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Maximal Abelian gauge has been a particular choice to study dynamical generation of off-diagonal
gluon masses in QCD. This gauge is a special case of an Abelian projection. Abelian dominance is
characterized by off-diagonal gluons acquiring masses in the relevant phase. Here we propose a gauge
condition which is quadratic in fields and which does not fall in the class of an Abelian projection.
We explore the possible vacua of the gauge-fixed effective action of the theory and find evidence that ghost
bilinears may be subject to condensation, which would signal acquisition of masses by off-diagonal gluons.
Such a vacuum satisfies the requirement of Abelian dominance, providing an example of the hypothesis
through a mechanism other than Abelian projection.
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I. INTRODUCTION

One of the burning questions to be answered definitively
in QCD is, “what is the physical mechanism by which
quarks and gluons are confined?” A classical model for
confinement is a linear potential between static quarks. In
the mid 1970s, a dual version of the type-II superconductor
was proposed by Nambu [1], ’t Hooft [2], and Mandelstam
[3]. In the type-II superconductor, the magnetic field is
trapped in the form of one-dimensional Abrikosov vortex
tubes inside the superconductor, i.e., inside the medium of
condensed electric charges [4]. In the same way but dually
the idea of these proposals for the quark confinement
mechanism is that the electric field due to quarks is trapped
in the form of vortex tubes in a phase in which magnetic
monopoles are condensed. This gives rise to forces char-
acterized by a constant string tension and a linear potential
between static quarks. Here the key point is that the dual
picture is based on the Abelian gauge theory whereas QCD
is non-Abelian, therefore one needs to demonstrate that
QCD reduces to an effective Abelian theory at an infra-red
scale. Secondly, it requires a new concept of condensed
magnetic monopoles. Need for such an effective theory led
to the concept of “Abelian dominance” [5].
According to the proposal of Abelian dominance, at a

low energy scale, QCD can be effectively expressed in
terms of Abelian gauge degrees of freedom [5]. It is usually
discussed in terms of off-diagonal gluons i.e., gluons not
associated with the Cartan subalgebra of SUðNÞ. In the
SUðNÞ gauge theory, there are NðN − 1Þ off-diagonal
gluons. These gluons attaining large dynamical masses is
presumed to provide the required evidence of existence of
Abelian dominance. In the infra-red limit, the off-diagonal
gluons decouple, leaving behind the massless diagonal
gluons as the only dominant degrees of freedom. Thus, one

gets N − 1 copies of an Abelian gauge theory, one for each
diagonal gluon. As far as we know, the occurrence of off-
diagonal gluon masses and infra-red Abelian dominance
have been studied mostly in the Maximal Abelian gauge, a
few of the references being [6–9], which is a particular case
of an Abelian projection [2]. A few studies have relied on
unconventional gauges such as the Laplacian Abelian
gauge (Abelian projection) and the Landau gauge [10,11]
also in restrictive settings.
An Abelian projection [2] is a partial gauge fixing which

leaves the maximal torus group of a groupG unbroken. For
SUðNÞ, the gauge condition takes the form of a variable
XðxÞ satisfying following conditions:

(i) It takes values in the Lie algebra of SUðNÞ.
(ii) It transforms by adjoint action

XðxÞ → UðxÞXðxÞUðxÞ−1 ð1Þ

With a suitable gauge ransformation XðxÞ can be
diagonalized,

dXðxÞ ¼ VðxÞXðxÞVðxÞ−1; VðxÞ ∈ SUðNÞ ð2Þ

such that dXðxÞ is invariant under Uð1ÞN−1, the maximal
torus group of SUðNÞ. Hence each such variable XðxÞ
defines an Abelian projection. A prime example being the
Lie algebra valued field strength. Here we propose “a
quadratic gauge” which does not fall in the class of Abelian
projections but possesses strong hints for a dynamical mass
generation for off-diagonal gluons, possibly providing
another route to Abelian dominance.

II. QUADRATIC GAUGE AND THE
EFFECTIVE LAGRANGIAN

Consider Quadratic Gauge condition, specified as
follows,
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Fa½AμðxÞ� ¼ Aa
μðxÞAμaðxÞ ¼ faðxÞ; for eacha ð3Þ

where faðxÞ is an arbitrary function of x. We note that this
is not an Abelian projection as the gauge condition does not
take values in the Lie algebra. Furthermore, the condition of
an Abelian projection is stipulated to be covariant in order
to ensure survival of an Abelian component. The above
gauge condition does not meet this requirement either. The
resulting effective Lagrangian density contains gauge
fixing and ghost terms as follows,

LGFþLghost ¼−
1

2ζ

X
a

ðAa
μAμaÞ2−

X
a

caAμaðDμcÞa ð4Þ

Where ζ is an arbitrary gauge fixing parameter and
ðDμcÞa ¼ ∂μca − gfabcAb

μcc. Now onwards, we shall drop
the summation symbol, but the summation over an index a
will be understood when it appears repeatedly, including
when repeated thrice as in the ghost terms above. In
particular,

−caAμaðDμcÞa ¼ −caAμa∂μca þ gfabccaccAμaAb
μ ð5Þ

where the summation over indices a, b and c each runs
independently over 1 to N2 − 1. With this understanding,
we write the full effective Lagrangian density as

Leff ¼ −
1

4
Fa
μνFμνa −

1

2ζ
ðAa

μAμaÞ2 − caAμaðDμcÞa ð6Þ

where the first term is the usual Yang-Mills Lagrangian
with Fa

μνðxÞ ¼ ∂μAa
νðxÞ − ∂νAa

μðxÞ − gfabcAb
μðxÞAc

νðxÞ.

III. OFF-DIAGONAL GLUON MASSES
AND ABELIAN DOMINANCE

Although we do not intend to derive perturbative rules
for the S-matrix here, the intuitive understanding in terms
of the properties of quanta that can in principle occur in
the asymptotic states is the most convenient in taking the
discussion forward. With this in mind, we examine the
degrees of freedom in the gauge-fixed action, which
suggest that the off-diagonal gluons acquire masses if
certain ghost bilinears are replaced by c-numbers. As such
we now proceed to identify propagators for the various
degrees of freedom, which will be instrumental in setting
up a case for ghost condensation.

A. Mass generation due to ghost condensation

The Gluon propagator is formally given by

ðO−1
a bÞμνðpÞ ¼ δabðημνp2 − pμpνÞ−1 ð7Þ

We impose the Feynman gauge only on the diagonal gluons
as we anticipate the off diagonal gluons to acquire masses

and are not relevant to immediate discussion. This amounts
to adding the following gauge fixing and ghost Lagrangians
into (6), where the index j will designate the diagonal
indices.

L0
eff ¼ Leff −

1

2ξ
ð∂μAμjÞ2 þ ∂μcjðDμcÞj ð8Þ

Therefore, the diagonal gluon propagators are

ðO−1ÞjbμνðpÞ ¼ −
i δjb

p2
ημν ð9Þ

and the diagonal ghost propagators are

GjbðpÞ ¼ i δjb

p2
ð10Þ

Consider any one of the ghost terms in the partially
gauge-fixed Lagrangian (6):

−caAμaðDμcÞa ¼−caAμa∂μcaþgfabccaccAμaAb
μ: ð11Þ

We see that in the second term on the right, if cacc are
replaced by c-numbers, the term provides a gluon mass
matrix. This condition would be realized if the ghost
bilinears underwent condensation. Such a possibility was
elaborated in Ref. [6]. We shall here show that a similar
computation lends strength to this hypothesis, i.e., an
effective potential can be derived whose minima occur at

hcmcni ≠ 0 for all m and n: ð12Þ

Consider a pair of anti-ghost and ghost, cm and cn, and
introduce for them an auxiliary scalar field σmn, which is
their putative condensate. We insert the following identity
into the gauge-fixed path integral,

1¼
Z YN2−1;N2−1

m¼1;n¼m

ðDσmnÞ
YN2−1;N2−1

m¼1;n¼m

e−i
R

d4x 1
2κðσmn−βc3c3−αcmcnÞ2 ;

ð13Þ

where α and β are couplings and κ is an arbitrary parameter.
Ghost field c3 is chosen as an example, it could be any one
of the diagonal ghosts. This amounts to the following
effective Lagrangian

LðA; σÞ ¼ L0
eff þ

XN2−1;N2−1

m¼1;n¼m

h 1
2κ

ðσmnÞ2 − β

κ
σmnc3c3

−
α

κ
σmncmcn þ αβ

κ
cmcnc3c3

þ β2

2κ
ðc3c3Þ2 þ α2

2κ
ðcmcnÞ2

i
ð14Þ
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The dimensionless parameters α, β and κ make their
appearance in the effective mass matrix of the gluons in
Eq. (25), to be determined in terms of a mass parameter μ,
and can be adjusted to reproduce the confinement scale
within the Abelian dominance hypothesis.
The effective potential for σmn may now be computed

within the standard strategy of Coleman-Weinberg mecha-
nism in which one-loop diagrams give the leading quantum
correction. In the present case, this consists of all one-loop
c3 diagrams.

V1−loopðσmnÞ ¼
Z

d4p
2ið2πÞ4

X∞
k¼1

−
1

k
ðσmnÞk ðiÞk

ðp2Þk
�
−iη
κ

�
k

¼
Z

d4p
2ið2πÞ4 ln

�
p2 − η

κ σ
mn

p2

�
ð15Þ

Here η ¼ αþ β if m ¼ n ¼ 3, else η ¼ β. Therefore, the
effective potential is

VðσmnÞ ¼ 1

2κ
ðσmnÞ2 þ

Z
d4p

2ið2πÞ4 ln
�
p2 − η

κ σ
mn

p2

�
ð16Þ

The extremum of the potential is given by the zero of the
gap equation

V 0ðσmnÞ ¼ σmn

κ
−
η

κ

Z
d4p

2ið2πÞ4
1

p2 − η
κ σ

mn ¼ 0 ð17Þ

In the minimal subtraction scheme of the dimensional
regularization, the gap equation can be written as

σmn

κ
þ 1

32π2
η2

κ2
σmn

�
ln

�η
κ σ

mn

4πμ2

�
þ γ − 1

�
¼ 0; ð18Þ

where γ is the Euler constant, 0.57721…, and μ is an
arbitrary scale mass.
Apart from a trivial solution, it has a nontrivial solution,

σmn
0 ¼ κ

η
4πμ2eð1−γÞ exp

�
−32π2κ

η2

�
; ð19Þ

which corresponds to the minimum of the potential because

V 00ðσmn
0 Þ ¼ 1

32π2
η2

κ2
> 0: ð20Þ

From the equation of motion for σmn, we can deduce that

hc3c3i ∼ σ330
αþ β

and ð21Þ

hcmcni ∼ σmn
0 − βhc3c3i

α
: ð22Þ

Thus, we have laid out a mechanism and set up a case in
which all the condensates are nonzero real and, except

hc3c3i, all of them are equal, reflecting an approximate

SUðNÞ symmetric vacuum. We needed N2ðN2−1Þ
2

number of
auxiliary fields only because condensates are real.
Additional terms due to unity in the path integral and
additional Feynman gauge fixing do not affect conclusions
of the theory; therefore, we won’t consider them in further
discussions and take into account the original effective
Lagrangian only.
In the proposed ghost-condensed phase, the second term

of Eq. (11) gives us off-diagonal components of the gluon
mass matrix,

ðM2Þabdyn ¼ 2g
XN2−1

c¼1

fabchcacci; ð23Þ

whereas diagonal components of M2
dyn are zero since

faac ¼ 0. To obtain a spectrum of the theory, i.e., to obtain
masses of gluons, we must diagonalize the matrix and find
eigenvalues. Required demonstration is simple in the
approximate SUðNÞ symmetric state which we argued,

where all, except hc3c3i, ghost-anti ghost condensates are
identical, i.e.,

hc3c3i ≠ hc1c1i ¼ � � � ¼ hc1cN2−1i ¼ � � �
¼ hcN2−1c1i ¼ � � � ¼ hcN2−1cN

2−1i ¼ K: ð24Þ

Thus,

ðM2Þabdyn ¼ 2g
XN2−1

c¼1

fabcK; ð25Þ

which is an antisymmetric matrix due to the antisymmetry
of the structure constants. We proceed to show that this
matrix has only NðN − 1Þ nonzero eigenvalues and, thus,
has nullity N − 1. We define the matrix

Jab ¼ i

�XN2−1

c¼1

½Tab�c
�

¼
�XN2−1

c¼1

fabc
�
; ð26Þ

which belongs to a ðN2 − 1Þ × ðN2 − 1Þ adjoint represen-
tation of g, the Lie algebra vector space. For the case of
SUðNÞ, the coadjoint representation ½Tab��c which is dual of
the adjoint is the same as the adjoint. Elements g of SUðNÞ
act on g�, the dual vector space, by conjugation,

fAd�F ¼ g−1Fg; F ∈ g�g:

The orbitOF ¼ fAd�F;∀g ∈ SUðNÞg, passing through F,
is known as the coadjoint orbit. This action has a stabilizer,
i.e., a set of elements in SUðNÞ that leave the elements F
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invariant. The stabilizer happens to be the maximal torus
group for the case of a compact connected Lie group. Thus
for SUðNÞ, it is the maximal torus group Uð1ÞN−1. Thus,
the coadjoint orbits of SUðNÞ group are isomorphic to a
manifold SUðNÞ=Uð1ÞN−1, i.e., OF ∼ SUðNÞ=Uð1ÞN−1 ∼
CPN−1 ⊗ CPN−2 ⊗ � � � ⊗ CP1. It is an NðN − 1Þ dimen-
sional symplectic manifold with a symplectic form
TrðF½X; Y�Þ, where F ∈ g� and X; Y ∈ g [12]. In the
present problem, that is the form of the expression under
consideration, Jab ¼ −i

N TrðF½Ta; Tb�Þ, with F ¼ P
N2−1
c¼1 Tc

and Ta; Tb; Tc being basis generators. The rank of a
symplectic form is always equal to a dimension of the
coadjoint orbit. Since Jab is a normal matrix, its rank
and number of nonzero eigenvalues are equal. So, the rank
and, therefore, the number of nonzero eigenvalues are
NðN − 1Þ and, thus, nullity is N − 1. Thus, we have proved
at tree level that in an approximate SUðNÞ invariant
vacuum, NðN − 1Þ off-diagonal gluons acquire masses
and N − 1 diagonal gluons remain massless. Therefore,
the off-diagonal gluon acquires the massive propagator in
this phase, which is of the form

ðO−1
ofdÞabμνðpÞ ¼ −

i δab

p2 −M2
gluon

�
ημν −

pμpν

M2
gluon

�
: ð27Þ

The nonzero eigenvalues thus identified, being eigen-
values of an antisymmetric matrix, are purely imaginary
and occur in conjugate pairs, viz., M2

gluon ¼ �im2 (m2

positive real). Now since M2
gluon is purely imaginary, the

off-diagonal gluon propagator does not have any singu-
larity on a real p2 axis, which is a sufficient condition for
the confinement [13]. This implies that masses of these
gluons Mgluon ¼ 1ffiffi

2
p ð1� iÞm or 1ffiffi

2
p ð−1 ∓ iÞm. We ignore

the latter choice since it gives ReðMgluonÞ negative, which is
not physical. Although we are not interested in an S-matrix
interpretation for these degrees of freedom, prima facie
there is no danger from these eigenvalues being purely
imaginary. However, to retain the intuitive appeal of the
arguments, it is necessary to check that we have not
departed too far from their interpretation as quanta and,
in principle, an S-matrix interpretation. This is what we
shall do in the next section.
In this description, the off-diagonal gluons acquire

masses with the positive real parts, which makes them
short-ranged. Only the diagonal gluons mediate long-range
interactions, strongly suggesting Abelian dominance.

IV. HERMITICITY OF THE EFFECTIVE
LAGRANGIAN IN A QUADRATIC GAUGE

In order to retain the appeal to a picture of this ground
state in terms of quanta, it is useful to check that it will not
conflict with nominally expected restrictions on the manner
in which such degrees of freedom enter into the S matrix.

Here we will show that while in the normal phase the
effective Lagrangian is manifestly Hermitian, a condition
indispensable for the S-matrix unitarity as per [14], the
effective Lagrangian obeys an extended Hermiticity con-
dition in the ghost-condensed phase, but the S-matrix
continues to remain unitary.
The effective Lagrangian in the normal phase is given in

Eq. (6),

Leff ¼ −
1

4
Fa
μνFμνa −

1

2ζ
ðAa

μAμaÞ2 − caAμaðDμcÞa: ð28Þ

The Hermiticity property of fields is given by [14]

Aa†
μ ¼ Aa

μ

ca† ¼ ca

ca† ¼ −ca: ð29Þ

It is easy to check that this Lagrangian is Hermitian under
the Hermitian conjugation of fields since

ðcaccÞ† ¼ −ccca ¼ cacc

ðca∂μccÞ† ¼ −∂μccca ¼ ca∂μcc

(we have used an anticommutativity of ghost fields).
In the ghost-condensed phase, hcacci, the derivative

terms like hca∂μcci are zero since we have assumed the
condensate to be the same at every space-time point x.
Hence, the effective Lagrangian now becomes

Leff ¼ −
1

4
Fa
μνFμνa −

1

2ζ
ðAa

μAμaÞ2 þM2
aAa

μAμa: ð30Þ

HereM2
a ¼ 0 when a indexes the diagonal gluons, e.g., for

SUð3Þ, M2
3 ¼ M2

8 ¼ 0. While for the off-diagonal gluons,
M2

1¼þim2
1; M

2
2 ¼ −im2

1; M
2
4 ¼ þim2

2; M
2
5 ¼ −im2

2; M
2
6 ¼

þim2
3; M

2
7 ¼ −im2

3 (m2
1; m

2
2; m

2
3 are positive real). Hence,

for SUð3Þ, the last term of the effective Lagrangian in
Eq. (30) would be

M2
aAa

μAμa ¼þ im2
1A

1
μAμ1 − im2

1A
2
μAμ2 þ im2

2A
4
μAμ4

− im2
2A

5
μAμ5 þ im2

3A
6
μAμ6 − im2

3A
7
μAμ7: ð31Þ

Now, taking the Hermitian conjugate of a Lagrangian in
Eq. (30) will alter no term except the mass term and will
interchange the sign of mass terms between “conjugate”
gluons, e.g, in Eq. (31),

ðM2
aAa

μAμaÞ† ¼ − im2
1A

1
μAμ1 þ im2

1A
2
μAμ2 − im2

2A
4
μAμ4

þ im2
2A

5
μAμ5 − im2

3A
6
μAμ6 þ im2

3A
7
μAμ7:

ð32Þ
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We now invoke an inner automorphism of the gauge
group to help resolve the issue. Consider the indivi-
dual Lagrangian term Li, which can be − 1

4
Fi
μνFμνi,

− 1
2ζ ðAi

μAμiÞ2, im2Ai
μAμi, −ciAμið∂μcÞi for each i, where

the last term, although zero in the ghost-condensed phase,
has been retained for the sake of generality. We propose an
inner automorphism T such that

TL1T†¼L2 TL4T†¼L5 TL6T†¼L7 TL3T†¼L8

TL2T†¼L1 TL5T†¼L4 TL7T†¼L6 TL8T†¼L3;

ð33Þ

with the property

T2 ¼ T†2 ¼ 1: ð34Þ

The inner automorphism is essentially exchanging group
indices, i.e., 1 ↔ 2, 4 ↔ 5, 6 ↔ 7, 3 ↔ 8. In the adjoint
representation, it is given by

2
66666666666664

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

3
77777777777775
:

It can be seen that the inner automorphism operation does
not cause any change in any of the terms except the mass
term in Eq. (30) and further, when operated on Eq. (32), it
can be easily verified that

TðM2
aAa

μAμaÞ†T† ¼ M2
aAa

μAμa: ð35Þ

The rest of the Lagrangian, which includes interacting
parts, is Hermitian and the role of an inner automorphism
remains trivial for it. Therefore, the interaction Hamiltonian
HI is also Hermitian. Thus, the vacuum may be con-
sidered to furnish a nontrivial representation of an inner

automorphism. So, as a result, the Leff in Eq. (30) is
invariant under the Hermitian conjugation followed by an
inner automorphism,

TL†
effT

† ¼ Leff : ð36Þ

Now, the S matrix, in general, is given as follows:

S ¼ T exp

�
−i

Z
HIðtÞdt

�
: ð37Þ

This interaction Hamiltonian HI is Hermitian and the free
quadratic part plays no role when the S matrix is expanded
perturbatively. Therefore, even though the effective
Lagrangian is not pure Hermitian, the usual unitarity
condition for the S matrix, S†S ¼ SS† ¼ 1, still holds in
the ghost-condensed phase. We may understand the inclu-
sion of an inner automorphism symmetry in ensuring the
Hermiticity of the effective Lagrangian Leff to be a
refinement over the usual discrete internal symmetry C,
the charge conjugation symmetry.

V. CONCLUSION

The gauge-fixed Lagrangian with the choice of quadratic
gauge Aa

μAμa ¼ faðxÞ, for each a, contains ghost-gauge
field interaction terms gfabccaccAμaAb

μ. It is possible to
interpret the latter as providing masses to the off-diagonal
gluons in a vacuum respecting an approximate SUðNÞ
invariance, which we argue is signaled by ghost conden-
sation. This interpretation provides a clue to the existence
of Abelian dominance at infrared energies in the quadratic
gauge in QCD. We also showed that the effective
Lagrangian in the absence of condensation is Hermitian,
giving us the usual unitarity condition for the S matrix, and
proposed an extended Hermiticity in the suggested ghost-
condensed phase which would ensure unitarity in the
latter phase.
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