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Consider the Euclidean functional integral representation of any physical process in the electroweak
model. Integrating out the fermion degrees of freedom introduces 24 fermion determinants. These multiply
the Gaussian functional measures of the Maxwell, Z, W, and Higgs fields to give an effective functional
measure. Suppose the functional integral over the Maxwell field is attempted first. This paper is concerned
with the large amplitude behavior of the Maxwell effective measure. It is assumed that the large amplitude
variation of this measure is insensitive to the presence of the Z, W, and H fields; they are assumed to be a
subdominant perturbation of the large amplitude Maxwell sector. Accordingly, we need only examine the
large amplitude variation of a single QED fermion determinant. To facilitate this the Schwinger proper time
representation of this determinant is decomposed into a sum of three terms. The advantage of this is that the
separate terms can be nonperturbatively estimated for a measurable class of large amplitude random fields
in four dimensions. It is found that the QED fermion determinant grows faster than exp ½ce2 R d4xF2

μν�,
c > 0, in the absence of zero mode supporting random background potentials. This raises doubt on whether
the QED fermion determinant is integrable with any Gaussian measure whose support does not include zero
mode supporting potentials. Including zero mode supporting background potentials can result in a decaying
exponential growth of the fermion determinant. This is prima facie evidence that Maxwellian zero modes
are necessary for the nonperturbative quantization of QED and, by implication, for the nonperturbative
quantization of the electroweak model.

DOI: 10.1103/PhysRevD.91.085026 PACS numbers: 12.20.Ds, 11.10.Kk, 11.15.Tk

I. INTRODUCTION

It is not known if the electroweak model can be non-
perturbatively quantized. This requires the convergence of
the unexpanded functional integrals over all classical field
configurations for the vacuum expectation values of its
field operators. It is assumed that the integrals have been
continued to Euclidean space to make mathematical sense
out of them and that ultraviolet and volume cutoffs are in
place in their integrands. Their introduction will be dis-
cussed later. Since the quantization is nonperturbative,
most of the functional integrals cannot be done explicitly.
Therefore, the criteria for the nonperturbative renormaliza-
tion of themodel are not known ab initio. Immediately one is
confronted with an external field problem: do the regulated
integrands grow slowly enough with large amplitude field

variations for the functional integrals to converge? It is the
aim of this paper to examine this minimal requirement for
the nonperturbative quantization of the electroweak model.
Presumably the order of doing the functional integrals is

irrelevant aside from their technical difficulty. If so, it is
reasonable to begin with what is well known. Accordingly,
we first integrate out the fermions. Then the answer to
the above question partly depends on knowing the strong
field behavior of each of the six lepton and 3 × 6 quark
determinants obtained by integrating out the three gener-
ations of leptons and quarks, including their three colors.
For example, the electron and its associated neutrino field1

contribute the following factor to the Euclidean functional
integral representation of any electroweak process after
spontaneous symmetry breaking:

det

�
Pþme þ eAþ g

2 cos θW
Z

�
1 − γ5
2

�
−
gsin2θW
cos θW

Z þ gme

2MW
H

�

×det

�
P −

g
2 cos θW

Z

�
1 − γ5
2

�
−
g2

2
Wþ

�
1 − γ5
2

�
SeW−

�
1 − γ5
2

��
: ð1:1Þ

1The extension of the model to massive neutrinos and their mixing is not considered here as it will not affect the main results of
this paper.
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Here Aμ, Zμ, W�
μ , and H are the Maxwell, neutral and

charged vector boson, and Higgs fields; Se, the inverse of
the operator in brackets in the first determinant, is the
electron propagator in the presence of the A, Z, and H
fields; me and MW are the electron and W-boson masses; e
is the positron electric charge; θW is the Weinberg angle;
and g ¼ e= sin θW . The result in (1.1) follows by inspection
of the electroweak Lagrangian [1] and an elementary
integration over the electroweak action quadratic in
the fermion fields [2]. The 24 determinants multiply the
Gaussian measures dμðAÞdμðZÞdμðWÞdμðHÞ as does
the remainder of the electroweak action denoted by
exp ½− R

d4xLðA; Z;W�; HÞ�. Considering the complexity
of the Feynman rules in the ’t Hooft–Feynman gauge, a
nonperturbative calculation may simplify in the unitary
gauge. The absence of the Goldstone bosons χ;φ� in the
determinants in (1.1) indicates that this gauge has been
selected.
An ultraviolet cutoff has to be introduced into the

A; Z;W, and H field propagators. As these fields are to
be integrated over, they are assumed to be tempered
distributions. To calculate the fermion determinants, these
fields need to be smoothed following the procedure out-
lined at the beginning of Sec. VII for QED. The smoothing
procedure introduces an ultraviolet cutoff in the associated
propagators when calculating the fields’ covariances with
the above Gaussian gauge-fixed measures as in Eq. (7.2).
Thus, the ultraviolet cutoffs are introduced by functionally
integrating the electroweak model.
The fermion determinants contain all fermion loops and

hence the anomalies. The process for cancelling them in
this paper begins by noting that the determinants, such as
those in (1.1), are ill defined as they stand. Mathematical
sense can be made of them by subtracting out all loops
whose degree of divergence is 2, 1, and 0. The subtraction
process is illustrated by (F1) in Appendix F for the
case of QED. As a representative example, consider
the γWþW− triangle graph containing three fermion
propagators. Schematically the electron neutrino determi-
nant in (1.1) is subtracted so that det → exp½ΠðeeνeÞþ
other subtractions� × detR, where detR is a well-defined
remainder determinant similar to det5 in (F1) and (F2);
ΠðeeνeÞ denotes the first-generation lepton triangle
graph for γ → WþW−. When the 23 remaining determi-
nants are subtracted, the exponentiated subtractions com-
bine to give the following result for the sum of all the
graphs contributing to the first-generation γWþW− triangle
anomaly:

expfΠðeeνeÞ þ 3½ΠðdduÞ þ ΠðuudÞ�jVudj2
þ 3½ΠðssuÞ þ ΠðuusÞ�jVusj2
þ 3½ΠðbbuÞ þ ΠðuubÞ�jVubj2
þ other subtractionsg × Π24

i¼1detRi
: ð1:2Þ

Here u; d; s; b refer to quark flavors, and Vij is the
Cabbibo-Kobayashi-Maskawa (CKM) quark mixing
matrix [1]. The anomaly is removed by subtracting out
the zero-mass limit of these graphs which we denote by Π0.
Then the anomaly bearing graphs reduce to

expfΠ0ðeeνeÞ þ 3½Π0ðuudÞ þ Π0ðdduÞ�
× ðjVudj2 þ jVusj2 þ jVubj2Þg ð1:3Þ

since there is no difference between the free u, d, s, and b
propagators in the massless limit. Noting that the unitarity
of the CKM matrix requires the sum of the matrix elements
in (1.3) to be 1, the sum of the color weighted γ -vertices in
(1.3) results in the cancellation of the first-generation
γWþW− triangle anomaly. This procedure can be continued
until all of the three- and four-leg anomalies in the three
generations cancel as they are known to do. These
determinant regularizations should be done before they
are inserted into the functional integrals over the gauge and
Higgs fields.
Summarizing, it is necessary to define the fermion

determinants by removing their ill-defined loops by making
subtractions that are then either renormalized or cancelled
among themselves. This happens to lead to anomaly
cancellation at the three- and four-external-leg level. Of
course it has not been proven that the product of the
remainder determinants is free of terms that can block
the nonperturbative renormalization of the electroweak
model [3].
It is known that when Π24

i¼1detRi
is loop expanded it

contains an exponentiated sum of absolutely convergent
graphs beginning with the pentagon graph. These can be
calculated in a manifestly gauge invariant way and cannot
contain anomalies. The fact that the perturbative expansion
ofΠ24

i¼1 detRi
is anomaly free leaves open the possibility that

this determinant product may eventually be shown to be
part of a nonperturbative, anomaly-free, gauge preserving
regularization of the electroweak model.
Assuming the functional integrals converge, the process

of renormalization follows next with the introduction of
counterterms to remove the regulators. Presumably the
result is in terms of the physical parameters e, MW , MZ,
MH, mi—the charged fermion masses—and the renormal-
ized quark mixing matrix Vij after continuing from an
intermediate renormalization scheme in Euclidean space to
on-shell renormalization in Minkowski space.
The observation that L is no more than quadratic in

Aμ, that Aμ does not couple directly to H, that a consid-
erable amount is known about the QED determinant
detðP − eAþmÞ, and that the regularization of the electro-
dynamic sector is straightforward suggests that the next
simplest functional integration should be over the Maxwell
field. Suppose this is decided. Twenty-one of the 24
fermion determinants involve the Maxwell field as it
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appears in the electron’s determinant in (1.1) with different
charges. Should their combined large amplitude A-field
variation increase faster than exp ½ce2 R d4xF2

μν�, c > 0,
then the integration over the Maxwell field with any
Gaussian measure would be divergent, and the nonpertur-
bative quantization of the electroweak model would be
doubtful. The Fμν-dependence is expected since the deter-
minants are gauge invariant.
It is assumed that the strong Maxwell field behavior of

these determinants can be obtained by decoupling them
from the electroweak model by setting g ¼ 0. Future
theorems dealing with the assumed subdominant growth
of the remainder determinants can and should be produced.
Noting this, there remains a product of 21 determinants of
the form detðP − qAþmÞ so that we need only calculate
one of them. Accordingly, this paper considers the non-
perturbative quantization of the electroweak model’s

electrodynamic sector. It is found that this can be done
only under restrictive conditions. If the subdominance of
the remainder determinants assumed here is valid, then
these conditions extend to the complete electroweak model.

II. PRELIMINARIES

Confining attention to QED, sense has to be made of the
infinite -dimensional determinant detðP − eAþmÞ, where
e > 0 from here on. It is first normalized to 1 when e ¼ 0
by dividing it by detðPþmÞ to get detð1 − eSAÞ, where S
is the free electron propagator. To make this well defined, it
has to be regularized and made ultraviolet finite by a
second-order charge renormalization subtraction. A repre-
sentation of the regulated and renormalized determinant,
denoted by detren, is given by Schwinger’s proper time
definition [4]

ln detrenð1 − e0SAÞ ¼
1

2

Z
∞

0

dt
t

�
Tr

�
e−P

2t − exp

�
−
�
D2 þ eo

2
σμνFμν

�
t

��
þ e2okFk2

24π2

�
e−tm

2
o ; ð2:1Þ

where Dμ ¼ Pμ − eoAμ, σμν ¼ ½γμ; γν�=2i, γ†μ ¼ −γμ,
kFk2 ¼ R

d4xF2
μν and eo,mo are the unrenormalized charge

and mass. The last term in (2.1) results in a second-order
charge renormalization subtraction in the one-particle
irreducible (1PI) photon self-energy Πðk2Þ at zero momen-
tum transfer as in Eq. (C7), Appendix C. Therefore, as long
as Aμ remains a classical field, eo and mo are the physical
parameters e and m. Quantizing Aμ by integrating over it
will require a further charge renormalization subtraction
given by 1=e2o ¼ 1=e2 þ Πð0; e2oDoÞ, where Πð0; e2oDoÞ is
the 1PI photon self-energy at k2 ¼ 0 with the one-loop
contribution omitted. It is a functional of the exact
unrenormalized photon propagator Do with Πð0; 0Þ ¼ 0;
it is made finite by the regularization procedure outlined in
Sec. VII. As renormalization will not be considered further,
the subscript o will be dropped in (2.1) with the under-
standing that e and m are the unrenormalized charge and
mass in what follows.
Having defined detren the effective measure for the

Maxwell field integration is

dμðAÞ ¼ Z−1dμ0ðAÞdetrenð1 − eSAÞ; ð2:2Þ

where the gauge-fixed Gaussian measure for the random
potential Aμ is now denoted by dμ0. It has mean zero and
covariance, Z

dμ0AμðxÞAνðyÞ ¼ Dμνðx − yÞ; ð2:3Þ

where Dμν is the photon propagator in a fixed gauge. The
vacuum-vacuum amplitude Z in (2.3) is

Z ¼
Z

dμ0detren; ð2:4Þ

so that
R
dμðAÞ ¼ 1. The measure (2.2) appears in the

nonperturbative calculation of every physical process in
QED such as the Euclidean Green function for 2n external
fermions and m photons,

Sμ1…μmðx1;…; xn; y1;…; yn; z1;…; zmÞ

¼ Z−1
Z

dμ0ðAÞdetrenð1 − eSAÞ det ½Sðxi; yjjeAÞ�ni;j¼1

×
Ym
k¼1

AμkðzkÞ; ð2:5Þ

where Sðx; yjeAÞ is the electron propagator in the external
potential Aμ.
Any attempt to calculate the integrals in (2.4) and (2.5)

will encounter ultraviolet divergences that require regulari-
zation. How this regularization is introduced will be
discussed in Sec. VII. In addition Z requires a volume
cutoff that will be discussed in Sec. VII as well. A volume
cutoff enters QED solely by its determinant to render the
vacuum energy finite when the determinant is integrated.
Assuming that the functional integrations in (2.4) and (2.5)
converge, there remains the task of removing the ultraviolet
regulator and volume cutoff by some as yet unknown
nonperturbative renormalization procedure that preserves
the unitarity of S-matrix elements. The difficulty of
implementing this procedure cannot be overstated.
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Whether the functional integrals in (2.4) and (2.5)
converge depends on detren’s behavior for large amplitude
variations of a measurable set of random fields Fμν on R4.
Since e always multiplies Fμν, it will be sufficient to
consider the strong coupling behavior of detren.
This leads to one of the main results of this paper.

Although (2.1) is compact and intuitive, it—and all other
representations—have so far failed to give any explicit
information on the strong coupling behavior of detren for
random fields onR4. To remedy this an exact representation
of ln detren is derived from (2.1) that facilitates its strong
coupling analysis. Noting that in Euclidean space Fμν may
be regarded as a static, four-dimensional magnetic field, the
new representation breaks ln detren into a sum of three terms
that expose its competing magnetic properties, namely,

ln detren ¼ diamagnetismþ paramagnetism

þ charge renormalization: ð2:6Þ

The advantage of representation (2.6) of detren is that the
strong coupling analysis of its separate terms is far easier
than their combined form in (2.1). The derivation of (2.6) is
given in Sec. III. Suffice it to say here that the sum of the

diamagnetic term (Sec. IV) and charge renormalization
term (Sec. VI) contribute to detren’s strong coupling growth,
while the paramagnetic term (Sec. V) slows it down.
Therefore, the nonperturbative quantization of QED criti-
cally depends on the paramagnetic term and the class of
background fields on which it depends. Prima facie
evidence is given that zero mode supporting background
fields are necessary for the nonperturbative quantization of
QED. The presence of substantial numbers of zero modes
in the lattice functional integration of QED in its chirally
broken phase has been noted [5,6]. Our result and this
observation suggest that Maxwellian zero modes will play a
key role in deciding whether the electroweak model can be
nonperturbatively quantized. Our conclusions are summa-
rized in Secs. VI C and VIII, and the Appendixes deal with
mathematical details.

III. REPRESENTATION OF detren

The objective is to obtain an expression for detren that
manifests the interplay of diamagnetism, paramagnetism,
and charge renormalization in its strong coupling behavior
for random, static, four-dimensional magnetic fields.
Rewrite (2.1) as

ln detren ¼
1

2

Z
∞

0

dt
t
e−tm

2

�
4Trðe−P2t − e−D

2tÞ − e2kFk2
48π2

þ Tr

�
e−D

2t − exp

�
−
�
D2 þ e

2
σμνFμν

�
t

��
þ e2kFk2

16π2

�
; ð3:1Þ

where the trace over spin was made in the first term to give a factor of 4. Then (3.1) becomes

ln detren ¼ 2 ln detSQED þ 1

2

Z
∞

0

dt
t
e−tm

2

�
Tr

�
e−D

2t − exp

�
−
�
D2 þ e

2
σμνFμν

�
t

��
þ e2kFk2

16π2

�
; ð3:2Þ

where ln detSQED is the proper time definition of the formal scalar QED determinant ln det f½ðP − eAÞ2 þm2�=ðP2 þm2Þg
with on-shell charge renormalization:

ln detSQED ¼
Z

∞

0

dt
t

�
Trðe−P2t − e−D

2tÞ − e2kFk2
192π2

�
e−tm

2

: ð3:3Þ

Alternatively, ln detSQED ¼ −SSQED, where SSQED is the one-loop effective action of scalar QED.
Now consider the remaining terms in (3.2), and use the operator identity

e−tðD2þ1
2
eσFÞ − e−tD

2 ¼ −
Z

t

0

dse−ðt−sÞðD2þ1
2
eσFÞ 1

2
eσFe−sD

2

: ð3:4Þ

A derivation of (3.4) is given in Ref. [7]. Iterating it twice gives

e−tðD2þ1
2
eσFÞ−e−tD

2 ¼−
Z

t

0

dse−ðt−sÞD2 1

2
eσFe−sD

2 þ
Z

t

0

ds1

Z
t−s1

0

ds2e−ðt−s1−s2ÞD
2 1

2
eσFe−s2D

2 1

2
eσFe−s1D

2

−
Z

t

0

ds1

Z
t−s1

0

ds2

Z
t−s1−s2

0

ds3e−ðt−s1−s2−s3ÞðD
2þ1

2
eσFÞ1

2
eσFe−s3D

2 1

2
eσFe−s2D

2 1

2
eσFe−s1D

2

: ð3:5Þ
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Define the determinant det3 by

ln det3

�
1þ Δ1=2

A
1

2
eσFΔ1=2

A

�

¼
Z

∞

0

dt
t
e−tm

2

Tr

�Z
t

0

ds1

Z
t−s1

0

ds2

Z
t−s1−s2

0

ds3

× e−ðt−s1−s2−s3ÞðD2þ1
2
eσFÞ 1

2
eσFe−s3D

2 1

2
eσFe−s2D

2

×
1

2
eσFe−s1D

2

�
; ð3:6Þ

where Δ1=2
A ¼ ðD2 þm2Þ−1=2. Before proceeding with the

derivation of (2.6), it is important to explain what the left-
hand side of (3.6) means [8–12].
Thus, det3 is the regularized determinant defined by

det3ð1þ TÞ ¼ det

�
ð1þ TÞ exp

�
−T þ 1

2
T2

��
; ð3:7Þ

provided T ∈ I3. The trace ideal Ip (1 ≤ p < ∞) is
defined as those compact operators T with kTkpp ¼
TrððT†TÞp=2Þ < ∞ [9–11]. Because T is compact, its
eigenvalues are discrete and have finite multiplicity.
Therefore, the left-hand side of (3.6) requires that the
operator Δ1=2

A σFΔ1=2
A ∈ I3. This is shown in Appendix A

for Fμν ∈ ∩p>2LpðR4Þ and m ≠ 0. Note that this allows
zero mode supporting potentials AμðxÞ with their necessary
1=jxj falloff for jxj → ∞. The equivalence of the two sides
of (3.6) follows from Theorem 7.2 in Ref. [8], where an
outline of its proof is given. Because of the inaccessibility
of Ref. [8] and the importance of det3 to this paper, a proof
is given in Appendix B. More will be said about det3 in
Sec. V. But already we anticipate that its presence in detren
will be a calculational advantage as it deals with a self-
adjoint operator acting on countable, square-integrable
eigenstates. Put differently, det3’s calculation reduces to
a manageable quantum mechanical problem on bound state
energy levels as discussed in Sec. V B.
Continuing with the derivation of (2.6), insert (3.5) and

(3.6) in (3.2) to obtain

ln detren ¼ 2 ln detSQED þ 1

2
ln det3

�
1þ Δ1=2

A
1

2
eσFΔ1=2

A

�

þ e2

8

Z
∞

0

dt
t
e−tm

2

�
1

4π2
kFk2 − Tr

Z
t

0

ds1

Z
t−s1

0

ds2e−ðt−s1−s2ÞD
2

σFe−s2D
2

σFe−s1D
2

�
: ð3:8Þ

It is shown in Appendix C that the last term in (3.8) can be
simplified to give the promised three-term representation of
ln detren,

lndetren ¼ 2 lndetSQEDþ
1

2
lndet3

�
1þΔ1=2

A
1

2
eσFΔ1=2

A

�

þ e2
Z

∞

0

dte−tm
2

×

�
1

32π2t
kFk2− 1

2
Trðe−tD2

FμνΔAFμνÞ
�
; ð3:9Þ

where ΔA ¼ ðD2 þm2Þ−1.
Equation (3.9) is equivalent to (2.1), and each term is

separately well defined and gauge invariant. Their order
follows that in (2.6). The signs of the first two terms and
their connection with diamagnetism and paramagnetism are
discussed in the following sections. The last term is
connected with charge renormalization and is manifestly
positive due to QED’s lack of asymptotic freedom.

IV. STRONG COUPLING BEHAVIOR OF detSQED

Let the amplitude of FμνðxÞ be set by the parameter F
which has the dimension of L−2. Then break the integral in

(3.3) into
R 1=eF
0 and

R∞
1=eF , and use Kato’s inequality in the

form [13–16]

Trðe−P2t − e−ðP−eAÞ2tÞ ≥ 0 ð4:1Þ

to obtain

ln detSQED

≥
Z

1=eF

0

dt
t

�
Trðe−P2t − e−ðP−eAÞ2tÞ − e2kFk2

192π2

�
e−tm

2

−
e2kFk2
192π2

Z
∞

1=eF

dt
t
e−tm

2

: ð4:2Þ

The inequality in (4.1) reflects the diamagnetism of charged
scalar bosons: on average the energy levels of such bosons
increase in a magnetic field. This explains the first term in
(2.6). The selection of eF as the scaling parameter is
discussed below.
The first integral in (4.2) is dominated by its small-t

behavior for e ≫ 1. Accordingly, make the heat kernel
expansion
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Trðe−P2t − e−ðP−eAÞ2tÞ

¼ 1

16π2

Z
d4x

�
e2

12
F2
μν þ

te2

120
Fμν∇2Fμν

þ t2e2

1680
Fμν∇4Fμν þ

t2e4

1440
½ð⋆FμνFμνÞ2 − 7ðF2

μνÞ2�
�

þ Oðt3Þ; ð4:3Þ

where ⋆Fμν ¼ 1
2
ϵμναβFαβ. The OðF2Þ terms follow from the

result for ln detSQED in (C6); the OðF4Þ term is inferred
from Schwinger’s constant field result for scalar QED [4].
To the author’s knowledge, there is no proof that QED

heat kernel expansions are asymptotic series in t, although
this is generally assumed. Referring to (4.3) it is evident
that continuing the expansion in powers of t requires that
Fμν be infinitely differentiable (C∞). So this is a necessary
condition. In Sec. VII we will introduce an ultraviolet
regulator by convoluting the potential Aμ with a function of
rapid decrease. The resulting smoothed potential is C∞.
Anticipating Sec. VII we will now assume the fields in (4.3)
are C∞. With this understanding the expansion in (4.3) will
now be assumed to be asymptotic so that the truncation
error after N terms is

Trðe−P2t−e−ðP−eAÞ2tÞ−
XN
n¼0

anðeFÞtn ∼
t↘0

aMðeFÞtM; ð4:4Þ

where aM is the first nonzero coefficient after aN [17]. Note
that, since ½t� ¼ L2, the maximum power of Fμν in aM is
M þ 2 so that the truncation error in (4.2) never
exceeds Oðe2Þ.
From (4.3), (4.4), and the result

Z
∞

1=eF

dt
t
e−tm

2 ¼ ln

�
eF
m2

�
− γ þ R; ð4:5Þ

where γ ¼ 0.5772… is Euler’s constant and
0 < jRj < m2=ðeF Þ, obtain from (4.2) for e ≫ 1

ln detSQED ≥ −
e2kFk2
192π2

ln

�
eF
m2

�
þ Oðe2Þ: ð4:6Þ

We chose eF as the scaling parameter in (4.2). Why not
eαF? We set α ¼ 1 first because we remarked in Sec. II that
e always multiplies Fμν so that large amplitude variations of
Fμν can just as well be studied in the strong coupling limit;
setting α ≠ 1 breaks this correspondence. Second, if α > 1
then the lower bound in (4.6) would be more negative,
hence not optimal. If α < 1 one gets a better bound in (4.6),
but the truncation error in (4.2) increases faster than e2 for
terms of OðF4Þ and higher order. So α ¼ 1 is the unique
choice. The scaling parameter is further discussed in
Sec. VI A.

The lower bound in (4.6) is related to and in agreement
with the constant magnetic field growth of scalar QED’s
effective action [18]

SSQED ¼ − ln detSQED ¼ B2V
96π2

e2 ln

�
eB
m2

�
þ Oðe2Þ; ð4:7Þ

where V is a four-dimensional volume cutoff.
This completes the discussion of the growth of the first

term in (2.6) and (3.9). We now turn to the all-important
second term.

V. STRONG COUPLING BEHAVIOR OF det3

A. Paramagnetic property of det3
In Appendix A it is shown that Δ1=2

A σFΔ1=2
A ≡ T belongs

to the trace ideal I3 for Fμν ∈ ∩p>2LpðR4Þ and m > 0.
This means that T is a compact operator that, in our case,
maps L2ðR4Þ into itself. Being compact its eigenvalues,
fλng∞n¼1, are discrete, and each has finite multiplicity. We
order the λn by jλ1j ≥ jλ2j ≥ … > 0. Because T ∈ I3 the
eigenvalues λn → 0 and satisfy

X∞
n¼1

jλnj3 < ∞: ð5:1Þ

Finally, ln det3ð1þ TÞ is gauge invariant (Appendix D) and
satisfies by (3.7)

ln det3

�
1þ Δ1=2

A
1

2
eσFΔ1=2

A

�

¼ ln det

�
ð1þ TÞ exp

�
−T þ 1

2
T2

��

¼ Tr

�
lnð1þ TÞ − T þ 1

2
T2

�

¼
X∞
n¼1

�
lnð1þ λnÞ − λn þ

1

2
λ2n

�
: ð5:2Þ

In Appendix D it is shown that for every eigenstate of T
with eigenvalue λn there is another with eigenvalue −λn.
Therefore, (5.2) becomes

ln det3

�
1þ Δ1=2

A
1

2
eσFΔ1=2

A

�
¼

X∞
n¼1

½lnð1 − λ2nÞ þ λ2n�;

ð5:3Þ

where the sum is over positive eigenvalues. We will see in
Sec. VII B that the condition on Fμν can be relaxed
somewhat.
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Since ln det3 is real and finite, λn < 1 for all n. Hence,

ln det3

�
1þ Δ1=2

A
1

2
eσFΔ1=2

A

�
≤ 0; ð5:4Þ

since lnð1 − x2Þ þ x2 ≤ 0 for 0 ≤ x < 1. This inequality
has a physical origin. Referring to (3.5) and (3.6) and
simplifying exactly as outlined in Appendix C for the
function Π, we obtain

ln det3 ¼
Z

∞

0

dt
t
e−tm

2

Tr

�
e−tD

2 − e−tðD2þ1
2
eσFÞ

þ e2

8
te−tD

2=2σFΔ1=2
A Δ1=2

A σFe−tD
2=2

�
: ð5:5Þ

That ln det3 < 0 is now seen as a consequence of the
paramagnetism of a charged spin-1=2 fermion in a static,
four-dimensional magnetic field Fμν: on average its energy
levels are lowered by Fμν. This is made more precise by a
version of the Peierls–Bogoliubov inequality derived from
Klein’s inequality [19–21]:

Trðe−tðP−eAÞ2 − e−½ðP−eAÞ2þ1
2
eσF�tÞ ≤ 0: ð5:6Þ

The last term in (5.5) has been purposely written in the form
U†U and is therefore positive. Nevertheless, it is dominated
by the paramagnetism of charged fermions through (5.6)
which drives the integral in (5.5) to a negative value. This
explains the second term in (2.6).

B. Lower bound on ln det3 in the absence of zero modes

The eigenvalues in (5.3) are obtained from

e
2
Δ1=2

A σFΔ1=2
A φn ¼ −λnφn; ð5:7Þ

where φn ∈ L2. Let Δ1=2
A φn ¼ ψn, and obtain�

ðP − eAÞ2 þ e
2λn

σF

�
ψn ¼ −m2ψn; ð5:8Þ

where ψn ∈ L2 as shown at the end of Appendix A.
Equation (5.8) illustrates the role of the eigenvalues
fλng∞n¼1 as coupling constants whose discrete values result
in bound states with energy −m2 for a fixed value of e.
Because γ5 commutes with σ, an eigenstate ψn of (5.8)

has definite chirality. In the representation (D7), γ5 is
diagonal with elements�12, and so we need only deal with
the two-dimensional chirality eigenstates ψ�

n .
We note that each eigenvalue λnðeÞ is a bounded function

of e as required by jλnðeÞj < 1 for all finite values of e. This
is illustrated by the constant field case:

jλnj ¼
jeBj

ð2nþ 1ÞjeBj þm2
; n ¼ 0; 1;… ð5:9Þ

Therefore, the series in (5.3) will tend to an e-independent
limit for e ≫ 1 unless the degeneracy of the eigenvalues
increases with e. The special case of a zero mode
supporting background potential that allows jλnj to
approach 1 arbitrarily closely for e ≫ 1 will be considered
in the next section.
To bound ln det3 for e ≫ 1, we will first estimate the

eigenvalue degeneracy for the most symmetric case of an
Oð2Þ × Oð3Þ background field. This estimate will place an
upper bound on the eigenvalue degeneracy of any random
field. The Oð2Þ × Oð3Þ symmetric fields have the standard
form [22–24]

AμðxÞ ¼ MμνxνaðrÞ; ð5:10Þ

where Mμν is the anti-self-dual antisymmetric matrix with
nonvanishing elements M12 ¼ M30 ¼ 1 and r2 ¼ x2μ.
Alternatively M may be replaced with the self-dual
antisymmetric matrix N with nonvanishing elements
N03 ¼ N12 ¼ 1.
Choosing the matrix M, the eigenstates of (5.8) have the

form [24]

ψn ¼ r−2j−3=2

0
BBBBBB@

Dj
M−1

2
;m
ðxÞρ1ðrÞ

Dj
Mþ1

2
;m
ðxÞρ2ðrÞ

ðjþmÞ12rρ3ðrÞDj−1
2

M;m−1
2

ðxÞ − ðj −mþ 1Þ12ðρ4ðrÞ=rÞDjþ1
2

M;m−1
2

ðxÞ

ðj −mÞ12rρ3ðrÞDj−1
2

M;mþ1
2

ðxÞ þ ðjþmþ 1Þ12ðρ4ðrÞ=rÞDjþ1
2

M;mþ1
2

ðxÞ

1
CCCCCCA
; ð5:11Þ

where Dj
m1m2

ðxÞ are the four-dimensional rotation matrices [24–26] normalized so that

Z
dΩ4D

j�
m1m2

ðxÞDj0
m3m4

ðxÞ ¼ δjj0δm1m3
δm2m4

2π2r4j

2jþ 1
ð5:12Þ
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and where 2j ¼ 0; 1;…; −j ≤ mi ≤ j. This paper follows
the conventions of Refs. [24,25]; closely related ones
appear in Ref. [26]. The index n has been omitted from
ρi. Inserting the two positive chirality components of (5.11)
into (5.8) results in the equations for ρ1;2 [25],�
−

d2

dr2
þ ð2jþ 1Þ2 − 1

4

r2
þ ð4M ∓ 2Þeaþ e2r2a2

� e
λþn

�
4aþ r

da
dr

��
ρ1;2 ¼ −m2ρ1;2; ð5:13Þ

where the upper (lower) sign applies to ρ1 (ρ2) and λþn
denotes a positive chirality eigenvalue. Since
ðP − eAÞ2 þ e

2
σF ≥ 0, it is the λþn -dependent terms in

(5.13) that are responsible for bound states at −m2. There
is a sequence of eigenvalues 1 > λþ1 ≥ λþ2 ≥ … > 0 de-
pendent on e, j, M, m, and the parameters specifying Aμ

that result in bound state solutions of (5.13). They are
independent of the quantum number m in (5.11), resulting
in a ð2jþ 1Þ-fold degeneracy. Inspection of (5.13) indi-
cates that in the positive chirality sector

1

2
ðσFÞþ ¼

�
4aþ r

da
dr

�
σ3

≡ VðrÞσ3: ð5:14Þ
In general the degeneracy of the level at −m2 has
contributions from both ρ1 and ρ2. Consider ρ1. Assume
that a and a0 are bounded functions of r. Inclusion of zero
modes requires limr→∞r2a ¼ ν, where we may assume
ν > 0 as discussed in Sec. V C below. Then r2VðrÞ is a
bounded function of r and

inf ½r2VðrÞ� ¼ −K1 > −∞: ð5:15Þ

The λþn -independent terms on the left-hand side of (5.13)
form a positive operator of which the controlling parameter
is j for fixed e. Thus, a bound state at −m2 can exist only if

ð2jþ 1Þ2 < e
λþn

K1 þ
1

4
: ð5:16Þ

This is a necessary condition but obviously not a sufficient
one. The maximum allowed value of j for all finite values
ofm2 and a fixed value ofM is J1 < ðeK1

4λþn
þ 1

16
Þ12 − 1

2
. Hence,

the maximum degeneracy μþ1n of eigenvalue λþn associated
with ρ1 for eK1

λþn
≥ 1 is

μþ1n ¼
XJ1

j¼0;1
2
;…

ð2jþ 1Þ < 2

��
eK1

4λþn

�1
2 þ 1

�
2

: ð5:17Þ

For the other positive chirality state Dj
Mþ1

2
;m
ρ2=r2jþ

3
2,

inspection of (5.13) indicates that the bound state at

−m2 acquires an additional maximal degeneracy μþ2n
satisfying the bound in (5.17) with K1 replaced with
K2 ¼ supðr2VðrÞÞ < ∞. It may happen that either ρ1 or
ρ2 has no bound states at −m2.
Is the dependence of μþ1n, μ

þ
2n on λþn reasonable? As

λþn ↘ 0 the potential wells in � e
λþn
VðrÞ deepen, increasing

the probability that such wells can support a bound state at
−m2. As the wells deepen, the centrifugal barrier term in
(5.13) can increase, thereby allowing larger values of j and
hence higher degeneracy, consistent with our result (5.17).
In the negative chirality sector,

1

2
ðσFÞ− ¼

� −D1
00

ffiffiffi
2

p
D1�

01ffiffiffi
2

p
D1

01 D1
00

�
1

r
da
dr

; ð5:18Þ

where D1
00¼x20þx23−x21−x22 and D1

01¼−
ffiffiffi
2

p ðx0þix3Þ×
ðx2−ix1Þ. Insertion of (5.18) and the two negative chirality
components of (5.11) in (5.8) results in coupled equations
for ρ3 and ρ4:�
−
d2

dr2
þ4j2− 1

4

r2
þ4Meaþe2r2a2

�
ρ3

þ e
λ−n

ra0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−
M2

ðjþ 1
2
Þ2

s
ρ4þ

M
jþ 1

2

ρ3

�
¼−m2ρ3 ð5:19Þ

�
−
d2

dr2
þ4ðjþ1Þ2− 1

4

r2
þ4Meaþe2r2a2

�
ρ4

þ e
λ−n

ra0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−
M2

ðjþ 1
2
Þ2

s
ρ3−

M
jþ 1

2

ρ4

�
¼−m2ρ4: ð5:20Þ

These equations can be decoupled for large j by a unitary
transformation U on ρ3, ρ4. Let Uρ ¼ φ with U33 ¼ U44 ¼
ð1þM
ðjþ1

2
ÞÞ

1
2=

ffiffiffi
2

p
and U34 ¼ −U43 ¼ ð1−Mðjþ1

2
ÞÞ

1
2=

ffiffiffi
2

p
so that the

coupled terms in (5.19) and (5.20) proportional to e=λ−n
are transformed to ðe=λ−n Þra0σ3φ. Comparing this with
(5.13), the same analysis used in the positive chirality case
applies here. Thus, following (5.17) the maximum degen-
eracies μ−3n, μ

−
4n associated with the bound states φ3, φ4 at

−m2 are bounded by eK=λ−n , where K is an e-independent
constant. This assumes e=λ−n ≫ 1 corresponding to large j.
We emphasize that the estimated maximum degeneracies

above are for one level at −m2. They are not an estimate of
the number of bound states at energy ≤ −m2 which is
expected to vary as e2 for Fμν ∈ L2 by Theorem 2.15
in Ref. [27].
We now have estimates for the maximum degeneracy of

eigenvalues λ�n obtained from (5.8) for the most symmetric
admissible background field given by (5.10). The above
results place an upper bound on the eigenvalue degeneracy
μn of any admissible random field, namely for e ≫ 1,
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μnðeÞ <
ec
λn

; ð5:21Þ

where λn is one of the random field’s eigenvalues obtained
from (5.8) and c is e independent. The 1=λn dependence of
its right-hand side is important because it results in the
convergent series

P∞
n>N λ3n in (5.23) below, whatever the

field may be.
Consider the series in (5.3) and divide it intoP
N
n¼1þ

P∞
n>N , where λ2n < 1

2
for N > n, N sufficiently

large. Note in this case that

1

2
≤
				 lnð1 − λ2nÞ þ λ2n

λ4n

				 < 1: ð5:22Þ

Thus, for any admissible random field, excluding those
that support a zero mode, there follows from (5.3), (5.21),
and (5.22)				 ln det3

�
1þ Δ

1
2

A
1

2
eσFΔ

1
2

A

�				
<

XN
n¼1

j lnð1 − λ2nÞ þ λ2nj þ
X∞
n>N

λ4n

<
XN
n¼1

j lnð1 − λ2nÞ þ λ2nj þ ec
X∞
n>N

no degeneracy

λ3n; ð5:23Þ

where the third line of (5.23) is valid when e ≫ 1. In the
absence of zero modes, lime→∞λ1 < 1, unlike the zero
mode case discussed in Sec. V. C below. By (5.1) the
infinite series on the right converges. Moreover, the e → ∞
limit of this series is finite. Thus, there is a numberM such
that, for n > M, λnðeÞ < CnðeÞ=n1=3þϵ, ϵ > 0 and Cn is a
bounded function of n and e with lime→∞CnðeÞ < ∞.
Otherwise λn < 1 for any n cannot be satisfied.
Accordingly, the right-hand series in (5.23) is uniformly
convergent in e by the Weierstrass M test, allowing its
e → ∞ limit to be taken term by term and establishing our
claim. The remaining series,

P
N
n¼1 j lnð1 − λ2nÞ þ λ2nj, is

obviously bounded by e following (5.21), excluding zero
modes. Combining (5.3), (5.21), (5.22), and (5.23) gives in
the absence of zero modes

0 ≥ lim
e→∞

ln det3

�
1þ Δ

1
2

A
1

2
eσFΔ

1
2

A

�
=e > −C; ð5:24Þ

where C > 0 is an e-independent constant depending on
the specific background field.Cmust be a linear function of
Fμν to preserve the correlation eFμν.

C. Zero modes

Consideration is now given to potentials supporting L2

zero modes of the Dirac operator P − eA. It is these

potentials that provide the mechanism governing the
stability of QED and its nonperturbative quantization.
The relevance of zero modes to stability arises as

follows. Suppose Aμ supports a zero mode, ψ zero;n, where
n denotes the quantum numbers required to specify it. It is
an L2 solution of

�
ðP − eAÞ2 þ e

2
σF

�
ψ zero;n ¼ 0; ð5:25Þ

obtained from (5.8) by setting λn ¼ 1, m ¼ 0. We continue
to assume λn > 0 as discussed in Sec. VA. Then (5.25)
requires hzero; njσFjzero; ni < 0. Refer to (5.8), and
replace λn with a general eigenvalue λ, and denote
the corresponding eigenstate by ψλ;n. Assume
hλ; njσFjλ; ni < 0. Then from (5.8) and (5.25), there
follows

e
2

�
1

λ
− 1

�
hzero; njσFjλ; ni ¼ −m2hzero; njλ; ni: ð5:26Þ

There is no a priori reason why the two sides of (5.26)
should vanish if the quantum numbers of the two states
are the same. Based on our limited knowledge of four-
dimensional Abelian zero modes [25], they have a distinc-
tive structure, and so the nonvanishing of hzero; njλ; ni
distinguishes the eigenstate ψλ;n—and its eigenvalue
λ—from other eigenstates obtained from (5.8).
Divide (5.26) by e. For e ≫ 1 conclude that λ has the

form

λ ¼ 1 − δðe; n;m; L;…Þ; ð5:27Þ

where 0 < δ < 1, and that for fixed m, δ ↘ 0 for e → ∞.
L is a parameter with the dimension of length introduced by
Aμ that can combine withm to form a dimensionless δ. This
result requires that the states ψλ;n be in one-to-one
correspondence with the zero modes ψ zero;n. The eigenvalue
λ will be discussed for an analytically solvable case in
Sec. V E.
Insertion of (5.27) in (5.3) gives

lndet3¼
X
n

σn

�
− ln

�
1−δ

δ

�
þ ln ½ð1−δÞð2−δÞ�þð1−δ2Þ

�

þ…; ð5:28Þ

where the remainder in (5.28) is the contribution from
eigenvalues bounded away from 1 discussed in the previous
section; σn is the degeneracy of state n. The sum in (5.28) is
over the quantum numbers specifying the zero modes of
Aμ. Write (5.26) in the form

1 − δ

δ
¼ e

2m2

				 hzero; njσFjλ; nihzero; njλ; ni
				; ð5:29Þ
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where 				 hzero; njσFjλ; nihzero; njλ; ni
				 ≤ KF : ð5:30Þ

Equation (5.30) assumes FμνðxÞ is a bounded function in
which case K is an e-independent constant; F is the
amplitude of Fμν corresponding to the scaling parameter
introduced in Sec. IV. Inserting (5.29) in (5.28) gives for
e → ∞

lndet3

¼−
X
n

σn

�
ln

�
eF
m2

�
þ ln

				hzero;njσFjλ;ni=Fhzero;njλ;ni
				−2ln2−1

�

þOðeÞ: ð5:31Þ

The OðeÞ term is the contribution from the eigenvalues
bounded away from 1 discussed in the previous section.
Since X

n

σn ¼ #zero modes supported byAμ; ð5:32Þ

if the number of zero modes increases as e2 or faster, then
the result (5.31) will override the bound in (5.24) and
possibly drive ln detren in (3.9) negative. Clearly, these
considerations are highly relevant to QED’s nonperturba-
tive quantization.

D. Counting zero modes

Following (5.31) and (5.32), it is of exceptional interest
to know the maximum number of zero modes a potential
can support. To begin we focus on the most symmetric
admissible potentials (5.10). It is assumed that zero mode
potentials within the class (5.10) will produce the maxi-
mum number due to their high symmetry and hence large
number of degenerate states ψ zero;n. As pointed out in the
previous section, eigenstates ψλ;n of (5.8) with eigenvalue λ
given by (5.27) will be in one-to-one correspondence with
the states ψ zero;n. We would then expect that zero mode
supporting potentials with lesser symmetry will have their
zero mode number bounded by this most symmetric result.
It turns out that this reasoning is not completely correct and
that potentials with lesser symmetry can compete with
those in (5.10). This is a huge advantage for QED’s
stability. We will begin with the potentials (5.10) and then
explain why this reasoning has to be modified.
The zero modes supported by the potentials in (5.10)

have been discussed in Ref. [25]. We continue to assume
that a and a0 are bounded functions of r and in addition
limr→∞r2a ¼ ν, ν ≠ 0. That is, Aμ must have a 1=r
falloff. This ensures that the global chiral anomaly A is
nonvanishing,

A ¼ −
1

16π2

Z
d4x⋆FμνFμν ¼ � ν2

2
; ð5:33Þ

where ⋆FF ¼ ∂αðϵαβμνAβFμνÞ. The þð−Þ sign in (5.33)
results in the case of matrix M (N) defined under (5.10).
Without loss of generality, we will assume ν > 0. The
nonvanishing of A indicates that Fμν is not square
integrable. We repeat here that it is sufficient to assume
Fμν ∈ ∩p>2Lp to define det3, and therefore it can accom-
modate zero modes.
Choosing the matrixM in (5.10), it is found that only the

positive chirality sector has normalizable zero modes [25].
This is a particular example of a vanishing theorem: all
normalizable zero modes of D2 have only one chirality.
There is no such general theorem in QED4, unlike the non-
Abelian case [28,29] and QED2 [30]. Up to a normalization
constant, these are [25]

ψ zeroðxÞ ¼ Dj
−j;mðxÞe

−e
R

r

r0
drraðrÞ

0
BBB@

0

1

0

0

1
CCCA: ð5:34Þ

Here exp½−eR r
r0
drraðrÞ�¼ρ2 in (5.11) when M¼−j−1=2

and in (5.13) when in addition m2 ¼ 0 and λþn ¼ 1.
Equation (5.34) and the assumption aðrÞ ∼

r→∞
ν=r2 indicate

that ψþ is square integrable provided eν > 2jþ 2.
Following (5.32),

# zero modes ¼
Xjmax

j¼0;1
2
;…

ð2jþ 1Þ ¼ 1

2
½eν�2 − 1

2
½eν�; ð5:35Þ

where ½x� is the greatest integer less than x. Using (5.33) for
eν ≫ 1,

# zero modes ¼ 1

2
ðeνÞ2 þ OðeνÞ

¼ e2

16π2

				
Z

d4x⋆FμνFμν

				þ OðeνÞ: ð5:36Þ

If the matrixM is replaced with N in (5.10), the zero modes
shift to the negative chirality sector. Therefore, (5.36)
includes this case.
Given another potential with lesser symmetry than

Oð2Þ × Oð3Þ and having the same chiral anomaly, we
tentatively conclude that its zero mode number is bounded
by the right-hand side of (5.36). This assumes that all of the
potential’s zero modes have one chirality only.
More information about the zero mode number of less

symmetric potentials can be obtained from the index
theorem for noncompact Euclidean space-time [31],
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nþ − n− −
1

π

X
l

½δþl ð0Þ − δ−l ð0Þ� ¼ −
e2

16π2

Z
d4x⋆FμνFμν;

ð5:37Þ

where n� is the number of positive/negative chirality L2

zero modes, δ�l ð0Þ ∈ ð0; π� are the zero energy scattering
phase shifts for the HamiltoniansH� ¼ 1

2
ð1� γ5ÞD2, and l

denotes the quantum numbers required to specify the phase
shifts. The sum over phase shifts gives the fractional
discrepancy between the index and the chiral anomaly.
Consequently the sum in (5.37) grows more slowly than e2

for e ≫ 1. Based on (5.37), if there were a general
vanishing theorem for QED4, then the Oð2Þ × Oð3Þ result
in (5.36) would continue to hold for potentials with lesser
symmetry. This perhaps counterintuitive conclusion that
two potentials with the same chiral anomaly—one with
maximal symmetry, the other with lesser symmetry—have
the same number of zero modes is related to their common
asymptotic behavior. Without a vanishing theorem, (5.37)
implies that the total number of zero modes may exceed the
chiral anomaly. Summarizing,

# zero modes supported byAμ

≥
e2

16π2

				
Z

d4x⋆FμνFμν

				þ Δ; ð5:38Þ

with the inequality applying in the absence of a vanishing
theorem and Δ=e2 → O for e → ∞.
Insertion of (5.38) in (5.31) gives with (5.32)

lndet3 ≤−
1

16π2

				
Z

d4x⋆FμνFμν

				e2 ln
�
eF
m2

�
þR; ð5:39Þ

with R=ðe2 ln eÞ → 0 for e → ∞, in which case the bound
in (5.24) is overridden. As noted in Sec. VA, the negative
sign in (5.39) is a consequence of the paramagnetism
of a charged spin-1

2
fermion in a static, four-dimensional

magnetic field.

E. Eigenvalue λ

Because of the possible far-reaching implications of
(5.39) for the nonperturbative quantization of QED and the
electroweak model, it is important to have an analytic
calculation of the eigenvalue λ in (5.27) for a few special
cases to show that the formalism outlined in Secs. V C and
VD can be implemented.
We consider a class of maximally symmetric zero mode

supporting potentials (5.10) with profile function

aðrÞ¼
(

C
R2 ðrRÞϵ−2þð2−ϵÞC−2ν

R3 rþðϵ−3ÞCþ3ν
R2 ; r≤R

ν
r2 ; r >R:

ð5:40Þ

It is constructed so that a and a0, and hence Fμν are
continuous at r ¼ R. The parameter ϵ ≥ 2 to ensure that

F ∈ ∩p>2Lp. The constant C can be positive or negative,
and we continue to assume ν > 0.
As noted in Sec. V D, the L2 zero modes of (5.25) reside

in the positive chirality sector with M ¼ −j − 1
2
for the

potentials (5.10). A L2 solution of (5.8) originating from
the zero mode (5.34) is

ψλðxÞ ¼ Dj
−jmðxÞ

fðrÞ
r2jþ3

2

0
BBB@

0

1

0

0

1
CCCA; ð5:41Þ

where f ≡ ρ2 in (5.13) now satisfies

�
d2

dr2
þ

1
4
−ð2jþ1Þ2

r2
þ4

�
jþ1

λ

�
ea−e2r2a2þe

λ
r
da
dr

�
f¼m2f;

ð5:42Þ

with eigenvalue λ given (5.27) when e ≫ 1. For r > R let
f ¼ r

1
2g so that (5.42) becomes

g00 þ 1

r
g0 −

�
m2 þ ð2jþ 1 − eνÞ2 þ 2ð1 − 1

λÞeν
r2

�
g ¼ 0;

ð5:43Þ

the decaying solution of which is the modified Bessel
function KαðmrÞ with

α ¼
�
ð2jþ 1 − eνÞ2 þ 2

�
1 −

1

λ

�
eν

�1
2

: ð5:44Þ

The eigenvalue λ is fixed by the boundary condition at
r ¼ R:

Rf0ðRÞ
fðRÞ ¼ 1

2
þ RK0

αðmRÞ
KαðmRÞ : ð5:45Þ

The left-hand side of (5.45) is calculated from the solution
of (5.42) for 0 ≤ r ≤ R.
The analysis simplifies by assuming mR ≪ 1. Let

eν ¼ N þ Δ, N ¼ 2; 3;…; 0 < Δ < 1, j ¼ 0; 1
2
;…; jmax

with jmax ¼ ðN − 2Þ=2 since L2 zero modes exist only for
eν > 2jþ 2. It is known that detren has a branch point in m
beginning at m ¼ 0 [25] which is evident by the presence
of Kα in (5.45). This leads to the small mass expansions for
j ¼ 0; 1

2
;…; jmax − 1

2
and α0 ¼ eν − 2j − 1 > 2,

f¼Bf0ð1þm2f2þm4f4þOðm2α0 or m6ÞÞ; ð5:46Þ

λ ¼ 1 −m2δ2 −m4δ4 þ Oðm2α0 or m6Þ; ð5:47Þ

and for j ¼ jmax, 1 < α0 < 2,
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f ¼ Bf0ð1þm2f2 þm2α0f2α0 þ Oðm4ÞÞ ð5:48Þ

λ ¼ 1 −m2δ2 −m2α0δ2α0 þ Oðm4Þ; ð5:49Þ

where α0 is the m ¼ 0 term in the expansion of α in (5.44)
and B is a normalization constant. The expansion of δ in
(5.27), (5.47), and (5.49) in powers of m must begin at m2

to be consistent with the boundary condition (5.45). For all
cases there is a Oðm2Þ term in the expansions of f and λ.
The case eν ¼ 3; 4;… is commented on in Appendix E.
Here f0 is the solution of (5.42) when m ¼ 0, λ ¼ 1, and
0 ≤ r ≤ R,

f0 ¼ r2jþ3
2e−e

R
r

0
dssaðsÞ: ð5:50Þ

With these expansions the two sides of (5.45) can be
matched in powers of m to obtain λ. The calculation is
outlined in Appendix E.
For mR ≪ 1, eν > 2jþ 2, and e ≫ 1, the calculation in

Appendix E gives, following (E11) and (E12),

λ¼ 1−
2m2=e

kðσFðr0ÞÞþk1
ð1þOð1=eÞÞþO

�
m4R4

e2

�
; ð5:51Þ

where ðσFÞþ is the positive chirality component of σF in
(5.14) that is responsible for the existence of zero modes
and r0 is the unique root in the interval 0 < r < R of

4jþ 3 − 2er2aðrÞ ¼ 0: ð5:52Þ

Here kðσFÞþk1 is the spin trace norm of ðσFÞþ defined for
an operator A by kAk1 ¼ TrðA†AÞ1=2. Because ðσFÞþ
obtained from (5.14) and (5.40) is a smooth function, λ
is a slowly varying function of j since dr0=dj ¼ Oð1=eÞ
from (5.52). For this special case, we can count zero modes
following (5.35) and (5.36) and rewrite (5.39) as an
equality. To leading order in m2=e, δ in (5.27) can be read
off from (5.51). This fixes the argument of the logarithm in
(5.28) precisely,

lndet3

¼−
Xjmax

j¼0

ð2jþ 1Þ
�
ln

�
ekðσFðr0ðjÞÞÞþk1

2m2

�
þOð1Þ

�
þR1;

ð5:53Þ

where jmax ¼ ½eν�=2 − 1 and lime→∞R1=ðe2 ln eÞ ¼ 0. The
remainder R1 includes contributions to det3 from eigen-
values bounded away from 1 as discussed in Sec. V B.
Defining an average Fμν;F , by

Xjmax

j¼0

ð2jþ 1Þ ln kðσFðr0ðjÞÞÞþk1

Xjmax

j¼0

ð2jþ 1Þ≡ lnF ;

ð5:54Þ

obtain from (5.35) and (5.36) for e ≫ 1

ln det3

¼ −
e2

16π2

				
Z

d4x⋆FμνFμν

				
�
ln

�
eF
2m2

�
þ Oð1Þ

�
þ R2;

ð5:55Þ

where R2 contains a Oðeν lnðeF ÞÞ term from the OðeνÞ
residue in (5.36) and satisfies the same limit as R1. The
result (5.55) overrides the bound (5.24).

VI. CHARGE RENORMALIZATION TERM
IN ln detren

A. Scaling parameter

Consider the last contribution to ln detren in (2.6) and
(3.9), here designated as

Π¼e2
Z

∞

0

dte−tm
2

�kFk2
32π2t

−
1

2
Trðe−tD2

FμνΔAFμνÞ
�
: ð6:1Þ

It is not obvious what to call the right-hand side of (6.1), but
since e2kFk2=ð32π2tÞ is part of the on-shell charge
renormalization subtraction in ln detren, it will be referred
to as the charge renormalization term. As in Sec. IV, break
the integral in (6.1) into

R 1=eF
0 and

R∞
1=eF , where F fixes the

scale of the amplitude of Fμν. Then Π ¼ I1 þ I2 þ I3,
where

I1 ¼
e2kFk2
32π2

Z
∞

1=eF

dt
t
e−tm

2

; ð6:2Þ

I2 ¼
e2

32

Z
1=eF

0

dte−tm
2

�kFk2
π2t

− 16Trðe−tD2

FμνΔAFμνÞ
�
;

ð6:3Þ

I3 ¼ −
e2

2

Z
∞

1=eF
dte−tm

2

Trðe−tD2

FμνΔAFμνÞ: ð6:4Þ

At this point the choice of scaling parameter in (6.2)–(6.4)
appears arbitrary. It is not for the following reasons:
(a) As remarked in Sec. IV, if the strong coupling behavior

of detren is to have anything to do with large amplitude
variations of Fμν, then e must appear in the combi-
nation eF .

(b) The scaling parameter must be universal and not tied
to any particular background field. As m is always

M. P. FRY PHYSICAL REVIEW D 91, 085026 (2015)

085026-12



present in detren, it should be considered in the
construction of a possible scaling parameter.

(c) The scaling parameter should result in the largest
possible lower bound on Π for eF ≫ m2.

(d) The lower bound should respect what is known about
ln detren’s mass dependence.

Based on points (a)–(c) and the requirement that the
scaling parameter has dimension ðlengthÞ−2, then possible
scaling parameters have the form ðeF Þamb, 2aþ b ¼ 2,
a ≠ 0. But only a ¼ 1, b ¼ 0 are allowed by requirement
(d). To see why consider I1 in (6.2). Following the result
(4.5) for eF ≫ m2,

I1 ¼
e2kFk2
32π2

ln

�
eF
m2

�
− γ þ R; ð6:5Þ

where again γ is Euler’s constant and 0 < jRj < m2=ðeF Þ.
The mass singularity in (6.5) is induced by the on-shell
charge renormalization of ln detren in (2.1), the starting
point of this analysis. It is shown in Appendix F that, for
potentials Aμ ∈ ∩

r≥4−ϵ
LrðR4Þ, ϵ > 0, and arbitrarily small,

ln detren at m ¼ 0 is finite when it is renormalized off shell.
Moreover, its m ¼ 0 limit is continuous. The restriction on
Aμ excludes zero modes. Including them would cause
ln det3 to diverge at m ¼ 0 as found in the results (5.31)
and (5.39) that are independent of how ln detren is
renormalized.
To define det5 in (F1), and therefore detren, it is sufficient

to assume Aμ ∈ ∩
r>4

LrðR4Þ [8,32]. The charge renormali-

zation term Π depends only on D2 and is therefore
insensitive to zero modes. Without loss of generality, we
may assume here that Fμν ∈ L2 and therefore that Aμ ∈ L4.
This follows from the Sobolev inequality for gradients on
R4 [33]. Hence, the restriction on Aμ in the preceding
paragraph can be consistently assumed here.
When the first term in (6.5) is combined with the mass

singularity of ln detSQED in (4.6), multiplied by 2 as
required by (3.9), obtain

ln detren ∼
m→0

−
e2kFk2
48π2

lnm2 þ finite: ð6:6Þ

The result in Appendix F allows us to state that this is the
only divergent mass singularity of ln detren in the absence of
zero modes. If ln detren were subtracted off shell by adding
to (2.1) the term

e2kFk2
48π2

Z
∞

0

dt
t
ðe−tμ2 − e−tm

2Þ ¼ e2kFk2
48π2

ln

�
m2

μ2

�
; ð6:7Þ

then ln detren would be finite at m ¼ 0. This freedom to
renormalize off shell must be respected by the scaling
parameter. Indeed, if the scaling parameter ðeF Þamb, b ≠ 0
were chosen in (4.2) and (6.2)–(6.4), then (6.6) would
become

ln detren ∼
m→0

�
b
96

−
1

48

�
e2kFk2

π2
lnm2 þ finite: ð6:8Þ

This introduces a spurious be2kFk2 lnm2=96π2 mass
singularity into ln detren’s lower bound when it is renor-
malized off shell using (6.7). Therefore, the only acceptable
scaling parameter for the strong coupling limit of Π in (6.1)
and in detSQED in (4.2) is eF . This further justifies the
choice of scaling parameter in Sec. IV.

B. Estimates

Consider I2 in (6.3). The trace in its last term can be put
in the form TrðA†AÞ using the trace’s cyclic property. So the
last term is not negative. Write out the trace term in its
original form and note thatZ

1=eF

0

dte−tm
2

Z
d4xd4ye−tD

2ðx; yÞFμνðyÞΔAðy; xÞFμνðxÞ

≤
Z

1=eF

0

dte−tm
2

Z
d4xjðe−tD2

FμνΔAÞðxÞjjFμνðxÞj

≤
Z

1=eF

0

dte−tm
2

Z
d4xðe−tP2 jFμνjjΔAjÞðxÞjFμνðxÞj

≤
Z

1=eF

0

dte−tm
2

Z
d4xðe−tP2 jFμνjΔÞðxÞjFμνðxÞj

¼
Z

1=eF

0

dte−tm
2

Z
d4xd4ye−tP

2ðx; yÞ

× jFμνðxÞjΔðy − xÞjFμνðxÞj: ð6:9Þ

To obtain these results, we used the diamagnetic inequality
of Simon [13,34] to go from the second to the third line:

jðe−tD2

fÞðxÞj ≤ ðe−tP2 jfjÞðxÞ: ð6:10Þ

This holds for all t > 0 and almost all x ∈ R4 and for
potentials that are locally square integrable, as we are
assuming. For more recent comments on (6.10), see
Ref. [35]. In addition we used Kato’s inequality in the
form given by (A3) to go from the third to the fourth line.
Noting that

e−tP
2ðx; yÞ ¼ 1

16π2t2
e−jx−yj2=4t; ð6:11Þ

insertion of (6.9) in (6.3) gives
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I2 ≥
e2

32π2

Z
1=eF

0

dt
t
e−tm

2

�
kFk2 − 1

t

Z
d4xd4yjFμνðxÞjΔðx − yÞe−ðx−yÞ2=4tjFμνðyÞj

�
: ð6:12Þ

By Young’s inequality in the form [20]

				
Z

d4xd4yfðxÞgðx − yÞhðyÞ
				 ≤ kfkpkgkqkhkr; ð6:13Þ

where 1=pþ 1=qþ 1=r ¼ 2, p; q; r ≥ 1 and kfkp ¼
ðR d4xjfðxÞjpÞ1=p, etc.,

I2 ≥
e2kFk2
32π2

Z
1=eF

0

dt
t
e−tm

2

�
1 −

1

t

Z
d4xΔðxÞe−x2=4t

�
:

ð6:14Þ

From ΔðxÞ ¼ mK1ðmxÞ=ð4π2xÞ and integral 2.16.8.5 of
Ref. [36], get

I2 ≥
e2kFk2
32π2

Z
1=eF

0

dt
t
e−tm

2 ½1 −m2tem
2tΓð−1; m2tÞ�;

ð6:15Þ

where Γð−1; m2tÞ is the incomplete gamma function which
we use in the form

Γð−1; m2tÞ ¼ 1

m2t
e−m

2t −
Z

∞

m2t

dz
z
e−z: ð6:16Þ

Insertion of (6.16) in (6.15) and integrating by parts gives
for eF ≫ m2

I2 ≥
e2kFk2
32π2

�
m2

eF

�
ln

�
eF
m2

�
− γ þ R

�
þ 1 − e−m

2=eF

�
;

ð6:17Þ

with γ and R the same as in (6.5). Note that the lower bound
in (6.17) is finite at m ¼ 0 as it should be.
There are no ultraviolet divergences in I2. The small t

dependence of the first term in (6.3) is cancelled by the
trace term, as was shown in the above nonperturbative
estimate. So it must be a general property of the trace
term that

16Trðe−tD2

FμνΔAFμνÞ ∼
t→0

kFk2
π2t

þ less singular in t:

ð6:18Þ

By inspection of (6.3), we conclude that

lim
eF→∞

I2
ðeF Þ2 ln ðeF Þ ¼ 0: ð6:19Þ

Now consider I3 in (6.4). As noted in the case of I2,
the trace is positive so that I3 ≤ 0. Application of the
inequality (6.10) does not lead to a satisfactory lower
bound on I3. Namely, if it were saturated, I3 would
cancel the large amplitude growth of I1 in (6.5),
resulting in a slow OððeF Þ2Þ growth of Π in (6.1) and
leading to the uninformative bound ln detren ≥
−e2kFk2 lnðeF=m2Þ=96π2 þOððeF Þ2Þ following (3.9)
and (4.6). We are confident that ln detren grows at least
as fast as ce2kFk2 lnðeF Þ, c > 0, in the absence of zero
mode supporting background fields. This confidence is
based on the result [37] for the growth of ln detren for
random, square-integrable, time-independent, nonzero
mode supporting magnetic fields BðxÞ on R3,

lim
e→∞

ln detren
e2 ln e

¼ kBk2T
24π2

; ð6:20Þ

where kBk2 ¼ R
d3xB ·BðxÞ and T is the size of the time

box. Therefore, our estimate of I3 has to be more detailed
than in the case of I2. We claim that lime→∞I3=ðe2 lneÞ¼ 0
for the class of fields considered here.
By summing over a complete set of scattering eigenstates

jE; αi of D2, I3 can be represented as

I3 ¼ −
e2

2

X
α;β

Z
∞

1=eF
dte−tm

2

Z
∞

0

dEe−tE

×
Z

∞

0

dE0 hE; αjFμνjE0; βihE0; βjFμνjE; αi
E0 þm2

¼ −
e2

2

X
α;β

Z
∞

0

dE
Z

∞

0

dE0e−ðEþm2Þ=eF

×
jhE; αjFμνjE0; βij2
ðEþm2ÞðE0 þm2Þ ; ð6:21Þ

where α and β are complete sets of angular momentumlike
quantum numbers. Due to the above theorem on the m ¼ 0
limit of ln detren, I3 is finite at m ¼ 0. So whether Fμν is
long or short ranged is irrelevant to the growth of I3 with e.
Without loss of generality, we may confine this discussion
to fields with compact support. As Fμν was assumed to be
differentiable in previous sections, the compactly supported
fields are assumed to rapidly and smoothly tend to zero in a
narrow zone near their boundaries. In addition we may
assume rotational symmetry. Asymmetric, tangled fields
will tend to lower the matrix elements jhE; αjFμνjE0; βij.
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Wewill assume maximally symmetricOð3ÞXOð2Þ fields to
maximize jI3j.
For the potentials (5.10), the equation for the radial part

of the scattering states that satisfy D2ψE;α ¼ EψE;α is [25]

�
−

d2

dr2
þ ð2jþ 1Þ2 − 1=4

r2
þ 4m1eaþ e2r2a2

�
ϕEjm1

ðrÞ

¼ EϕEjm1
ðrÞ; ð6:22Þ

where ψE;αðxÞ ¼ r−2j−3=2ϕEjm1
ðrÞDj

m1m2
ðxÞ; r ¼ jxj, and

the four-dimensional rotation matrices Dj
m1m2

are defined
in Sec. V B. Let Fμν have range R. For r > R the
normalized wave function is, on setting the chiral anomaly
equal to zero in Ref. [25],

ϕEjm1
ðrÞ ¼

ffiffiffi
r
2

r
J2jþ1ðkrÞ cos δjm1

ðk; eÞ

−
ffiffiffi
r
2

r
Y2jþ1ðkrÞ sin δjm1

ðk; eÞ; ð6:23Þ

where δjm1
ðk; eÞ is the scattering phase shift in the indicated

channel, E ¼ k2, and Yn is a Bessel function of the
second kind.
We assumed in Sec. V B that a and ra0 are bounded

functions of r. This will be assumed here. Therefore, any
admissible amaintains the small distance behavior ϕEjm1

∼
r2jþ3=2 independent of e. What ϕEjm1

does as r ↗ R is
manifested in the exterior wave function (6.23) through the
phase shifts. From (6.22), although a descends rapidly to
zero in a zone near r ¼ R, it is evident from the ðeraÞ2 term
in (6.22) that as e → ∞ there develops a high barrier at
some point r < R that blocks the entry of the exterior wave
function (6.23), resulting in approximate hard sphere
scattering. This happens however rapidly Fμν varies for
r < R. So there is no reason why Fμν ¼ constant for r < R
and falling rapidly to zero just before r ¼ R cannot be
taken as representative of the general field case for the
strong coupling estimate of I3.
Accepting this, refer to (5.10), and set aðrÞ ¼ λ=R2 for

0 ≤ r ≤ R − ϵ and aðRÞ ¼ 0. Then Fμν ¼ 2λMμν=R2 for
0 < r < R − ϵ. The parameter λ is related to the scaling
parameter F by F 2 ¼ F2

μν ¼ 16λ2=R4 since M2
μν ¼ 4.

Then

hEjm1jFμνjE0j0m0
1i

¼ 4π2λMμν

2jþ 1
δjj0δm1m0

1

Z
R

0

drϕEjm1
ϕE0jm1

; ð6:24Þ

where we have taken the limit ϵ ¼ 0 on the right-hand side
of (6.24). As shown below it follows from (6.22) that

ðϕE0jm1
ϕ0
Ejm1

− ϕEjm1
ϕ0
E0jm1

ÞðRÞ

¼ ðE0 − EÞ
Z

R

0

drϕEjm1
ϕE0jm1

: ð6:25Þ

Then (6.24) and (6.25) combined with (6.21) give

I3 ¼ −2π4ðeF Þ2
Z

∞

0

dE
Z

∞

0

dE0e−ðEþm2Þ=eF

×
X∞

j¼0;1=2;::

1

ð2jþ 1Þ2

×
Xj

m1;m2¼−j

½ðϕE0jm1
ϕ0
Ejm1

− ϕEjm1
ϕ0
E0jm1

ÞðRÞ�2
ðEþm2ÞðE0 − EÞ2ðE0 þm2Þ :

ð6:26Þ

To obtain (6.25) from the assumed behavior of Fμν,
multiply (6.22) at energy E by ϕE0jm1

ðrÞFμνðrÞ, subtract the
result with E ↔ E0, and integrate by parts over the interval
0 ≤ r ≤ R. Since FμνðRÞ ¼ 0 and ϕEjm1

ð0Þ ¼ 0, this gives

Z
R

R−ϵ
drðϕE0jm1

ϕ0
Ejm1

− ϕEjm1
ϕ0
E0jm1

Þ dFμνðrÞ
dr

¼ ðE − E0Þ
�
2λMμν

R2

Z
R−ϵ

0

drϕEjm1
ϕE0jm1

þ
Z

R

R−ϵ
drϕEjm1

ϕE0jm1
FμνðrÞ

�
: ð6:27Þ

Assuming ϵ=R ≪ 1 and noting that
R
R
R−ϵ drF

0
μνðrÞ ¼

−FμνðR − ϵÞ ¼ − 2λMμν

R2 , (6.25) follows after letting ϵ → 0.
The phase shifts required to calculate I3 are obtained as

follows. Set a ¼ λ=R2 in (6.22), and let, omitting sub-
scripts,

ϕðrÞ ¼ r2jþ3=2fðrÞe−λer2=2R2

: ð6:28Þ

Then

f00 þ
�
4jþ 3

r
−
2λer
R2

�
f0 þ

�
k2 −

4λe
R2

ðjþm1 þ 1Þ
�
f ¼ 0:

ð6:29Þ

The solution of (6.29) regular at the origin is the confluent
hypergeometric function

fðrÞ ¼ M

�
jþm1 þ 1 −

ðkRÞ2
4λe

; 2jþ 2;
λer2

R2

�
; ð6:30Þ

following the notation of Ref. [38]. Joining (6.23) with
(6.28) at r ¼ R gives
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tan δjm1
ðk; λeÞ ¼ ðγ − 1=2ÞJ2jþ1ðkRÞ − kRJ02jþ1ðkRÞ

ðγ − 1=2ÞY2jþ1ðkRÞ − kRY 0
2jþ1ðkRÞ

;

ð6:31Þ

where γ ¼ ðrϕ0=ϕÞR. Equations (6.28) and (6.30) and
Eq. (13.4.8) in Ref. [38] for dMða; b; zÞ=dz give

γ ¼ 2jþ 3

2
− λeþ 2λea

b
Mðaþ 1; bþ 1; λeÞ

Mða; b; λeÞ ; ð6:32Þ

where a ¼ jþm1 þ 1 − ðkRÞ2=ð4λeÞ; b ¼ 2jþ 2. There
are several cases. For j < λe ≫ 1, fixed k,

γ ¼ λeþ 2m1 −
1

2
−
ðkRÞ2
2eλ

þO

�
j2

λe
;
jðkRÞ2
ðλeÞ2 ;

ðkRÞ4
ðλeÞ3

�
;

ð6:33Þ

for j > λe ≫ 1, fixed k,

γ¼ 2jþm1

j
λe−

ðkRÞ2
4j

þO
�
λe
j2
;
m1λe
j2

;
ðkRÞ2
j2

�
; ð6:34Þ

and for kR → ∞, fixed j, λe,

γ ¼ −
�
kRþO

�
1

kR

��
J2jþ2ðkRÞ
J2jþ1ðkRÞ

þ 2j − λeþ 3=2:

ð6:35Þ

These results are obtained using the asymptotic expansions
of Mða; b; zÞ for large a; b; z in Refs. [38,39]. Following
(6.35) the phase shifts vanish at high energy as
tan δ ∼ ðeλ=kRÞcos2ðkR − ðjþ 1

2
Þπ − π=4Þ.

To estimate I3 for eF → ∞, it is convenient to divide the
range of the kR, k0R integrations in (6.26) into [0,2),
½2; 2

ffiffiffiffiffiffiffiffiffiffiffiffi
eFR2

p
Þ, ½2

ffiffiffiffiffiffiffiffiffiffiffiffi
eFR2

p
; 2ðeFR2Þ1−ϵÞ; ½2eFR2;∞� and

the special case kR; k0R ¼ OðeFR2Þ1−ϵ, where 0<ϵ≪1.
To accommodate the joining conditions (6.33)–(6.35), the
range of j also has to be partitioned. It is essential not to
interchange the large eF limit with the sum over j. We find
that the dominant contributions to (6.26) come from
0≤ j≤

ffiffiffiffiffiffiffiffiffiffiffiffi
eFR2

p
;2≤ kR≲Oð

ffiffiffiffiffiffiffiffiffiffiffiffi
eFR2

p
Þ and 2 ≤ k0R ≤ ∞.

There are many cases to consider; we outline here a
representative case to indicate how the estimates
are done.
Consider the contribution to (6.26) given by

I ≡ −8π4ðeFR2Þ2
XffiffiffiffiffiffiffiffiffieFR2

p

j¼0

Xj

m1;m2¼−j

1

ð2jþ 1Þ2
Z

2
ffiffiffiffiffiffiffiffiffi
eFR2

p

2jþ1

dðkRÞ
kR

e−
k2
eF

Z
2ðeFR2Þ1−ϵ

2
ffiffiffiffiffiffiffiffiffi
eFR2

p
dðk0RÞ
k0R

×
½ðϕE0jm1

ϕ0
Ejm1

− ϕEjm1
ϕ0
E0jm1

ÞðRÞ�2
R4ðk02 − k2Þ2 ; ð6:36Þ

where we have noted above that we can setm ¼ 0. For the range of kR, k0R and j in (6.36) joining condition (6.33) applies.
From (6.23), (6.31), and (6.33), obtain

ðϕE0ϕ0
E−ϕEϕ

0
E0 ÞðRÞ

k02−k2
∼

λe≫1

R2

2π2ðλeÞ3
��

J2jþ1ðkRÞ−
kR

γ−1=2
J02jþ1ðkRÞ

�
2

þ
�
Y2jþ1ðkRÞ−

kR
γ−1=2

Y 0
2jþ1ðkRÞ

�
2
�
−1=2

½k→k0�−1=2

∼
R2

2π2ðλeÞ3ðJ
2
2jþ1ðkRÞþY2

2jþ1ðkRÞÞ−1=2ðJ22jþ1ðk0RÞþY2
2jþ1ðk0RÞÞ−1=2: ð6:37Þ

Hence,

I ∼
eλ≫1

−
8192

ðeFR2Þ4
XffiffiffiffiffiffiffiffiffieFR2

p

j¼0

Z
2
ffiffiffiffiffiffiffiffiffi
eFR2

p

2jþ1

dðkRÞ
kR

e−k
2=eF 1

J22jþ1ðkRÞ þ Y2
2jþ1ðkRÞ

×
Z

2ð2FR2Þ1−ϵ

2
ffiffiffiffiffiffiffiffiffi
eFR2

p
dðk0RÞ
k0R

1

J22jþ1ðk0RÞ þ Y2
2jþ1ðk0RÞ

; ð6:38Þ

where the sums over m1 and m2 have been taken. To estimate (6.38) use Watson’s inequality (Eq. (1), Sec. 13.74 of [40])

2

πx
< J2nðxÞ þ Y2

nðxÞ <
2

π
ðx2 − n2Þ−1=2; ð6:39Þ
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for x ≥ n ≥ 1=2. This is used repeatedly in our estimates.
An easy calculation gives

I ¼
eλ≫1

Oð−ðeFR2Þ−2−ϵÞ; ð6:40Þ

with 0 < ϵ ≪ 1. The remaining contributions to I3 give

I3 ¼
eλ≫1

Oð−ðeFR2Þ−2Þ; ð6:41Þ

or smaller as in (6.40). The dominant estimate
in (6.41) comes from the intervals 0 ≤ j ≤

ffiffiffiffiffiffiffiffiffiffiffiffi
eFR2

p
;

2jþ 1 ≤ kR ≤ Oðð
ffiffiffiffiffiffiffiffiffiffiffiffi
eFR2

p
Þ, OðeFR2Þ ≤ k0R ≤ ∞.

We have given reasons above why this calculation of the
large amplitude growth of I3 is representative. In view of
(6.41), we are confident that

lim
eF→∞

I3
ðeF Þ2 lnðeF Þ ¼ 0; ð6:42Þ

for all admissible random fields. Combining (6.1), (6.5),
(6.19), and (6.42), we obtain for large amplitude variations
of admissible random fields Fμν

Π ¼
eF→∞

e2kFk2
32π2

ln

�
eF
m2

�
þ R1; ð6:43Þ

with limeF→∞R1=½ðeF Þ2 lnðeF Þ� ¼ 0. The term
“admissible random field” is discussed in Sec. VII.

C. Summary

In the absence of zero mode supporting random back-
ground fields, (3.9), (4.6), (5.24), and (6.43) give the final
result

ln detren ≥
eF→∞

1

48π2
e2kFk2 ln ðeF=m2Þ þ R2; ð6:44Þ

with R2’s growth bounded as R1’s above. The lnm2

contribution to (6.44) is due to on-shell charge renormal-
ization. For off-shell renormalization, m2 is replaced with a
subtaction parameter μ2 as discussed in Sec. VI A above.
If zero mode supporting background fields are included

and all of the zero modes have the same chirality, then by
(3.9), (4.6), (5.39) (an equality in this case), and (6.43),

ln detren ≥
eF→∞

−
1

16π2

				
Z

d4x⋆FμνFμν

				e2 ln
�
eF
m2

�

þ 1

48π2
e2kFk2 ln

�
eF
m2

�
þ R3; ð6:45Þ

with R3 bounded as R1 and R2 above. Recall thatR
d4x�FμνFμν=16π2 is the chiral anomaly.

If the zero modes supported by Aμ have both positive and
negative chirality, there is no counting theorem, and (6.45)
is replaced with, following (5.31) and (5.32),

ln detren ≥
eF→∞

− ð#zero modes supported byAμÞ

× ln

�
eF
m2

�
þ 1

48π2
e2kFk2 ln

�
eF
m2

�
þ R4:

ð6:46Þ

The number of zero modes grows at least as fast
as e2 following (5.37), provided the chiral anomaly
is nonzero. If they grow as e2 or less then
limeF→∞R4=½ðeF Þ2 lnðeF Þ� ¼ 0.
Known four-dimensional (4D) Abelian zero modes

require Fμν ∉ L2. So the kFk2 terms in (6.45) and (6.46)
need a volume cutoff that will be discussed in Sec. VII.
Assuming in this section that Fμν ∈ L2 served its purpose
to obtain the structure of the charge renormalization term’s
large field amplitude contribution to ln detren.
An assumption underlying (6.46) is that all admissible

4D Abelian zero mode supporting potentials have a 1=jxj
falloff as jxj → ∞. If there were zero mode supporting
potentials whose falloff is faster than 1=jxj,
the associated chiral anomaly would vanish since
�FμνFμν ¼ ∂αðϵαβμνAβFμνÞ. The vanishing of the right-
hand side of (5.37) implies nþ ¼ n−. Without being able to
place a lower bound on the number of zero modes, (6.46)
loses its predictive power in this case. A 4D Abelian
vanishing theorem stating that all normalizable zero modes
have either positive or negative chirality, as in QCD4, needs
to be either proved or falsified by a counterexample.
Further discussion of (6.44)–(6.46) appears at the end of

Sec. VII.

VII. REGULARIZATION

In principle detren can be calculated as an explicit
function of Fμν before inserting it into the functional
integral (2.5). The input potentials must correspond to
random potentials supported by dμ0ðAÞ. It is generally
accepted that these belong to S0ðR4Þ, the space of tempered
distributions. This is the first requirement.
Throughout we have assumed smooth potentials, includ-

ing zero mode supporting potentials AμðxÞ with a 1=jxj
falloff for jxj → ∞. In Sec. VA it was assumed that Fμν ∈

∩
r>2

LrðR4Þ which we noted may be too strong a condition.

The LpðR4Þ Sobolev inequality k∇fkp ≥ Kkfkq, where K
is a constant and q ¼ 4p=ð4 − pÞ; 1 < p < 4 [33], implies
Aμ ∈ ∩

r>4
LrðR4Þ when Aμ is once differentiable and

Fμν ∈ ∩<4
>2

LrðR4Þ. This condition on Aμ and the weaker

condition on Fμν are sufficient to define det5 in (F1) to
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ensure that ln detren is defined when m ≠ 0 [8,32]. These
assumptions constitute the second requirement.
The final requirement is that an ultraviolet cutoff

mechanism be introduced.
These three requirements can be satisfied by calculating

ln detren in terms of the potentials

AΛ
μ ðxÞ ¼

Z
d4yfΛðx − yÞAμðyÞ; ð7:1Þ

where Aμ ∈ S0ðR4Þ and fΛ ∈ SðR4Þ, the space of functions
of rapid decrease. Then AΛ

μ ∈ C∞. Besides smoothing Aμ,
(7.1) also introduces a sequence of ultraviolet cutoffs. Thus,
from (2.3) conclude thatZ

dμ0ðAÞAΛ
μ ðxÞAΛ

ν ðyÞ ¼ DΛ
μνðx − yÞ; ð7:2Þ

where the Fourier transform of the regularized free
photon propagator in a fixed gauge is D̂μνðkÞjf̂ΛðkÞj2 with
f̂Λ ∈ C∞

0 , the space of C
∞ functions with compact support.

For example, one might choose f̂Λ ¼ 1, k2 ≤ Λ2 and
f̂Λ ¼ 0; k2 ≥ nΛ2; n > 1.
We note that if Aμ is a zero mode supporting potential

then so is AΛ
μ . Thus, if Aμ has a 1=jxj falloff then so does

AΛ
μ . This follows since the small-p dependence of their

Fourier transforms, and hence their large-x dependence, is
the samewhen f̂Λ is chosen as above; chirality is preserved.
Other mappings with the convolution in (7.1) can be
followed with Young’s inequality in the form (A7) with
s ¼ 1; the above conditions on Aμ and Fμν are preserved.
Summarizing, we are instructed to replace all potentials

and fields in this analysis with the smoothed potentials AΛ
μ

and fields FΛ
μν ¼ ∂μAΛ

ν − ∂νAΛ
μ , including the general

representation (2.5). This allows the assumed restrictions
on Aμ and Fμν leading to (6.44)–(6.46) to be transferred to
AΛ
μ and FΛ

μν while keeping the underlying rough potentials
Aμ in place.
The measure dμ0ðAÞ is not modified. The substitution of

AΛ
μ for Aμ does not affect the analysis of Secs. VA–VD. In

particular, in Sec. V B where use is made of (5.10), we have

ÂμðkÞ ¼ Mμν

Z
d4xe−ikxxνaðrÞ

¼ iMμν∂νâðjkjÞ: ð7:3Þ

Then

AΛ
μ ðxÞ ¼

Z
d4yfΛðx − yÞAμðyÞ

¼ ðaΛðrÞ þ hΛðrÞÞMμνxν; ð7:4Þ

where

aΛðrÞ ¼
Z

d4k
ð2πÞ4 e

ikxâðjkjÞf̂ΛðjkjÞ; ð7:5Þ

hΛðrÞxν ¼ −i
Z

d4k
ð2πÞ4 e

ikxâðjkjÞ∂νf̂ΛðjkjÞ: ð7:6Þ

If Aμ supports a zero mode, then aΛðrÞ ∼
r→∞

ν=r2 since

f̂ΛðjkjÞ ¼ 1 for k2 ≤ Λ2. Hence, the only result of sub-
stituting AΛ

μ for Aμ is to replace a with aΛ þ hΛ.
In Sec. V E the profile function aðrÞ in (5.40) has a

discontinuous second derivative at r ¼ R. So aðrÞ for r ≤ R
would have to be smoothed to accommodate a regularized
potential. This does not in any way modify the conclusion
of Sec. V E, namely that the formalism of Secs. V C and
VD can be implemented.
In Sec. VI B we cannot choose FΛ

μν ∈ C∞
0 as we did for

Fμν. Suppose FΛ
μν ∈ C∞

0 . Then F̂Λ
μνðkÞ is an entire analytic

function of kμ [41]. Therefore, we cannot set F̂Λ
μνðkÞ ¼

f̂ΛðjkjÞF̂μνðkÞ since f̂ΛðjkjÞ is not an entire analytic
function of jkj. Nevertheless, FΛ

μνðxÞ ¼ fΛ � FμνðxÞ is a
polynomial bounded C∞ function by Theorem IX.4 in
Ref. [41]. We are now free to choose a Fμν ∈ S0 to make
FΛ
μνðxÞ fall off arbitrarily rapidly for jxj > R. So FΛ

μν can be
chosen arbitrarily close to a compactly supported field. This
should not change our conclusion (6.42) about the bound
on I3 for e ≫ 1.
Finally, a volume cutoff must be introduced in detren—

and only detren—in order to regularize the vacuum-vacuum
amplitude Z in (2.4). As detren is gauge invariant, this can
be done by letting FΛ

μν → gFΛ
μν, where g is a space cutoff

such as g ∈ C∞
0 or g ¼ χΓ, the characteristic function of a

bounded region Γ ⊂ R4. This way of introducing g pre-
serves the gauge invariance of detren.
The regularization procedure used here is a generaliza-

tion of that used in the two-dimensional Yukawa model
[42]. The main conclusions in this paper obtained without
regulators remain valid. Thus, in (6.44)–(6.46) it is only
required to replace Fμν with gFΛ

μν, which is a special case of
the general substitution detrenðFμνÞ → detrenðgFΛ

μνÞ. F is
the amplitude of FΛ

μν whose scale is set by the amplitude
of the underlying potential Aμ ∈ S0. It does not matter when
the regulators are introduced as long as they are in place
when detren is inserted into (2.5).
We now present an interpretation of (6.44)–(6.46). Each

term in representation (3.9) for detren is gauge invariant and
ultraviolet finite. Therefore, each term is independent of the
others. It is noted in (6.44)–(6.46), withFμν replaced by FΛ

μν

before introducing g, that FΛ
μν must be square integrable.

Within the class of potentials with falloff at infinity, those
that support a zero mode decrease as 1=jxj as far as
presently known. This is incompatible with FΛ

μν ∈ L2.
The terms in (6.44)–(6.46) depending on jjFΛjj2 come
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from the first and third terms of (3.9). These terms were
dealt with in Secs. IV and VI where it was assumed that
FΛ
μν ∈ ∩

r≥2
Lr. Zero modes reside solely in the second term of

(3.9). As shown in Sec. V, it can be defined for FΛ
μν ∈ ∩

r>2
Lr.

So the two terms in (6.45) and (6.46) are separately defined,
each subject to its foregoing field restriction.
To regulate Z in (2.4), a volume cutoff is inserted into

detren as described above. When zero mode supporting
potentials are introduced into detren by theMaxwell measure
dμ0ðAÞ, the terms depending on jjFΛjj2 now remain finite.
Therefore, the interpretation of (6.44)–(6.46) is that they
represent the asymptotic form of detren before volume
cutoffs are introduced.
For (6.44)–(6.46) to be relevant, the unregularized

random connections Aμ, including their assumed falloff
at infinity, should have μ0 measure 1. As far as the author
knows, all known results for the growth at infinity of a set
of random fields with measure 1 are for a Gaussian process
whose covariance corresponds to a massive scalar field
(see, for example, Refs. [43,44]). The covariance (2.3) in a
general covariant gauge does not include an infrared cutoff
photon mass as none is required. To the author’s knowl-
edge, then, the behavior at infinity of a set of random
Euclidean QED4 connections with μ0 measure 1 is still not
settled.

VIII. CONCLUSION

Representations (2.6) and (3.9) for the Euclidean fer-
mion determinant in QED, ln detren, have been obtained that
reflect its competing magnetic properties of diamagnetism
and paramagnetism. This way of viewing ln detren arises
since in Euclidean space FμνðxÞmay be regarded as a static,
four-dimensional magnetic field. This decomposition of
ln detren has the advantage of simplifying its strong cou-
pling, large field amplitude analysis for a class of random
potentials/fields. The analysis is made possible by a
number of theorems developed in the 1970s and 1980s
that are applicable to field-theoretic operators in the
presence of external gauge fields.
The main results are summarized by (6.44)–(6.46) and

are interpreted at the end of Sec. VII. Result (6.44) for the
fast growth of ln detren for large field variations raises doubt
on whether it is integrable with any Gaussian measure of
which the support does not include zero mode supporting
potentials. Results (6.45) and (6.46) indicate that the
growth of ln detren is slowed down or stopped by including
zero mode supporting potentials in the Gaussian measure
dμ0ðAÞ introduced in Sec. II. This is prima facie evidence
that zero mode supporting potentials are necessary for the
nonperturbative quantization of QED. See Ref. [45] for an
earlier discussion of the nonperturbative quantization
of QED.
Refer back to one of the electroweak fermion determi-

nants such as the first one in (1.1). Suppose, after being

properly defined, its large amplitude Maxwell field varia-
tion coincides with that of ln detren. Then (6.45) and (6.46)
provide prima facie evidence that the nonperturbative
quantization of the electroweak model also requires its
Maxwell Gaussian measure to have support from zero
mode supporting potentials. This assumes that the Maxwell
field integration follows next after integrating out the
fermion degrees of freedom.
Given such Gaussian measures, are they such that no

measurable subset of potentials results in the fast growing
charge renormalization term in (6.45) and (6.46) becoming
dominant? This is entering unknown territory that needs to
be explored.
If the QED determinant grows faster than a quadratic in

the Maxwell field for a measurable set of fields, then there
may be a connection between this and the photon propa-
gator’s Landau pole [6,46]. The precise connection, if any,
remains to be worked out.
It might be objected that the nonperturbative quantiza-

tion of the electroweak model is irrelevant since perturba-
tive expansions appear to be adequate at presently available
energies. This opinion neglects the fact that the electroweak
model is not asymptotically free. At some point the model’s
nonperturbative content will be required.
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APPENDIX A: Δ1=2
A σFΔ1=2

A

It is claimed that Δ1=2
A σFΔ1=2

A belongs to the trace ideal
I3 for Fμν ∈ ∩q>2LqðR4Þ. The trace ideal Ipð1≤p<∞Þ is
defined as those compact operators A with kAkpp ¼
TrððA†AÞp=2Þ < ∞. General properties of Ip spaces used
here may be found in Refs. [9–11]. To simplify notation we
set e ¼ 1 in this Appendix.
To decide whether Δ1=2

A σFΔ1=2
A ∈ I3, it suffices to deal

with Δ1=2
A jFjΔ1=2

A (F2
μν ¼ jFj2) since σF=jFj is unitary.

Then Δ1=2
A jFjΔ1=2

A ∈ I3 if jFj1=2Δ1=2
A ∈ I6 since by

Hölder’s inequality for Ip spaces

kΔ1=2
A jFjΔ1=2

A k3 ≤ kΔ1=2
A jFj1=2k6kjFj1=2Δ1=2

A k6: ðA1Þ

If jFj1=2Δ1=2
A ∈ I6 then so does its adjointΔ

1=2
A jFj1=2 by the

general properties of Ip spaces. Then

kjFj1=2Δ1=2
A k66 ¼ TrðΔ1=2

A jFjΔAjFjΔAjFjΔ1=2
A Þ

≤ TrðΔ1=2jFjΔjFjΔjFjΔ1=2Þ
¼ kjFj1=2Δ1=2k66: ðA2Þ
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The first line of (A2) may be written in coordinate space.
Then the second line follows from Kato’s inequality in the
form [13–15,34,42,47–51]

jΔAðx; yÞj ≤ Δðx − yÞ; ðA3Þ
where ΔðxÞ ¼ mK1ðmxÞ=ð4π2xÞ, and K1 is a modified
Bessel function. We also made use of the identity

Δ1=2
A ðx; yÞ ¼ 1

π

Z
∞

0

daffiffiffi
a

p hxj 1

ðP − AÞ2 þm2 þ a
jyi; ðA4Þ

to obtain jΔ1=2
A ðx; yÞj < Δ1=2ðx − yÞ from (A3) with

Δ1=2ðxÞ ¼ ðm=ð2π5=3xÞÞ3=2K3=2ðmxÞ. This result for
Δ1=2 is obtained from representation (A4) with Aμ ¼ 0

using integral 2.16.3.8 of Ref. [36].
To prove that jFj1=2Δ1=2 ∈ I6, it has to be shown

that this operator maps L2ðR4Þ into L2ðR4Þ for
Fμν ∈ ∩q>2L2ðR4Þ. Let φ ¼ jFj1=2Δ1=2

A ψ , ψ ∈ L2. Then
by Kato’s inequality

kφk22 ¼
Z

ψ�Δ1=2
A jFjΔ1=2

A ψ

≤
Z

jψ jΔ1=2jFjΔ1=2jψ j: ðA5Þ

Let ρðxÞ ¼ R
d4yΔ1=2ðx − yÞjψðyÞj ¼ Δ1=2⋆jψ jðxÞ. By

Hölder’s inequality

kφk2 ≤ kjFj1=2ρk2 ≤ kρkpkjFj1=2kq; ðA6Þ
where 1=pþ 1=q ¼ 1=2, p, q ≥ 1. Since we assume q > 4
in (A6), then 1 ≤ p < 4. Use Young’s inequality in the
form given in Table IX.1 of [41],

kf⋆gkr ≤ kfkskgkt; ðA7Þ

with 1=sþ 1=t ¼ 1þ 1=r, 1 ≤ r, s, t ≤ ∞. Then kρkp ¼
kΔ1=2⋆jψ jkp ≤ kΔ1=2krkψk2, r < 4=3. As Δ1=2ðxÞ

behaves as 1=x3 for x → 0 and exponentially decreases
for x → ∞, then kΔ1=2kr < ∞, proving that φ ∈ L2.
To complete the proof that jFj1=2Δ1=2 ∈ I6, we rely on

the following theorem specialized to four dimensions
[9,52].
Theorem A.—Let fðxÞgð−i∇Þ map L2ðR4Þ into

L2ðR4Þ.
If f ∈ Lrðd4xÞ and g ∈ Lrðd4pÞ with 2 ≤ r < ∞, then

fðxÞgð−i∇Þ is in I r and

kfðxÞgð−i∇ÞkIr
≤ ð2πÞ−4=rkfkLrkgkLr : ðA8Þ

We have just shown that jFj1=2Δ1=2 is a bounded operator
on L2ðR4Þ, for Fμν ∈ ∩q>2LqðR4Þ. By inspection jFj1=2 ∈
L6ðd4xÞ and ðp2 þm2Þ−1=2 ∈ L6ðd4pÞ, and hence
jFj1=2Δ1=2 ∈ I6. This establishes that Δ1=2

A jFjΔ1=2
A ∈ I3

on referring to (A1) and (A2), and hence so does
Δ1=2

A σFΔ1=2
A .

Finally, in both Sec. V B and Appendix D, it is
claimed that if φ ∈ L2 then so does ψ ¼ Δ1=2

A φ. We
have

jψðxÞj ≤
Z

d4jΔ1=2
A ðx; yÞjjφðyÞj ðA9Þ

≤
Z

d4yΔ1=2ðx − yÞjφðyÞj ¼ Δ1=2⋆jφjðxÞ: ðA10Þ

Then by Young’s inequality (A7), kψk2 ≤ kΔ1=2⋆jφjk2 ≤
kΔ1=2k1kφk2 < ∞ since kΔ1=2k1 < ∞.

APPENDIX B: EQUIVALENCE OF THE TWO
SIDES OF EQ. (3.6)

Reduce notation by setting B ¼ 1
2
σF and e ¼ 1. Begin

with the right-hand side of (3.6) by substituting (3.5), and
obtain

RHS ¼
Z

∞

0

dt
t
e−tm

2

Tr

�
e−tD

2 − e−tðD2þBÞ −
Z

t

0

dte−ðt−sÞD2

Be−sD
2 þ

Z
t

0

ds1

Z
t−s1

0

ds2e−ðt−s1−s2ÞD
2

Be−s2D
2

Be−s1D
2

�
:

ðB1Þ
Eliminate the OðBÞ term by taking the spin trace of this term. Then

dðRHSÞ
dm2

¼ Tr½ðD2 þ Bþm2Þ−1 − ðD2 þm2Þ−1� −
Z

∞

0

dte−tm
2

Tr
�Z

t

0

ds1

Z
t−s1

0

ds2e−ðt−s1−s2ÞD
2

Be−s2D
2

Be−s1D
2

�
: ðB2Þ

Note that

ðD2 þ Bþm2Þ−1 − ðD2 þm2Þ−1 ¼ −
1

D2 þm2
B

1

D2 þm2
þ 1

D2 þm2
B

1

D2 þm2
B

1

D2 þm2

−
1

D2 þ Bþm2
B

1

D2 þm2
B

1

D2 þm2
B

1

D2 þm2
: ðB3Þ
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Substitute (B3) in (B2), and eliminate the OðBÞ term by tracing over its spin to get

dðRHSÞ
dm2

¼ TrðRÞ þ TrðΔABΔABΔAÞ −
Z

∞

0

dte−tm
2

Tr

�Z
t

0

ds1

Z
t−s1

0

ds2e−ðt−s1−s2ÞD
2

Be−s2D
2

Be−s1D
2

�
; ðB4Þ

where

R ¼ −
1

D2 þ Bþm2
BΔABΔABΔA: ðB5Þ

The trace of R is obviously finite. The second trace in
(B4) is cancelled by the last integral. To see this use the
cyclic property of the trace in the last integral, and integrate
the s1-integral by parts to obtain

dðRHSÞ
dm2

¼ TrðRÞ þ TrðΔABΔABΔAÞ

−
Z

∞

0

dtTr

�
e−ðD2þm2Þt

Z
t

0

dssesD
2

Be−sD
2

B

�
:

ðB6Þ

The trace manipulations here and below are allowed due to
the presence of the exponentiated (bounded) operators.
Now integrate the t-integral by parts twice, first to get rid of
the s-integration and second to eliminate the factor t to
obtain

dðRHSÞ
dm2

¼ TrðRÞ

¼ −
1

8
Tr
�

1

D2 þ 1
2
σF þm2

σFΔAσFΔAσFΔA

�
:

ðB7Þ

Now relate the left-hand side of (3.6) to the result (B7). We
know that T ≡ Δ1=2

A
1
2
σFΔ1=2

A ∈ I3. Then [12]

R3ðTÞ≡ ð1þ TÞe−TþT2=2 − 1 ∈ I1; ðB8Þ

so that the relation ln detð1þ R3Þ ¼ Tr lnð1þ R3Þ is valid.
From the definition (3.7), this gives

ln det3ð1þ TÞ ¼ Tr

�
ln ð1þ TÞ − T þ 1

2
T2

�
: ðB9Þ

Noting that

dT
dm2

¼ −
1

2
ΔAT −

1

2
TΔA; ðB10Þ

differentiation of (B9) with respect to m2 gives

d
dm2

ln det3

�
1þ Δ1=2

A
1

2
σFΔ1=2

A

�

¼ −Tr
�
ΔA

1

1þ T
T3

�

¼ −
1

8
Tr

�
1

D2 þ 1
2
σF þm2

σF
1

D2 þm2

× σF
1

D2 þm2
σF

1

D2 þm2

�

¼ dðRHSÞ
dm2

: ðB11Þ

Since both sides of (3.6) vanish for m ¼ ∞, then the two
sides are equivalent on integrating (B11).

APPENDIX C: SIMPLIFICATION OF EQ. (3.8)

Refer to the last term in (3.8), and take the spin trace.
Denoting this term by Π, it is

Π ¼ e2
Z

∞

0

dt
t
e−tm

2

�kFk2
32π2

− Tr
Z

t

0

ds1

Z
t−s1

0

ds2e−ðt−s1−s2ÞD
2

Fμνe−s2D
2

Fμνe−s1D
2

�
: ðC1Þ

To Oðe2Þ (C1) gives

Π ¼ e2

32π2

Z
1

0

dz
Z

d4k
ð2πÞ4 jF̂μνjðkÞ2 ln

�
k2zð1 − zÞ þm2

m2

�
þ Oðe4Þ; ðC2Þ

verifying that Π is finite and that Πðm ¼ ∞Þ ¼ 0, as
inspection of (C1) indicates.
To simplify (C1) integrate the s1-integral by parts, use

the cyclic property of the trace, and let s1 ¼ s to get

Π¼e2
Z

∞

0

dt
t
e−tm

2

�kFk2
32π2

−Tr
Z

t

0

dsse−ðt−sÞD2

Fμνe−sD
2

Fμν

�
:

ðC3Þ

NONPERTURBATIVE QUANTIZATION OF THE … PHYSICAL REVIEW D 91, 085026 (2015)

085026-21



It is safe to differentiate Π with respect to m2 as this makes (C3) even more ultraviolet convergent. Doing this and
integrating the t-integral by parts gives

−
dΠ
dm2

¼ e2
Z

∞

0

dte−tm
2

�kFk2
32π2

− tTr

�
1

D2 þm2
Fμνe−tD

2

Fμν

��

¼ e2
Z

∞

0

dt

�
e−tm

2 kFk2
32π2

þ
Z

∞

0

dsTr

�
e−sðD2þm2ÞFμν

d
dm2

e−tðD2þm2ÞFμν

��

¼ e2
d

dm2

Z
∞

0

dt

�
−e−tm2 kFk2

32π2t
þ 1

2

Z
∞

0

dsTrðe−sðD2þm2ÞFμνe−tðD
2þm2ÞFμνÞ

�
: ðC4Þ

Hence,

Π ¼ e2
Z

∞

0

dte−tm
2

�kFk2
32π2t

−
1

2
Trðe−tD2

FμνΔAFμνÞ
�
; ðC5Þ

since Πðm ¼ ∞Þ ¼ 0. This is the result in (3.9).
As a check on (C5), its Oðe2Þ expansion reproduces the

result (C2). In (3.9) det3 has no Oðe2Þ term by its definition,
and ln detSQED in (3.3) to Oðe2Þ is

ln detSQED ¼ −
e2

64π2

Z
1

0

dzð1 − 2zÞ2
Z

d4k
ð2πÞ4 jF̂μνðkÞj2

× ln

�
k2zð1 − zÞ þm2

m2

�
þ Oðe4Þ: ðC6Þ

Combining (C2) with (C6) following (3.9) gives the text-
book result for the lowest-order vacuum polarization graph
with on-shell renormalization:

ln detren ¼
e2

8π2

Z
d4k
ð2πÞ4 jF̂μνðkÞj2

Z
1

0

dzzð1 − zÞ

× ln

�
k2zð1 − zÞ þm2

m2

�
þ Oðe4Þ: ðC7Þ

APPENDIX D: EIGENVALUE PAIRS
OF Δ1=2

A σFΔ1=2
A

From the equation for the scalar field propagator in the
external potential Aμ,��

1

i
∂μ − eAμ

�
2

þm2

�
ΔAðx; yÞ ¼ δðx − yÞ; ðD1Þ

obtain by inspection

ΔAþ∂λðx; yÞ ¼ eieðλðxÞ−λðyÞÞΔAðx; yÞ: ðD2Þ

Referring to the representation (A4) of Δ1=2
A , conclude that

it transforms under A → Aþ ∂λ in the same way as ΔA.

Therefore, it is evident that det3ð1þ Δ1=2
A

e
2
σFΔ1=2

A Þ is
gauge invariant.
Noting (D2), define the gauge invariant propagator

~ΔAðx; yÞ ¼ e
−ie

R
x

y
dξμAμðξÞΔAðx; yÞ: ðD3Þ

In what follows it is not necessary to specify the line
integral’s path. Taking the complex conjugate of (D1),
deduce that Δ�

A ¼ Δ−A and hence from (D3) that

~Δ�
Aðx; yÞ ¼ ~Δ−Aðx; yÞ: ðD4Þ

Refer to (5.7), and consider an eigenstate φ of
e
2
Δ1=2

A σFΔ1=2
A with eigenvalue −λ. Let ψ ¼ Δ1=2

A φ. Then

e
2
ΔAσFψ ¼ −λψ : ðD5Þ

Since φ ∈ L2, so does ψ as shown at the end of
Appendix A. We will now show that there is an eigenstate
ψC with eigenvalue λ.
Substitute (D3) in (D5),

e
2

Z
d4y ~ΔAðx; yÞσFðyÞe−ie

R
y

z
dξμAμðξÞψðyÞ

¼ −λe−ie
R

x

z
dξμAμðξÞψðxÞ; ðD6Þ

where z is an arbitrary point in R4. On taking the complex
conjugate of (D6), we seek a matrix C such that
Cγ�μC−1 ¼ −γμ. In the representation

γ¼
�

0 σ

−σ 0

�
; γ0¼−i

�
0 12
12 0

�
; γ5 ¼

�
12 0

0 −12;

�
;

ðD7Þ
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one may choose C ¼ γ3γ1. Since σμν ¼ ½γμ; γν�=ð2iÞ,
Cσ�C−1 ¼ −σ. Substitution of this result into the complex
conjugate of (D6) gives together with (D4)

e
2

Z
d4y ~Δ−Aðx; yÞσFðyÞeie

R
y

z
dξμAμCψ�ðyÞ

¼ þλeie
R

x

z
dξμAμCψ�ðxÞ: ðD8Þ

~ΔA is gauge invariant and depends only on Fμν and
invariants derived from it. The second line in (5.2) when
expanded in powers of T consists of loops with ~ΔA between
insertions of σF as the phase factors from ΔA cancel in the
trace. Since ln det3 is real, ~ΔA is real, and hence by (D4)
~Δ−A ¼ ~ΔA, expressing C-invariance. Inserting this result in
(D8), we conclude that for each eigenstate ψ of e

2
ΔAσF

with eigenvalue −λ there is a paired eigenstate

ψCðxÞ ¼ e2ie
R

x

z
dξμAμðξÞCψ�ðxÞ; ðD9Þ

with eigenvalue þλ.

APPENDIX E: CALCULATION OF λ

Substitute either of the expansions (5.46), (5.47) or
(5.48), (5.49) to Oðm2Þ in (5.42), and obtain using (5.50)

f002 þ
�
4jþ 3

r
− 2era

�
f02 ¼ 1 − 4eaδ2 − er

da
dr

δ2: ðE1Þ

The solution of (E1) at r ¼ R that is finite at r ¼ 0 is

f02ðRÞ ¼
Z

R

0

dr
�
r
R

�
4jþ3

ð1 − 4eδ2aðrÞ − eδ2ra0ðrÞÞ

× e2e
R

R

r
dssaðsÞ: ðE2Þ

To Oðm2Þ the boundary condition (5.45) requires

Rf02ðRÞ ¼
R2=2

2jþ 2 − eν
þ eνδ2
eν − 2j − 1

: ðE3Þ

Note that aðrÞ, regardless of the sign of C in (5.40),
approaches ν=r2 as r ↗ R. Therefore, f02ðRÞ in (E2) is
exponentially increasing with e, while the right-hand side
of (E3) has no such exponential growth. Accordingly, the
boundary condition (E3) requires δ2 to satisfy

δ2 ¼
R
R
0 drðrRÞ4jþ3e2e

R
R

r
dssa

e
R
R
0 drðrRÞ4jþ3ð4aþ ra0Þe2e

R
R

r
dssa

þ c; ðE4Þ

where c is an exponentially decaying function of e. Insert
(E2) in (E3), and then refer to (E4) to obtain an equation
for c:

ceR
Z

R

0

dr

�
r
R

�
4jþ3

ð4aþ ra0Þe2e
R

R

r
dssa

¼ R2=2
eν − 2j − 2

þ eνδ2
2jþ 1 − eν

: ðE5Þ

As δ2 is determined by (E4) up to an exponentially
decaying term, (E5) is sufficient to determine c.
It remains to estimate δ2 in (E4) with eν > 2jþ 2 and

e ≫ 1. The structure of the first term in (E4) suggests
Laplace’s method [17] as the most direct way of proceed-
ing. Consider the numerator of (E4):

I ¼ 1

R

Z
R

0

dr

�
r
R

�
4jþ3

e2e
R

R

r
dssa: ðE6Þ

Let r ¼ xR, s ¼ tR, and set

gðxÞ ¼ ð4jþ 3Þ lnðxÞ þ 2eR2

Z
1

x
dtta: ðE7Þ

Let g0ðx0Þ¼ 0. Since eν> 2jþ2, g0ð1Þ < 0 and g0ðxÞ→∞
for x ↘ 0, then g00ðx0Þ < 0. Hence, 0 < x0 < 1. For any
sign of C in (5.40) and ϵ ≥ 2, a sketch of ð4jþ 3Þ=x and
2eR2xa vs x indicates that 4aðx0Þ þ x0a0ðx0Þ > 0. These
strong statements can be made due to the simplicity of a in
(5.40). Therefore, for e ≫ 1

I ¼ egðx0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π

jg00ðx0Þj

s
ð1þOðgiνðx0Þ=e2ÞÞ: ðE8Þ

Since aðrÞ is a smooth function for 0 < r < R, giνðx0Þ is
finite, and OðeÞ or less. Repeating this procedure for the
denominator of (E4) gives for eν > 2jþ 2, e ≫ 1,

δ2 ¼
1=e

4aðr0Þ þ r0a0ðr0Þ
ð1þOð1=eÞÞ > 0; ðE9Þ

where r0 ¼ Rx0 is the unique root in the interval 0 < r < R
of

4jþ 3 − 2er2aðrÞ ¼ 0: ðE10Þ

Refer to (5.14), and define the spin trace norm of an
operator A by kAk1¼TrðA†AÞ1=2 so that 1

2
kðσFÞþk1¼

j4aþra0j, where ðσFÞþ is defined by (5.14). Then (E9)
becomes

δ2 ¼
2

ekðσFðr0ÞÞþk1
ð1þOð1=eÞÞ: ðE11Þ

Here Fμνðr0Þ is a smoothly varying function on 0 < r0 < R
and is hence slowly varying for j ¼ 0; 1=2; :; jmax and
eν > 2jþ 2, e ≫ 1.
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Repeated application of Laplace’s method gives the
following additional results for e ≫ 1. For j ¼ 0; 1=2; :;
jmax − 1=2, eν > 2jþ 2 with eν ¼ N þ Δ, 0 < Δ < 1,
N ¼ 2; 3; :; jmax ¼ ðN − 2Þ=2, δ4 in (5.47) is

δ4 ¼ −δ22 þO

�
R4

e4

�
: ðE12Þ

For j ¼ jmax, δ2α0 in (5.49) exponentially decreases with e,
and the Oðm4Þ term is the same as that in (5.47) with δ4
given by (E12). For eν ¼ 3; 4… and j¼ jmax ¼ðN−3Þ=2,
(5.47) holds with δ2, δ4 given by (E11) and (E12).

APPENDIX F: ZERO MASS LIMIT OF detren

The renormalized determinant in (2.1) may be equiv-
alently expressed as [8,32,53]

detrenð1 − eSAÞ
¼ exp ðΠ2 þ Π3 þ Π4Þdet5ð1 − eSAÞ; ðF1Þ

where

ln det5ð1 − eSAÞ

¼ Tr

�
ln ð1 − eSAÞ þ

X4
n¼1

ðeSAÞn=n
�
: ðF2Þ

As evident from (F1), det5 is the remainder of detð1 − eSAÞ
after the Oðe2; e3; e4Þ graphs Π2, Π3, and Π4 have been
factored out. To maintain equality in (2.1), they are defined
by the power series expansion of its right-hand side to
Oðe4Þ. This definition gives the on-shell subtracted vacuum
polarization graph Π2 in (C7); it sets Π3 ¼ 0, and it defines
the gauge invariant photon-photon scattering graph Π4. A
Hilbert space can be found on which SA is a compact
operator belonging to Ir, r > 4 provided Aμ ∈ ∩

r≥4þϵ
Lr

[8,32,53]. The trace ideal Ir is discussed in Sec. III and
Appendix A. Then SA ∈ I5 since I4þϵ ⊂ I5, and hence
det5 is an entire function of e of order 4 [15]. It has no zeros
for real e, and since detrenðe ¼ 0Þ ¼ 1, detren > 0 for all
real e. It will now be shown that the m ¼ 0 limit of detren
is finite when Π2 is subtracted off shell, provided
Aμ ∈ ∩

r≥4−ϵ
LrðR4Þ, ϵ > 0. This excludes zero-mode sup-

porting potentials that fall off as 1=x and that induce
divergent mass singularities in ln detren [25,54,55]. Our
analysis of the m ¼ 0 limit of detren is a generalization of
that in Ref. [32] for massless QED2.
Instead of dealing with the operator SA at m ¼ 0, we

make a similarity transformation that leaves det5 invariant.
Setting m ¼ 0 let

SA →
p
jpj

1

jpj1=2 jAj
1=2 A

jAj jAj
1=2 1

jpj1=2 ; ðF3Þ

where jAj ¼ ðA2
μÞ1=2. Because p=jpj and A=jAj are unitary,

it suffices to consider the operator K ¼ jpj−1=2jAjjpj−1=2.
We claim that K ∈ I r, r > 4 provided Aμ ∈ ∩

q≥4−ϵ
LqðR4Þ;

ϵ > 0. If K ∈ I r then by Hölder’s inequality for Ir spaces,

kKkr ≤
���� 1

jpj1=2 jAj
1=2

����
s

����jAj1=2 1

jpj1=2
����
s
; ðF4Þ

with s ¼ 2r > 8. If jAj1=2jpj−1=2 ∈ Is, then so does its
adjoint jpj−1=2jAj1=2 by the general properties of Ip spaces.
Let

B ¼ jAj1=2 1

jpj1=2 ¼ B1 þ B2; ðF5Þ

where

B1 ¼ jAj1=2
�

1

jpj1=2 −
1

ðp2 þ μ2Þ1=4
�
; ðF6Þ

B2 ¼ jAj1=2 1

ðp2 þ μ2Þ1=4 ðF7Þ

and where μ2 is an arbitrary mass parameter. To prove that
B1, B2 ∈ Is, s > 8, it has to be first shown that these
operators map L2ðR4Þ into L2ðR4Þ.
We begin with B1. Let g1 ¼ Δ1 � f, f ∈ L2, where

Δ1ðxÞ ¼
Z

d4p
ð2πÞ4 e

ipx

�
1

jpj1=2 −
1

ðp2 þ μ2Þ1=4
�
: ðF8Þ

Then Δ1ðxÞ behaves as μ2=x3=2 for x → 0 and 1=x7=2 for
x → ∞. Let h1 ¼ jAj1=2g1. By Hölder’s inequality

kh1k2 ¼ kjAj1=2g1k2 ≤ kjAj1=2kpkg1kq; ðF9Þ

with 1=pþ 1=q ¼ 1=2, p; q ≥ 1. By Young’s inequality
(A7), kg1kq ¼ kΔ1 � fkq ≤ kΔ1krkfk2 with 1=qþ 1=2 ¼
1=r, q; r ≥ 1. Referring to the properties of Δ1, it is evident
that kΔ1kr < ∞ provided 8=7 < r < 8=3. Choose
q > 8=3. From 1=pþ 1=q ¼ 1=2 obtain p < 8. Then
(F9) allows Aμ ∈ ∩

p≥4−ϵ
Lp, ϵ > 0. Under this condition

kh1k2 < ∞ and hence B1 is an operator on L2.
Next consider B2. The Fourier transform of ðp2þμ2Þ−1=4

in four dimensions is undefined. So consider

g2ðxÞ ¼ Δ2 � fðxÞ ¼
Z

d4p
ð2πÞ4 e

ipx f̂ðpÞ
ðp2 þ μ2Þ1=4 : ðF10Þ

Since kfk2 ¼ kf̂k2=ð2πÞ2 then f̂ðpÞ behaves as 1=p2þϵ

for p → ∞ and 1=p2−ϵ for p → 0. Therefore, g2ðxÞ
behaves as 1=x2þϵ for x → ∞ and 1=x3=2−ϵ for x → 0.
Then B2 maps L2 into L2 since h2 ¼ jAj1=2g2 satisfies
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kh2k2 ¼ kjAj1=2g2k2 ≤ kjAj1=2kpkg2kq with 1=pþ 1=q ¼
1=2, p; q ≥ 1. Thus, kg2kq < ∞ for 2 < q < 8=3 which
requires p > 8 or Aμ ∈ ∩

p>4
Lp.

To complete that proof that B1 , B2 ∈ Is, s > 8, we rely
on Theorem A in Appendix A. For B1, since

1

jpj1=2 −
1

ðp2 þ μ2Þ1=4 ¼ Oðjpj−3=2Þ; jpj → ∞

¼ Oðjpj−1=2Þ; jpj → 0; ðF11Þ
the left-hand side belongs to Lsðd4pÞ for 8=3 < s < 8. It
was just shown that B1 is a bounded operator on L2 if
jAj1=2 ∈ Lsðd4xÞ, s < 8. By Theorem A B1 ∈ I s, s < 8,
and therefore by the general properties of Ip spaces,
B1 ∈ Is, 8 ≤ s ≤ ∞.
For B2 evidently ðp2 þ μ2Þ−1=4 ∈ Lsðd4pÞ for s > 8. For

B2 to be a bounded operator on L2, it was found that
jAj1=2 ∈ Lsðd4xÞ; s > 8. Hence, B2 ∈ Is, 8 < s ≤ ∞ by
Theorem A.
It has now been established that B1 þ B2 ¼

jAj1=2jpj−1=2 ∈ I s, 8 < s ≤ ∞ provided Aμ ∈ ∩
r≥4−ϵ

Lr,

ϵ > 0. Referring to (F4), K ¼ jpj−1=2jAjjpj−1=2 ∈ I r;
4 < r ≤ ∞, and hence det5 is well defined at m ¼ 0 since
K ∈ I5. The loop expansion of det5 makes sense, and so
the similarity transformation defined in (F3) is valid,
allowing us to conclude that SAjm¼0 ∈ I5 for the restricted
class of Aμ potentials considered here.
It remains to demonstrate the continuity of the m ¼ 0

limit of det5ð1 − eSAÞ ¼ det5ð1 − eASÞ form > 0. We will
deal with the operator AS. The continuity of them ¼ 0 limit
of det5 will follow from a theorem Gohberg and Kreı̌n, Ch.
4, Theorem 2.1 [11]: Let A ∈ Ip, where p is a positive
integer, and let F be an arbitrary closed bounded set. Then
for any ϵ > 0 there exists a δ > 0 such that for any operator
B ∈ Ip,

max
μ∈F

jdetpð1 − μAÞ − detpð1 − μBÞj < ϵ;

whenever kA − Bkp < δ. Consider

AS − ASm¼0 ¼ A
m2p

p2ðp2 þm2Þ þ A
m

p2 þm2
: ðF12Þ

It is now known that AS, ASm¼0 ∈ I5 for Aμ ∈ ∩
r≥4−ϵ

Lr,

ϵ > 0. Then

kAS − ASm¼0k5 ≤
����A m2p

p2ðp2 þm2Þ
����
5

þ
����A m

p2 þm2

����
5

:

ðF13Þ

Let

B3 ¼ A
p

p2ðp2 þm2Þ ; ðF14Þ

where B3 is an operator on L2 for Aμ restricted as above.
The proof of this proceeds in exactly the same way as in the
case of B1 above. The form of B3 allows immediate
application of Theorem A, Appendix A. By inspection
p=½p2ðp2þm2Þ�∈L4−ϵðd4pÞ;ϵ> 0, and hence B3 ∈ I4−ϵ.
Letting

B4 ¼ A
1

p2 þm2
; ðF15Þ

we conclude by the same analysis that B4 ∈ I4−ϵ.
It is a general property of Ip spaces that kTkp ≤ kTkp0 ,

p ≥ p0. Thus, from (F13),

kAS − ASm¼0k5 ≤ m2kB3k4−ϵ þmkB4k4−ϵ: ðF16Þ

Referring again to (A8), Theorem A obtains

kAS−ASm¼0k5
≤ð2πÞ 4

4−ϵkAk4−ϵ
�
m2

���� p
p2ðp2þm2Þ

����
4−ϵ

þm

���� 1

p2þm2

����
4−ϵ

�
:

ðF17Þ

The two L4−ϵðd4pÞ norms on the right-hand side of (F17)
multiplied by m2 and m both vanish as mϵ=ð4−ϵÞ as m → 0
when p is rescaled to mp.
This establishes the continuity of the m ¼ 0 limit of det5

for any finite value of e by the Gohberg–Kreı̌n theorem
stated above.
Regarding Π2 in (F1), we have already discussed off-

shell renormalization in Sec. VI A. Subtracting off shell
adds the term (6.7) to ln detren. When this is combined with
the right-hand side of (C7), which defines Π2, the result
is limm¼0Π2 ¼ finite.
Finally, the m ¼ 0 limit of the photon-photon scattering

graph Π4 has been considered in detail for potentials with a
1=x falloff [56]. The conclusion is that limm¼0Π4 ¼ finite.
The inclusion of potentials with a faster falloff such as
those considered here can only reinforce this conclusion.
Summarizing, it has been established that

limm¼0ln detren ¼ finite for off-shell charge renormaliza-
tion and potentials Aμ ∈ ∩

r≥4−ϵ
LrðR4Þ. For zero mode

supporting potentials, the zero mass limit of ln detren is
not finite, but we know precisely where this divergence
occurs, namely in det3.
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