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Consider the Euclidean functional integral representation of any physical process in the electroweak
model. Integrating out the fermion degrees of freedom introduces 24 fermion determinants. These multiply
the Gaussian functional measures of the Maxwell, Z, W, and Higgs fields to give an effective functional
measure. Suppose the functional integral over the Maxwell field is attempted first. This paper is concerned
with the large amplitude behavior of the Maxwell effective measure. It is assumed that the large amplitude
variation of this measure is insensitive to the presence of the Z, W, and H fields; they are assumed to be a
subdominant perturbation of the large amplitude Maxwell sector. Accordingly, we need only examine the
large amplitude variation of a single QED fermion determinant. To facilitate this the Schwinger proper time
representation of this determinant is decomposed into a sum of three terms. The advantage of this is that the
separate terms can be nonperturbatively estimated for a measurable class of large amplitude random fields
in four dimensions. It is found that the QED fermion determinant grows faster than exp [ce® [ d*xF2,],
¢ > 0, in the absence of zero mode supporting random background potentials. This raises doubt on whether
the QED fermion determinant is integrable with any Gaussian measure whose support does not include zero
mode supporting potentials. Including zero mode supporting background potentials can result in a decaying
exponential growth of the fermion determinant. This is prima facie evidence that Maxwellian zero modes
are necessary for the nonperturbative quantization of QED and, by implication, for the nonperturbative

quantization of the electroweak model.
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I. INTRODUCTION

It is not known if the electroweak model can be non-
perturbatively quantized. This requires the convergence of
the unexpanded functional integrals over all classical field
configurations for the vacuum expectation values of its
field operators. It is assumed that the integrals have been
continued to Euclidean space to make mathematical sense
out of them and that ultraviolet and volume cutoffs are in
place in their integrands. Their introduction will be dis-
cussed later. Since the quantization is nonperturbative,
most of the functional integrals cannot be done explicitly.
Therefore, the criteria for the nonperturbative renormaliza-
tion of the model are not known ab initio. Immediately one is
confronted with an external field problem: do the regulated
integrands grow slowly enough with large amplitude field
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variations for the functional integrals to converge? It is the
aim of this paper to examine this minimal requirement for
the nonperturbative quantization of the electroweak model.

Presumably the order of doing the functional integrals is
irrelevant aside from their technical difficulty. If so, it is
reasonable to begin with what is well known. Accordingly,
we first integrate out the fermions. Then the answer to
the above question partly depends on knowing the strong
field behavior of each of the six lepton and 3 x 6 quark
determinants obtained by integrating out the three gener-
ations of leptons and quarks, including their three colors.
For example, the electron and its associated neutrino field'
contribute the following factor to the Euclidean functional
integral representation of any electroweak process after
spontaneous symmetry breaking:

det [P+ m, + eA + Iz
2 cos By
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'The extension of the model to massive neutrinos and their mixing is not considered here as it will not affect the main results of

this paper.
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Here A,, Z,, Wff, and H are the Maxwell, neutral and
charged vector boson, and Higgs fields; S,, the inverse of
the operator in brackets in the first determinant, is the
electron propagator in the presence of the A, Z, and H
fields; m, and My, are the electron and W-boson masses; e
is the positron electric charge; y, is the Weinberg angle;
and g = ¢/ sin Oy,. The result in (1.1) follows by inspection
of the electroweak Lagrangian [I] and an elementary
integration over the electroweak action quadratic in
the fermion fields [2]. The 24 determinants multiply the
Gaussian measures du(A)du(Z)du(W)du(H) as does
the remainder of the electroweak action denoted by
exp [— [d*xL(A,Z, W*, H)|. Considering the complexity
of the Feynman rules in the 't Hooft-Feynman gauge, a
nonperturbative calculation may simplify in the unitary
gauge. The absence of the Goldstone bosons y, ¢* in the
determinants in (1.1) indicates that this gauge has been
selected.

An ultraviolet cutoff has to be introduced into the
A,Z, W, and H field propagators. As these fields are to
be integrated over, they are assumed to be tempered
distributions. To calculate the fermion determinants, these
fields need to be smoothed following the procedure out-
lined at the beginning of Sec. VII for QED. The smoothing
procedure introduces an ultraviolet cutoff in the associated
propagators when calculating the fields” covariances with
the above Gaussian gauge-fixed measures as in Eq. (7.2).
Thus, the ultraviolet cutoffs are introduced by functionally
integrating the electroweak model.

The fermion determinants contain all fermion loops and
hence the anomalies. The process for cancelling them in
this paper begins by noting that the determinants, such as
those in (1.1), are ill defined as they stand. Mathematical
sense can be made of them by subtracting out all loops
whose degree of divergence is 2, 1, and 0. The subtraction
process is illustrated by (F1) in Appendix F for the
case of QED. As a representative example, consider
the yWtW~ triangle graph containing three fermion
propagators. Schematically the electron neutrino determi-
nant in (1.1) is subtracted so that det — exp[II(eev, )+
other subtractions| x detg, where dety is a well-defined
remainder determinant similar to dets in (F1) and (F2);
I(eev,) denotes the first-generation lepton triangle
graph for y > WTW~. When the 23 remaining determi-
nants are subtracted, the exponentiated subtractions com-
bine to give the following result for the sum of all the
graphs contributing to the first-generation yW* W~ triangle
anomaly:

exp{Il(eev,) + 3[M1(ddu) + M(uud)]|V ,4|*
+ 3[(ssu) + M (uus)]| V. |
+ 3[[(bbu) + T(uub)]|V ,|?

+ other subtractions} x IT?% detp . (1.2)
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Here u,d,s,b refer to quark flavors, and V;; is the
Cabbibo-Kobayashi-Maskawa (CKM) quark mixing
matrix [1]. The anomaly is removed by subtracting out
the zero-mass limit of these graphs which we denote by I1,,.
Then the anomaly bearing graphs reduce to

exp{Ily(eev,) + 3y (uud) + y(ddu))

X (|Vud|2 + |Vus|2 + |Vub|2)} (13)
since there is no difference between the free u, d, s, and b
propagators in the massless limit. Noting that the unitarity
of the CKM matrix requires the sum of the matrix elements
in (1.3) to be 1, the sum of the color weighted y -vertices in
(1.3) results in the cancellation of the first-generation
yW* W~ triangle anomaly. This procedure can be continued
until all of the three- and four-leg anomalies in the three
generations cancel as they are known to do. These
determinant regularizations should be done before they
are inserted into the functional integrals over the gauge and
Higgs fields.

Summarizing, it is necessary to define the fermion
determinants by removing their ill-defined loops by making
subtractions that are then either renormalized or cancelled
among themselves. This happens to lead to anomaly
cancellation at the three- and four-external-leg level. Of
course it has not been proven that the product of the
remainder determinants is free of terms that can block
the nonperturbative renormalization of the electroweak
model [3].

It is known that when IT?*,detg is loop expanded it
contains an exponentiated sum of absolutely convergent
graphs beginning with the pentagon graph. These can be
calculated in a manifestly gauge invariant way and cannot
contain anomalies. The fact that the perturbative expansion
of TT#, detg, is anomaly free leaves open the possibility that
this determinant product may eventually be shown to be
part of a nonperturbative, anomaly-free, gauge preserving
regularization of the electroweak model.

Assuming the functional integrals converge, the process
of renormalization follows next with the introduction of
counterterms to remove the regulators. Presumably the
result is in terms of the physical parameters e, My, M,
My, m;—the charged fermion masses—and the renormal-
ized quark mixing matrix V;; after continuing from an
intermediate renormalization scheme in Euclidean space to
on-shell renormalization in Minkowski space.

The observation that £ is no more than quadratic in
Ay, that A, does not couple directly to H, that a consid-
erable amount is known about the QED determinant
det(P — eA + m), and that the regularization of the electro-
dynamic sector is straightforward suggests that the next
simplest functional integration should be over the Maxwell
field. Suppose this is decided. Twenty-one of the 24
fermion determinants involve the Maxwell field as it
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appears in the electron’s determinant in (1.1) with different
charges. Should their combined large amplitude A-field
variation increase faster than exp [ce? [d*xF3,], ¢ >0,
then the integration over the Maxwell field with any
Gaussian measure would be divergent, and the nonpertur-
bative quantization of the electroweak model would be
doubtful. The F,, -dependence is expected since the deter-
minants are gauge invariant.

It is assumed that the strong Maxwell field behavior of
these determinants can be obtained by decoupling them
from the electroweak model by setting g = 0. Future
theorems dealing with the assumed subdominant growth
of the remainder determinants can and should be produced.
Noting this, there remains a product of 21 determinants of
the form det(? — gA + m) so that we need only calculate
one of them. Accordingly, this paper considers the non-
perturbative quantization of the electroweak model’s

|

1 [eodt Z||IF||?
Indet,, (1 — egSA) = 3 A - <Tr{e"’2’ — exp [— <D2 + %%Fﬂy> t] } + e;ul )e-fmﬁ,

where Dﬂ = P[A - eko Oy = b’w J/D]/zl, Y; = ~Tw
|F||* = [d*xF2, and e,, m, are the unrenormalized charge
and mass. The last term in (2.1) results in a second-order
charge renormalization subtraction in the one-particle
irreducible (1PI) photon self-energy IT(k?) at zero momen-
tum transfer as in Eq. (C7), Appendix C. Therefore, as long
as A, remains a classical field, e, and m, are the physical
parameters e and m. Quantizing A, by integrating over it
will require a further charge renormalization subtraction
given by 1/e2 = 1/ +T1(0, e2D,,), where T1(0, e2D,,) is
the 1PI photon self-energy at k> = 0 with the one-loop
contribution omitted. It is a functional of the exact
unrenormalized photon propagator D, with I1(0,0) = 0;
it is made finite by the regularization procedure outlined in
Sec. VII. As renormalization will not be considered further,
the subscript o will be dropped in (2.1) with the under-
standing that e and m are the unrenormalized charge and
mass in what follows.

Having defined det,., the effective measure for the
Maxwell field integration is

du(A) = Z7'duy(A)det,e, (1 — eSA), (2.2)

where the gauge-fixed Gaussian measure for the random
potential A, is now denoted by dyy. It has mean zero and
covariance,

/ QoA ()4, () = Dplx—y).  (23)

where D, is the photon propagator in a fixed gauge. The
vacuum-vacuum amplitude Z in (2.3) is
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electrodynamic sector. It is found that this can be done
only under restrictive conditions. If the subdominance of
the remainder determinants assumed here is valid, then
these conditions extend to the complete electroweak model.

II. PRELIMINARIES

Confining attention to QED, sense has to be made of the
infinite -dimensional determinant det(? — eA + m), where
e > 0 from here on. It is first normalized to 1 when e = 0
by dividing it by det(? + m) to get det(1 — eSA), where S
is the free electron propagator. To make this well defined, it
has to be regularized and made ultraviolet finite by a
second-order charge renormalization subtraction. A repre-
sentation of the regulated and renormalized determinant,
denoted by det,,, is given by Schwinger’s proper time
definition [4]

(2.1)

Z:/dﬂodetrem (24)

so that [du(A) = 1. The measure (2.2) appears in the
nonperturbative calculation of every physical process in
QED such as the Euclidean Green function for 2n external
fermions and m photons,

Sy X1s oo X3 V1 s Y3 T s Zn)

=27 [ duoA)deten(1 = e5) det [S(xi. 3y leA ),

X HAM (Zk)v

k=1

(2.5)

where S(x, y|eA) is the electron propagator in the external
potential A,.

Any attempt to calculate the integrals in (2.4) and (2.5)
will encounter ultraviolet divergences that require regulari-
zation. How this regularization is introduced will be
discussed in Sec. VII. In addition Z requires a volume
cutoff that will be discussed in Sec. VII as well. A volume
cutoff enters QED solely by its determinant to render the
vacuum energy finite when the determinant is integrated.
Assuming that the functional integrations in (2.4) and (2.5)
converge, there remains the task of removing the ultraviolet
regulator and volume cutoff by some as yet unknown
nonperturbative renormalization procedure that preserves
the unitarity of S-matrix elements. The difficulty of
implementing this procedure cannot be overstated.
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Whether the functional integrals in (2.4) and (2.5)
converge depends on det,.,’s behavior for large amplitude
variations of a measurable set of random fields F,, on R*.
Since e always multiplies F,,, it will be sufficient to
consider the strong coupling behavior of det,.

This leads to one of the main results of this paper.
Although (2.1) is compact and intuitive, it—and all other
representations—have so far failed to give any explicit
information on the strong coupling behavior of det,, for
random fields on R*. To remedy this an exact representation
of Indet,,, is derived from (2.1) that facilitates its strong
coupling analysis. Noting that in Euclidean space F,, may
be regarded as a static, four-dimensional magnetic field, the
new representation breaks In det,.,, into a sum of three terms
that expose its competing magnetic properties, namely,

In det,,, = diamagnetism + paramagnetism

+ charge renormalization. (2.6)
The advantage of representation (2.6) of det,, is that the
strong coupling analysis of its separate terms is far easier
than their combined form in (2.1). The derivation of (2.6) is
given in Sec. III. Suffice it to say here that the sum of the
|

Indet,.,, = l/oo %e"’"z [4Tr(e‘P2‘ — D)
0

2 487?
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diamagnetic term (Sec. IV) and charge renormalization
term (Sec. VI) contribute to det,’s strong coupling growth,
while the paramagnetic term (Sec. V) slows it down.
Therefore, the nonperturbative quantization of QED criti-
cally depends on the paramagnetic term and the class of
background fields on which it depends. Prima facie
evidence is given that zero mode supporting background
fields are necessary for the nonperturbative quantization of
QED. The presence of substantial numbers of zero modes
in the lattice functional integration of QED in its chirally
broken phase has been noted [5,6]. Our result and this
observation suggest that Maxwellian zero modes will play a
key role in deciding whether the electroweak model can be
nonperturbatively quantized. Our conclusions are summa-
rized in Secs. VI C and VIII, and the Appendixes deal with
mathematical details.

III. REPRESENTATION OF det,.,

The objective is to obtain an expression for det,., that
manifests the interplay of diamagnetism, paramagnetism,
and charge renormalization in its strong coupling behavior
for random, static, four-dimensional magnetic fields.
Rewrite (2.1) as

2| FII? 2||F||?
_¢ IE] +Tr(e‘D2’—exp {—(DZ—J—EGWFW)t]) —l—e I7] ], (3.1)

167>

where the trace over spin was made in the first term to give a factor of 4. Then (3.1) becomes

1 foodt

In det,, = 2Indetsorp +—/ —e ™ | Tr( e P —exp |- D2 +l6,F, )t +62HFH2 .
- 2o 1 2 167°

(3.2)

where In detgqgp is the proper time definition of the formal scalar QED determinant Indet {[(P — eA)* + m?]/(P* + m*)}

with on-shell charge renormalization:

o0 dt 2 2 eZHF-'”2 2
In det = — |Tr(e P —e™P1) ———— | 7™, 33
N delgQED /) : [ r(e e ) 19222 & (3.3)
Alternatively, Indetggpp = —Ssrp, Where Ssqgp is the one-loop effective action of scalar QED.
Now consider the remaining terms in (3.2), and use the operator identity
e~ 1(D*+5ecF) _ D> _ _ /tdse—(t—s)(Dz-s—%eyF)leo.Fe—sDz. (34)
2
0
A derivation of (3.4) is given in Ref. [7]. Iterating it twice gives
2,1 2 ! > 1 2 4 =51 > 1 51 2
e~ (D HyeoF) _ o=tD ——/ dse~(=9D" _ g5 FesD +/ dsl/ ds,e =170 _ o5 Fe5:D" _ o5 Fe10
0 2 0 0 2 2
- tdsl o ds, o ds;e‘“‘sl_srﬁ)(m%eﬁ)leaFe_s3DzleaFe_szD2leaFe_lez. (3.5)
0 0 0 ; 2 2 2
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Define the determinant det; by

1
In det; (1 +A)? 3 ecFA)/ 2)

t—s— s2
:/ e Tr</ dsl/ dsz/

X e —(t—s1—5,— 53)(D2+2eo-F) —s3D? —s5,D?

ecFe —eaFe
2

1
X Eeo'Fe_“"Dz>, (3.6)

where AY? = (D? + m?)=1/2. Before proceeding with the

derivatlon of (2.6), it is important to explain what the left-
hand side of (3.6) means [8—12].
Thus, det; is the regularized determinant defined by

det3(1 +7) = det [(1 +T)exp <—T+%T2>} (3.7)
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provided T € Z3. The trace ideal Z, (1 < p < o) is
defined as those compact operators 7 with [|T|) =
Tr((TTT)?/?) < 00 [9-11]. Because T is compact, its
eigenvalues are discrete and have finite multiplicity.
Therefore, the left-hand side of (3.6) requires that the
operator Al‘/ *6F A:‘/ ‘el 3. This is shown in Appendix A
for F,, € N,-,L?(R*) and m # 0. Note that this allows
zero mode supporting potentials A, (x) with their necessary
1/|x| falloff for |x| — oo. The equivalence of the two sides
of (3.6) follows from Theorem 7.2 in Ref. [8], where an
outline of its proof is given. Because of the inaccessibility
of Ref. [8] and the importance of det; to this paper, a proof
is given in Appendix B. More will be said about det; in
Sec. V. But already we anticipate that its presence in det,.,
will be a calculational advantage as it deals with a self-
adjoint operator acting on countable, square-integrable
eigenstates. Put differently, det;’s calculation reduces to
a manageable quantum mechanical problem on bound state
energy levels as discussed in Sec. V B.

Continuing with the derivation of (2.6), insert (3.5) and
(3.6) in (3.2) to obtain

1 1
Indet,, = 2Indetggep + Eln dety < + Al/z 5 eo-FAl/z)

2 oo dt 1 t t—s
+ %/ 76_”"2 (4—2 | F|I> - Tr/ ds, / 1 dsze_(’_“'l_“'2>D20Fe_“'2D26Fe_“"Dz).
0 72 0 0

It is shown in Appendix C that the last term in (3.8) can be
simplified to give the promised three-term representation of
Indet,,,

1 1
Indet,e, = 2Indetsopp -+ Indets (1 +AY? Eeamj/ 2)

+ 2 /oodte"’”2
0

[2 7 IFIF - <"DZFWAAFW)], (3.9)

where Ay = (D> + m?)™!

Equation (3.9) is equivalent to (2.1), and each term is
separately well defined and gauge invariant. Their order
follows that in (2.6). The signs of the first two terms and
their connection with diamagnetism and paramagnetism are
discussed in the following sections. The last term is
connected with charge renormalization and is manifestly
positive due to QED’s lack of asymptotic freedom.

IV. STRONG COUPLING BEHAVIOR OF detgggp

Let the amplitude of F,,(x) be set by the parameter F
which has the dimension of L~2. Then break the integral in

(3.8)

(3.3)into [, 17 and 5.7 and use Kato’s inequality in the
form [13-16]

Tr(e 7’1 — e=(P=eA)V't) > () (4.1)
to obtain
lndCtSQED
1/eF dt 2 2 €2||F||2
> | Tr(e Pt = —(P—eA)’r\ _
_/) t { (e ¢ ) 19272
2 F 2 o df 2
allilly / L -, (4.2)
19271’ 1/eF T

The inequality in (4.1) reflects the diamagnetism of charged
scalar bosons: on average the energy levels of such bosons
increase in a magnetic field. This explains the first term in
(2.6). The selection of eF as the scaling parameter is
discussed below.

The first integral in (4.2) is dominated by its small-¢
behavior for e > 1. Accordingly, make the heat kernel
expansion
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Tr(e_PZ’ _ e—(P—eA)zt)

1 te?
d*x| = F2, +—F,V?F,
~ 1622 {12 T 120 *
2e? et
——F,V*F, F,F,)?=1(F2,)?
+ 1650 TV Fuw + 132 C FuFiw)® = 7(FL )
+0(A), (4.3)

where *F,, = 1€,,43F 45. The O(F?) terms follow from the
result for ln detsoep in (C6); the O(F*) term is inferred
from Schwinger’s constant field result for scalar QED [4].

To the author’s knowledge, there is no proof that QED
heat kernel expansions are asymptotic series in ¢, although
this is generally assumed. Referring to (4.3) it is evident
that continuing the expansion in powers of ¢ requires that
F,, be infinitely differentiable (C*). So this is a necessary
condition. In Sec. VII we will introduce an ultraviolet
regulator by convoluting the potential A, with a function of
rapid decrease. The resulting smoothed potential is C*.
Anticipating Sec. VII we will now assume the fields in (4.3)
are C*. With this understanding the expansion in (4.3) will
now be assumed to be asymptotic so that the truncation
error after N terms is

2
Tr(e‘P t —(P- eA

Z a,(eF)t

where a,, is the first nonzero coefficient after ay [17]. Note
that, since [f] = L?, the maximum power of F,, in ay is
M +2 so that the truncation error in (4.2) never
exceeds O(e?).

From (4.3), (4.4), and the result

o dt
/ —e ™ =1In <ej:> -7 +R,
1/eF r € m?
where y =0.5772... is Euler’s constant and
0 < |R| < m?/(eF), obtain from (4.2) for e > 1

~ aM(eF) (4.4)

(4.5)

e’ F 2 e}'

We chose eF as the scaling parameter in (4.2). Why not
e*F?We set a = 1 first because we remarked in Sec. II that
e always multiplies F',, so that large amplitude variations of
F,, can just as well be studied in the strong coupling limit;
setting @ # 1 breaks this correspondence. Second, if & > 1
then the lower bound in (4.6) would be more negative,
hence not optimal. If @ < 1 one gets a better bound in (4.6),
but the truncation error in (4.2) increases faster than e2 for
terms of O(F*) and higher order. So a = 1 is the unique
choice. The scaling parameter is further discussed in
Sec. VIA.

PHYSICAL REVIEW D 91, 085026 (2015)

The lower bound in (4.6) is related to and in agreement
with the constant magnetic field growth of scalar QED’s
effective action [18]

B%V
SSQED =—In detSQED = 967[

e 1n<;B> +0(e?), (4.7)

where V is a four-dimensional volume cutoff.

This completes the discussion of the growth of the first
term in (2.6) and (3.9). We now turn to the all-important
second term.

V. STRONG COUPLING BEHAVIOR OF det;

A. Paramagnetic property of det;

In Appendix A it is shown that AL/ ’6F AL/ ‘=T belongs
to the trace ideal Z; for F,, € N,.,L?(R*) and m > 0.
This means that 7" is a compact operator that, in our case,
maps L%(R*) into itself. Being compact its eigenvalues,
{2,}%.,, are discrete, and each has finite multiplicity. We
order the A, by [4;] > |4,] > ... > 0. Because T € Z5 the
eigenvalues 4, — 0 and satisfy

o0

Z |4a? < 0.

n=1

(5.1)

Finally, Indet; (1 + T) is gauge invariant (Appendix D) and
satisfies by (3.7)

1
In det; (1 +4A)? 5 ecFA)/ 2)
1
= Indet [(1 +T)exp (—T—l—ETz)}
Lo
=Tr ln(l—l—T)—T—f—ET

(5.2)

I
[]s

1
[m(] + Ay) = Ay + —/1%} :
. 2

3
I

In Appendix D it is shown that for every eigenstate of T
with eigenvalue 4, there is another with eigenvalue —4,,.
Therefore, (5.2) becomes

8

lndet3< +A'/2 eo FA'/2> > lin(1=22) + 22,

n=1

(5.3)

where the sum is over positive eigenvalues. We will see in
Sec. VIIB that the condition on F,, can be relaxed
somewhat.
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Since Indet; is real and finite, 4, < 1 for all n. Hence,

1
1nda3<14—AX22eaFA§”> <0, (5.4)

since In(1 —x?) +x* <0 for 0 < x < 1. This inequality
has a physical origin. Referring to (3.5) and (3.6) and
simplifying exactly as outlined in Appendix C for the
function I1, we obtain

In det3 = /00 ge—tszr |:e—tD2 _ e_t(D2+%€O'F)
o I

2
+ S 1e PP A Ao PR (55)

That Indet; < 0 is now seen as a consequence of the
paramagnetism of a charged spin-1/2 fermion in a static,
four-dimensional magnetic field F,,: on average its energy
levels are lowered by F,,. This is made more precise by a
version of the Peierls—Bogoliubov inequality derived from
Klein’s inequality [19-21]:

Tr(e—t(P—eA)2 _ e—[(P—eA)Z—O—%eaF]t) <0. (56)
The last term in (5.5) has been purposely written in the form
U U and is therefore positive. Nevertheless, it is dominated
by the paramagnetism of charged fermions through (5.6)

which drives the integral in (5.5) to a negative value. This
explains the second term in (2.6).

B. Lower bound on In det; in the absence of zero modes

The eigenvalues in (5.3) are obtained from

SAoF A g, = g, (5.7)

where ¢, € L2. Let A}, =y, and obtain
(P=eA) +5—0F |y, = —my,.  (58)
J

w, = 4302

(j = m)rps(r) D2

M,m+%
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where y, € L?> as shown at the end of Appendix A.
Equation (5.8) illustrates the role of the eigenvalues
{2}, as coupling constants whose discrete values result
in bound states with energy —m? for a fixed value of e.

Because y5 commutes with o, an eigenstate y,, of (5.8)
has definite chirality. In the representation (D7), ys is
diagonal with elements +1,, and so we need only deal with
the two-dimensional chirality eigenstates ;.

We note that each eigenvalue 1,,(e) is a bounded function
of e as required by |4, (¢)| < 1 for all finite values of e. This
is illustrated by the constant field case:

|eB|
2n+1)|eB| +m?*’

MA=( n=01,.. (59)

Therefore, the series in (5.3) will tend to an e-independent
limit for e > 1 unless the degeneracy of the eigenvalues
increases with e. The special case of a zero mode
supporting background potential that allows |[4,| to
approach 1 arbitrarily closely for e > 1 will be considered
in the next section.

To bound Indet; for e > 1, we will first estimate the
eigenvalue degeneracy for the most symmetric case of an
O(2) x O(3) background field. This estimate will place an
upper bound on the eigenvalue degeneracy of any random
field. The O(2) x O(3) symmetric fields have the standard
form [22-24]

A, (x) =M, x,a(r), (5.10)

where M, is the anti-self-dual antisymmetric matrix with

where D), (x) are the four-dimensional rotation matrices [24-26] normalized so that

!

nonvanishing elements M, = M3y =1 and r*>= xﬁ.
Alternatively M may be replaced with the self-dual
antisymmetric matrix N with nonvanishing elements
Nos=Np =1
Choosing the matrix M, the eigenstates of (5.8) have the
form [24]
Dl ()
D]M_F%’m('x)pz(r)
, 1 -3 . 1 +3 (5.11)
G+ mEros(NDlE () = (= m + DHa() /DY ()
1 j+1
() + (4 m + 1)E(pa(r)/ Dy, ()
2 2. 47
=518 T (5.12)

/ dQ4D1];| ny (X)D{nwu (x)

Ji'Ymyms mzm4ﬁ
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and where 2j = 0,1, ...; —j < m; < j. This paper follows
the conventions of Refs. [24,25]; closely related ones
appear in Ref. [26]. The index n has been omitted from
p;. Inserting the two positive chirality components of (5.11)
into (5.8) results in the equations for p;, [25],

d2
{‘m +
da
+ /T* <4a + rdrﬂp]’z = —m’p, 2,

where the upper (lower) sign applies to p; (p,) and A}
denotes a  positive chirality eigenvalue.  Since
(P—eA)> +50F >0, it is the Af-dependent terms in
(5.13) that are responsible for bound states at —m?. There
is a sequence of eigenvalues 1> A > 47 > ... > 0 de-
pendent on e, j, M, m, and the parameters specifying A,
that result in bound state solutions of (5.13). They are
independent of the quantum number m in (5.11), resulting
in a (2j + 1)-fold degeneracy. Inspection of (5.13) indi-
cates that in the positive chirality sector

2j+1
7( J+1) 41 (4M F 2)ea + e*r’a?

(5.13)

1 da
E((;F)Jr = <4a + ra>03
= V(r)os

In general the degeneracy of the level at —m” has
contributions from both p; and p,. Consider p,. Assume
that a and o’ are bounded functions of r. Inclusion of zero
modes requires lim,_,r>a = v, where we may assume
v > 0 as discussed in Sec. V C below. Then r?V(r) is a
bounded function of r and

(5.14)

2

inf [F2V(r)] = —=K| > —c0. (5.15)
The A,/ -independent terms on the left-hand side of (5.13)
form a positive operator of which the controlling parameter
is j for fixed e. Thus, a bound state at —m? can exist only if

1

(2j+17 <K+,

yes K+ (5.16)

This is a necessary condition but obviously not a sufficient

one. The maximum allowed value of j for all finite values
(1.91
4
the maximum degeneracy u, of eigenvalue 4, associated
with p; for a@ >1is

u, = i (2]+1)<2K4§+‘> +1]2.

of m? and a fixed value of M is J; < (4X1 4+ 1)? — 1 Hence,

(5.17)

.- . . j 243
For the other positive chirality state Dzlu +%’mpz/r I,

inspection of (5.13) indicates that the bound state at
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—m? acquires an additional maximal degeneracy u3,

satisfying the bound in (5.17) with K; replaced with
K, = sup(r*V(r)) < co. It may happen that either p; or
p> has no bound states at —m?>.

Is the dependence of u,, u3, on A reasonable? As
A7 N\ 0 the potential wells in j:ﬁ V(r) deepen, increasing
the probability that such wells can support a bound state at
—m?. As the wells deepen, the centrifugal barrier term in
(5.13) can increase, thereby allowing larger values of j and
hence higher degeneracy, consistent with our result (5.17).

In the negative chirality sector,

1 (oF)- ( D}y ﬁ%}*) 1da
L (6F)- =
2 V2D Dy,

where D}y=x3+x3—x?—x3 and D}, =—v2(xy+ix3) x
(x,—ix;). Insertion of (5.18) and the two negative chirality
components of (5.11) in (5.8) results in coupled equations
for p; and py:

d2 4 2 1
(—F—i— / dfdMea+ e*r? 2>p3

+= ’< - + M > g
/1; (]+ )2,04 +;03 3

(5.19)

a2 4(j+1)2-1
<—— L+4Mea+ez 2 2>p4

e M? M
+—rd 1— =—m2?p,. (5.20
i ( (H‘ )2,0% ]+1ﬂ4> P4 ( )

These equations can be decoupled for large j by a unitary
transformation U on p3, p4. Let Up = @ with Uzz = Uy =
(('.”f)%/\/i and Usy = —Uy = (5M)2/4/2 so that the
J+3) (+2)
coupled terms in (5.19) and (5.20) proportional to e/1,
are transformed to (e/4,)ra’czp. Comparing this with
(5.13), the same analysis used in the positive chirality case
applies here. Thus, following (5.17) the maximum degen-
eracies y3,, Hy, associated with the bound states ¢, ¢4 at
—m? are bounded by eK//,, where K is an e-independent
constant. This assumes e¢/1; > 1 corresponding to large j.

We emphasize that the estimated maximum degeneracies
above are for one level at —m?. They are not an estimate of
the number of bound states at energy < —m? which is
expected to vary as e? for F,, € L> by Theorem 2.15
in Ref. [27].

We now have estimates for the maximum degeneracy of
eigenvalues 1;- obtained from (5.8) for the most symmetric
admissible background field given by (5.10). The above
results place an upper bound on the eigenvalue degeneracy
u, of any admissible random field, namely for e¢ > 1,
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ec

ﬂn(e) <T’ (521)

where 4, is one of the random field’s eigenvalues obtained
from (5.8) and c is e independent. The 1/4,, dependence of
its right-hand side is important because it results in the
convergent series » % 43 in (5.23) below, whatever the
field may be.

Consider the series in (5.3) and divide it into

N Y%y, where A2 <1 for N> n, N sufficiently
large. Note in this case that

In(1-22)+ 22

<
= 4
A

<. (5.22)

1
2

Thus, for any admissible random field, excluding those
that support a zero mode, there follows from (5.3), (5.21),
and (5.22)

11 1
In dets (1 + A% 560FA2> ‘

N )
<> [In(1-22)+ 2]+
n=1

n>N
N 0
< In(1=2)+ 2] +ec > A (523)
n=1 n>N

no degeneracy

where the third line of (5.23) is valid when e > 1. In the
absence of zero modes, lim,_4; < 1, unlike the zero
mode case discussed in Sec. V.C below. By (5.1) the
infinite series on the right converges. Moreover, the ¢ — oo
limit of this series is finite. Thus, there is a number M such
that, for n > M, A,(e) < C,(e)/n'**¢, e >0 and C, is a
bounded function of n and e with lim,_,C,(e) < .
Otherwise 4, <1 for any n cannot be satisfied.
Accordingly, the right-hand series in (5.23) is uniformly
convergent in e by the Weierstrass M test, allowing its
e — oo limit to be taken term by term and establishing our
claim. The remaining series, Y.V, [In(1 —A2) + 22|, is
obviously bounded by e following (5.21), excluding zero
modes. Combining (5.3), (5.21), (5.22), and (5.23) gives in
the absence of zero modes

e—>00

11 1
0 > lim Indet; <1 + AiEeUFAfL‘)/e >—C, (5.24)

where C > 0 is an e-independent constant depending on
the specific background field. C must be a linear function of
F,, to preserve the correlation eF,.

C. Zero modes

Consideration is now given to potentials supporting 1>
zero modes of the Dirac operator P — eA. It is these

PHYSICAL REVIEW D 91, 085026 (2015)

potentials that provide the mechanism governing the
stability of QED and its nonperturbative quantization.

The relevance of zero modes to stability arises as
follows. Suppose A, supports a zero mode, Y ey, ,, Where
n denotes the quantum numbers required to specify it. It is
an L? solution of

(P AP+ o] pama =0 (529

obtained from (5.8) by setting 4, = 1, m = 0. We continue
to assume 4, > 0 as discussed in Sec. VA. Then (5.25)
requires (zero, n|oF|zero,n) < 0. Refer to (5.8), and
replace 1, with a general eigenvalue A, and denote
the corresponding eigenstate by y,,. Assume
(A,n|oF|A,n) < 0. Then from (5.8) and (5.25), there
follows

el
5 (E - 1) (zero, n|ocF

There is no a priori reason why the two sides of (5.26)
should vanish if the quantum numbers of the two states
are the same. Based on our limited knowledge of four-
dimensional Abelian zero modes [25], they have a distinc-
tive structure, and so the nonvanishing of (zero, n|4, n)
distinguishes the eigenstate y,,—and its eigenvalue
A—from other eigenstates obtained from (5.8).

Divide (5.26) by e. For e > 1 conclude that 4 has the
form

A,n) = —m*(zero,n|A, n).  (5.26)

A=1-=6(e,n,m,L,...), (5.27)
where 0 < § < 1, and that for fixed m, 6 \( 0 for e — oo.
L is a parameter with the dimension of length introduced by
A, that can combine with m to form a dimensionless 6. This
result requires that the states y;,, be in one-to-one
correspondence with the zero modes .., ,. The eigenvalue
A will be discussed for an analytically solvable case in
Sec. VE.
Insertion of (5.27) in (5.3) gives

Indets :Zl:an [—ln <15_5> +In[(1=6)(2=68)]+(1-8%)

+..., (5.28)
where the remainder in (5.28) is the contribution from
eigenvalues bounded away from 1 discussed in the previous
section; o, is the degeneracy of state n. The sum in (5.28) is
over the quantum numbers specifying the zero modes of
A,. Write (5.26) in the form

(zero, n|cF|A, n)
A,n)

1-6 e
5 = , (5.29)

(zero,n
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where

(zero, n|cF|A, n)

<KZF.
A,n) 7

(5.30)

(zero,n

Equation (5.30) assumes F,,(x) is a bounded function in
which case K is an e-independent constant; F is the
amplitude of F,, corresponding to the scaling parameter
introduced in Sec. IV. Inserting (5.29) in (5.28) gives for

e > 0

Indet;
9 Fﬂ’?
==Y 5,|In i e nleFllm/FY ooy
- m (zero,n|A,n)
+0(e). (5.31)

The O(e) term is the contribution from the eigenvalues
bounded away from 1 discussed in the previous section.
Since

Zo-n = #zero modes supported by A, (5.32)

if the number of zero modes increases as ¢ or faster, then
the result (5.31) will override the bound in (5.24) and
possibly drive Indet,, in (3.9) negative. Clearly, these
considerations are highly relevant to QED’s nonperturba-
tive quantization.

D. Counting zero modes

Following (5.31) and (5.32), it is of exceptional interest
to know the maximum number of zero modes a potential
can support. To begin we focus on the most symmetric
admissible potentials (5.10). It is assumed that zero mode
potentials within the class (5.10) will produce the maxi-
mum number due to their high symmetry and hence large
number of degenerate states e ,. As pointed out in the
previous section, eigenstates i, ,, of (5.8) with eigenvalue 4
given by (5.27) will be in one-to-one correspondence with
the states v, ,. We would then expect that zero mode
supporting potentials with lesser symmetry will have their
zero mode number bounded by this most symmetric result.
It turns out that this reasoning is not completely correct and
that potentials with lesser symmetry can compete with
those in (5.10). This is a huge advantage for QED’s
stability. We will begin with the potentials (5.10) and then
explain why this reasoning has to be modified.

The zero modes supported by the potentials in (5.10)
have been discussed in Ref. [25]. We continue to assume
that ¢ and a’ are bounded functions of r and in addition
lim, r*a =v, v#0. That is, A, must have a 1/r
falloff. This ensures that the global chiral anomaly A is
nonvanishing,

PHYSICAL REVIEW D 91, 085026 (2015)

2

v
A= d*x*F, F, =+ >

62 (5.33)
where *FF = 0,(€,p,A5F,,). The +(—) sign in (5.33)
results in the case of matrix M (N) defined under (5.10).
Without loss of generality, we will assume v > 0. The
nonvanishing of A indicates that F,, is not square
integrable. We repeat here that it is sufficient to assume
F,, € N,.,L? to define dets, and therefore it can accom-
modate zero modes.

Choosing the matrix M in (5.10), it is found that only the
positive chirality sector has normalizable zero modes [25].
This is a particular example of a vanishing theorem: all
normalizable zero modes of D? have only one chirality.
There is no such general theorem in QED,, unlike the non-
Abelian case [28,29] and QED, [30]. Up to a normalization
constant, these are [25]

Y zero (x) = ,D];j,m (x)e_e fro drra(r) (534)

S O = O

Here exp[—e [} drra(r)]=p, in (5.11) when M =—j—1/2
and in (5.13) when in addition m?> =0 and A} = 1.
Equation (5.34) and the assumption a(r) ~ v/r* indicate

that w*t is square integrable provided ev > 2j+ 2.
Following (5.32),

Jmax

> @it =5l -l

#zero modes = 2

(5.35)

j=04....

where [x] is the greatest integer less than x. Using (5.33) for
ev> 1,

(ev)? + O(ev)

/ d*x*F,,F,,

| =

#zero modes =
&2
167>

+O(ev). (5.36)

If the matrix M is replaced with N in (5.10), the zero modes
shift to the negative chirality sector. Therefore, (5.36)
includes this case.

Given another potential with lesser symmetry than
O(2) x O(3) and having the same chiral anomaly, we
tentatively conclude that its zero mode number is bounded
by the right-hand side of (5.36). This assumes that all of the
potential’s zero modes have one chirality only.

More information about the zero mode number of less
symmetric potentials can be obtained from the index
theorem for noncompact Euclidean space-time [31],
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! + - e’ 4 x
+_”—_;ZI:[51 (0) =57 (0)] T dx*F, F .,

(5.37)

where n, is the number of positive/negative chirality L>
zero modes, 57 (0) € (0, x] are the zero energy scattering
phase shifts for the Hamiltonians H, = § (1 +y5)D?, and [
denotes the quantum numbers required to specify the phase
shifts. The sum over phase shifts gives the fractional
discrepancy between the index and the chiral anomaly.
Consequently the sum in (5.37) grows more slowly than e?
for e> 1. Based on (5.37), if there were a general
vanishing theorem for QED,, then the O(2) x O(3) result
in (5.36) would continue to hold for potentials with lesser
symmetry. This perhaps counterintuitive conclusion that
two potentials with the same chiral anomaly—one with
maximal symmetry, the other with lesser symmetry—have
the same number of zero modes is related to their common
asymptotic behavior. Without a vanishing theorem, (5.37)
implies that the total number of zero modes may exceed the
chiral anomaly. Summarizing,

#zero modes supported by A,

e? 4
Z@‘/dx FuFu

with the inequality applying in the absence of a vanishing
theorem and A/e* — O for e — oo.
Insertion of (5.38) in (5.31) gives with (5.32)

’In (fnf) +R, (5.39)

+A, (5.38)

Indet; < d*x*F,,F,,

with R/(e*Ine) — 0 for e — oo, in which case the bound
in (5.24) is overridden. As noted in Sec. V A, the negative
sign in (5.39) is a consequence of the paramagnetism
of a charged spin—% fermion in a static, four-dimensional
magnetic field.

E. Eigenvalue A

Because of the possible far-reaching implications of
(5.39) for the nonperturbative quantization of QED and the
electroweak model, it is important to have an analytic
calculation of the eigenvalue 4 in (5.27) for a few special
cases to show that the formalism outlined in Secs. V C and
V D can be implemented.

We consider a class of maximally symmetric zero mode
supporting potentials (5.10) with profile function

a(r) Ig;( )e 2+<2_€;§_2Dr+(€_3}g§+3y7 r<R
£, r>R.

(5.40)

%

It is constructed so that a and &', and hence F,, are
continuous at r = R. The parameter ¢ > 2 to ensure that
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F e n,.,LP. The constant C can be positive or negative,
and we continue to assume v > 0.

As noted in Sec. V D, the L? zero modes of (5.25) reside
in the positive chirality sector with M = —j —1 for the

potentials (5.10). A L? solution of (5.8) originating from
the zero mode (5.34) is

f(r)

7203

vix) = D, (%) L (54D

oS O = O

where f = p, in (5.13) now satisfies

{d_eri (2J+1)

1
e +4(j+/1>ea e’ 2—|— r }f m2f,

(5.42)

with eigenvalue 4 given (5.27) when e > 1. For r > R let
f= r%g so that (5.42) becomes

1 2j+1—ev)?>+2(1 =Hew
g//_'_;d_(mz_'_( .] )2 ( /1) )g

(5.43)

the decaying solution of which is the modified Bessel
function K,(mr) with

= {(2j+ 1 —ey)2+2<1 —%)eyr.

The eigenvalue A is fixed by the boundary condition at
r=R:

(5.44)

RF'(R) 1 RK4(mR)
7(R) —2+ K,(mR) " (5.45)

The left-hand side of (5.45) is calculated from the solution
of (5.42) for 0 <r <R.

The analysis simplifies by assuming mR <« 1. Let
ev=N+A N=23,.,;0<A<1, j=03, ... jmx
with ji. = (N —2)/2 since L? zero modes exist only for
ev > 2j 4 2. Itis known that det,, has a branch point in m
beginning at m = 0 [25] which is evident by the presence
of K, in (5.45). This leads to the small mass expansions for
j= 0,%,...,jmax—% and g =ev—2j—1> 2,

f=Bfo(1+m?fr+m*fy+0(m*™ or m®)), (5.46)

A=1-m?8, —m*s, + O(m* or m®), (5.47)

and for j = j.o | < ag < 2,
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f=Bfo(1+m’f,+ mzaOfZaU +O(m*)) (5.48)

A= 1—m28, — m*5,, +O(m*), (5.49)

where a is the m = 0 term in the expansion of « in (5.44)
and B is a normalization constant. The expansion of § in
(5.27), (5.47), and (5.49) in powers of m must begin at m>
to be consistent with the boundary condition (5.45). For all
cases there is a O(m?) term in the expansions of f and 4.
The case ev = 3,4, ... is commented on in Appendix E.
Here f) is the solution of (5.42) when m =0, A =1, and
0<r<Rg,

fo = ritie™e Jy sl (5.50)

With these expansions the two sides of (5.45) can be
matched in powers of m to obtain A. The calculation is
outlined in Appendix E.

FormR < 1, ev > 2j + 2, and e > 1, the calculation in
Appendix E gives, following (E11) and (E12),

2m?/e

A= GF G

AR
(1+O(l/e))+0< ef), (5.51)

where (oF)" is the positive chirality component of ¢F in
(5.14) that is responsible for the existence of zero modes
and r is the unique root in the interval 0 < r < R of

4j+3 —2er’a(r) = 0. (5.52)
Here ||(6F)*||, is the spin trace norm of (¢F)" defined for
an operator A by |A||; = Tr(ATA)"/2. Because (cF)*
obtained from (5.14) and (5.40) is a smooth function, A
is a slowly varying function of j since dry/dj = O(1/e)
from (5.52). For this special case, we can count zero modes
following (5.35) and (5.36) and rewrite (5.39) as an
equality. To leading order in m?/e, & in (5.27) can be read

off from (5.51). This fixes the argument of the logarithm in
(5.28) precisely,

Indet;

S m(ADIY oy] s,

=0 2m

(5.53)

where j. = [er]/2 — 1 and lim,_, R, /(¢*Ine) = 0. The
remainder R; includes contributions to det; from eigen-
values bounded away from 1 as discussed in Sec. V B.
Defining an average F,,, F, by
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ij\X jmdx
> @2+ 1) In|(cF(re(j |1/Z 2j+1)=InF,
j=0

(5.54)

obtain from (5.35) and (5.36) for e > 1

. eF
/d4 F,.F, [1 <2m2> +O(1)} + R,,

(5.55)
where R, contains a O(evIn(eF)) term from the O(ev)
residue in (5.36) and satisfies the same limit as R;. The
result (5.55) overrides the bound (5.24).

In det;

1622

VI. CHARGE RENORMALIZATION TERM
IN Indet,.,

A. Scaling parameter

Consider the last contribution to Indet,, in (2.6) and
(3.9), here designated as

H—ez/wdte‘””z[”FHZ—lTr(e"mF AsF,)|. (6.1)
- 0 w=Atuv) |- .

327°t 2

It is not obvious what to call the right-hand side of (6.1), but
since e?||F||>/(32x%t) is part of the on-shell charge
renormalization subtraction in Indet,,, it will be referred
to as the charge renormalization term. As in Sec. IV, break

the integral in (6.1) into 1/ ¥ and [ 555> where F fixes the
scale of the amplitude of F,,. Then I1=1, +1,+ 13,

where

2||F||? fe dt

o Uil l' / — e (6.2)
32 1/er T

1= [ gy [IFIE C16Tr(e ™ F, A F,,)

2732, 7t p AT

(6.3)

62 © ) 2

13 = - — dte_”" Tr(e_’D“FWAAFﬂD). (64)
2 Jijer

At this point the choice of scaling parameter in (6.2)—(6.4)
appears arbitrary. It is not for the following reasons:

(a) Asremarked in Sec. 1V, if the strong coupling behavior
of det,, is to have anything to do with large amplitude
variations of F,,, then e must appear in the combi-
nation eF.

(b) The scaling parameter must be universal and not tied
to any particular background field. As m is always
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present in det,,, it should be considered in the
construction of a possible scaling parameter.

(c) The scaling parameter should result in the largest
possible lower bound on II for eF > m?.

(d) The lower bound should respect what is known about
In det,,,’s mass dependence.

Based on points (a)-(c) and the requirement that the
scaling parameter has dimension (length)~2, then possible
scaling parameters have the form (eF)“m’, 2a + b = 2,
a # 0. But only a = 1, b = 0 are allowed by requirement
(d). To see why consider /; in (6.2). Following the result
(4.5) for eF > m?,

E\F|?>, [eF
I = m(¢2) =y +R
' n<m2> rer

(6.5)

where again y is Euler’s constant and 0 < |R| < m?/(eF).
The mass singularity in (6.5) is induced by the on-shell
charge renormalization of Indet,, in (2.1), the starting
point of this analysis. It is shown in Appendix F that, for

potentials A, € S L"(R*), € > 0, and arbitrarily small,

Indet,., at m = 0 is finite when it is renormalized off shell.
Moreover, its i = 0 limit is continuous. The restriction on
A, excludes zero modes. Including them would cause
Indet; to diverge at m = 0 as found in the results (5.31)
and (5.39) that are independent of how Indet,, is
renormalized.

To define dets in (F1), and therefore det,,,, it is sufficient
to assume A, € rr>14Lr(|R4) [8,32]. The charge renormali-

zation term II depends only on D? and is therefore
insensitive to zero modes. Without loss of generality, we
may assume here that F,, € L? and therefore that A, € L*.
This follows from the Sobolev inequality for gradients on
R* [33]. Hence, the restriction on A, in the preceding
paragraph can be consistently assumed here.

When the first term in (6.5) is combined with the mass
singularity of Indetsgep in (4.6), multiplied by 2 as
required by (3.9), obtain

e’||F|?

W ln m2 + flnlte
T

In det,., ~ (6.6)

The result in Appendix F allows us to state that this is the
only divergent mass singularity of In det,., in the absence of
zero modes. If In det.,, were subtracted off shell by adding
to (2.1) the term

EF|* fedr, o 2, EF|F (m?
& e — gty — m(™). (6.7
4872 A 7 (e ") = e “(,ﬂ) (6.7)
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then Indet,,, would be finite at m = 0. This freedom to
renormalize off shell must be respected by the scaling
parameter. Indeed, if the scaling parameter (e.F)*m®, b # 0
were chosen in (4.2) and (6.2)—(6.4), then (6.6) would
become

b || F|)?
lndetmm:> (%_E) |7|[ I Inm? + finite. ~ (6.8)

This introduces a spurious be?||F||?>Inm?/96z> mass
singularity into Indet,,’s lower bound when it is renor-
malized off shell using (6.7). Therefore, the only acceptable
scaling parameter for the strong coupling limit of ITin (6.1)
and in detggpp in (4.2) is eF. This further justifies the
choice of scaling parameter in Sec. I'V.

B. Estimates

Consider 7, in (6.3). The trace in its last term can be put
in the form Tr(AA) using the trace’s cyclic property. So the
last term is not negative. Write out the trace term in its
original form and note that

/l/e]:dte_’mz/d4xd4ye DX (2, 9)F i (9) Aa (7. X)F (%)
/ —fmz/d“x|( D A (0)]|F ()]
L/ -w/wwmmmmwmml
<)

-w/mmeWMWMN

/e]: 2 2
/ e tm /d4xd4ye—tP (x,y)

[Fu () Ay = ) [F ()

To obtain these results, we used the diamagnetic inequality
of Simon [13,34] to go from the second to the third line:

(e ) (x)] < (e |f1) ().

This holds for all # > 0 and almost all x € R* and for

potentials that are locally square integrable, as we are

assuming. For more recent comments on (6.10), see

Ref. [35]. In addition we used Kato’s inequality in the

form given by (A3) to go from the third to the fourth line.
Noting that

(6.9)

(6.10)

—|x—y|?>/4t
e~ lylP/4

= 6.11
167212 ( )

insertion of (6.9) in (6.3) gives
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e? 1/eF dt
s [
327 Jo t

By Young’s inequality in the form [20]

\/du&yﬂnmx—wh@>

< £ lgllglAll,. (6.13)

where 1/p+1/q+1/r=2, p,q,r>1 and |f], =
([ d*x|f(x)[P)VP, etc.,

2\|\F||? [1/eF dt 1
I, >2 0 | y / —emim 1——/d4xA(x)e_x2/4’ :
32 0 t t
(6.14)

From A(x) = mK,(mx)/(4x’x) and integral 2.16.8.5 of
Ref. [36], get

AP e,
122 —e
0

(1 — m2te™ T (—1, m21)),

3272 t
(6.15)

where ['(—1, m?¢) is the incomplete gamma function which
we use in the form

o d
(=1, m*t) = —zte_mzt —/ L,
m

m?t <

(6.16)

Insertion of (6.16) in (6.15) and integrating by parts gives
for eF > m?

e2||F||? [m? eF 2
b2 o (n(5) e r) w1 o)

(6.17)

with y and R the same as in (6.5). Note that the lower bound
in (6.17) is finite at m = 0 as it should be.

There are no ultraviolet divergences in /,. The small ¢
dependence of the first term in (6.3) is cancelled by the
trace term, as was shown in the above nonperturbative
estimate. So it must be a general property of the trace
term that

2
16Tr(e ™ F,,A4F,,) ~ Iz ”

+ less singular in t.
t—=0 ﬂ,’

(6.18)

By inspection of (6.3), we conclude that

PHYSICAL REVIEW D 91, 085026 (2015)

e wa-—/h%&ﬂ <mAu—ywﬂﬂWﬂaAwQ. (6.12)
[
. Lo
i e = (6.19)

Now consider /5 in (6.4). As noted in the case of /5,
the trace is positive so that /3 < 0. Application of the
inequality (6.10) does not lead to a satisfactory lower
bound on /5. Namely, if it were saturated, /5 would
cancel the large amplitude growth of I; in (6.5),
resulting in a slow O((eF)?) growth of II in (6.1) and
leading to the uninformative bound Indet,, >
—e?||F||* In(eF/m?) /967> + O((eF)?) following (3.9)
and (4.6). We are confident that Indet,, grows at least
as fast as ce?||F||*In(eF), ¢ > 0, in the absence of zero
mode supporting background fields. This confidence is
based on the result [37] for the growth of Indet,, for

random, square-integrable, time-independent, nonzero
mode supporting magnetic fields B(x) on R?,
Ind B||’T
hm n2 et1'6[1 — || || 5 (620)
e—o e“Ine 247

where ||B||> = [d*xB - B(x) and T is the size of the time
box. Therefore, our estimate of /5 has to be more detailed
than in the case of I,. We claim that lim,_,.,/5/(e*Ine) =0
for the class of fields considered here.

By summing over a complete set of scattering eigenstates
|E,a) of D?, I5 can be represented as

E + m?
___Z/ dE/ dE'e™ —(E+m?*)/eF

(E. alF,|E' p)?
(E+m?)(E' 4+ m?)’

« [ o EATE AE ALy 2.0

(6.21)

where a and f are complete sets of angular momentumlike
quantum numbers. Due to the above theorem on the m = 0
limit of Indet,,, /5 is finite at m = 0. So whether F,, is
long or short ranged is irrelevant to the growth of /5 with e.
Without loss of generality, we may confine this discussion
to fields with compact support. As F,, was assumed to be
differentiable in previous sections, the compactly supported
fields are assumed to rapidly and smoothly tend to zero in a
narrow zone near their boundaries. In addition we may
assume rotational symmetry. Asymmetric, tangled fields
will tend to lower the matrix elements |(E,a|F,,|E’, B)|.
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We will assume maximally symmetric O(3)XO(2) fields to
maximize |/|.

For the potentials (5.10), the equation for the radial part
of the scattering states that satisfy Dzy/E,,, = Eyp, is [25]

& Qi+ 1) -1/4
<—m + —( r)2 +4miea + e*r*a® | gy, (1)

= Egpgjm, (1), (6.22)

where WE,a(x) = r_zj_3/2¢Ejm| (r)Di/"ﬂlmz(x% r= |X|, and
the four-dimensional rotation matrices D}, ,n, are defined
in Sec. VB. Let F, have range R. For r> R the

normalized wave function is, on setting the chiral anomaly
equal to zero in Ref. [25],

”
¢Ejm1 (r) = \/;‘]2j+1 (kr) Cos 5jm] (k’ 6)
r .
- \/;Yzﬁl(kr) sind,, (k. e), (6.23)

where §;,, (k. e) is the scattering phase shift in the indicated
channel, E =k*, and Y, is a Bessel function of the
second kind.

We assumed in Sec. VB that a and ra’ are bounded
functions of r. This will be assumed here. Therefore, any
admissible @ maintains the small distance behavior ¢, ~
r%13/2 independent of e. What ¢y, does as r /' R is
manifested in the exterior wave function (6.23) through the
phase shifts. From (6.22), although a descends rapidly to
zero in a zone near r = R, it is evident from the (era)? term
in (6.22) that as e — oo there develops a high barrier at
some point » < R that blocks the entry of the exterior wave
function (6.23), resulting in approximate hard sphere
scattering. This happens however rapidly F,, varies for
r < R. So there is no reason why F,,, = constant for r < R
and falling rapidly to zero just before r = R cannot be
taken as representative of the general field case for the
strong coupling estimate of /5.

Accepting this, refer to (5.10), and set a(r) = 1/R* for
0<r<R-e¢and a(R) =0. Then F,, =2iM,,/R?* for
0 < r < R —e. The parameter A is related to the scaling
parameter F by F? = F2, = 164>/R* since M3, = 4.
Then

(Ejm;|F,|E'j'm})
B 472 AM

R
_2]'7+1ﬂ51‘j'5m,m1 A dropgjm, hejm, . (6.24)

where we have taken the limit ¢ = 0 on the right-hand side
of (6.24). As shown below it follows from (6.22) that
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(¢E’jml¢/Ejml - ¢Ejm] /E’jml)(R)

R
= (E' - E)A drgjm Pe jm, - (6.25)
Then (6.24) and (6.25) combined with (6.21) give
Iy = —27*(eF)? / T dE / " dE e (Erm) e F
0 0
<y L
b1 (20 1)
% i [(¢E’jm1¢,Ejm] - ¢Ejm1¢/E/jml)(R)]2
mae (E+ m?)(E' — E)?(E' + m?)
(6.26)

To obtain (6.25) from the assumed behavior of F,,,

multiply (6.22) at energy E by ¢, (r)F,,(r), subtract the

result with E <> E’, and integrate by parts over the interval
0 <r <R.Since F,,(R) = 0 and ¢, (0) = 0, this gives

% dF,,(r)
uv
/R—€ dr(qu/ij(ijml - ¢Ej’"' %/jml) dr
2AM,, [R-e
— (E — E/) |: R2M ‘/0 dr¢Ejm|¢E/jm|

+ /R dr¢Ejml¢E’jm|Fuv(r):|' (627)
R

—€

Assuming ¢/R <1 and noting that [X drF,,(r) =

-F,(R—¢€)= —2’%“, (6.25) follows after letting € — 0.

The phase shifts required to calculate /5 are obtained as
follows. Set a = A/R? in (6.22), and let, omitting sub-
scripts,

o(r) = r2j+3/2f(r)e_’1”2/2R2. (6.28)

Then

4j4+3 24 42
f”+<%— R§r>f’+{kQ—R—f(jerlJrl)}f—o.
(6.29)

The solution of (6.29) regular at the origin is the confluent
hypergeometric function

_ . (kR)* . der?
f(r)—M<J+m1+1 e 2 ) (6.30)

following the notation of Ref. [38]. Joining (6.23) with
(6.28) at r = R gives
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B (r =1/2)J5;11(kR) — kRJ5; , | (kR)
tan 3, (k- 29) = B 2 (KR) = kRT} 1 (kR
(631)

where y = (r¢’/¢)g. Equations (6.28) and (6.30) and
Eq. (13.4.8) in Ref. [38] for dM(a, b, z)/dz give

2beaM(a+ 1,b+ 1, 2e)
b M(a,b,2e)

3
y:2j+§—/16+ (6.32)

where a = j+m; + 1 — (kR)*/(44e),b = 2j + 2. There
are several cases. For j < le > 1, fixed k,

1 (kR)? J* J(kR)* (kR)*
=le+2m —=— o=, , :
A T (Ae (o) " (de)?
(6.33)
for j > le > 1, fixed k,
R)? R)?
y=2j+ M7 - B) +0<Ae mide (kR) ); (6.34)
J 4j o J
and for kR — oo, fixed j, Ae,
VeFR? J
= —87*(eFR?)?
z:(; ml%: 2'] +

X

/2\/e]~'R2 d(kR) _e /Z(efRz)“"d(k’R)
2j+1 2

K¢E’jm1 ¢EjmI - ¢Ejm1¢E’jml ) (R)]z

R4(k/2 _ k2)2
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1\ /2j42(kR) .
kR+0( >:|17+2]—/1€+3 2.
{ kR) | Jp;1(kR) /

(6.35)

These results are obtained using the asymptotic expansions
of M(a, b, z) for large a, b, z in Refs. [38,39]. Following
(6.35) the phase shifts vanish at high energy as
tan§ ~ (e1/kR)cos?(kR — (j + )z — n/4).

To estimate /5 for e} — oo, it is convenient to divide the
range of the kR, k'R integrations in (6.26) into [0,2),
2,2V eFR?), [2VeFR?,2(eFR?*)'€),[2¢FR? ] and
the special case kR, k'R = O(eFR?)'~¢, where 0 <e<1.
To accommodate the joining conditions (6.33)—(6.35), the
range of j also has to be partitioned. It is essential not to
interchange the large e limit with the sum over j. We find
that the dominant contributions to (6.26) come from
0<j<VeFR*2<kRSO(VeFR*) and 2 < KR < oo.
There are many cases to consider; we outline here a
representative case to indicate how the estimates
are done.

Consider the contribution to (6.26) given by

e c¢F

kR JeFRE k'R

(6.36)

where we have noted above that we can set m = 0. For the range of kR, kK’R and j in (6.36) joining condition (6.33) applies.

From (6.23), (6.31), and (6.33), obtain

(Pe ¢ —ded)(R) R? kR 2 kR 27-1/2 .
k’z—kz Ae’;IZ”z(ie):; J2]+l(kR) ]/2 21+1(kR) + Y2]+1(kR) 1/2 21+](kR) [k—)k/] 1/2
R2
NW(@,H(kR)ﬂLYzJH(kR)) V25 (KR)+Y3,, (KR)) ™2, (6.37)
Hence,
8192 Vif‘: /w FRA(KR) /o 1
>l (eFR) = J2t J3j1(kR) + Y3, (kR)
2027R) d(K'R
A - (638)
WeFR2 K'R sz+1(kR) 2,+1(k R)’

where the sums over m; and m, have been taken. To estimate (6.38) use Watson’s inequality (Eq. (1), Sec. 13.74 of [40])

2 P2+

X

< %(xz _ nz)—1/27

(6.39)

T
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for x > n > 1/2. This is used repeatedly in our estimates.
An easy calculation gives

I = O(=(eFR*)™),

el>1

(6.40)

with 0 < ¢ < 1. The remaining contributions to /5 give

I; = O(=(eFR)7?),

el>1

(6.41)

or smaller as in (6.40). The dominant estimate
in (6.41) comes from the intervals 0 < j < VeFR?,
2j+ 1 <kR < O((VeFR?), O(eFR*) < KR < 0.

We have given reasons above why this calculation of the
large amplitude growth of /5 is representative. In view of
(6.41), we are confident that

. I
lim ——> =0,
eF oo (eF)2 In(eF)

(6.42)
for all admissible random fields. Combining (6.1), (6.5),
(6.19), and (6.42), we obtain for large amplitude variations
of admissible random fields F,,

E\F|?, [eF
n= 1n<W> + R, (6.43)
with  lim,z_ R, /[(eF)* In(eF)] = 0. The term

“admissible random field” is discussed in Sec. VIL

C. Summary

In the absence of zero mode supporting random back-
ground fields, (3.9), (4.6), (5.24), and (6.43) give the final
result

Indet,, >
e

Z 157 e2||F||> In (eF/m?) + R,

(6.44)

with R,’s growth bounded as R;’s above. The Inm?
contribution to (6.44) is due to on-shell charge renormal-
ization. For off-shell renormalization, m? is replaced with a
subtaction parameter y? as discussed in Sec. VI A above.
If zero mode supporting background fields are included
and all of the zero modes have the same chirality, then by
(3.9), (4.6), (5.39) (an equality in this case), and (6.43),

eF
/ d*x*F,,F,,|e*In (W)

f
|| F|? In <e—2> 1R,
m

with R; bounded as R; and R, above. Recall that
[ d*x*F, F,,/16x* is the chiral anomaly.

Indet,, >

eF—o ]671'2

+

yr (6.45)
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If the zero modes supported by A, have both positive and
negative chirality, there is no counting theorem, and (6.45)
is replaced with, following (5.31) and (5.32),

Indet,, > - (#zero modes supported by A),)

eF—x
eF 1 eF
X IH<W> + Mean”z In <W) + R4.
(6.46)

The number of zero modes grows at least as fast
as e following (5.37), provided the chiral anomaly
is nonzero. If they grow as e> or less then
lim, s, Ry/[(eF)?*In(eF)] = 0.

Known four-dimensional (4D) Abelian zero modes
require F,, ¢ L?. So the ||F||* terms in (6.45) and (6.46)
need a volume cutoff that will be discussed in Sec. VII.
Assuming in this section that F,, € L? served its purpose
to obtain the structure of the charge renormalization term’s
large field amplitude contribution to Indet,,.

An assumption underlying (6.46) is that all admissible
4D Abelian zero mode supporting potentials have a 1/|x|
falloff as |x| — oo. If there were zero mode supporting
potentials whose falloff is faster than 1/|x|,
the associated chiral anomaly would vanish since
“FuF,, = 04(€upuBpF ). The vanishing of the right-
hand side of (5.37) implies n, = n_. Without being able to
place a lower bound on the number of zero modes, (6.46)
loses its predictive power in this case. A 4D Abelian
vanishing theorem stating that all normalizable zero modes
have either positive or negative chirality, as in QCD,, needs
to be either proved or falsified by a counterexample.

Further discussion of (6.44)—(6.46) appears at the end of
Sec. VIL

VII. REGULARIZATION

In principle det,, can be calculated as an explicit
function of F,, before inserting it into the functional
integral (2.5). The input potentials must correspond to
random potentials supported by dug(A). It is generally
accepted that these belong to S'(R*), the space of tempered
distributions. This is the first requirement.

Throughout we have assumed smooth potentials, includ-
ing zero mode supporting potentials A,(x) with a 1/|x|
falloff for x| — co. In Sec. VA it was assumed that F,, €

ﬂzL’(IR“) which we noted may be too strong a condition.
r>
The L?(R*) Sobolev inequality |V f]|, > K||f]|,» where K
isaconstantand ¢ = 4p/(4 — p),1 < p < 4 [33], implies
A, € ﬂ4L’(IR4) when A, is once differentiable and
r>
4
F, € n L"(R*). This condition on A, and the weaker
>2

condition on F,, are sufficient to define dets in (F1) to
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ensure that Indet,, is defined when m # 0 [8,32]. These
assumptions constitute the second requirement.

The final requirement is that an ultraviolet cutoff
mechanism be introduced.

These three requirements can be satisfied by calculating
Indet,, in terms of the potentials

M@ = [Efia-pam.
where A, € §'(R*) and f, € S(R*), the space of functions
of rapid decrease. Then A,’} € C*. Besides smoothing A,

(7.1) also introduces a sequence of ultraviolet cutoffs. Thus,
from (2.3) conclude that

[ an@aiae) = ph-». (12)
where the Fourier transform of the regularized free
photon propagator in a fixed gauge is Dﬂy(k)|f,\(k)|2 with
fA € C, the space of C* functions with compact support.
For example, one might choose f, =1, k2 < A? and
Fa=0,k2>nA2n> 1.

We note that if A, is a zero mode supporting potential
then so is A2. Thus, if A, has a 1/|x| falloff then so does
Aj}. This follows since the small-p dependence of their
Fourier transforms, and hence their large-x dependence, is
the same when [, is chosen as above; chirality is preserved.
Other mappings with the convolution in (7.1) can be
followed with Young’s inequality in the form (A7) with
s = 1; the above conditions on A, and F,, are preserved.

Summarizing, we are instructed to replace all potentials
and fields in this analysis with the smoothed potentials Af}
and fields F ;},, = @Aﬁ\ - ayAf}, including the general
representation (2.5). This allows the assumed restrictions
on A, and F,, leading to (6.44)—(6.46) to be transferred to
A,/} and F f}y while keeping the underlying rough potentials
A, in place.

The measure dug(A) is not modified. The substitution of
Aj} for A, does not affect the analysis of Secs. VA=V D. In
particular, in Sec. V B where use is made of (5.10), we have

A, (k) = Mﬂy/d4xe_ik"xl,a(r)

= iMﬂvau&(lkD' (73)
Then
A = [ dfate-na0)
= (aa(r) +ha(r))M,,x,, (7.4)
where
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an(r) = / %ekaa<|k|>fA<|k>, (1.5)

(s, = =i [ G alkofak). (16

If A, supports a zero mode, then a,(r) ~ v/ r? since
r—0o00

Fa(lk]) =1 for k2 < A% Hence, the only result of sub-
stituting A/ﬂ\ for A, is to replace a with ay + h,.

In Sec. VE the profile function a(r) in (5.40) has a
discontinuous second derivative atr = R. So a(r) forr < R
would have to be smoothed to accommodate a regularized
potential. This does not in any way modify the conclusion
of Sec. VE, namely that the formalism of Secs. V C and
V D can be implemented.

In Sec. VIB we cannot choose F ;}D € Cy as we did for
F,,. Suppose F f,‘v € C°. Then F I/}l,(k) is an entire analytic
function of k, [41]. Therefore, we cannot set F ﬁl,(k) =
fA(|k|)I:"W(k) since f(]k|) is not an entire analytic
function of |k|. Nevertheless, F2,(x) = fy*F,(x) is a
polynomial bounded C* function by Theorem IX.4 in
Ref. [41]. We are now free to choose a F,, € S’ to make
FA,(x) fall off arbitrarily rapidly for [x| > R. So F’, can be
chosen arbitrarily close to a compactly supported field. This
should not change our conclusion (6.42) about the bound
on I3 for e > 1.

Finally, a volume cutoff must be introduced in det,,—
and only det,,—in order to regularize the vacuum-vacuum
amplitude Z in (2.4). As det,., is gauge invariant, this can
be done by letting F ,’},, - gF f},,, where g is a space cutoff
such as g € C{° or g = yr, the characteristic function of a
bounded region I" C R*. This way of introducing g pre-
serves the gauge invariance of det,,.

The regularization procedure used here is a generaliza-
tion of that used in the two-dimensional Yukawa model
[42]. The main conclusions in this paper obtained without
regulators remain valid. Thus, in (6.44)—(6.46) it is only
required to replace F,, with gF ,‘},,, which is a special case of
the general substitution detye,(F,,) — dete,(gF2,). F is
the amplitude of F ,‘},, whose scale is set by the amplitude
of the underlying potential A, € S'. It does not matter when
the regulators are introduced as long as they are in place
when det,, is inserted into (2.5).

We now present an interpretation of (6.44)—(6.46). Each
term in representation (3.9) for det,,, is gauge invariant and
ultraviolet finite. Therefore, each term is independent of the
others. Itis noted in (6.44)—(6.46), with F,, replaced by F’ ,’},,
before introducing ¢, that F ,’}V must be square integrable.
Within the class of potentials with falloff at infinity, those
that support a zero mode decrease as 1/|x| as far as
presently known. This is incompatible with F {}D e’

The terms in (6.44)—(6.46) depending on ||F||> come
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from the first and third terms of (3.9). These terms were

dealt with in Secs. IV and VI where it was assumed that

F ,‘},, S QZL’. Zero modes reside solely in the second term of
rz

(3.9). As shown in Sec. V, it can be defined for F' ,’}y S ﬂzL’.
r>

So the two terms in (6.45) and (6.46) are separately defined,
each subject to its foregoing field restriction.

To regulate Z in (2.4), a volume cutoff is inserted into
det,, as described above. When zero mode supporting
potentials are introduced into det,., by the Maxwell measure
dug(A), the terms depending on ||F*||*> now remain finite.
Therefore, the interpretation of (6.44)—(6.46) is that they
represent the asymptotic form of det,, before volume
cutoffs are introduced.

For (6.44)-(6.46) to be relevant, the unregularized
random connections A,, including their assumed falloff
at infinity, should have u, measure 1. As far as the author
knows, all known results for the growth at infinity of a set
of random fields with measure 1 are for a Gaussian process
whose covariance corresponds to a massive scalar field
(see, for example, Refs. [43,44]). The covariance (2.3) in a
general covariant gauge does not include an infrared cutoff
photon mass as none is required. To the author’s knowl-
edge, then, the behavior at infinity of a set of random
Euclidean QED, connections with y, measure 1 is still not
settled.

VIII. CONCLUSION

Representations (2.6) and (3.9) for the Euclidean fer-
mion determinant in QED, In det,.,,, have been obtained that
reflect its competing magnetic properties of diamagnetism
and paramagnetism. This way of viewing Indet,, arises
since in Euclidean space F, (x) may be regarded as a static,
four-dimensional magnetic field. This decomposition of
Indet,, has the advantage of simplifying its strong cou-
pling, large field amplitude analysis for a class of random
potentials/fields. The analysis is made possible by a
number of theorems developed in the 1970s and 1980s
that are applicable to field-theoretic operators in the
presence of external gauge fields.

The main results are summarized by (6.44)—(6.46) and
are interpreted at the end of Sec. VII. Result (6.44) for the
fast growth of In det,, for large field variations raises doubt
on whether it is integrable with any Gaussian measure of
which the support does not include zero mode supporting
potentials. Results (6.45) and (6.46) indicate that the
growth of In det,, is slowed down or stopped by including
zero mode supporting potentials in the Gaussian measure
dug(A) introduced in Sec. II. This is prima facie evidence
that zero mode supporting potentials are necessary for the
nonperturbative quantization of QED. See Ref. [45] for an
earlier discussion of the nonperturbative quantization
of QED.

Refer back to one of the electroweak fermion determi-
nants such as the first one in (1.1). Suppose, after being
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properly defined, its large amplitude Maxwell field varia-
tion coincides with that of In det,,. Then (6.45) and (6.46)
provide prima facie evidence that the nonperturbative
quantization of the electroweak model also requires its
Maxwell Gaussian measure to have support from zero
mode supporting potentials. This assumes that the Maxwell
field integration follows next after integrating out the
fermion degrees of freedom.

Given such Gaussian measures, are they such that no
measurable subset of potentials results in the fast growing
charge renormalization term in (6.45) and (6.46) becoming
dominant? This is entering unknown territory that needs to
be explored.

If the QED determinant grows faster than a quadratic in
the Maxwell field for a measurable set of fields, then there
may be a connection between this and the photon propa-
gator’s Landau pole [6,46]. The precise connection, if any,
remains to be worked out.

It might be objected that the nonperturbative quantiza-
tion of the electroweak model is irrelevant since perturba-
tive expansions appear to be adequate at presently available
energies. This opinion neglects the fact that the electroweak
model is not asymptotically free. At some point the model’s
nonperturbative content will be required.
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APPENDIX A: AY26FA}?

It is claimed that Afll/ ’6F A}Q/ 2 belongs to the trace ideal
T for F,, € N2y L9(R*). The trace ideal Z ,(1< p <o) is
defined as those compact operators A with |A|5 =
Tr((ATA)P/?) < co. General properties of Z, spaces used
here may be found in Refs. [9-11]. To simplify notation we
set e = 1 in this Appendix.

To decide whether A}‘/ 26F A:‘/ ler 3, it suffices to deal

with AY?|F|AY? (F2, =|F|?) since oF/|F]| is unitary.
Then AY?|F|AY? e, if |F|'2A)/* €4 since by
Holder’s inequality for 7, spaces

1/2 1/2 1/2 1/2
1AV IFIAY? 5 < |AYPIE |G EI A 6. (A1)

If |F|'/2AY? € T then so does its adjoint A}/?|F|'/2 by the
general properties of Z,, spaces. Then

1/2 1/2 1/2
I[F]V2A) )8 = Tr(A) | FIAL|F| Al FlAY?)
< Tr(A'2|F|A|F|A|F|AY?)

= [[[F|'/2A12]§. (A2)
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The first line of (A2) may be written in coordinate space.
Then the second line follows from Kato’s inequality in the
form [13-15,34,42,47-51]

|A(x, )] < A(x =),

where A(x) = mK,(mx)/(4n%x), and K, is a modified
Bessel function. We also made use of the identity

(A3)

1 [ da 1

A/lx/z(x,)’):; A \/_E<x| (P—A)2+m2+a|y>’ (

A4)

to obtain |AY?(x,y)| < AY2(x—y) from (A3) with
A2(x) = (m/(27°/3x))*> K35 (mx). This result for
A2 is obtained from representation (A4) with A, =0
using integral 2.16.3.8 of Ref. [36].

To prove that |F|'/?A'Y/2 € I, it has to be shown
that this operator maps L?(R*) into L*(R*) for
F € NgonL?(RY). Let ¢ = |F|'V2AY %y, w € L?. Then
by Kato’s inequality

a2 1/2
loll2 = / WAV F|AYZ,
< / WAV F|A12)y

Let p(x) = [d*yAY2(x = y)ly(y)| = AV 2+|y|(x). By
Holder’s inequality

(AS)

llell <[ 2plla < ol IIFT?

(A6)

q°

where 1/p +1/q = 1/2, p, g > 1. Since we assume g > 4
in (A6), then 1 < p < 4. Use Young’s inequality in the
form given in Table IX.1 of [41],

1 *gll, < Ifllsllglle-

with 1/s +1/t=1+1/r, 1 <r, s, t < co. Then [jp[|, =

A2 lylll, < 1AV Nl r<4/3. As AV2(x)
|

(A7)
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behaves as 1/x* for x — 0 and exponentially decreases
for x — oo, then ||A!/2||, < oo, proving that ¢ € L?.

To complete the proof that |F|'/2A!/% € Z¢, we rely on
the following theorem specialized to four dimensions
[9,52].

Theorem A.—JLet f(x)g(=iV) map L*(R?*) into
L*(R%).

If f € L"(d*x) and g € L"(d*p) with 2 < r < oo, then
f(x)g(=iV) is in Z, and

17 (x)g(=iV)]

1, < Qo)7|f

|L’ g| L (AS)

We have just shown that |[F|'/2A!/? is a bounded operator
on L?(R*), for F,, € N,-,L?(R*). By inspection |F|'/? €
L%(d*x) and (p>+m?)"/2 € LS(d*p), and hence
|F|'/2A1/2 € T(. This establishes that AY?|F|AY? € T,
on referring to (Al) and (A2), and hence so does
AVeFAY?.

Finally, in both Sec. VB and Appendix D, it is
claimed that if @ € L? then so does y = A/i/ 2(,0. We
have

w(x)] < /d4|Ai/2(x, Vo)l (A9)

< / FyA2(x = y)|p(y)] = A4 lp](x).  (AL0)

Then by Young’s inequality (A7), ||, < |A"/?#[g]||, <
|AY2]|; ll@ll, < oo since ||AY?||, < co.

APPENDIX B: EQUIVALENCE OF THE TWO
SIDES OF EQ. (3.6)

Reduce notation by setting B = %UF and e = 1. Begin
with the right-hand side of (3.6) by substituting (3.5), and
obtain

RHS = /w%e"’”zTr (e"Dz — ~!(D*+B) _ /tdte‘("“‘)DZBe‘SD2 + /tdsl /H] dsze‘("sl‘SQ)DzBe‘szDzBe‘S1D2>.
0 0 0 0

(B1)

Eliminate the O(B) term by taking the spin trace of this term. Then

d(RHS)
dm2 0

Note that

1

t -
=Tr[(D*>+ B+ m?)~! = (D> + m?)7!] - /oo dte=""Tr [/ ds, / " dsze‘("“'“‘Z)DzBe‘szDzBe“"Dz} . (B2)
0 0

1 1 1 1

1

- B B
D? + m? D2—|—m2+D2—|—m2 D? + m?

D? + m?
1 1 1

- B
D?*+ B+ m? D?+m?
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Substitute (B3) in (B2), and eliminate the O(B) term by tracing over its spin to get

d(RHS)
dm?
where
1

The trace of R is obviously finite. The second trace in
(B4) is cancelled by the last integral. To see this use the
cyclic property of the trace in the last integral, and integrate
the s;-integral by parts to obtain

d(RHS)

dm2 = Tr(R) +Tr(AABAABAA)

—/ dtTr( —(D*+m?)t /dsse‘D Be‘szB>.
0 0

(B6)

The trace manipulations here and below are allowed due to
the presence of the exponentiated (bounded) operators.
Now integrate the #-integral by parts twice, first to get rid of
the s-integration and second to eliminate the factor ¢ to
obtain

d(RHS)

P Tr(R)

1 1
= —ng(mGFAAGFAAGFAA> .
(B7)

Now relate the left-hand side of (3.6) to the result (B7). We
know that T = A}*16FAY? € Z5. Then [12]

Ry(T)=(14+T)e T2 11, (B8)

o df F||?
H:ez/ 7€ e [3|2H —Tr/ ds / ds e~ (=s1=52)D* F, e F Le 2],
0 71'

To O(e?) (C1) gives

e? 1 d*k .
n=-2"_1{d F
3272 A ¢ / 2ay

verifying that TI is finite and that TI(m =
inspection of (C1) indicates.

To simplify (C1) integrate the s,-integral by parts, use
the cyclic property of the trace, and let s; = s to get

o) =0, as

00 5 13 =5 5 2 5
= Tr(R) =+ Tr(AABAABAA) — / dte_”" Tr |:/ dS] / l dSze_(t_S‘_SZ)D BE_SZD BE_SID :|,
0 0 0

(k)21 (W) +0(eh),

(B4)

so that the relation Indet(1 + R3) =
From the definition (3.7), this gives

Trin(1 + R3) is valid.

Indet;(1 +7) = Tr {ln (1+7)

—T+%T2]. (B9)

Noting that

ar 1 1
~ AT —=TA,,

dm? 2 2 (B10)

differentiation of (B9) with respect to m* gives

d 121 1/2
Wlnde’g( +A/ 3 FAA/

1
= —Tr(AA 1 T TT3>

I I I
_ 1t F
8 r<D2+%6F+m26 D+ m?

1 1
XGFDz—l—mZGFDz—I—mz)
- d(RHS)
dm?

(B11)

Since both sides of (3.6) vanish for m = oo, then the two
sides are equivalent on integrating (B11).

APPENDIX C: SIMPLIFICATION OF EQ. (3.8)

Refer to the last term in (3.8), and take the spin trace.
Denoting this term by I, it is

u |

H—ez/ood—e
o !

o [IlFII2

9n Tr/tdsse‘("s)DzFﬂye‘SDzF
pe 0

(C3)
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It is safe to differentiate IT with respect to m? as this makes (C3) even more ultraviolet convergent. Doing this and

integrating the t-integral by parts gives

dIT o TIFIP 1 .
_W: €ZA dte i {W—ITT mFﬂye D F/ll/
0 F||? 0 d )
— 2 / dr |:e_tm2 !2 Hz + / dsTr <e—s(D2+m2)Flw ﬁ e—t(D‘+m')FﬂD>:|
0 T 0

d L 2 ||F||2 1 ©0 2. 2 2, .2
=2 —e—tm* 2 7 —s(D*+m?) —t(D*+m?)
e dmz/o dt[ e 32ﬂ2t+2A dsTr(e F,e Fﬂ,,) ) (C4)
Hence,
Il = ¢? / " dre~m’ M—1Tr(e—"32F ALF,,) (C5)
0 327%t 2 p AT )

since II(m = o0) = 0. This is the result in (3.9).

As a check on (C5), its O(e?) expansion reproduces the
result (C2). In (3.9) detz has no O(e?) term by its definition,
and Indetgqpp in (3.3) to O(e?) is

e? 1 ) d*k . ’
In detsQED = _W A dZ<1 - 22) (2”)4 |F/w(k)|
kz(1— g
x In <Z(Z2)+m> +0(e*). (Co)
m

Combining (C2) with (C6) following (3.9) gives the text-
book result for the lowest-order vacuum polarization graph
with on-shell renormalization:

d*k

o R RO T

872 ] (2n)*
X In <I€2Z(1_—Z2)+mz> +0(e*).

m

Indet,, =

(C7)

APPENDIX D: EIGENVALUE PAIRS
OF A/%6FA}?

From the equation for the scalar field propagator in the
external potential A,

1 2
{(73ﬂ - eAﬂ> —l—mz] Ap(x,y) =68(x—y), (D1)
obtain by inspection
Apion(x.y) = e “CO0NA, (x,y). (D2)

Referring to the representation (A4) of AY 2, conclude that
it transforms under A — A 4 04 in the same way as A,.

Therefore, it is evident that det;(1+ AY?¢oFAY?) is
gauge invariant.
Noting (D2), define the gauge invariant propagator

Ba(ry) =L MO0y (D3)
In what follows it is not necessary to specify the line
integral’s path. Taking the complex conjugate of (D1),

deduce that A} = A_, and hence from (D3) that

Aj(x,y) = A_s(x,y). (D4)

Refer to (5.7), and consider an eigenstate ¢ of
¢ AY?6FA)? with eigenvalue —4. Let y = A}/*¢. Then

gAAO'Fl// = —ly. (D5)

Since @ €L?, so does y as shown at the end of
Appendix A. We will now show that there is an eigenstate
w with eigenvalue A.

Substitute (D3) in (D5),

€ ¢ —ie |7 der
5/ d'yB (v )aF (e [y )

= a7 Sy ), (D6)

where z is an arbitrary point in R*. On taking the complex
conjugate of (D6), we seek a matrix C such that
C}/,’ZC_1 = —7,. In the representation

1, O )
0 -1,,/)°

() ) )

0 o6
- 0

0 1,
1, 0
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one may choose C =y3y;. Since o6, = [r,.7,]/(2i),
Co*C~! = —0. Substitution of this result into the complex
conjugate of (D6) gives together with (D4)

e

z/kfyéﬁ«xJOGFooaeﬁd&”0w%y>

— e Loy (). (D8)

AA is gauge invariant and depends only on F,, and
invariants derived from it. The second line in (5.2) when

expanded in powers of T consists of loops with A 4 between
insertions of ¢F as the phase factors from A, cancel in the

trace. Since Indet; is real, A 4 is real, and hence by (D4)

A_, = A,, expressing C-invariance. Inserting this result in
(D8), we conclude that for each eigenstate y of $A,6F
with eigenvalue —A there is a paired eigenstate

we(x) = & €O e (), (DY)

with eigenvalue +A.

APPENDIX E: CALCULATION OF A

Substitute either of the expansions (5.46), (5.47) or
(5.48), (5.49) to O(m?) in (5.42), and obtain using (5.50)

4j+3 d
/2/_|_ <%_2era>f/2— 1—46052—37’(1_6;52- (El)

The solution of (E1) at r = R that is finite at » = 0 is

R 7\ 443
fA(R) = / dr R (1 —4ebya(r) — ebyrd (r))
0
« e2e fyR dA‘S(l(A‘)' (EZ)
To O(m?) the boundary condition (5.45) requires

R?/2 evd,
Rf,(R) = . E3
f2(R) 2j+2—e1/+el/—2j—1 (E3)

Note that a(r), regardless of the sign of C in (5.40),
approaches v/r* as r /' R. Therefore, f5(R) in (E2) is
exponentially increasing with e, while the right-hand side
of (E3) has no such exponential growth. Accordingly, the
boundary condition (E3) requires 6, to satisfy

R
R qr(L 4j+3€2€fr dssa
6 = fO (R) 2 [Fd +c, (E4)
e [Rdr(5)¥ " (4a + rd')e e[ dssa

where ¢ is an exponentially decaying function of e. Insert
(E2) in (E3), and then refer to (E4) to obtain an equation
for c:
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R 4j+3 ®
ceR/ dr <£> (4a + ra’)ezefr dssa
0

B R?/2 evd,
Cev—2j-2 2j+1—ev’

(ES)

As 6, is determined by (E4) up to an exponentially
decaying term, (ES5) is sufficient to determine c.

It remains to estimate 6, in (E4) with ev > 2j 4 2 and
e > 1. The structure of the first term in (E4) suggests
Laplace’s method [17] as the most direct way of proceed-
ing. Consider the numerator of (E4):

1 R 4j+3 R
1= §A dr (%) o2 ) dssa, (E6)

Let r = xR, s = tR, and set

1
g(x) = (4 +3)In(x) + 2eR2/ drra. (E7)

Let ¢'(xo) =0. Since ev >2j+2, ¢(1) < 0and ¢ (x) = o0
for x N\, 0, then ¢”(xy) < 0. Hence, 0 < xq < 1. For any
sign of C in (5.40) and € > 2, a sketch of (4 + 3)/x and
2e¢R%xa vs x indicates that 4a(xy) + xoa’(xg) > 0. These

strong statements can be made due to the simplicity of a in
(5.40). Therefore, for e > 1

2w
|9" (x0)]

] = ¢9(0)

(1+0(g"(x)/e*)).  (E8)

Since a(r) is a smooth function for 0 < r < R, g"(x) is
finite, and O(e) or less. Repeating this procedure for the
denominator of (E4) gives for ev > 2j + 2, e > 1,

1/e
da(ry) + rod'(ry)

5, = (1+0(1/e)) >0, (E9)

where ry = Rx is the unique root in the interval 0 < r < R
of

4j +3 —2er’a(r) = 0. (E10)
Refer to (5.14), and define the spin trace norm of an
operator A by ||A[, =Tr(ATA)"/? so that i[|(cF)"||,=
|4a+rd'|, where (6F)" is defined by (5.14). Then (E9)
becomes

B 2
ell(@F (o)l

Here F,, (1) is a smoothly varying functionon 0 < ry < R
and is hence slowly varying for j=0,1/2,., jn. and
ev>2j+2,e> 1.

5 (1+0(1/e)).  (ElLl)
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Repeated application of Laplace’s method gives the
following additional results for e > 1. For j =0,1/2,.,
Jmax — 1/2, ev>2j4+2 with ev=N+A, 0 <A <1,
N =23, jmx = (N—=2)/2, 5, in (5.47) is

R4

For j = jmaxs 624, 10 (5.49) exponentially decreases with e,
and the O(m*) term is the same as that in (5.47) with &,
given by (E12). For ev = 3,4... and j = j.. = (N =3)/2,
(5.47) holds with 6,, 04 given by (E11) and (E12).

(E12)

APPENDIX F: ZERO MASS LIMIT OF det,,,

The renormalized determinant in (2.1) may be equiv-
alently expressed as [8,32,53]

dety, (1 — eSA)
= exp (I, + I3 + I1,)dets (1 — eSA), (F1)

where

Indets(1 — eSA)

=Tr [In (1 —eSA) + i (eSA)"/n] . (F2)

n=1

As evident from (F1), dets is the remainder of det(1 — eSA)
after the O(e?, e, e*) graphs Il,, I3, and T1, have been
factored out. To maintain equality in (2.1), they are defined
by the power series expansion of its right-hand side to
O(e*). This definition gives the on-shell subtracted vacuum
polarization graph I1, in (C7); it sets I1; = 0, and it defines
the gauge invariant photon-photon scattering graph I1;. A
Hilbert space can be found on which SA is a compact

operator belonging to Z,, r >4 provided A, € N L"
r>4+e

[8,32,53]. The trace ideal Z, is discussed in Sec. III and
Appendix A. Then SA € 5 since Z,, . C Zs, and hence
dets is an entire function of e of order 4 [15]. It has no zeros
for real e, and since det,,(e = 0) = 1, det,, > 0 for all
real e. It will now be shown that the m = 0 limit of det,,
is finite when II, is subtracted off shell, provided

A, € Q L"(R*), € > 0. This excludes zero-mode sup-
rza—e

porting potentials that fall off as 1/x and that induce
divergent mass singularities in Indet., [25,54,55]. Our
analysis of the m = 0 limit of det,, is a generalization of
that in Ref. [32] for massless QED,.

Instead of dealing with the operator SA at m = 0, we
make a similarity transformation that leaves dets invariant.
Setting m = 0 let

1

y 1
|A|1/2 |p|1/2 ’ <F3)

—|A|1/2

A
7 A
\pl|p|"/?

]
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where |A| = (A2)!/2. Because p/|p| and A/|A| are unitary,
it suffices to consider the operator K = |p|~/2|A||p|~"/%.

We claim that K € Z,, r > 4 provided A, € N L9(R%),
q>4—c

e > 0. If K € Z, then by Holder’s inequality for Z, spaces,

1
172

|
Ip|'/2

A2 A2 . (F4)

N

X1, sH

p

N

with s =2r > 8. If |A|"/?|p|~"/? € Z,, then so does its
adjoint | p|~!/2|A|!/? by the general properties of 7, spaces.
Let

1
B = |A|'/? Pk =B, + B,, (F5)
where
1 1
_ 1/2
By =1l (|P|1/2 (P +ﬂ2)1/4>’ (F6)

1

By = [Al"? ———
(p* + )/

(F7)

and where 4 is an arbitrary mass parameter. To prove that
By, B, €Z,, s> 8, it has to be first shown that these
operators map L*(R*) into L?(R*).

We begin with B;. Let g; = A, * f, f € L?, where

[ dYp . 1
Al()C)_/(Zﬂ)“e <|P|1/2 (p2+u2)”4>' (F8)

Then A, (x) behaves as p?/x*? for x — 0 and 1/x7/? for
x — co. Let hy = |A|'/?g,. By Hoélder’s inequality

11l = A2l < MIA 1 lglly. (F9)

with 1/p+1/g=1/2, p,q > 1. By Young’s inequality
(AT, [lgilly = 1A+ £lly < 1AL f1o with 1/g +1/2 =
1/r, g, r > 1. Referring to the properties of A, it is evident
that ||A||, < oo provided 8/7 <r <8/3. Choose
qg>38/3. From 1/p+1/q=1/2 obtain p <8. Then

(F9) allows A, € N LP, > 0. Under this condition
p=4—e

||h1]|, < oo and hence B, is an operator on L2,
Next consider B,. The Fourier transform of (p? + u?)
in four dimensions is undefined. So consider

~1/4

d*p i
G (x) = Ay * fx) = / (2754 e (pzi(iz)l/zt'

Since ||f|, = ||f|l,/(27)* then f(p) behaves as 1/p**e
for p—> oo and 1/p** for p — 0. Therefore, ¢,(x)
behaves as 1/x*™¢ for x = oo and 1/x%/?7¢ for x — 0.
Then B, maps L? into L? since h, = |A|'/?g, satisfies

(F10)
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12l = 1A' 2gall, < NIA[Y2]],llg2ll, with 1/p +1/q =
1/2, p,q > 1. Thus, ||g,||, < co for 2 < g < 8/3 which
requires p > 8 or A, € N LP.
p>4
To complete that proof that B, , B, € Z,, s > 8, we rely
on Theorem A in Appendix A. For By, since

1 1
_ -3/2
|p|1/2_(p2 +ﬂ2)1/4—0(‘17| 2),

= 0(|p|7'?),

the left-hand side belongs to L*(d*p) for 8/3 < s < 8. It
was just shown that B, is a bounded operator on L? if
|A|'/2 € L*(d*x), s < 8. By Theorem A B, € Z, s <8,
and therefore by the general properties of 7, spaces,
BieZ,8<s< o0

For B, evidently (p? + p?)~'/* € L*(d*p) for s > 8. For
B, to be a bounded operator on L2, it was found that
|A|'/? € L*(d*x),s > 8. Hence, B, € Z,, 8 <s < oo by
Theorem A.

It has now been established that B;+ B, =
|A['2|p|7V2 €T, 8<s<oo provided A,€ N L,

r>4—e
€ > 0. Referring to (F4), K = |p|”'?|A||p|”'/* €Z,,
4 < r < o0, and hence dets is well defined at m = 0 since
K € T5. The loop expansion of dets makes sense, and so
the similarity transformation defined in (F3) is valid,
allowing us to conclude that SA|,,_, € Z5 for the restricted
class of A, potentials considered here.

It remains to demonstrate the continuity of the m = 0
limit of dets(1 — eSA) = dets(1 — eAS) for m > 0. We will
deal with the operator AS. The continuity of the m = 0 limit
of dets will follow from a theorem Gohberg and Krein, Ch.
4, Theorem 2.1 [11]: Let A € Z,, where p is a positive
integer, and let F' be an arbitrary closed bounded set. Then
for any € > O there exists a & > 0 such that for any operator
Bel,

Ip| = o0

|p| = 0, (F11)

1}141631}(|detp(1 — pA) —det, (1 —uB)| <e,
whenever [|A — B[, < &. Consider

m2p

+A .
p(p*+m?) " pPm?

AS — AS,_o = A (F12)

It is now known that AS, AS,,_ € Zs for A, € >Q L,
rza4—e
€ > 0. Then

m2p
p*(p* +m?)

|AS — AS,0lls <A

.
(F13)

m
+(|A
5 H p*+m?
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Let

b

By=A— "t |
p*(p* + m?)

(F14)

where B is an operator on L? for A, restricted as above.
The proof of this proceeds in exactly the same way as in the
case of B, above. The form of B; allows immediate
application of Theorem A, Appendix A. By inspection
B/ [p*(p*+m?)] € L*¢(d*p),e >0, and hence B; € Z,_,.
Letting

1

By =A——,
4 p2+m2

(F15)

we conclude by the same analysis that By € Z,_,.
It is a general property of Z,, spaces that || 7|, < [T,
p > p'. Thus, from (F13),

IAS = ASyolls < m?||Bslla—e + m||Bylla—e.  (F16)
Referring again to (A8), Theorem A obtains
HAS—ASm:OHS

Al (m v

p*(p*+m?)

<(27) |

2

(F17)

+m
4—¢ sz—sz

The two L*=¢(d*p) norms on the right-hand side of (F17)
multiplied by m? and m both vanish as m¢/(4=¢)
when p is rescaled to mp.

This establishes the continuity of the m = 0 limit of dets
for any finite value of e by the Gohberg—Krein theorem
stated above.

Regarding II, in (F1), we have already discussed off-
shell renormalization in Sec. VI A. Subtracting off shell
adds the term (6.7) to In det,.,. When this is combined with
the right-hand side of (C7), which defines II,, the result
is lim,,_oI1, = finite.

Finally, the m = 0 limit of the photon-photon scattering
graph I, has been considered in detail for potentials with a
1/x falloff [56]. The conclusion is that lim,,_yI1, = finite.
The inclusion of potentials with a faster falloff such as
those considered here can only reinforce this conclusion.

Summarizing, it has been established that
lim,,_qIn det,., = finite for off-shell charge renormaliza-
tion and potentials A, € DQ_EL’(R“). For zero mode

asm— 0

supporting potentials, the zero mass limit of Indet,, is
not finite, but we know precisely where this divergence
occurs, namely in det;.
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