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We present new analytic solutions to the relativistic Boltzmann equation within the relaxation time
approximation. We first obtain spherically expanding solutions which are the kinetic counterparts of the
exact solutions of the Israel-Stewart equation in the literature. This allows us to compare the solutions of the
kinetic and hydrodynamic equations at an analytical level. We then derive a novel boost-invariant solution
of the Boltzmann equation which has an unconventional dependence on the proper time. The existence of
such a solution is also suggested in second-order hydrodynamics and fluid-gravity correspondence.
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I. INTRODUCTION

The Boltzmann equation is one of the most important
equations in contemporary physics that allows us to
characterize the transport properties of a dilute gas based
on the microscopic dynamics of the constituent particles
[1,2]. It is a nonlinear partial differential equation for the
one-particle distribution function fðx; pÞ which is very
difficult to solve exactly by analytical means. Due to this
limitation, it has been more convenient to study the
equation by solving it either numerically or by developing
approximate solutions based on different expansion
schemes. Both approaches have been successful when
comparing their predictions with experimental results,
but at the same time, they have their own limitations
especially in a relativistic setting. Thus, exact solutions to
the Boltzmann equation would certainly be useful to
constrain the validity of different perturbative and numeri-
cal methods.
Symmetries provide powerful methods to solve and

simplify complex problems in physics. This has been
particularly useful in relativistic kinetic theory. For in-
stance, for the relativistic Boltzmann equation within the
relaxation time approximation (RTA) [3], Refs. [4,5] con-
sidered a solution having the same symmetry as the Gubser
flow [6] which is a boost-invariant solution of the con-
formal hydrodynamic equations relevant to heavy-ion
collisions. The symmetry group of the Gubser flow restricts
the number of independent variables as well as their
particular combinations on which the distribution function
depends. As a result, the Boltzmann equation can be
effectively reduced to a one-dimensional problem and an
exact solution has been constructed [4,5]. By using similar
symmetry arguments, other solutions of the RTA
Boltzmann equation have been found in the literature for
near equilibrium [7–13] and highly anisotropic systems
[14–17]. In these results, the solutions are written formally

in terms of the effective temperature of the system which
has to be determined numerically. While this can be done
straightforwardly in practice, it is always welcome to have
fully analytical solutions where one can understand various
aspects of nonequilibrium dynamics in a completely
controllable manner. In this paper, we make progress in
this direction by presenting new analytical solutions to the
RTA Boltzmann equation for conformally invariant sys-
tems. Each of the solutions is shown to have an explicit
counterpart in relativistic viscous hydrodynamics discussed
in [18,19]. This allows us to not only compare the solutions
of kinetic and hydrodynamic equations at an analytical
level, but also shed light on how the hydrodynamic
solutions are obtained as a coarse-grained version of the
kinetic solutions.
This paper is organized as follows: In Sec. II we describe

the kinetic theory approach to the Hubble flow solution
[19,20]. In Sec. III we derive a new boost-invariant solution
to the RTA Boltzmann equation which features an unusual
dependence on the proper time. We provide evidence that
such a solution can exist in second-order hydrodynamics
[19] and also in fluid-gravity correspondence [21]. The
conclusions of this work are presented in Sec. IV.

II. KINETIC THEORY DESCRIPTION OF THE
HUBBLE FLOW

Our starting point is a spherically expanding solution of
the relativistic ideal hydrodynamic equations which is
characterized by the following flow velocity uμ and the
energy density ε [20]

uμ ¼
�
t
τr
;
~r
τr

�
; ε ∝

1

τ4r
; ð1Þ

where τr ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − ~r2

p
(~r ¼ ðx1; x2; x3Þ) is the proper time.

The solution (1) is valid for the conformal equation of state
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ε ¼ 3p (p is the pressure) which we assume throughout
this paper. It is convenient to switch from the Minkowski
coordinates to the following coordinate system via a Weyl
rescaling

ds2 ¼ −dt2 þ dr2 þ r2ðdθ2 þ sin2θdϕ2Þ

⇒ dŝ2 ¼ ds2

τ2r
¼ −dχ2 þ dυ2 þ sinh2υðdθ2 þ sin2θdϕ2Þ;

ð2Þ

where χ ¼ ln τr and we introduced the “rapidity” variable
υ≡ tanh−1 r

t. In this coordinate system, the flow velocity
is simply ûμ ¼ δμχ and the energy density ε̂ ¼ τ4rε is a
constant. We shall refer to this solution as the three-
dimensional (3D) “Hubble” flow in analogy to the well-
known flow solution in cosmology.
Our goal in this section is to describe the 3D Hubble flow

and its nonequilibrium generalizations within relativistic
kinetic theory. The relativistic Boltzmann equation for the
distribution function of massless particles fðx; pÞ in any
curved spacetime reads as [1,2]

pμ∂μf þ Γλ
μipλpμ ∂f

∂pi
¼ pμuμ

τπ
ðf − feqÞ; ð3Þ

where we employed the so-called RTA [3] in which the
collision term is linearized around the equilibrium distri-
bution feq to be specified shortly. τπ is a characteristic time
of the order of the time between successive collisions and,
in general, it can depend on the space-time and momentum-
space coordinates. In the above equation, f ¼ fðxμ; piÞ is
considered to be a function of the space-time coordinates xμ

and the three-dimensional spatial momentum components
pi (i ¼ 1; 2; 3) with lower (covariant) indices.1 The energy
of the particle is determined from the on-shell condi-
tion gμνpμpν ¼ 0.
We analyze Eq. (3) in the coordinate system

x̂μ ¼ ðχ; υ; θ;ϕÞ. In this case, p̂i ≡ ðpυ; pθ; pϕÞ, and the
on-shell condition becomes

p2
χ ¼ p2

υ þ
p2
Ω

sinh2υ
; ð4Þ

where we abbreviated p2
Ω ≡ p2

θ þ p2
ϕ=sin

2θ. Computing
the Christoffel symbols and using the flow velocity
ûμ ¼ δμχ , we find

�
pχ∂χ þ pυ∂υ þ pθ∂θ þ pϕ∂ϕ þ

p2
Ω cosh υ
sinh3υ

∂
∂pυ

þ p2
ϕ cos θ

sinh2υsin3θ
∂

∂pθ

�
f ¼ −βpχðf − feqÞ: ð5Þ

where we defined β≡ τr=τπ .
2 In the following, we assume

that f is independent of ϕ.
First let us specify the equilibrium distribution. Knowing

that the flow is static in this coordinate system, we
immediately find that the Boltzmann distribution

f ¼ feqðpχÞ ¼ e−p
χ=T̂ ; ð6Þ

where the temperature T̂ is a constant and pχ is as in (4),
exactly satisfies (5).3 Since f is a scalar invariant, in
Minkowski space the equilibrium distribution is

feq ¼ e−p
χ=T̂ ¼ e−p

τ=T; ð7Þ

where pτ ¼ pχ=τr and TðτrÞ ¼ T̂=τr is the temperature in
Minkowski space. Thus, the distribution function (7) is the
kinetic counterpart of the ideal Hubble flow.
We now add perturbations on top of the ideal solution. In

a conformal theory, τπ ∝ 1=T by dimensional analysis.
This means that τπ ∝ τr, and therefore β in Eq. (5) is a
constant. Writing f ¼ feq þ δf ¼ feqð1þ ΦÞ, we find the
following equation for Φ:

�
pχ∂χ þ pυ∂υ þ pθ∂θ þ

p2
Ω cosh υ
sinh3υ

∂
∂pυ

þ p2
ϕ cos θ

sinh2υsin3θ
∂

∂pθ

�
Φ ¼ −βpχΦ: ð8Þ

1The Boltzmann equation (3) is covariant in coordinate space but not manifestly covariant in momentum space [22]. One can sort out
this problem by considering a manifestly covariant Boltzmann equation for off-shell distribution functions fðxμ; pμÞ [23]. We will not
consider this approach in our work.

2Under the Weyl transformation (2), τπ is rescaled by a factor of τr [5].
3We may also take the Bose-Einstein or the Fermi-Dirac distribution as the equilibrium distribution. Actually, in the RTA any function

feqðpχÞ satisfies (5). We need the full Boltzmann equation to uniquely determine the equilibrium distribution.
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We shall solve (8) in two interesting cases corresponding
to the scalar and tensor perturbations around the ideal
solution.

A. Scalar perturbation

Motivated by a recent work [24], let us first discuss the
solution which is independent of “time” χ. Assuming Oð3Þ
symmetry, we find the following exact solution of (8):

Φ ¼ Kðpχ ; pΩÞ exp
�
−

1

2β
ln
pχ þ pυ tanh υ
pχ − pυ tanh υ

�

¼ Kðpχ ; pΩÞ exp
�
−
1

β
tanh−1

�
pυ tanh υ

pχ

��
: ð9Þ

The only constraint for the function K is that it must satisfy
the Landau matching condition for the energy density
ε ¼ ε̂=τ4r ,

ε̂ ¼ 1

ð2πÞ3
Z

d3pffiffiffiffiffiffi−gp
pχ ðu · pÞ2feq

¼ 1

ð2πÞ3
Z

d3pffiffiffiffiffiffi−gp
pχ ðu · pÞ2f; ð10Þ

where d3p ¼ dpυdpθdpϕ. If we further assume thatK does
not depend explicitly on pΩ, then the condition reduces to

Z
∞

0

dpχp3
χe−pχ=T̂KðpχÞ ¼ 0: ð11Þ

The above solution (9) has been derived in an analogous
way to [24] based on a different ideal hydrodynamic
solution. As discussed in that reference, this type of
solutions is characterized by certain scalar moments of f
and the associated entropy production despite the vanishing
shear-stress tensor,

π̂μν ¼ 1

ð2πÞ3
Z

d3pffiffiffiffiffiffi−gp
pχ Δ

μν
αβp

αpβδf ¼ 0; ð12Þ

where Δμν
αβ ¼ 1

2
ðΔμ

αΔν
β þ Δμ

βΔν
αÞ − 1

3
ΔμνΔαβ with Δμν ¼

gμν þ uμuν. Equation (12) means that the solution does
not allow for a hydrodynamic description. Rather, it
represents the relaxation of “fast” degrees of freedom
usually not taken into account in hydrodynamics.

B. Tensor perturbation

We now return to (8) and consider the tensor perturba-
tions. We parametrize the nonequilibrium part in such a
way that the connection to hydrodynamics is transparent:

Φ ¼ π2

8T̂6
pμpνπ̂μνðχ; υ; θÞ≡ e−βχ

π2

8T̂6
pμpν ~πμνðυ; θÞ: ð13Þ

The first equality is the standard parametrization in the
moment method where π̂μν is identified with the shear
stress tensor in viscous hydrodynamics (12). In the second
equality, we extracted the exponential relaxation factor e−βχ

which turns into a power-law behavior τ−βr in the original
Minkowski space.
Let us first look forOð3Þ-symmetric solutions whereΦ is

independent of θ and π̂θθ ¼ π̂ϕϕ ¼ − 1
2
π̂υυ. Substituting

Eq. (13) in Eq. (8), we find the following equation for ~πυυ:

�
pυ∂υ þ p2

Ω
cosh υ
sinh3υ

∂
∂pυ

��
p2
υ −

p2
Ω

2sinh2υ

�
~πυυðυÞ ¼ 0:

ð14Þ

However, we immediately encounter a difficulty. It is easy
to see that there can be no solution to (14). Indeed, the
general solution of the differential equation,

�
pυ∂υ þ p2

Ω
cosh υ
sinh3υ

∂
∂pυ

�
Φ ¼ 0; ð15Þ

is Φ ¼ Φðpχ ; pΩÞ, and this is clearly incompatible with the
structure of (14).
The trouble is that this negative result is in apparent

contradiction to the finding in Ref. [19]. There, the authors
derived exact solutions to the Israel-Stewart equation in
hydrodynamics which relax to the Hubble flow at large
times. In the present notation, the Oð3Þ-symmetric solution
is (see (74) of [19])

~πυυ ∝
1

sinh3υ
; ð16Þ

which, however, is not a solution to (14) as we have just
seen in the above derivation. On general grounds, it is
expected that every solution of the hydrodynamic equations
has a microscopic counterpart in kinetic theory, and
actually our motivation here is to rederive (16) as the
solution of the Boltzmann equation. It is tempting to think
that this is a problem of the RTA which oversimplifies the
collision term of the Boltzmann equation and therefore
restricts the solution space of kinetic theory. Yet, one can
derive the Israel-Stewart equation starting from the
Boltzmann equation in the RTA (see for example [25]),
and this implies that the above conflict must somehow be
reconciled within the RTA.
In order to understand in what sense Eq. (16) is a

solution, let us substitute it into Eq. (14),

�
pυ∂υ þ p2

Ω
cosh υ
sinh3υ

∂
∂pυ

��
p2
υ −

p2
Ω

2sinh2υ

�
1

sinhAυ

¼ −pυ cosh υ
2sinhAþ1υ

�
2Ap2

υ −
ðAþ 6Þp2

Ω
sinh2υ

�
; ð17Þ

ANALYTIC SOLUTIONS OF THE RELATIVISTIC … PHYSICAL REVIEW D 91, 085024 (2015)

085024-3



where A ¼ 3. As expected, the right-hand side does not
vanish for any value of A. However, the question is whether
these unwanted terms affect the hydrodynamic equations.
The energy-momentum conservation equation is

0 ¼ ∇νTμν

¼ 1

ð2πÞ3
Z

d3pffiffiffiffiffiffi−gp
pχ p

μpν

�
∂ν þ Γλ

νipλ
∂
∂pi

�
ðfeq þ δfÞ:

ð18Þ
Taking the component μ ¼ υ, we see that all that is needed
for the hydrodynamic equation to hold is that the following
integral vanishes:

Z
d3pffiffiffiffiffiffi−gp

pχ pυðEq:ð17ÞÞ

∝
Z

d3pffiffiffiffiffiffi−gp
pχ p

2
υ

�
2Ap2

υ −
ðAþ 6Þp2

Ω
sinh2y

�
∝ A − 3: ð19Þ

This is, indeed, the case when A ¼ 3. It is easy to see that
the components of the equation (18) other than μ ¼ υ are
trivially satisfied even when A ≠ 3.
The above analysis teaches an important lesson about

comparing solutions of kinetic and hydrodynamic equa-
tions. Since the hydrodynamic equation is a course-grained
version of the kinetic equation, it admits a class of solutions
which are not sensitive to the exact details of kinetic theory.

To accommodate this, we have enlarged the solution space
of the Boltzmann equation in the RTA to allow the equation
to be satisfied up to terms that do not affect the macroscopic
(hydrodynamic) equations. With this qualification, remark-
ably the solutions of the Boltzmann and hydrodynamic
equations are exactly the same in the sense that they are
characterized by the same macroscopic variables ε, πμν, etc.
This is in contrast to the common perception that solutions
of the hydrodynamic equation are only an approximate
version of the solutions of the Boltzmann equation, as
repeatedly observed in the literature [4,5,14,15,25,26].
In Ref. [19], along with theOð3Þ-symmetric solution (16),

non-Oð3Þ-symmetric solutions to the Israel-Stewart equation
were also obtained. It is straightforward to generalize the
present analysis to this case. Here we consider only one of
the non-Oð3Þ-invariant solutions found in [19] which reads4

~πυυ ¼ ~πθθ ¼ −
1

2
~πϕϕ ∝

1

sin3θsinh3υ
; ð20Þ

so that

pμpν ~πμνðυ; θÞ

∝
�
p2
υ þ

p2
θ

sinh2υ
−

2p2
ϕ

sinh2υsin2θ

�
1

sinh3υsin3θ
: ð21Þ

Substituting (21) into (8), we find

�
pυ∂υ þ pθ∂θ þ

p2
Ω cosh υ
sinh3υ

∂
∂pυ

þ p2
ϕ cos θ

sinh2υsin3θ
∂

∂pθ

�
pμpν ~πμνðυ; θÞ

∝
−3

sin3θsinh4υ

�
pυ cosh υþ

pθ cot θ
sinh υ

��
p2
υ þ

p2
θ

sinh2υ
−

4p2
ϕ

sinh2υsin2θ

�
: ð22Þ

As it happened in the Oð3Þ-symmetric case, the right-hand
side of (22) does not vanish. However, we now know how
to sort this out. The nonvanishing terms in Eq. (22) do not
affect the hydrodynamic equation (18) because

Z
d3pffiffiffiffiffiffi−gp

pχ pυðEq:ð22ÞÞ ¼
Z

d3pffiffiffiffiffiffi−gp
pχ pθðEq:ð22ÞÞ ¼ 0;

ð23Þ

for μ ¼ υ; θ. (The other components are trivial.) In this
sense, Eq. (21) is the solution to the Boltzmann equation
which corresponds to the hydrodynamic solution (20).

Finally, we note that in both the Oð3Þ-invariant and
noninvariant cases, one can obtain the free-streaming
solutions by taking the limit β → 0,

f ¼ feq

�
1þ π2

8T̂6
pμpν ~πμνðυ; θÞ

�
: ð24Þ

In the absence of the exponential damping, the system
never reaches thermal equilibrium (see, also, [5,27]).

III. BJORKEN FLOW REVISITED

In the previous section, we presented explicit analytic
solutions of the Boltzmann equations in the RTA. This has
been possible largely due to the fact that the ideal hydro-
dynamic solution is static in a cleverly chosen coordinate
system. For essentially nonstatic flows, analytic solutions

4We have checked that the other non-Oð3Þ-symmetric solution
in [19], which is proportional to 1

sin3=2θsinh3υ
, also satisfies the RTA

Boltzmann equation following exactly the same pattern.
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of the Boltzmann equation are difficult to obtain even in the
RTA. Nevertheless, in the boost-invariant case relevant to
heavy-ion collisions [28], one can gain analytic insights
into the behavior of the flow at late times. In this section we
revisit this problem and elucidate a new solution of the
Boltzmann equation which exists in the presence of
conformal symmetry.
We work in the coordinate system,

ds2 ¼ −dτ2 þ τ2dζ2 þ dx2T þ x2Tdϕ
2; ð25Þ

where xT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p
is the transverse coordinate. τ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 − x23
p

and ζ ¼ tanh−1 x3
t are the one-dimensional ana-

logs of the three-dimensional proper time τr and the
rapidity υ introduced in the previous section. The RTA
Boltzmann equation with the comoving flow velocity
uμ ¼ δμτ [28] was first studied in [7] and developed more
recently in [8–15]. Assuming that f depends only on τ, we
need to solve

∂τf ¼ −
1

τπ
ðf − feqÞ: ð26Þ

The equilibrium distribution is taken to be the Boltzmann
distribution as before feq ¼ eu·p=T ¼ e−p

τ=TðτÞ where

pτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
ζ=τ

2 þ p2
T

q
, but unlike the Hubble flow case,

TðτÞ is an unknown function which is dynamically deter-
mined from the first moment of the Boltzmann equa-
tion (26) which gives us the dynamical Landau matching
condition [7],

ε ¼ 1

ð2πÞ3
Z

d3pffiffiffiffiffiffi−gp
pτ ðu · pÞ2feq

¼ 1

ð2πÞ3
Z

d3pffiffiffiffiffiffi−gp
pτ ðu · pÞ2f: ð27Þ

Consequently, f ¼ feq does not solve (26) exactly, which
is a manifestation of the nonstatic nature of the geometry.
In terms of the energy density (27), the solution of (26) is

formally given by [7,15]

εðτÞ ¼ Dðτ; τ0Þε0ðτÞ

þ
Z

τ

τ0

dτ0

τπðτ0Þ
Dðτ; τ0Þεðτ0Þ 1

2

0
@τ02

τ2
þ
arctan

ffiffiffiffiffiffiffiffiffiffiffiffi
τ2

τ02 − 1

q
ffiffiffiffiffiffiffiffiffiffiffiffi
τ2

τ02 − 1

q
1
A;

ð28Þ

where

Dðτ; τ0Þ ¼ exp

�
−
Z

τ

τ0

dτ0

τπðτ0Þ
�
; ð29Þ

and

ε0ðτÞ ¼
1

ð2πÞ3
Z

d3p
τpτ ðpτÞ2fðτ0; pζ; pTÞ: ð30Þ

In Eq. (30), fðτ0Þ is the initial distribution at τ0, whereas

pτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
ζ=τ

2 þ p2
T

q
(on-shell condition) is defined at τ.

After integration by parts, Eq. (28) can be written as

Z
τ

τ0

dτ0Dðτ; τ0Þ ∂
∂τ0

�
εðτ0ÞR

�
τ0

τ

��

¼ Dðτ; τ0Þ
�
ε0ðτÞ − εðτ0ÞR

�
τ0
τ

��
; ð31Þ

where we abbreviated

RðxÞ≡ 1

2

0
@x2 þ

arctan
ffiffiffiffiffiffiffiffiffiffiffi
1
x2 − 1

q
ffiffiffiffiffiffiffiffiffiffiffi
1
x2 − 1

q
1
A: ð32Þ

Following [7], let us first assume that τπ is a constant.
Then Dðτ; τ0Þ ¼ e−ðτ−τ0Þ=τπ , and (31) becomes

Z
τ

τ0

dτ0eτ0=τπ
∂
∂τ0

�
εðτ0ÞR

�
τ0

τ

��

¼ eτ0=τπ
�
ε0ðτÞ − εðτ0ÞR

�
τ0
τ

��
: ð33Þ

Since the right-hand side decreases with time as Oð1=τÞ,
one should not allow the left-hand side to grow exponen-
tially in τ. This leads to the condition

∂
∂τ0

�
εðτ0ÞR

�
τ0

τ

������
τ0¼τ

¼ 0: ð34Þ

With Rð1Þ ¼ 1 and R0ð1Þ ¼ 4=3, (34) gives εðτÞ ∼ 1=τ4=3.
Thus, the Bjorken solution is recovered [28]. The same
conclusion is reached if τπ depends on time as τπðτÞ ∼ τp

with 0 ≤ p < 1. However, when p ¼ 1, this argument
breaks down.5 In fact, there exists a novel asymptotic
solution of the form

εðτÞ ≈ C
τ4
; ðτ ≫ τ0Þ; ð35Þ

5The case p ¼ 1 was previously studied in [8] without
assuming conformal symmetry. It was found that the Bjorken
solution ε ∼ 1=τ4=3 is recovered only in the limit β → ∞ [see
Eq. (36)], whereas for other values of β the asymptotic behavior is
ε ∼ 1=τγ with 1 < γ < 4

3
. The special solution (35) which we are

going to derive was not noticed in [8].
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whose normalization constant C is not arbitrary but is an
intrinsic parameter of a given theory.
In order to verify this statement, we first note that the two

conditions p ¼ 1 and ε ∼ 1=τ4 are naturally related in the
presence of conformal symmetry. Indeed, in a conformal
theory, τπ ∝ ε−1=4 by dimensional analysis. We can then
write in the asymptotic regime the following,

τπ ≡ τ̂π
ε1=4

≈
τ̂π
C1=4 τ≡

τ

β
; ð36Þ

so that p ¼ 1 together with

Dðτ; τ0Þ ¼
�
τ0

τ

�
β

ð37Þ

lead us to write Eq. (31) as

Z
τ

τ0

dτ0τ0β
∂
∂τ0

�
εðτ0ÞR

�
τ0

τ

��
¼ τβ0

�
ε0ðτÞ − εðτ0ÞR

�
τ0
τ

��
:

ð38Þ

We see that, instead of an exponentially growing factor as
in (33), the integrand contains only powers of τ0. At large
times τ ≫ τ0, the right-hand side is of order Oð1=τÞ þ
Oð1=τ3Þ with τ0-dependent coefficients. This should match
the contribution from the lower bound τ0 ¼ τ0 of the τ0
integration on the left-hand side. Then the contribution
from the upper bound τ0 ¼ τ of order Oð1=τ4−βÞ, which is
independent of τ0, must vanish.
For generic values of β, the τ0 integral in Eq. (38) cannot

be done analytically. In order to study the behavior near the
upper limit, we expand Rðτ0=τÞ in powers of τ − τ0

R

�
τ0

τ

�
¼ 1þ 4

3

�
τ0

τ
− 1

�
þ 2

5

�
τ0

τ
− 1

�
2

þ � � � ð39Þ

and integrate over τ0, term by term, using εðτ0Þ ∼ 1=τ04. In
fact, we need to expand to all orders in τ − τ0. In practice,
we used MATHEMATICA and expanded Rðτ0=τÞ to
Oððτ − τ0Þ50Þ. We then require that the contribution from
the upper bound τ0 ¼ τ vanishes. This yields the value6

β ≈ 1.27672: ð40Þ

In Appendix, we present another derivation of this constant.
We, thus, conclude that, in the presence of conformal
symmetry, the Boltzmann equation in the RTA admits the
following asymptotic solution

ε ¼ C
τ4

with C1=4 ≈ 1.28τ̂π: ð41Þ

As announced, the normalization is completely determined
by τ̂π ¼ τπε

1=4 which is an intrinsic parameter of a given
theory. Note that in QCD at high temperature which
is nearly conformal, we have τπ ∼ η=ε ∼ ðTλ2 ln 1

λÞ−1
(λ ¼ g2Nc is the ’t Hooft coupling) [29] so that

ε ∼
N2

c

ðτλ2 ln 1
λÞ4

: ð42Þ

We now discuss the connection to hydrodynamics. In
fact, a solution very similar to Eq. (41) has been previously
found in Ref. [19] as an exact solution of the general
second-order hydrodynamic equations and dubbed the
“unorthodox Bjorken flow.” This is given by (see
Eq. (112) of Ref. [19])

ε ¼ C
τ4

with C1=4 ¼ 16τ̂π − 3η̂ − 2τ̂ππ
6

; ð43Þ

where η ¼ ε3=4η̂ is the shear viscosity and τππ ¼ ε−1=4τ̂ππ is
one of the second-order transport coefficients in the
constitutive equation for πμν:

πμν ¼ −2ησμν − τπΔ
μ
αΔν

β∇τπ
αβ − τππΔ

μν
αβσ

αλπβλ þ � � � : ð44Þ

These transport coefficients can be evaluated from the
Boltzmann equation in the RTA.7 Using τπ ¼ 5η=ðTsÞ ¼
15η=ð4εÞ from the Chapman-Enskog theory (s is the
entropy density) and τππ ¼ 10τπ=7 for the massless
Boltzmann gas [25,30], we get

C1=4 ¼ βτ̂π ≈ 2.06τ̂π; ð45Þ

which is in the same ballpark as Eq. (41). The discrepancy
may be alleviated in a more precise evaluation of these
coefficients from the Boltzmann equation. Conversely, if
we assume that the Chapman-Enskog value for η is precise,
our result may be used to estimate the value of τππ in the
RTA. Equating (41) and (43), we obtain τππ ≈ 3.77τπ ,
which turns out to be a few times larger than the results
previously derived by different authors [25,30].

A. Fluid-gravity duality

In this subsection, we point out that the existence of the
solution of the type (41) is also suggested in the framework
of fluid-gravity correspondence.8 In strongly coupled

6In addition to this, MATHEMATICA finds other positive roots
such as β ¼ 2 and β ¼ 4. We discard them as artifacts. For these
values of β, one can evaluate the τ0 integral explicitly and find
inconsistencies with (38).

7The other second-order transport coefficients which are not
derivable from the Boltzmann equation in the RTA have been
ignored in (43).

8This subsection is largely motivated by interesting discus-
sions with Jorge Noronha to whom we are grateful.
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N ¼ 4 supersymmetric Yang-Mills theory, hydrodynamic
flows are dual to solutions of the five-dimensional Einstein
equation in asymptotically anti–de Sitter (AdS) spaces (see
Ref. [21] for a pedagogical review),

RAB −
1

2
GABR − 6GAB ¼ 0; ð46Þ

where RAB and R are the Ricci tensor and the scalar
curvature, respectively. In the Fefferman-Graham coordi-
nates, the five-dimensional metric GAB can be written as

ds25 ¼ GABdxAdxB ¼ 1

z2
½gμνðx; zÞdxμdxν þ dz2�; ð47Þ

where z is the “fifth” dimension. Near the Minkowski
boundary z ¼ 0, the solution of (46) takes the form

gμν ¼ gð0Þμν þ z4gð4Þμν þ z6gð6Þμν þ � � � ; ð48Þ

where gð0Þμν is the four-dimensional flat Minkowski metric

and gð4Þμν is related to the energy-momentum tensor in the
gauge theory as

Tμν ¼
N2

c

2π2
gð4Þμν : ð49Þ

For boost-invariant flows, the dual geometry at asymp-
totically large τ turns out to be the scaling solution [31]:

ds2 ¼ 1

z2
ð−eaðuÞdτ2 þ τ2ebðuÞdζ2 þ ecðuÞd~x2T þ dz2Þ: ð50Þ

The scaling variable is defined by u≡ z=τs=4 where s is a
parameter required to satisfy 0 ≤ s ≤ 4 from the positivity
constraint of the energy density. The Bjorken solution
ε ∼ 1=τ4=3 corresponds to s ¼ 4=3 and

aðuÞ ≈ ð1 − e0
3
u4Þ2

ð1þ e0
3
u4Þ ; bðuÞ ≈ cðuÞ ≈ 1þ e0

3
u4; ð51Þ

where e0 is a dimensionful normalization constant.
Equation (51) satisfies the Einstein equation up to terms
subleading (at fixed u) in inverse powers of τ which are
related to the viscous effects [32,33]. It was shown in [31]
that within the range 0 < s < 4, the value s ¼ 4=3 is the
only acceptable choice after requiring that there are no
singularities in the bulk. The boundary value s ¼ 4 was not
studied in [31] because, as the authors pointed out, their
method to solve the Einstein equation (expansion in negative
powers of τ at fixed u) fails when s ¼ 4. What happens at
s ¼ 4 is that u ¼ z=τ is dimensionless, and therefore at fixed
u negative powers of τ cannot appear. In other words, one
has to solve the Einstein equation exactly. Furthermore, it is
interesting to note that not only e0 becomes dimensionless
when s ¼ 4, but also it becomes a fixed number due to
nonlinearity of the Einstein equation as shown below.
The reason why we are interested in the special value

s ¼ 4 is that, if a solution with s ¼ 4 indeed exists, then it is
dual to a hydrodynamic flow ε ∼ 1

τ4
which has the same τ

dependence as (41). Unfortunately, we have not been able
to solve the Einstein equation for s ¼ 4 exactly in a closed
form. Instead, we performed a perturbative expansion of
aðuÞ, etc. in Eq. (50) to high orders. The result is

aðuÞ ¼ −u4 −
2

3
u6 − u8 −

4

3
u10 − 2u12 −

65

21
u14 −

179

36
u16 −

172

21
u18 −

8681

630
u20 þ � � � ;

bðuÞ ¼ 3u4 þ 10

3
u6 þ 3u8 þ 4u10 þ 22

3
u12 þ 95

7
u14 þ 287

12
u16 þ 880

21
u18 þ 15761

210
u20 þ � � � ;

cðuÞ ¼ −u4 −
4

3
u6 − 2u8 −

10

3
u10 −

17

3
u12 −

208

21
u14 −

635

36
u16 −

223

7
u18 −

36661

630
u20 þ � � � : ð52Þ

In fact, the expansion can be carried out up to all orders
[34]. Remarkably, to lowest order the coefficient of u4 in
aðuÞ is arbitrary, but once we go to higher orders the
nonlinearity of the Einstein equation selects the coefficient
to be −1. Assuming that (52) represents the near-boundary
behavior of a well-defined solution, we read off the energy
density in field theory

ε ¼ N2
c

2π2
1

τ4
: ð53Þ

Once again, we find that the coefficient of 1=τ4 is uniquely
determined, this time due to the nonlinearity of the Einstein

equation. Moreover, the energy-momentum tensor has the
form

ε ¼ Tττ ¼ −Txx ¼ −Tyy ¼ τ2

3
Tζζ; ð54Þ

which is exactly the same as that for the unorthodox
Bjorken flow [19]. To make the comparison clearer, we
note that by using Eq. (36),

N2
c

2π2
¼ C ¼ ðβτ̂πÞ4: ð55Þ
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We then use the known results at strong coupling [35,36],

ε ¼ 3π2N2
cT4

8
; τπ ¼

2 − ln 2
2πT

; ð56Þ

to rewrite Eq. (53) as

ε ¼ ðβτ̂πÞ4
τ4

; with β ¼ 2ð4=3Þ1=4
2 − ln 2

≈ 1.64; ð57Þ

which is rather close to Eq. (41), though of course the
agreement is not expected since one is comparing strongly
coupled and weakly coupled theories.
Unfortunately, we have not been able to resum the series

(52) in a closed form, and this prohibits us from studying
the possible singularities of the geometry in the bulk.
Moreover, the radius of convergence for the series (52)
seems to be decreasing towards zero. Therefore, at the
moment we cannot draw a conclusion about the existence
of solutions of the form (53), although it would be very
interesting to have one in view of the results in kinetic
theory (41) and hydrodynamics (43). We leave this problem
to future work.

IV. CONCLUSIONS

In this paper, we have derived analytic solutions of the
Boltzmann equation in the RTA for conformally invariant
systems. In the Hubble flow case, we have shown that the
solutions of the kinetic (Boltzmann) and hydrodynamic
(Israel-Stewart) equations are essentially the same, in that
they give the identical conserving energy-momentum
tensor. Most of the previous studies have found systematic
differences between the solutions of the kinetic and hydro-
dynamic equations, the former is considered to be more
fundamental. However, in the present case they agree
exactly.
We then considered the Boltzmann equation in the boost-

invariant setup relevant to the final state of heavy-ion
collisions. At asymptotically large times, the equation
selects the Bjorken solution ε ∼ 1=τ4=3. However, we have
pointed out that in the conformally symmetric case, a novel
solution of the form ε ¼ C=τ4 exists, and we precisely
determined the normalization C which is not an arbitrary
parameter. Very interestingly, a solution with the same τ
dependence was previously found as an exact solution of
second-order hydrodynamics. The existence of this solu-
tion is also suggested by fluid-gravity correspondence. But
here our argument is not adequate, and more work is
needed to firmly establish (or exclude) such a solution of
the Einstein equation.

We conclude by mentioning some possibilities to explore
from our findings which might have potential applications
in more realistic scenarios such as in high energy nuclear
collisions. At early times after the collision between highly
energetic nuclei, the produced plasma of quarks and gluons
reaches high temperatures with almost vanishing chemical
potential such that it is approximately conformal. This tiny
plasma is far away from equilibrium due to the violent
acceleration in all the spatial directions and, thus, the three-
dimensional Hubble solution discussed in Sec. II offers the
possibility to model at this stage the system. In addition, the
three-dimensional Hubble solution can encode the early-
time information about the flow configuration and energy
density behavior ∼τ−4r . This scaling of the energy density at
the beginning of the expansion might be connected with the
unorthodox Bjorken flow solution whose energy density
decays faster ∼τ−4 than the standard Bjorken solution
∼τ−4=3 [28]. Therefore, within this scenario the lifetime
of the fireball would be shorter since the unorthodox
Bjorken flow predicts that the system reaches faster the
freeze-out temperature. This possibility can be studied
nowadays by performing a systematic fine-tuning analysis
of the freeze-out temperature, the initial time when the
numerical hydrodynamical simulation starts to run and
other parameters such as the transport coefficients.
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APPENDIX: ANOTHER DERIVATION
OF EQUATION (40)

In order to be more confident with the unfamiliar number
β ¼ 1.27672 found in (40), let us derive it from a slightly
different perspective. Doing integration by parts in the
right-hand side of (38) and keeping contributions only from
τ0 ¼ τ, we get
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Eq: ð38Þ ∼ C
τ4−β

−
βC
2

Z
τ

τ0

dτ0

τ05−β

�
τ02

τ2
þ
arctan

ffiffiffiffiffiffiffiffiffiffiffiffi
τ2

τ02 − 1

q
ffiffiffiffiffiffiffiffiffiffiffiffi
τ2

τ02 − 1

q
�

∼
C
τ4−β

�
1þ β

2ð2 − βÞ −
β

2

Z ffiffiffiffiffiffiffiffiffiffiffiffi
τ2=τ2

0
−1

p

0

dxðx2 þ 1Þ1−β=2 arctan x
�
; ðA1Þ

where we changed variables as x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2=τ02 − 1

p
. The x integral is convergent at x → ∞ when β > 3. We, thus, temporarily

assume β > 3 and send the upper limit to infinity. Then the integral can be done exactly:

C
τ4−β

�
1þ β

2ð2 − βÞ þ
β

ffiffiffi
π

p
8

Γ
�
2 −

β

2

��
Γðβ−3

2
Þ

sin βπ
2

þ 3F2ð12 ; 1; 1; 32 ; 3 − β
2
; 1Þ

Γð3
2
ÞΓð3 − β

2
Þ

��
: ðA2Þ

We then analytically continue the result to β < 3 and look for the zero of (A2). We find β ≈ 1.27672 in perfect agreement
with the previous method.
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