravitational field depends
on the frame of reference. In a quantized theory of
gravity, this would mean that the hypothetical
interaction bosons (the “gravitons”) are the quanta
of a nontensorial classical “field” that is represented
by the connection coefficients Γξ

μν.
Remarkably, a Lagrangian of the form of Eq. (41) that is
quadratic in the curvature tensor was already proposed by A.
Einstein in a personal letter to Hermann Weyl, dated March
08, 1918 [14], reasoning analogies with other classical field
theories.

APPENDIX A: USEFUL IDENTITIES

In order to show that the conventional Lagrangian L
description of a dynamical system is compatible with the
corresponding description in terms of extended
Lagrangians, we must make use of the following identities

∂ϕI

∂xα ¼ ∂ϕI

∂yi
∂yi
∂xα

⇒
∂ð∂ϕI∂xαÞ
∂ð∂ϕI∂yνÞ

¼ δνi
∂yi
∂xα ¼

∂yν
∂xα

⇒
∂ð∂ϕI∂xαÞ
∂ð∂yν∂xμÞ

¼ ∂ϕI

∂yi δ
i
νδ

μ
α ¼ ∂ϕI

∂yν δ
μ
α

∂xν
∂yk

∂yk
∂xμ ¼ δνμ ⇒

∂ð∂yν∂xμÞ
∂ð∂xα∂yβÞ

¼ −
∂yν
∂xα

∂yβ
∂xμ

⇒
∂2yk

∂xμ∂xξ
∂xν
∂yk ¼ −

∂2xν

∂yj∂yk
∂yj
∂xξ

∂yk
∂xμ

∂ð∂ϕI∂xαÞ
∂ð∂xμ∂yνÞ

¼ ∂ð∂ϕI∂xαÞ
∂ð∂yj∂xiÞ

∂ð∂yj∂xiÞ
∂ð∂xμ∂yνÞ

¼ −
∂ϕI

∂yj
∂yj
∂xμ

∂yν
∂xα ¼ −

∂ϕI

∂xμ
∂yν
∂xα :

ðA1Þ

J. STRUCKMEIER PHYSICAL REVIEW D 91, 085030 (2015)

085030-10



Frequently, the derivative of the Jacobi determinant with
respect to the space-time coefficients needs to be inserted.
This quantity is easiest calculated on the basis of the
general formula for a determinant of an n × n matrix
A ¼ ðaikÞ. With Sn the set of all permutations π of the
numbers 1;…; n, the determinant is given by the sum over
all π ∈ Sn

detA ¼
X
π∈Sn

sgnπ · a1πð1Þ…anπðnÞ:

Herein, sgnπ ¼ �1 depending on the permutation to
consist of an even or odd number of elementary trans-
positions of pairs of numbers. In the first case, sgnπ ¼ þ1
whereas sgnπ ¼ −1 in the latter. This means for detΛ

detΛ ¼
X

π∈Snþ1

sgnπ ·
∂x0
∂yπð0Þ � � �

∂xn
∂yπðnÞ :

With the sum over all α, the expression

∂ detΛ
∂ð∂xμ∂yαÞ

∂xν
∂yα

¼
� X

π∈Snþ1

sgnπ ·
∂x0
∂yπð0Þ � � �

∂xμ−1
∂yπðμ−1Þ δ

α
πðμÞ

∂xμþ1

∂yπðμþ1Þ � � �
∂xn
∂yπðnÞ

�

×
∂xν
∂yα

¼
X

π∈Snþ1

sgnπ ·
∂x0
∂yπð0Þ � � �

∂xμ−1
∂yπðμ−1Þ

∂xν
∂yπðμÞ

∂xμþ1

∂yπðμþ1Þ � � �
∂xn
∂yπðnÞ

is either zero for ν ≠ μ as the derivative of xν then occurs
twice or equal to detΛ for ν ¼ μ as the derivative of xμ is
recovered and thus yields the initial expression for the
determinant detΛ. Thus

∂ detΛ
∂ð∂xμ∂yαÞ

∂xν
∂yα ¼ δνμ detΛ;

hence

∂ detΛ
∂ð∂xμ∂yνÞ

¼ ∂yν
∂xμ detΛ: ðA2Þ

The correlation (6) of the trivial extended Lagrangian Le
and conventional Lagrangian L emerges from the require-
ment of Eq. (4) to yield the identical action S, hence to
describe the same physical system. The derivative of a
trivial extended Lagrangian with respect to the space-time

coefficients yields the canonical energy-momentum tensor.
Explicitly,

∂Ltriv
e

∂ð∂xμ∂yνÞ
¼ L

∂ detΛ
∂ð∂xμ∂yνÞ

þ ∂L
∂ð∂ϕI∂xαÞ

∂ð∂ϕI∂xαÞ
∂ð∂xμ∂yνÞ

detΛ

¼ L
∂yν
∂xμ detΛ −

∂L
∂ð∂ϕI∂xαÞ

∂ϕI

∂xμ
∂yν
∂xα detΛ

¼
�
δiμL −

∂L
∂ð∂ϕI∂xαÞ

∂ϕI

∂xμ
� ∂yν
∂xα detΛ

¼ −θμαðxÞ
∂yν
∂xα detΛ ¼ −~θμ

αðxÞ ∂y
ν

∂xα ; ðA3Þ

where θμ
ν denotes the energy-momentum tensor, and ~θμ

ν

the corresponding tensor density at the same space-time
location.
A frequently used identity follows as

∂
∂yα

∂ detΛ
∂ð∂xμ∂yαÞ

¼ ∂
∂yα

�∂yα
∂xμ detΛ

�

¼ ∂2yα

∂xμ∂xβ
∂xβ
∂yα detΛþ ∂yα

∂xμ
∂ detΛ
∂ð∂xi∂yjÞ

∂2xi

∂yj∂yα

¼
� ∂2yα

∂xμ∂xβ
∂xβ
∂yα þ

∂yα
∂xμ

∂yj
∂xi

∂2xi

∂yj∂yα|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼ðA1Þ− ∂2yα

∂xμ∂xβ
∂xβ
∂yα

�
detΛ

≡ 0: ðA4Þ

This identity is used for setting up the extended set of
Euler-Lagrange equations.
The derivative of the contravariant metric with respect to

the space-time coefficients follows as

∂gμνðyÞ
∂ð∂xα∂yβÞ

¼ gijðxÞ
�∂ð∂yμ∂xiÞ
∂ð∂xα∂yβÞ

∂yν
∂xj þ

∂yμ
∂xi

∂ð∂yν∂xjÞ
∂ð∂xα∂yβÞ

�

¼ −gabðyÞ ∂x
i

∂ya
∂xj
∂yb

�∂yμ
∂xα

∂yβ
∂xi

∂yν
∂xj þ

∂yμ
∂xi

∂yν
∂xα

∂yβ
∂xj

�

¼ −gβνðyÞ ∂y
μ

∂xα − gμβðyÞ ∂y
ν

∂xα
¼ −ðδμj gβνðyÞ þ δνjg

μβðyÞÞ ∂y
j

∂xα : ðA5Þ

The derivative of the covariant metric with respect to the
space-time coefficients is then
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∂gμνðyÞ
∂ð∂xα∂yβÞ

¼ gijðxÞ
�∂ð∂xi∂yμÞ
∂ð∂xα∂yβÞ

∂xj
∂yν þ

∂xi
∂yμ

∂ð∂xj∂yνÞ
∂ð∂xα∂yβÞ

�

¼ gabðyÞ
∂ya
∂xi

∂yb
∂xj

�
δiαδ

β
μ
∂xj
∂yν þ

∂xi
∂yμ δ

j
αδ

β
ν

�

¼ ðδβμgjνðyÞ þ δβνgμjðyÞÞ
∂yj
∂xα : ðA6Þ

APPENDIX B: CONNECTION COEFFICIENTS

The derivatives of a vector aμ do not transform as tensors

∂aμðXÞ
∂Xν ¼ ∂aiðxÞ

∂xj
∂xj
∂Xν

∂xi
∂Xμ þ aiðxÞ

∂2xi

∂Xμ∂Xν ; ðB1Þ

provided that the reference system xðyÞ is curved with
respect to the reference system XðyÞ, which means that not
all second derivatives of the xμ in (B1) vanish.
Equation (B1) can be converted into a tensor equation by

introducing connection coefficients γμαβðxÞ and Γμ
αβðXÞ

∂aμðXÞ
∂Xν ¼ ∂xj

∂Xν

∂xi
∂Xμ

∂aiðxÞ
∂xj þ akðxÞ

∂2xk

∂Xμ∂Xν

¼ ∂xj
∂Xν

∂xi
∂Xμ

�∂aiðxÞ
∂xj − akðxÞγkijðxÞ

�

þ akðXÞΓk
μνðXÞ:

Then

∂aμðXÞ
∂Xν − akðXÞΓk

μνðXÞ

¼ ∂xj
∂Xν

∂xi
∂Xμ

�∂aiðxÞ
∂xj − akðxÞγkijðxÞ

�
;

which shows that the quantity

ai;j ≡ ∂aiðxÞ
∂xj − akðxÞγkijðxÞ ðB2Þ

transforms as a tensor, provided that the connection
coefficients transform as

akðxÞ
∂2xk

∂Xμ∂Xν ¼ akðxÞ
∂xk
∂Xj Γ

j
μνðXÞ

−
∂xj
∂Xν

∂xi
∂Xμ akðxÞγkijðxÞ:

As this equation holds for arbitrary akðxÞ, it follows that

Γj
μνðXÞ

∂xk
∂Xj ¼ γkijðxÞ

∂xi
∂Xμ

∂xj
∂Xν þ

∂2xk

∂Xμ∂Xν ; ðB3Þ

and finally after contraction with ∂Xα=∂xk,

Γα
μνðXÞ ¼ γkijðxÞ

∂xi
∂Xμ

∂xj
∂Xν

∂Xα

∂xk þ ∂2xk

∂Xμ∂Xν

∂Xα

∂xk : ðB4Þ

This equation provides the unique correlation of the space-
time coefficients and their derivatives with the connection
coefficients. The connection coefficients are symmetric in
their lower indices for torsion-free space. Otherwise, their
skew-symmetric part define the torsion tensor.

APPENDIX C: EULER-LAGRANGE EQUATIONS
FOR SPACE-TIME COEFFICIENTS AND

CONNECTION COEFFICIENTS

Given an extended Lagrangian that depends on the
space-time event, the connection coefficients, and their
respective space-time derivatives. The action functional
over a space-time region R is then

S ¼
Z
R
Le

�
γηαξðyÞ;

∂γηαξ
∂yν ; xμðyÞ; ∂x

μ

∂yν
�
d4y; δS¼! 0:

ðC1Þ

The variation of Le follows as

δLe ¼
∂Le

∂xα δx
α þ ∂Le

∂ð∂xα∂yβÞ
δ

�∂xα
∂yβ

�
þ ∂Le

∂γηαξ δγ
η
αξ

þ ∂Le

∂ð∂γηαξ∂yβ Þ
δ

�∂γηαξ
∂yβ

�
:

As the independent variables yμ are not varied, the differ-
entiation with respect to yβ may be interchanged with the
variation. This yields the equivalent representations of δLe

δLe ¼
∂Le

∂xα δx
α þ ∂Le

∂ð∂xα∂yβÞ
∂ðδxαÞ
∂yβ þ ∂Le

∂γηαξ δγ
η
αξ

þ ∂Le

∂ð∂γηαξ∂yβ Þ
∂ðδγηαξÞ
∂yβ

and

δLe ¼
�∂Le

∂xα −
∂
∂yβ

∂Le

∂ð∂xα∂yβÞ
�
δxα þ ∂

∂yβ
� ∂Le

∂ð∂xα∂yβÞ
δxα

�

þ
� ∂Le

∂γηαξ −
∂
∂yβ

∂Le

∂ð∂γηαξ∂yβ Þ

�
δγηαξ

þ ∂
∂yβ

� ∂Le

∂ð∂γηαξ∂yβ Þ
δγηαξ

�
:

According to Gauss’ theorem, the divergence terms can be
converted into surface terms in the action functional. This
means explicitly
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Z
R

∂
∂yβ

� ∂Le

∂ð∂xα∂yβÞ
δxα

�
d4y ¼

I
∂R

∂Le

∂ð∂xα∂yβÞ
δxαdSβ

Z
R

∂
∂yβ

� ∂Le

∂ð∂γηαξ∂yβ Þ
δγηαξ

�
d4y ¼

I
∂R

∂Le

∂ð∂γηαξ∂yβ Þ
δγηαξdSβ;

with dSβ denoting the β component of the normal vector on
the boundary surface ∂R of the volume R. Both surface
integrals vanish since on the boundary of the space-time
region R

δxαj∂R ¼ 0; δγηαξj∂R ¼ 0;

which implies that the space-time geometry is flat on ∂R.
The action principle δS¼! 0 then reduces to

0¼!
Z
R

��∂Le

∂xα −
∂
∂yβ

∂Le

∂ð∂xα∂yβÞ
�
δxα

þ
� ∂Le

∂γηαξ −
∂
∂yβ

∂Le

∂ð∂γηαξ∂yβ Þ

�
δγηαξ

�
d4y

As the variations δxα and δγηαξ are arbitrary and mutually
independent, this condition can only be satisfied if the
expressions in parentheses vanish simultaneously

∂
∂yβ

∂Le

∂ð∂xα∂yβÞ
−
∂Le

∂xα ¼ 0;
∂
∂yβ

∂Le

∂ð∂γηαξ∂yβ Þ
−

∂Le

∂γηαξ ¼ 0:

These equations are the Euler-Lagrange equations for the
space-time and the connection coefficients.

APPENDIX D: EXPLICIT CALCULATION OF
THE TRANSFORMATION RULE (27)

In expanded form, Eq. (26) reads

~Tα
β ∂Xα

∂yβ − ~tαβ
∂xα
∂yβ ¼ ~Rη

αξμ

�
γkij

� ∂2Xη

∂xk∂xν
∂xν
∂Xμ

∂xi
∂Xα

∂xj
∂Xξ þ

∂2xi

∂Xα∂Xμ

∂Xη

∂xk
∂xj
∂Xξ þ

∂2xj

∂Xξ∂Xμ

∂Xη

∂xk
∂xi
∂Xα

�

þ ∂2Xη

∂xk∂xν
∂2xk

∂Xα∂Xξ

∂xν
∂Xμ þ

∂3xk

∂Xα∂Xξ∂Xμ

∂Xη

∂xk
�
: ðD1Þ

This expression is now split into a skew-symmetric and a symmetric part of ~Rη
αξμ in the indices ξ; μ according to

~Rη
αξμ ¼ 1

2
ð ~Rη

αξμ − ~Rη
αμξÞ þ 1

2
ð ~Rη

αξμ þ ~Rη
αμξÞ ¼ ~Rη

α½ξμ� þ ~Rη
αðξμÞ:

For the skew-symmetric part, ~Rη
α½ξμ�, the two terms in (D1) symmetric in ξ; μ vanish, hence

~Rη
α½ξμ�

�
γkij

� ∂2Xη

∂xk∂xν
∂xν
∂Xμ

∂xi
∂Xα

∂xj
∂Xξ þ

∂2xi

∂Xα∂Xμ

∂Xη

∂xk
∂xj
∂Xξ

�
þ ∂2Xη

∂xk∂xν
∂xν
∂Xμ

∂2xk

∂Xα∂Xξ

�

¼ ~Rη
α½ξμ�

� ∂2Xη

∂xk∂xν
∂xν
∂Xμ

�
γkij

∂xi
∂Xα

∂xj
∂Xξ þ

∂2xk

∂Xα∂Xξ

�
þ γkij

∂2xi

∂Xα∂Xμ

∂Xη

∂xk
∂xj
∂Xξ

�

¼ ~Rη
α½ξμ�

�
Γj

αξ
∂2Xη

∂xk∂xν
∂xk
∂Xj

∂xν
∂Xμ þ γkij

∂2xi

∂Xα∂Xμ

∂Xη

∂xk
∂xj
∂Xξ

�

¼ ~Rη
α½ξμ�

�
Γj

αξ

�
γikν

∂Xη

∂xi
∂xk
∂Xj

∂xν
∂Xμ − Γη

jμ

�
þ γkij

�
Γa

αμ
∂xi
∂Xa − γiab

∂xa
∂Xα

∂xb
∂Xμ

� ∂Xη

∂xk
∂xj
∂Xξ

�

¼ ~Rη
α½ξμ�

�
−Γi

αξΓη
iμ − γiabγ

k
ij
∂xa
∂Xα

∂xb
∂Xμ

∂Xη

∂xk
∂xj
∂Xξ þ Γj

αξγ
i
kν
∂Xη

∂xi
∂xk
∂Xj

∂xν
∂Xμ þ Γj

αμγ
i
kν
∂Xη

∂xi
∂xk
∂Xj

∂xν
∂Xξ

�

¼ − ~Rη
α½ξμ�Γi

αξΓη
iμ þ γiabγ

k
ij
~Rη

α½ξμ� ∂xa
∂Xα

∂xb
∂Xξ

∂Xη

∂xk
∂xj
∂Xμ

¼ − ~Rη
α½ξμ�Γi

αξΓη
iμ þ ~rka½bj�γiabγkij ¼ − ~Rη

α½ξμ�Γi
αξΓη

iμ þ ~rηα½ξμ�γiαξγηiμ

¼ −
1

2
~Rη

αξμðΓi
αξΓη

iμ − Γi
αμΓη

iξÞ þ
1

2
~rηαξμðγiαξγηiμ − γiαμγ

η
iξÞ:

The two mixed terms in Γ; γ cancel each other due to the skew-symmetry of ~Rη
α½ξμ� in ξ; μ.
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The contribution of (26) emerging from the symmetric
part ~Rη

αðξμÞ can be expressed in terms of the derivatives of
the connection coefficients, whose transformation rule is

∂Γη
αξ

∂Xκ

∂Xκ

∂xν ¼ ∂γkij
∂xν

∂Xη

∂xk
∂xi
∂Xα

∂xj
∂Xξ

þ γkij
∂
∂xν

�∂Xη

∂xk
∂xi
∂Xα

∂xj
∂Xξ

�

þ ∂
∂xν

�∂Xη

∂xk
∂2xk

∂Xα∂Xξ

�
:

Thus

~Rη
αðξμÞ ∂xν

∂Xμ

�
γkij

∂
∂xν

�∂Xη

∂xk
∂xi
∂Xα

∂xj
∂Xξ

�

þ ∂
∂xν

�∂Xη

∂xk
∂2xk

∂Xα∂Xξ

��

¼ ~Rη
αðξμÞ ∂xν

∂Xμ

�∂Γη
αξ

∂Xκ

∂Xκ

∂xν −
∂γkij
∂xν

∂Xη

∂xk
∂xi
∂Xα

∂xj
∂Xξ

�

¼ ~Rη
αðξμÞ∂Γη

αξ

∂Xμ − ~rkiðjνÞ
∂γkij
∂xν ¼ ~Rη

αðξμÞ∂Γη
αξ

∂Xμ − ~rηαðξμÞ
∂γηαξ
∂xμ

¼1

2
~Rη

αξμ

�∂Γη
αξ

∂Xμ þ∂Γη
αμ

∂Xξ

�
−
1

2
~rηαξμ

�∂γηαξ
∂xμ þ∂γηαμ

∂xξ
�
:

The total transformation rule (D1) expressed in terms of
connection coefficients is then

~Tα
β ∂Xα

∂yβ − ~tαβ
∂xα
∂yβ

¼ 1

2
~Rη

αξμ

�∂Γη
αξ

∂Xμ þ ∂Γη
αμ

∂Xξ − Γi
αξΓη

iμ þ Γi
αμΓη

iξ

�

−
1

2
~rηαξμ

�∂γηαξ
∂xμ þ ∂γηαμ

∂xξ − γiαξγ
η
iμ þ γiαμγ

η
iξ

�
:

APPENDIX E: EXPLICIT CALCULATION OF
THE EULER-LAGRANGE EQUATION (38)

The form-invariant extended Lagrangian describing the
source-free space-time dynamics is given by

Le

�
γηαξ;

∂γηαξ
∂xν ;

∂xμ
∂yν

�

¼ −
1

4
gκηgβαgλξgζτrκβλζrηαξτ detΛ;

with gκη denoting the covariant metric tensor and gβα its
contravariant counterpart. In this description, the curvature
tensor rκβλζ—as defined by Eq. (30)—only depends on the
connection coefficients and their space-time derivatives.
Thus, only the metric tensors and detΛ have derivatives
with respect to the space-time coefficients ∂xμ=∂yν. These
derivatives were worked out explicitly with Eqs. (A5),
(A6), and (A2). The derivative of Le with respect to the
space-time coefficients follows as

∂Le

∂ð∂xμ∂yνÞ
¼−

1

4
rκβλζrηαξτ detΛ

�∂gκηðyÞ
∂ð∂xμ∂yνÞ

gβαgλξgζτþ∂gβαðyÞ
∂ð∂xμ∂yνÞ

gκηgλξgζτþ
∂gλξðyÞ
∂ð∂xμ∂yνÞ

gκηgβαgζτþ
∂gζτðyÞ
∂ð∂xμ∂yνÞ

gκηgβαgλξþ
∂yν
∂xμ gκηg

βαgλξgζτ
�

¼−
1

4
rκβλζrηαξτ detΛ

∂yj
∂xμ ½ðδ

ν
κgjηþδνηgκjÞgβαgλξgζτ− ðδβj gναþδαj g

βνÞgκηgλξgζτ− ðδλjgνξþδξjg
λνÞgκηgβαgζτ

−ðδζjgντþδτjg
ζνÞgκηgβαgλξþδνjgκηg

βαgλξgζτ�

¼ 1

4
detΛ

∂yj
∂xμ ð−r

ν
βλζrηαξτgjηgβαgλξgζτ−rκβλζrναξτgκjgβαgλξgζτþ rκjλζrηαξτgκηgναgλξgζτþ rκβλζrηjξτgκηgβνgλξgζτ

þ rκβjζrηαξτgκηgβαgνξgζτþ rκβλζrηαjτgκηgβαgλνgζτþ rκβλjrηαξτgκηgβαgλξgντþ rκβλζrηαξjgκηgβαgλξgζν

−δνjrκβλζrηαξτgκηgβαgλξgζτÞ

¼ 1

4
detΛ

∂yj
∂xμ ð−2r

ναξτrjαξτþ2rηνξτrηjξτþ2rηαντrηαjτþ2rηαξνrηαξj−δνjr
ηαξτrηαξτÞ

¼
�
−
1

2
rναξτrjαξτþ

1

2
rηνξτrηjξτþ rηαξνrηαξj−

1

4
δνjr

ηαξτrηαξτ

�
j
y

∂yj
∂xμdetΛ

¼
�
−
1

2
rjαξτrμαξτþ

1

2
rηjξτrημξτþ rηαξjrηαξμ−

1

4
δjμrηαξτrηαξτ

�
j
x

∂yν
∂xj detΛ:

The first two terms cancel under the precondition that rναξτ is skew-symmetric also in its first index pair. This is ensured if a
metric is present ([15, p 324]), which is assumed in the actual context. The final result is thus

∂Le

∂ð∂xμ∂yνÞ
¼

�
rηαξjðxÞrηαξμðxÞ −

1

4
δjμrηαξβrηαξβ

� ∂yν
∂xj detΛ:
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