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In this paper we calculate the scale anomaly for a quantum field theoretic 2D-nonrelativistic Bose
gas with contact interactions using Fujikawa’s method, both in vacuum and in many-body systems.
The use of path integrals for these problems is novel and motivated by a recently developed path-integral
framework for addressing questions about scaling in these systems. A natural class of regulators is found
that produces the correct value of the anomaly traditionally calculated via other methods, e.g.,
diagrammatically via the β function.
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I. INTRODUCTION

The use of Fujikawa’s method in particle physics is
well known and is now standard in textbooks [1]. It was
originally developed to understand the chiral anomaly [2]
but has since been extended to other cases, including the
relativistic scale anomaly [3]. However, as far as we are
aware, it has not been used before for nonrelativistic
physics. There are currently reasons to embark in such
calculations. Nonrelativistic anomalies have been studied
since the seminal paper by R. Jackiw [4], mostly using
canonical methods, not Fujikawa’s.1 Interest in these
anomalies has intensified in the study of ultracold 2D
gases [7–15], with the work by J. Hofmann on anomalies
of trapped 2D Fermion gases being of particular rel-
evance [16]. Despite all this activity, there are still
questions about anomalies and their impact in such
systems that need to be answered [17]. A path-integral
Fujikawa approach to study anomalies in systems with
an SOð2; 1Þ classical symmetry, mainly in the context of
2D diluted gases, has been recently proposed in [18].
While this approach provides a nice picture of the
structure of anomalies in many-body systems, the cal-
culation of the Fujikawa Jacobian is crucial in order for
this framework to also provide a practical scheme that
will help us better understand the role of anomalies in
lower-dimensional physics. We present here our first
results of the Jacobian calculation for 2D complex fields
with contact interactions in the case of constant back-
ground fields.
Within the path-integral formulation, anomalies result

from the presence of Jacobians due to the noninvariance
of the measure under symmetry transformations. These
Jacobians are functional determinants and need to be
regularized. For the chiral anomaly, all regulators lead to

a finite result, whereas for the relativistic scale anomaly an
infinite piece remains that is present even if the same
regulator is used in the free theory, so this piece can be
subtracted if the free theory is taken to be nonanomalous
[19]. The nonrelativistic scale anomaly is similar to the
relativistic case in this respect. However, unlike the latter,
space and time are treated on unequal footing in the former.
Indeed, traditionally, for both the relativistic chiral and
scale anomalies, one goes into Euclidean space where the
Lagrangian kinetic operator is Hermitian. In this Euclidean
space one can work with functions of a single variable
(the 4 momentum squared) that is positive semidefinite in
all directions. In contrast, for the nonrelativistic case the
Lagrangian operator is Hermitian in real time (“Minkowski
space”). Due to the asymmetry between space and time, one

is stuck with ω and ~k2 rather than a single k2, making the
task considerably more difficult, which may be a reason for
why this problem has not been addressed before using
Fujikawa’s method.
The structure of this paper is as follows: we give a brief

introduction to Fujikawa’s method, after which we review
the essential technical details for the system that will be
considered here. We then proceed with the Jacobian
calculation for zero and finite temperature. Conclusions
and comments end the paper.

II. FUJIKAWA’S DERIVATION

The derivation of the anomaly via Fujikawa’s method
presented here follows closely the path-integral deriva-
tion of the Ward identities, but now the Jacobian of the
symmetry transformation is taken into account. Indeed,
anomalies represent a breakdown of the Ward identities,
and it is precisely the Jacobian that invalidates the
identities. For simplicity we will demonstrate the deri-
vation for a scalar field theory without sources: the
generalization to other (multiple) fields is straightfor-
ward. With a change of variables given by ϕ0ðxÞ ¼
ϕðxÞ þ ηδϕðxÞ:
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Z
½dϕ�eiS½ϕ� ¼

Z
½dϕ0�

���� δϕδϕ0

����eiS½ϕðϕ0Þ�

¼
Z

½dϕ0�
����δdðx − yÞ − η

δδϕ0ðxÞ
δϕ0ðyÞ

����eiS½ϕ0−ηδϕ0�

¼
Z

½dϕ�
����δdðx − yÞ − η

δδϕðxÞ
δϕðyÞ

����eiS½ϕ−ηδϕ�
¼
Z

½dϕ�e−η
R

ddx δδϕ
δϕ eiS½ϕ�e−iη

R
ddx δS

δϕδϕ

¼
Z

½dϕ�eiS½ϕ�
�
1 − η

Z
ddx

δδϕ

δϕ

−iη
Z

ddx
δS
δϕ

δϕ

�
: ð1Þ

Since this holds for any volume V, it follows:

�
δS
δϕ

δϕ

�
¼ i

�
δδϕðxÞ
δϕðyÞ

����
y¼x

�
: ð2Þ

Now δS
δϕ δϕ ¼ ∂ L

∂ϕ δϕ − ∂μ
∂L
∂∂μϕ δϕ. However, if δϕ is a

symmetry transformation, then ∂L
∂ϕ δϕþ ∂ L

∂∂μϕ δ∂μϕ ¼ ∂μKμ,

so δS
δϕ δϕ ¼ − ∂L

∂∂μϕ δ∂μϕþ ∂μKμ − ∂μ
∂ L
∂∂μϕ δϕ or δS

δϕ δϕ ¼
∂μð− ∂ L

∂∂μϕ δϕþ KμÞ ¼ −∂μjμ.

So Fujikawa’s method tells us that

h∂μjμi ¼ −i
�
δδϕðxÞ
δϕðyÞ

����
y¼x

�
: ð3Þ

Had we added a source term
R
ddxJðxÞϕðxÞ, the equation

would read

h∂μjμi − hJδϕi ¼ −i
�
δδϕðxÞ
δϕðyÞ

����
y¼x

�
: ð4Þ

Differentiation with respect to JðxiÞ n times and setting
J ¼ 0 would create contact terms:

h∂μjμðxÞϕðx1Þ…ϕðxnÞi

þ i
Xn
i¼1

hϕðx1Þ…δϕðxiÞδdðx − xiÞ…ϕðxnÞi

¼ −i
�
δδϕðxÞ
δϕðyÞ

����
y¼x

ϕðx1Þ…ϕðxnÞ
�
: ð5Þ

Equation (5) without the Jacobian contribution is the
traditional Ward identity at zero temperature, in vacuum,
presented in most textbooks [20]. In our case, we only need
the Jacobian of the infinitesimal transformation by itself in
order to compute the rhs of Eq. (3) and compare our results
with the literature for both the zero-temperature and the

finite-temperature case. For the latter, we will work within
the framework of Ref. [18], for which a detailed calculation
is mandatory.

III. CONTACT INTERACTION

The Schrödinger Lagrangian density for bosons with
contact interaction in 2D is given by

L ¼ ψ†
�
i∂t þ

∇2

2

�
ψ −

g
2
ðψ†ψÞ2; ð6Þ

which is the 2-body interaction with a Vð~x−~yÞ¼gδ2ð~x−~yÞ
potential:

L ¼ ψ†
�
i∂t þ

∇2

2

�
ψ

−
1

2

Z
d2 ~yψ†ðt; ~xÞψðt; ~xÞVð~x − ~yÞψ†ðt; ~yÞψðt; ~yÞ:

ð7Þ

The action corresponding to this Lagrangian is scale
invariant. This can be readily seen by noting that in
D ¼ 2, the coupling g has no dimensions in units of length
(with ℏ ¼ m ¼ 1). Therefore Eq. (3) applies.

IV. SCALE TRANSFORMATION

Under a nonrelativistic dilation transformation [21]:

~x0 ¼ λ~x; t0 ¼ λ2t; ψ 0ð~x0; t0Þ ¼ λ−D=2ψð~x; tÞ: ð8Þ

Setting λ ¼ 1þ η for infinitesimal η:

δ~x ¼ η~x;

δt ¼ 2ηt;

~δψ ¼ ηθψðt; ~xÞ≡ ηδψ ;

~δψ� ¼ ηθψ�ðt; ~xÞ≡ ηδψ�;

θ≡
�
−
D
2
− ~x · ~∇ − 2t∂t

�
; ð9Þ

whereD ¼ d − 1 is the spatial dimension.2 In this paper we
will set D ¼ 2. Therefore3:

2We used ~δψ (~δψ�) for the infinitesimal change in ψ (ψ�), and
set ~δψ ¼ ηδψ to make the notation consistent with Eq. (2).

3Sometimes we write x ¼ ðx0; ~xÞ ¼ ðt; ~xÞ for notational
convenience.
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δδψðxÞ
δψðyÞ

����
y¼x

¼ ½θδðx0 − y0Þδ2ð~x − ~yÞ�jy¼x ¼
δδψ�ðxÞ
δψ�ðyÞ

����
y¼x

: ð10Þ

Note that unlike translations, for dilations both conventions—δψ ¼ ηð−1 − ~x · ~∇ − 2t∂tÞψðt; ~xÞ or δψ ¼
ηð1þ ~x · ~∇þ 2t∂tÞψðt; ~xÞ—leading to currents of opposite sign, are widely used. We have adopted the former, which
leads to a dilation charge of [22]:

D ¼
Z

d2~x ~x ·~j − 2tH; ~j ¼ −
i
2
ðψ† ~∇ψ − ~∇ψ†ψÞ: ð11Þ

V. FUJIKAWA CALCULATION: SETUP

The generalization of the scalar case to our Lagrangian is straightforward:

det

0
B@

δψðxÞ
δψ 0ðyÞ

δψðxÞ
δψ 0�ðyÞ

δψ�ðxÞ
δψ 0ðyÞ

δψ�ðxÞ
δψ 0�ðyÞ

1
CA ¼ det

�
δ3ðx − yÞ − ηθδ3ðx − yÞ 0

0 δ3ðx − yÞ − ηθδ3ðx − yÞ

�

¼ exp

�
−η
Z

dtd2 ~xtr

�
θδðx0 − y0Þδ2ð~x − ~yÞ 0

0 θδðx0 − y0Þδ2ð~x − ~yÞ

�����
y¼x

�
; ð12Þ

where we have used detA ¼ eT̂r logA.4 Comparison with
Eq. (3) makes the generalization clear:

h∂μjμi ¼ −itr
�
θδ3ðx − yÞ 0

0 θδ3ðx − yÞ
�����

y¼x
: ð13Þ

This expression is singular so needs to be regularized.
This is done by expanding δ3ðx − yÞI2, where

I2 ¼
�
1 0

0 1

�
;

using the eigenbasis ϕn of a Hermitian operator M:

δ3ðx − yÞI2 ¼
X
n

ϕnðx0; ~xÞϕ†
nðy0; ~yÞ: ð14Þ

Inserting a regulator that is a function of M

δ3Rðx − yÞI2 ¼
X
n

R

�
M
Λ2

�
ϕnðx0; ~xÞϕ†

nðy0; ~yÞ; ð15Þ

with the property that Rð0Þ ¼ 1 so that at the end of the
calculation we send Λ → ∞ and limΛ→∞RðMΛ2Þ ¼ 1

(½M� ¼ ½Λ2�). The idea is to choose R such that large
eigenvalues are suppressed giving a convergent sum:

δ3Rðx − xÞI2 ¼
X
n

R

�
λn
Λ2

�
ϕnðx0; ~xÞϕ†

nðx0; ~xÞ: ð16Þ

Once the Hermitian operator M has been selected, then
the sum over n in Eq. (15) gives

δ3Rðx − yÞI2 ¼
X
n

R

�
M
Λ2

�
ϕnðx0; ~xÞϕ†

nðy0; ~yÞ

¼ R

�
M
Λ2

�
δ3ðx − yÞI2; ð17Þ

so that

tr½δ3Rðx − yÞI2� ¼ tr

�
R

�
M
Λ2

�
δ3ðx − yÞI2

�
: ð18Þ

For the class of regulators defined by Eqs. (19) and (20)
in the next section—a consistent choice for the untrapped
system—it will be shown that the nontrivial contribution
to Eq. (18) will have an even integrand in both ω and ~k
[Eq. (28)]. This means that the derivative terms in θ will
give a null contribution and the only term that will survive
is given by Eq. (18). To see this, one should take the
space-time derivatives in Eq. (21), and then set x ¼ y;
these terms will give odd contributions to the integrand in

ðω; ~kÞ space when multiplied by the even terms
of Eq. (28).
Therefore, Eq. (18) is the expression we aim to calculate.

4T̂r includes both functional and matrix indices; tr only refers
to the 2 × 2 matrix indices in Eqs. (12) and (13).
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VI. FUJIKAWA CALCULATION: MODE EXPANSION

A. Zero temperature

For our Hermitian matrix we will choose [23]

M ¼
�
i∂t þ ∇2

2
þ μ − 2gψ�ψ þ iϵ −gψ2

−gψ�2 −i∂t þ ∇2

2
þ μ − 2gψ�ψ þ iϵ

�
ð19Þ

where the fields in M are constant background fields, and

L0 ¼
1

2
ð χ† χ ÞM

�
χ
χ†

�

is the quadratic Lagrangian resulting from a saddle point expansion of the action about the background field ψ , and χ is the
shift of the original field from ψ . We have included a chemical potential μ for many-body physics that explicitly breaks scale
invariance, but we can always set μ ¼ 0 and as we will demonstrate, the inclusion of μ has no effect on the anomaly.
For our regulating function R we will choose

R

�
M
Λ2

�
¼
�
1� M

Λ2

�
−1
; ð20Þ

which clearly satisfies Rð0Þ ¼ 1. Plugging in this regulator into Eq. (18) and Fourier expanding δ3ðx − yÞ gives

tr½δ3Rðx − yÞI2� ¼
Z

dω
2π

Z
d2~k
ð2πÞ2 tr

0
B@ 1� ω−k2

2
þμ−2gψ�ψþiϵ

Λ2 ∓ gψ2

Λ2

∓ gψ�2

Λ2 1� −ω−k2
2
þμ−2gψ�ψþiϵ

Λ2

1
CA

−1

e−iωðxo−yoÞþi~k·ð~x−~yÞ: ð21Þ

We will now take ðx0; ~xÞ ¼ ðy0; ~yÞ, will make a change of variables ~ω ¼ ω
Λ2 and ~k ¼ k

Λ, and then replace the tildes since

they are dummy indices (ω and ~k are now dimensionless):

tr½δRð0ÞI2� ¼ Λ4

Z
dω
2π

Z
d2k
ð2πÞ2 tr

0
BB@ 1� ðω − k2

2
þ μ−2gψ�ψþiϵ

Λ2 Þ ∓ gψ2

Λ2

∓ gψ�2
Λ2 1�

	
−ω − k2

2
þ μ−2gψ�ψþiϵ

Λ2



1
CCA

−1

: ð22Þ

For notational convenience we will write the above expression as

tr½δRð0ÞI2� ¼ �Λ4

Z
dω
2π

Z
d2~k
ð2πÞ2 tr

 
ω − k2

2
þ A� þ iϵ − gψ2

Λ2

− gψ�2
Λ2 −ω − k2

2
þ A� þ iϵ

!−1

; ð23Þ

with

A� ¼ �1þ μ − 2gψ�ψ
Λ2

: ð24Þ

To evaluate the inverse in Eq. (23), we will use the identity for matrix inverses ðDþ BÞ−1 ¼ D−1 − ðD−1BÞD−1 þ
ðD−1BÞðD−1BÞD−1 −… with

D� ¼
�
ω − k2

2
þ A� þ iϵ 0

0 −ω − k2
2
þ A� þ iϵ

�
; B ¼

�
0 − gψ2

Λ2

− gψ�2
Λ2 0

�
: ð25Þ

Note that the iϵ makes D� invertible.

CHRIS L. LIN AND CARLOS R. ORDÓÑEZ PHYSICAL REVIEW D 91, 085023 (2015)

085023-4



So Eq. (23) becomes

tr½δRð0ÞI2� ¼ �Λ4

Z
dω
2π

Z
d2~k
ð2πÞ2

× trðD−1
� − ðD−1

� BÞD−1
�

þðD−1
� BÞðD−1

� BÞD−1
� Þ; ð26Þ

where we terminated the series at two powers of B, since
each additional power of B produces a 1

Λ2 that the Λ4

prefactor cannot offset.
The first term in the series, D−1

� , when doing the integral
over ω, is independent of the coupling:

� Λ4

Z
dω
2π

Z
d2~k
ð2πÞ2 tr

0
B@

1

ω−k2
2
þA�þiϵ

0

0 1

−ω−k2
2
þA�þiϵ

1
CA

¼ �Λ4

Z
dω
2π

Z
d2~k
ð2πÞ2

 
2ðk2

2
− A� − iϵÞ

ω2 − ðk2
2
− A� − iϵÞ2

!

¼ ∓iΛ4

Z
d2~k
ð2πÞ2 : ð27Þ

Therefore this term is also contained in the free case,
which we take to be anomaly-free. So we subtract this term
when calculating the anomaly. The next term ðD−1

� BÞD−1
�

has no diagonal elements, so is traceless.
The only term to calculate is the ðD−1

� BÞðD−1
� BÞD−1

�
term which produces

tr½δRð0ÞI2� ¼ �Λ4

Z
dω
2π

Z
d2~k
ð2πÞ2

�
−
gψ2

Λ2

��
−
gψ�2

Λ2

�

×

�
−2ðk2

2
− A� − iϵÞ

½ω2 − ðk2
2
− A� − iϵÞ2�2

�

¼ �g2ðψ�ψÞ2
Z

dω
2π

×
Z

∞

0

dk
2π

�
−2kðk2

2
− A� − iϵÞ

½ω2 − ðk2
2
− A� − iϵÞ2�2

�
: ð28Þ

The integral over k is straightforward:

tr½δRð0ÞI2� ¼ � g2ðψ�ψÞ2
2π

Z
dω
2π

�
1

ω2 − ðA� þ iϵÞ2
�
:

ð29Þ

Now A� in Eq. (24) can be safely taken to �1 (Λ → ∞).
For both the � case the result is the same:

tr½δRð0ÞI2� ¼ i
g2ðψ�ψÞ2

4π
: ð30Þ

Plugging this into Eq. (13) gives

h∂μjμi ¼ −
g2ðψ�ψÞ2

4π
: ð31Þ

This can be compared with [24] (for the case of constant
background fields) by making the replacement g → g

2
.

Because both RðMΛ2Þ ¼ ð1� M
Λ2Þ−1 work as regulators,

any linear combination such that their coefficients add to
one works. For example:

R

�
M
Λ2

�
¼ 1

2

�
1þ M

Λ2

�
−1

þ 1

2

�
1 −

M
Λ2

�
−1

¼
�
1 −

M2

Λ4

�−1
: ð32Þ

We have also verified that the following regulators work:

R

�
M
Λ2

�
¼
�
1� M

Λ2

�
−2
: ð33Þ

B. Many-body

Under the formalism developed in [18]5:

2E − 2P ¼ tr½δRð0ÞI2�: ð34Þ

However, here the anomalous term is evaluated in
Euclidean space using the finite-temperature rules.
Equation (29) with plus chosen is

tr½δRð0ÞI2� ¼
g2ðψ�ψÞ2

2π

Z
dω
2π

�
1

ω2 − ð1þ iϵÞ2
�
: ð35Þ

In terms of the original dimensionful ω:

tr½δRð0ÞI2� ¼
g2ðψ†ψÞ2

2π
Λ2

Z
Λ2dω
2π

�
1

ðΛ2ωÞ2− ðΛ2þ iϵÞ2
�

¼ g2ðψ†ψÞ2
2π

Λ2

Z
dω
2π

�
1

ω2− ðΛ2þ iϵÞ2
�
:

ð36Þ

When going to finite temperature, the difference is that
we have −∂τ instead of i∂t. The effect is to replace ω
with iω in Eq. (35). That is, had we started directly in
Euclidean space, we would still get Eq. (35), but with
ω replaced by iω stemming from −∂τ replacing i∂t in our
regulator. The second change is that the integral is a

5The factor of βA in the denominator of Eq. (52) in [18]
cancels the Euclidean version of the factor

R β
0 dτ

R
d2~x from

Eq. (12) in this paper, since for constant background fields our
class of regulators gives a constant value for trðδRð0ÞI2Þ. The time
and spatial derivatives in θ̂s and θ̂ in paper [18] give no
contributions in this case (untrapped) as explained here. Notice
Eq. (34) is a 2 × 2 version of Eq. (52) in [18].
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sum since the modes are discrete, with a β factor resulting
from writing the delta function as δdðx − yÞ ¼
1
β

P
n

R
dDk
ð2πÞD e

−iωnðx0−y0Þei~k·ð~x−~yÞ. So a sum replaces the inte-

gral. So had we started directly in Euclidean space, we
would have a sum over frequencies instead of an integral:

tr½δRð0ÞI2� ¼
g2ðψ�ψÞ2

2π

Λ2

β

X
n

�
1

−ω2
n − ðΛ2 þ iϵÞ2

�
;

ð37Þ
where ωn ¼ 2πn

β for bosons. The iϵ no longer matters and
the summation is standard:

tr½δRð0ÞI2� ¼ −
g2ðψ�ψÞ2

2π

Λ2

β

�
β cothðβΛ2

2
Þ

2Λ2

�
; ð38Þ

which in the limit of large Λ gives

tr½δRð0ÞI2� ¼ −
g2ðψ�ψÞ2

4π
: ð39Þ

So plugging this into Eq. (34)

2 E − 2P ¼ −
g2ðψ�ψÞ2

4π
; ð40Þ

which agrees with [25] with g → 2g. For the finite-
temperature case, there is some ambiguity in the continu-
ation to Euclidean space that affects the sign, where Aþ
leads to the correct sign, and A− leads to the negative sign.
We take the view that the zero-temperature limit must
reproduce the vacuum result.

VII. CONCLUSION

Fujikawa’s path-integral method has been applied to
the Schrödinger Lagrangian to describe anomalies for
2D-nonrelativistic, SOð2; 1Þ scale-invariant complex
bosons with contact interactions. A class of natural regu-
lator was identified that gives results consistent with those
in the literature, obtained with other methods, in both zero-
and finite-temperature cases [24,25]. This work was moti-
vated by the recent formulation of Fujikawa’s approach to
analyze the anomaly structure for 2D gases with SOð2; 1Þ
classical symmetry (and other systems with such sym-
metry) [18], which is relevant in the study of ultracold 2D
trapped gases [16]. It was important, therefore, that we
made contact with established work using other techniques.
Further work is needed for a deeper understanding of this
method and its possible applications. In particular, heat
kernel techniques will be used to investigate trapped
systems. Work on these issues is in progress [26].
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