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N-particle irreducible effective actions (nPIEA) are a powerful tool for extracting nonperturbative and
nonequilibrium physics from quantum field theories. Unfortunately, practical truncations of nPIEA can
unphysically violate symmetries. Pilaftsis and Teresi (PT) addressed this by introducing a “symmetry
improvement” scheme in the context of the 2PIEA for an O (2) scalar theory, ensuring that the Goldstone
boson is massless in the broken symmetry phase [A. Pilaftsis and D. Teresi, Nucl. Phys. B874, 594 (2013)].
We extend this idea by introducing a symmetry improved 3PIEA for OðNÞ theories, for which the basic
variables are the one-, two- and three-point correlation functions. This requires the imposition of a Ward
identity involving the three-point function. We find that the method leads to an infinity of physically
distinct schemes, though a field theoretic analogue of d’Alembert’s principle is used to single out a unique
scheme. The standard equivalence hierarchy of nPIEA no longer holds with symmetry improvement, and
we investigate the difference between the symmetry improved 3PIEA and 2PIEA. We present renormalized
equations of motion and counterterms for two- and three-loop truncations of the effective action, though we
leave their numerical solution to future work. We solve the Hartree-Fock approximation and find that our
method achieves a middle ground between the unimproved 2PIEA and PT methods. The phase transition
predicted by our method is weakly first order and the Goldstone theorem is satisfied, while the PT method
correctly predicts a second-order phase transition. In contrast, the unimproved 2PIEA predicts a strong
first-order transition with large violations of the Goldstone theorem. We also show that, in contrast to PT,
the two-loop truncation of the symmetry improved 3PIEA does not predict the correct Higgs decay rate,
although the three-loop truncation does, at least to leading order. These results suggest that symmetry
improvement should not be applied to nPIEA truncated to < n loops. We also show that symmetry
improvement schemes are compatible with the Coleman-Mermin-Wagner theorem, giving a check on the
consistency of the formalism.
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I. INTRODUCTION

The recent demands of nonequilibrium field theory
applications in particle physics, cosmology and condensed
matter have led to a renaissance in the development
of novel field theory methods. The S-matrix school,
rebooted in the guise of spinor-helicity methods, has led
to a dramatic speedup in the computation of gauge theory
scattering amplitudes in vacuum [1]. On the finite temper-
ature and density fronts, efficient functional methods in the
form of n-particle irreducible effective actions (nPIEA)
have proven useful to understand collective behavior and
phase transitions [2]. They are similar in spirit to methods
based on Schwinger-Dyson equations in field theory or
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) equa-
tions in kinetic theory; however, unlike the Schwinger-
Dyson or BBGKYequations, nPIEA naturally form closed
systems of equations of motion without requiring any
closure ansatz [3–5]. nPIEA methods can be understood
as a hybrid of variational and perturbative methods: nPIEA
consist of a series of Feynman diagrams; however, the
propagators and vertices of these diagrams are the exact

1- through n-point proper connected correlation functions
which are determined self-consistently using variational
equations of motion.
This self-consistency effectively resums certain classes

of perturbative Feynman diagrams to infinite order. For
example, the one-loop 2PIEA diagram corresponding to the
Hartree-Fock self-energy in ϕ4 theory actually sums all of
the so-called daisy and super-daisy graphs of ordinary
perturbation theory (Fig. 1). This particular resummation is
often done in the literature without the use of nPIEA, but
such ad hoc resummation schemes run the risk of summing
an asymptotic series: a mathematically dangerous operation
(recent progress on summability has been made in resur-
gence theory [6], which is beyond the scope of this work).
nPIEA sidestep this issue because they are defined by the
rigorous Legendre transform procedure, guaranteeing
equivalence with the original theory. Unlike ad hoc resum-
mations, nPIEA based approximation schemes are placed
on a firm theoretical footing and can be systematically
improved.
However, loop-wise truncations of nPIEA, n > 1, have

difficulties in the treatment of theories with spontaneously
broken continuous symmetries. The root cause of these
difficulties is the fact that nPIEA obey different Ward*michael.brown6@my.jcu.edu.au
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identities than the 1PIEA. When the effective action is
truncated to a finite order the equivalence between theWard
identities is lost. This can also be understood in terms of the
resummation of perturbative Feynman diagrams: when an
nPIEA is truncated some subset of perturbative diagrams
are summed to infinite order, but the complementary subset
is left out entirely. The pattern of resummations does not
guarantee that the cancellations between perturbative dia-
grams needed to maintain the symmetry are kept. In the
case of scalar field theories with OðNÞ → OðN − 1Þ break-
ing, the result is that the final OðN − 1Þ symmetry is
maintained, but, at the Hartree-Fock level of approxima-
tion, the nonlinearly realized OðNÞ=OðN − 1Þ is lost,
the Goldstone theorem is violated (the N − 1 Goldstone
bosons are massive), and the symmetry restoration phase
transition is first order in contradiction with the second-
order transition expected on the basis of universality
arguments. A similar problem arises in gauge theories,
where the violation of gauge invariance in the l-loop
truncation is due to the missing ðlþ 1Þ-loop diagrams
(see, e.g. [7,8] for a discussion of the gauge fixing
problem).
Several studies have attempted to find a remedy for this

problem. These are discussed in [9] and references therein.
Here we restrict attention to the technique most frequently
advocated in the literature [10]. This technique constructs
the so-called external propagator as the second functional
derivative of a resummed effective action which depends
only on the mean field, obtained by eliminating the
2- through n-point correlation functions of the nPIEA by
their equations of motion. The resulting effective action
does obey a 1PI type Ward identity and the external
propagator yields massless Goldstone bosons. However,
the external propagator is not the propagator used in loop
graphs, so the loop corrections still contain massive
Goldstone bosons leading to incorrect thresholds, decay
rates and violations of unitarity. In order to avoid these
problems a manifestly self-consistent scheme must be used.
Pilaftsis and Teresi recently developed a method which

circumvents these difficulties [9] for the widely used
2PIEA (also known as the CJT effective action after
Cornwall, Jackiw and Tomboulis [11], the Luttinger-
Ward functional or Φ-derivable approximation depending
on the context). The idea is incredibly simple: impose the
desired Ward identities directly on the free correlation
functions. This is consistently implemented by using

Lagrange multipliers. The remarkable point is that the
resulting equations of motion can be put into a form that
completely eliminates the Lagrange multiplier field. They
achieve this by taking a limit in which the Lagrange
multiplier vanishes from all but one of the equations of
motion, and this remaining equation of motion is replaced
with the constraint to obtain a closed system. We show that
this nontrivial aspect of the procedure generalizes to the
3PIEA. We find that the generalization requires a careful
consideration of the variational procedure, however,
and an infinity of schemes are possible. A new principle
is required to choose between the schemes, and we propose
what we call the d’Alembert formalism as the appropriate
principle by analogy to the constrained variational problem
in mechanics.
We extend the work of Pilaftsis and Teresi to the 3PIEA

for three reasons. First, the 3PIEA is known to be the
required starting point to obtain a self-consistent non-
equilibrium kinetic theory of gauge theories. The accurate
calculation of transport coefficients and thermalization
times in gauge theories requires the use of nPIEA with
n ≥ 3 (see, e.g. [2,10,12] and references therein for dis-
cussion). The fundamental reason for this is that the 3PIEA
includes medium induced effects on the three-point vertex
at leading order. The 2PIEA in gauge theory contains a
dressed propagator but not a dressed vertex, leading not
only to an inconsistency of the resulting kinetic equation
but also to a spurious gauge dependence of the kind
discussed previously. We consider this work to be a
stepping stone towards a fully self-consistent, nonpertur-
bative and manifestly gauge invariant treatment of out-of-
equilibrium gauge theories.
Second, nPIEA allows one to accurately describe the

initial value problem with 1- to n-point connected corre-
lation functions in the initial state. For example, the widely
used 2PIEA allows one to solve the initial value problem
for initial states with a Gaussian density matrix. However,
the physical applications one has in mind typically start
from a near thermal equilibrium state which is not well
approximated by a Gaussian density matrix. This leads
to problems with renormalization, unphysical transient
responses and thermalization to the wrong temperature
[13]. This is addressed in [13] by the addition of an infinite
set of nonlocal vertices which only have support at the
initial time. Going to n > 2 allows one to better describe
the initial state, thereby reducing the need for additional
nonlocal vertices.
Lastly, the infinite hierarchy of nPIEA is the natural

home for the widely used 2PIEA (in all its guises) and
provides the clearest route for systematic improvements
over existing treatments. Thus investigating symmetry
improvement of 3PIEA is a well-motivated next step in
the development of nonperturbative quantum field theory.
After this introductory section we review nPIEA in

Sec. II, focusing on the 3PIEA for a model OðNÞ scalar

FIG. 1. From left to right: the Hartree-Fock self-energy dia-
gram, an example daisy or ring diagram, an example super-daisy
graph. The whole class of super-daisy diagrams is obtained from
iterating insertions of Hartree-Fock graphs in all possible ways.

MICHAEL J. BROWN AND IAN B. WHITTINGHAM PHYSICAL REVIEW D 91, 085020 (2015)

085020-2



field theory with symmetry breaking as a specific example.
Then in Sec. III we review and extend the symmetry
improvement program of Pilaftsis and Teresi. This includes
a derivation of the required Ward identities, their imple-
mentation as constraints using Lagrange multipliers and
the limiting procedure required to obtain sensible equations
of motion for the system. We will see that this procedure
rests on a certain technical assumption which we
will justify in Appendix A and make a connection to the
d’Alembert principle using a mechanical analogy. Then in
Sec. IV we investigate the renormalization of the theory,
first with the two-loop truncation and then three loops. The
three-loop truncation is analytically intractable in 1þ 3
dimensions so, after discussing the renormalization pro-
cedure in arbitrary dimension, we present results for 1þ 2
dimensions. The result of this section is a set of finite
equations of motion which must be solved numerically. In
Sec. V we solve the theory at the Hartree-Fock level and
discuss the phase transition thermodynamics. Section VI is
a verification that the Coleman-Mermin-Wagner theorem
holds in the symmetry improvement formalism despite the
imposition of Ward identities, a check on the consistency
of the formalism. In Sec. VII we discuss the effects of
symmetry improvement on the absorptive parts of propa-
gators and make some comments involving the Higgs
decay rate and dispersion relations. Finally in Sec. VIII
we discuss the main themes of the paper and point out
directions for future work.
On notation: we work mostly in 1þ 3 dimensions with

ημν ¼ diagð1;−1;−1;−1Þ, although the generalization to
other dimensions is simple. We take ℏ ¼ c ¼ kB ¼ 1 as far
as units are concerned, though we keep loop counting
factors of ℏ explicit. Repeated indices are summed.
Often, field indices accompany spacetime arguments.
Repeated indices in this case imply an integration over
the corresponding spacetime argument as well (“DeWitt
notation”). Where explicitly indicated, spacetime and
momentum integrals are written in compressed notation
with

R
x ≡

R
d4x,

R
p ≡

R
d4p=ð2πÞ4 and

R
p≡

R
p d

3p=ð2πÞ3
etc. hT½� � ��i represents the time-ordered product of the
factors in ½� � ��. Through most of this article the meaning of
time ordering is left implicit. The formalism can be readily
applied to vacuum field theory (t ∈ ð−∞;þ∞Þ with
the natural ordering), finite temperature field theory in
the imaginary time or Matsubara formalism (t → −iτ,
with periodic boundary conditions on τ ∈ ½0; β ¼ 1

kBT
Þ

and the natural ordering on τ) [14], and general non-
equilibrium field theory on the two-time Schwinger-
Keldysh contour (t runs from 0 to þ∞ then from þ∞−
iϵ back down to 0 − iϵ with time ordering in the sense of
position along the contour rather than the magnitude jtj)
[15]. In Sec. IV we develop the renormalization
theory for the vacuum case and in Sec. V we solve
the Hartree-Fock approximation at finite temperature in
the Matsubara formalism.

II. REVIEW OF nPI EFFECTIVE ACTIONS

For the sake of having an explicit example, we consider
the OðNÞ linear σ model given by the action

S½ϕ� ¼
Z
x

1

2
∂μϕa∂μϕa −

1

2
m2ϕaϕ

a −
λ

4!
ðϕaϕ

aÞ2; ð2:1Þ

where a ¼ 1;…; N is the flavor index. In the symmetry
breaking regime m2 < 0 and a vacuum expectation value
develops, which by symmetry can be taken in the last
component hϕi ¼ ð0;…; 0; vÞ where v2 ¼ −6m2=λ at tree
level. The massive mode, which we loosely call “the
Higgs” [reflecting our ultimate interest in the Standard
Model, despite the absence of gauge interactions in (2.1)],
gets a tree-level mass m2

H ¼ λv2=3 ¼ −2m2.
The nPI effective actions form a systematic hierarchy of

functionals ΓðnÞ½φ;Δ; V;…; VðnÞ� where φ;…; VðnÞ are the
proper 1- through n-point correlation functions and we
have suppressed spacetime arguments and flavor indices.
In more detail,

φa ¼ hϕai; ð2:2Þ

Δab ¼ iℏðhT½ϕaϕb�i − hϕaihϕbiÞ; ð2:3Þ

ℏ2ΔadΔbeΔcfVdef ¼ hT½ϕaϕbϕc�i − hT½ϕaϕb�ihϕci
− hT½ϕcϕa�ihϕbi − hT½ϕbϕc�ihϕai
þ 2hϕaihϕbihϕci

..

.
ð2:4Þ

In general VðnÞ is the sum of connected one particle
irreducible Feynman diagrams contributing to hϕni with
all external legs (including leg corrections) removed.
In the absence of external source terms the correlation

functions obey equations of motion of the form

δΓðnÞ

δφ
¼ 0;

δΓðnÞ

δΔ
¼ 0;… ;

δΓðnÞ

δVðnÞ ¼ 0: ð2:5Þ

In the exact theory ΓðnÞ obey equivalence relationships

Γð1Þ½φ� ¼ Γð2Þ½φ;Δ� ¼ Γð3Þ½φ;Δ; V� ¼ … ; ð2:6Þ

where extra arguments are eliminated by their equations of
motion when comparisons are made. These relationships
only hold approximately when approximations are made to
the theory. A stronger equivalence hierarchy that relates
loop-wise truncations of the ΓðnÞ will be discussed below.
For later convenience we introduce the tree-level vertex

functions
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V0abcðx; y; zÞ ¼
δ3S½ϕ�

δϕaðxÞδϕbðyÞδϕcðzÞ
����
ϕ¼φ

; ð2:7Þ

Wabcdðx; y; z; wÞ ¼
δ4S½ϕ�

δϕaðxÞδϕbðyÞδϕcðzÞδϕdðwÞ
����
ϕ¼φ

:

ð2:8Þ

For the OðNÞ model these are

V0abcðx; y; zÞ ¼ −
λ

3
½δabφcðxÞ þ δcaφbðxÞ þ δbcφaðxÞ�

× δð4Þðx − yÞδð4Þðx − zÞ; ð2:9Þ

Wabcdðx; y; z; wÞ ¼ −
λ

3
½δabδcd þ δacδbd þ δadδbc�

× δð4Þðx − yÞδð4Þðx − zÞδð4Þðx − wÞ:
ð2:10Þ

The nPIEA is defined in the functional integral formal-
ism by the Legendre transform of the connected generating
function

WðnÞ½J; Kð2Þ; � � � ; KðnÞ� ¼ −iℏ lnZðnÞ½J; Kð2Þ; � � � ; KðnÞ�;
ð2:11Þ

for a field theory in the presence of source terms defined by
the generating functional

ZðnÞ½J; Kð2Þ;…; KðnÞ� ¼
Z

D½ϕ� exp i
ℏ

�
S½ϕ� þ Jxϕx þ

1

2
ϕxK

ð2Þ
xy ϕy þ � � � þ 1

n!
KðnÞ

x1���xnϕx1 � � �ϕxn

�
: ð2:12Þ

Then ΓðnÞ is the n-fold Legendre transform

ΓðnÞ½φ;Δ; V;…; VðnÞ� ¼ WðnÞ − J
δWðnÞ

δJ

− Kð2Þ δW
ðnÞ

δKð2Þ − � � �

− KðnÞ δW
ðnÞ

δKðnÞ ; ð2:13Þ

where the source terms J; Kð2Þ;…; KðnÞ are solved for in
terms of the φ;Δ;…; VðnÞ. Spacetime integrations and
OðNÞ index contractions have been suppressed for brevity.
For bosonic fields the Δ;…; VðnÞ are totally symmetric
under permutations of their arguments. The generalization
to fermions requires sign changes for odd permutations of
arguments corresponding to fermionic fields, but is other-
wise straightforward. (Note that the nPIEA is defined by
this Legendre transform, not by any irreducibility property
of the Feynman graphs, though for low enough loop orders
the graphs are irreducible as the name implies. At high
enough loop order for n > 2 the name becomes misleading.
For example, the five-loop 5PIEA contains graphs that are
not five-particle irreducible [4]!)
Γð1Þ½φ� is the familiar 1PI effective action introduced by

Goldstone, Salam and Weinberg and independently by
Jona-Lasinio [16]. Γð1Þ½φ� can be written

Γð1Þ½φ� ¼ S½φ� þ iℏ
2
Tr ln fΔ−1

0 ½φ�g þ Γð1Þ
2 ½φ�; ð2:14Þ

where Δ−1
0 ½φ� ¼ δ2S½ϕþ φ�=δϕ2jϕ¼0 is the inverse propa-

gator and Γð1Þ
2 is the sum of all connected vacuum graphs

with ≥ 2 loops where the propagators Δ0½φ� and vertices
are obtained from the shifted action S½ϕþ φ� with the
additional prescription that all 1-particle reducible graphs
are dropped [17]. Note that (2.4) is equivalent to

Vð1Þ
defðu; v; wÞ ¼

δ3Γð1Þ

δφdðuÞδφeðvÞδφfðwÞ
; ð2:15Þ

where the superscript “(1)” indicates the vertex derived
from the 1PIEA.
The 2PIEA Γð2Þ½φ;Δ� was introduced in the context of

nonrelativistic statistical mechanics, apparently independ-
ently, by Lee and Yang, Luttinger and Ward, and others,
but was brought to the functional formalism and relativistic
field theory by Cornwall, Jackiw and Tomboulis [11].
Γð2Þ½φ;Δ� is most easily computed by noting that
the Legendre transform can be performed in stages. First
perform the Legendre transform with respect to J, using
result (2.14) with the replacement S½ϕ� → S½ϕ�þ
1
2
ϕxK

ð2Þ
xy ϕy, then do the transform with respect to Kð2Þ.

This procedure leads to (up to an irrelevant constant)

Γð2Þ½φ;Δ� ¼ S½φ� þ iℏ
2
Tr lnðΔ−1Þ þ iℏ

2
TrðΔ−1

0 ΔÞ

þ Γð2Þ
2 ½φ;Δ�: ð2:16Þ

The equation of motion for Δ is Dyson’s equation,

Δ−1 ¼ Δ−1
0 − Σ; ð2:17Þ

where
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Σ ¼ 2i
ℏ
δΓð2Þ

2 ½φ;Δ�
δΔ

; ð2:18Þ

is identified as the 1PI self-energy. Since Σ consists of 1PI

two-point graphs, Γð2Þ
2 must consist of 2PI vacuum graphs.

That is, Γð2Þ
2 is the sum of all vacuum diagrams which do

not fall apart when any two lines are cut. This results in a
drastic reduction in the number of graphs at a given loop
order. Further, the propagators in a 2PI graph are the full
propagators Δ, with all self-energy insertions resummed to
infinite order.
The 3PIEA Γð3Þ½φ;Δ; V� can be computed following the

same method: replace S½ϕ� → S½ϕ� þ 1
3!
Kð3Þ

xyzϕxϕyϕz in the
previous result and perform the Legendre transform with
respect to Kð3Þ.
The shift by the source term Kð3Þ results in the intro-

duction of an effective three-point vertex ~V ≡ V0 þ Kð3Þ

appearing in Γð2Þ
2 . The difficult step of the Legendre

transform is relating ~V to V. This can be done by comparing
δWð3Þ½J; Kð2Þ; Kð3Þ�=δKð3Þ with δΓð2Þ½φ;Δ; ~V�=δKð3Þ (see
[2,18]). The final result for Γð3Þ is

Γð3Þ ¼ S½φ� þ iℏ
2
Tr lnðΔ−1Þ þ iℏ

2
TrðΔ−1

0 ΔÞ þ Γð3Þ
3 ;

ð2:19Þ

where to three-loop order the diagram piece is

Γð3Þ
3 ¼ Φ1 þ

ℏ2

3!
V0ΔΔΔV − Φ2

þ Φ3 þ Φ4 þ Φ5 þOðℏ4Þ; ð2:20Þ

where Φ1;…;Φ5 are given by the Feynman diagrams
shown in Fig. 2. Explicitly,

Φ1 ¼ −
ℏ2

8
WabcdΔabΔcd; ð2:21Þ

Φ2 ¼
ℏ2

12
VabcVdefΔadΔbeΔcf; ð2:22Þ

Φ3 ¼
iℏ3

4!
VabcVdefVghiVjklΔadΔbgΔcjΔehΔfkΔil; ð2:23Þ

Φ4 ¼ −
iℏ3

8
VabcVdefWghijΔadΔbgΔchΔeiΔfj; ð2:24Þ

Φ5 ¼
iℏ3

48
WabcdWefghΔaeΔbfΔcgΔdh: ð2:25Þ

The 3PI equation of motion for V is 0 ¼ δΓð3Þ
δVabc

, which
reads in full

Vabc ¼ V0abc þ iℏVadeVbfgVchiΔdfΔehΔgi

−
1

3!

X
π

3iℏ
2

VπðaÞdeWπðbÞπðcÞfgΔdfΔeg þOðℏ2Þ;

ð2:26Þ

where
P

π is a sum over the 3! permutations mapping
ða; b; cÞ → ðπðaÞ; πðbÞ; πðcÞÞ (spacetime arguments are
permuted as well). The graphical interpretation of this
equation is shown in Fig. 3. The permutations lead to the
usual s, t, and u channel contributions with the expected
symmetry factors. This equation is best thought of as a
self-consistent integral equation in the same spirit as a
Schwinger-Dyson equation, and can be solved iteratively.
By iterating (2.26) one sees that it sums a sequence of
vertex correction diagrams to infinite order.
If all higher-order terms are kept in Γð3Þ

3 , the resulting V
is the same as the Vð1Þ of (2.15); however, truncated actions
give solutions V ≠ Vð1Þ. Similar remarks apply for the
propagators. These self-consistent solutions do not, in
general, obey the desirable field theoretic properties of
the full solution, such as Ward identities. The symmetry
improvement strategy is to impose 1PI Ward identities as
constraints on the self-consistent solutions Δ and V. This is
discussed further in Sec. III.
Note that (2.26) can be derived by removing a resummed

vertex from each graph in Γð3Þ
3 (because δ=δV acts by

removing a single V factor from graphs in all possible
ways), which has the graphical effect of opening two loops.
This means that the one-loop correction to V comes from
three-loop graphs in Γð3Þ. Thus a loop-wise truncation of
nPIEA for n ≥ 3 does not lead to a loop-wise truncation of

FIG. 2. Two- and three-loop diagrams contributing to

Γð3Þ
3 ½φ;Δ; V�. We label these Φ1 through Φ5 from left to right,

respectively, and their explicit forms are given in (2.21) through
(2.25). Solid circles represent the resummed vertices V and the
crossed circles represent the bare vertices V0 and W. The dashed
lines represent the resummed propagators Δ. Note that these
diagrams are called “EIGHT,” “EGG,” “MERCEDES,” “HAIR,”
and “BBALL,” respectively, in the nomenclature of [4,5].

= + +

FIG. 3. Equation of motion for the 3PI vertex function V up to
one-loop order (2.26). Note that the bubble graph (last term) is
implicitly symmetrized over external momenta and OðNÞ indices.
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the corresponding equations of motion. We will discuss the
further implications of this in Sec. VII.
Another important implication of this result is that Γð2Þ

and Γð3Þ are equivalent to two-loop order (after one
substitutes V ¼ V0 þOðℏÞ in Γð3Þ). However, Γð2Þ and
Γð3Þ differ at three-loop order because Γð3Þ contains
resummed vertex corrections that Γð2Þ does not. This is
an example of an equivalence hierarchy of nPI effective
actions that has the general form [2]:

Γð1Þ
ð1 loopÞ½ϕ� ¼ Γð2Þ

ð1 loopÞ½ϕ;Δ� ¼ � � � ; ð2:27Þ

Γð1Þ
ð2 loopÞ½ϕ� ≠ Γð2Þ

ð2 loopÞ½ϕ;Δ� ¼ Γð3Þ
ð2 loopÞ½ϕ;Δ; V� ¼ � � � ;

ð2:28Þ

Γð1Þ
ð3 loopÞ½ϕ� ≠ Γð2Þ

ð3 loopÞ½ϕ;Δ� ≠ Γð3Þ
ð3 loopÞ½ϕ;Δ; V�

¼ Γð4Þ
ð3 loopÞ½ϕ;Δ; V; Vð4Þ� ¼ � � � ;

..

.
ð2:29Þ

where the subscripts represent the order of the loop-wise
truncation and the “extra” correlation functions are to be
evaluated at the solutions of their respective equations of
motion before making the comparison (and also allowance
is made for shifts by irrelevant constants). This equivalence
hierarchy has been explicitly checked up to five-loop 5PI
order in scalar field theories [4].
The existence of the equivalence hierarchy implies that

in the standard formalism one gains nothing by going to
higher nPI effective actions unless one also includes
diagrams with at least n loops, since for m > n one can

always reduce ΓðmÞ
ðnloopÞ to Γ

ðnÞ
ðnloopÞ. However, we shall see that

symmetry improvement breaks this equivalence hierarchy.
In particular, we find that the symmetry improvement of the
3PI effective action modifies the Δ equation of motion in a
way that remains nontrivial even if Γð3Þ is then truncated at
two loops and V is replaced by its tree-level value V0. In
general we find that the symmetry improvement procedure
introduces Ward identities that relate k-point functions to
ðkþ 1Þ-point functions and these constraints spoil the
equivalence hierarchy; i.e. the “operations” of symmetry
improvement and reduction in the hierarchy do not com-
mute. The consequences of this for the phase diagram of the
scalar OðNÞ theory in the various possible schemes are
investigated in Sec. V.

III. SYMMETRY IMPROVEMENT

Symmetry improvement begins with the consideration of
the Ward identities in the nPI formalism. Following [9] we
derive the Ward identities from the condition that the
effective action is invariant under a symmetry transforma-
tion. The theory in (2.1) has the OðNÞ symmetry transform

ϕa → ϕa þ iϵATA
abϕb; ð3:1Þ

where TA are the generators of the group in the funda-
mental representation (A ¼ 1;…; NðN − 1Þ=2) and ϵA are
infinitesimal transformation parameters. Note that our
implicit integration convention can be maintained if we
consider that TA

ab contains a spacetime delta function
TA
ab ∝ δð4Þðxa − xbÞ. Also TA

ab ¼ −TA
ba. Under this trans-

formation the effective actions change by

δΓð1Þ ¼ δΓð1Þ

δφa
iϵATA

abφb; ð3:2Þ

δΓð2Þ ¼ δΓð2Þ

δφa
iϵATA

abφb þ
δΓð2Þ

δΔab
iϵAðTA

acΔcb þ TA
bcΔacÞ;

ð3:3Þ

δΓð3Þ ¼ δΓð3Þ

δφa
iϵATA

abφbþ
δΓð3Þ

δΔab
iϵAðTA

acΔcbþTA
bcΔacÞ

þ δΓð3Þ

δVabc
iϵAðTA

adVdbcþTA
bdVadcþTA

cdVabdÞ;
..
.

ð3:4Þ

according to the tensorial structure of the arguments.
The next steps to derive the Ward identities are to set
δΓðnÞ ¼ 0, take functional derivatives of the resulting
equations with respect to φ and finally apply the equations
of motion. We also extract the overall factors of iϵA. We
call the identity derived from the mth derivative of δΓðnÞ
the ðmþ 1Þ-point nPI Ward identity, denoted by

WAðnÞ
a1…am ¼ 0 where a1;…; am are OðNÞ/spacetime indi-

ces. We note first of all that WðnÞ ¼ 0 identically by the
equations of motion. We also find that

WAð1Þ
c ¼ δΓð1Þ

δφcδφa
TA
abφb; ð3:5Þ

WAð1Þ
cd ¼ δΓð1Þ

δφdδφcδφa
TA
abφb þ

δΓð1Þ

δφcδφa
TA
ad þ

δΓð1Þ

δφdδφa
TA
ac:

ð3:6Þ

Specializing now to the broken symmetry vacuum
φb ¼ vδbN , we obtain the following identities by substitut-
ing different generators TA

ab in turn:

0 ¼
Z
xa

Δ−1
ca ðxc; xaÞv; a ≠ N; ð3:7Þ

0 ¼
Z
z
VNabðx; y; zÞvþ Δ−1

abðx; yÞ

− δabΔ−1
NNðx; yÞ; a; b ≠ N ð3:8Þ

0 ¼ Δ−1
ca ; a ≠ c; ð3:9Þ
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0 ¼
Z
z
Vdcaðx; y; zÞv; d; c; a ≠ N; ð3:10Þ

0 ¼
Z
z
VNNaðx; y; zÞv; a ≠ N: ð3:11Þ

Note that we explicitly write spacetime arguments, OðNÞ
indices and integrations in the above. This is because
DeWitt notation would lead to ambiguities here. Below we
introduce an ansatz adapted to the situation which again
allows for notational simplifications.
The essence of symmetry improvement is to impose

these Ward identities, derived for the 1PI correlation
functions, on the nPI correlation functions. Effectively,
we change fðΔ1PI; V1PIÞ → fðΔ3PI; V3PIÞ, where f is the
Ward identity and we change the arguments but not the
functional form. We have already made this substitution in
(3.7)–(3.11).
The first two identities will prove important in the

following, however, the identities (3.9)–(3.11) are trivial
in the sense that they can be satisfied simply by postulating
an ansatz forΔ and V which is tensorial under the unbroken
OðN − 1Þ symmetry. For later convenience we adopt this
spontaneous symmetry breaking (SSB) ansatz now by
introducing the notation

Δabðx; yÞ ¼

8><
>:

ΔGðx; yÞ; a ¼ b ≠ N;

ΔHðx; yÞ; a ¼ b ¼ N;

0; otherwise;

ð3:12Þ

for the Goldstone ðΔGÞ and Higgs ðΔHÞ propagators,
respectively, and we also introduce the vertex functions
V̄ and VN where

Vabcðx; y; zÞ ¼

8>>>><
>>>>:

V̄ðx; y; zÞδaNδbc exactly one of

þcyclic permutations a; b; c ¼ N;

VNðx; y; zÞ a ¼ b ¼ c ¼ N;

0 otherwise:

ð3:13Þ

Note that VN is not constrained by any of the 2- or
3-point Ward identities. Spacetime arguments are permuted
along with the OðNÞ indices, so that the first spacetime
argument of V̄ is always the one referring to the Higgs.
The other two arguments refer to the Goldstone bosons and
V̄ is symmetric under their interchange. VN is totally
symmetric in its arguments. For reference note that
at the two-loop truncation, V ¼ V0 and we obtain V̄ ¼
ð−λv=3Þ × δð4Þðx − yÞδð4Þðx − zÞ and VN ¼ 3V̄. After sub-
stituting the ansatz the diagrams Φ1;…;Φ5 can be put into
the form

Φ1 ¼
ℏ2λ

24
ðN2 − 1ÞΔGΔG þ ℏ2λ

12
ðN − 1ÞΔGΔH

þ ℏ2λ

8
ΔHΔH; ð3:14Þ

Φ2 ¼
ℏ2

4
ðN − 1ÞV̄ V̄ ΔHΔGΔG þ ℏ2

12
VNVNðΔHÞ3;

ð3:15Þ

Φ3 ¼ ðN − 1Þ iℏ
3

3!
VNðV̄Þ3ðΔHÞ3ðΔGÞ3 þ

iℏ3

4!
ðVNÞ4ðΔHÞ6

þ ðN − 1Þ iℏ
3

8
ðV̄Þ4ΔHΔHðΔGÞ4; ð3:16Þ

Φ4 ¼
iℏ3λ

24
½2ðN − 1ÞV̄VNðΔHÞ3ΔGΔGþðN2 − 1ÞV̄ V̄ ΔHðΔGÞ4 þ 3VNVNðΔHÞ5þ22ðN − 1ÞV̄ V̄ ðΔGÞ3ΔHΔH�; ð3:17Þ

Φ5 ¼
iℏ3λ2

144
f½ðN − 1ÞΔGΔG þ ΔHΔH�2 þ 2ðN − 1ÞðΔGÞ4 þ 2ðΔHÞ4g: ð3:18Þ

The suppressed spacetime integrations can be restored by
comparing these expressions to the diagrams and using the
fact that V̄ vertices join one Higgs and two Goldstone lines,
while VN vertices join three Higgs lines. (These expres-
sions can be checked using the supplemental MATHEMA-

TICA notebook [19].)
In terms of the SSB ansatz variables the nontrivial Ward

identities are OðNÞ-scalar equations which read

0 ¼ W1 ≡
Z
z
Δ−1

G ðx; zÞv; ð3:19Þ

0 ¼ W2 ≡
Z
z
V̄ðx; y; zÞvþ Δ−1

G ðx; yÞ − Δ−1
H ðx; yÞ:

ð3:20Þ
The physical meaning of these can be seen by assuming
translation invariance, substituting

Δ−1
G=HðpÞ≡

Z
x−y

eip·ðx−yÞΔ−1
G=Hðx; yÞ

¼ p2 −m2
G=H − ΣG=HðpÞ; ð3:21Þ
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and V̄ ¼ ð−λv=3Þ × δð4Þðx − yÞδð4Þðx − zÞ þ δV̄ where δV̄
represents the loop corrections to the vertex. Matching
powers of ℏ (which are implicit in ΣG=H and δV̄) results in

vm2
G ¼ 0; ð3:22Þ

−
λv2

3
þm2

H −m2
G ¼ 0; ð3:23Þ

δV̄ðp;−p; 0Þvþ ΣHðpÞ − ΣGðpÞ ¼ 0; ð3:24Þ

which are Goldstone’s theorem, the tree-level relation
between the particle masses, and a relation between the
vertex correction (with one external Goldstone boson leg
set to zero momentum) and the self-energies of the Higgs
and Goldstone bosons, respectively. The imaginary part of
this last identity can be used to extract a relation between
the Higgs decay rate and the off-shell Goldstone boson self-
energy and vertex corrections. This will be investigated in
Sec. VII.
We now wish to impose (3.19)–(3.20) as constraints on

the allowable values of φ, Δ and V in the 3PIEA. First we
review the 2PIEA case as discussed in [9], which imposes
(3.19) on Γð2Þ through the introduction of Lagrange
multiplier fields ld

AðxÞ, where A is an OðNÞ adjoint index,
and the symmetry improved effective action which wewrite
in manifestly covariant form as

~Γ½φ;Δ;l� ¼ Γð2Þ½φ;Δ� þ i
2

Z
x
ld
AðxÞWAð1Þ

c ðxÞ½PTðφ; xÞ�cd:

ð3:25Þ

The transverse projector,

½PTðφ; xÞ�cd ¼ δcd −
φcðxÞφdðxÞ

φ2ðxÞ ; ð3:26Þ

ensures that only the Goldstone modes are involved
in the constraint. The equations of motion follow
from δ ~Γ=δφ ¼ δ ~Γ=δΔ ¼ 0.
Substituting the SSB ansatz and using translation invari-

ance gives

~Γ½φ;Δ;l� ¼ Γð2Þ½φ;Δ� − lW1; ð3:27Þ

where we have absorbed group theory factors in l. The 2PI
equations of motion become

∂Γð2Þ=VT
∂v ¼ l

∂
∂vW1; ð3:28Þ

δΓð2Þ

δΔGðx; yÞ
¼ −vl

�Z
x
Δ−1

G ðx; 0Þ
�
2

; ð3:29Þ

δΓð2Þ

δΔHðx; yÞ
¼ 0; ð3:30Þ

0 ¼ v
Z
y
Δ−1

G ðx; yÞ: ð3:31Þ

The factor of VT on the left-hand side of the first equation
is the volume of spacetime, which we have divided by to
give an intensive quantity.
Now applying the constraint with v ≠ 0 directly in the

equations of motion would give zero right-hand sides,
reducing to the standard 2PI formalism. This is valid in the
full theory because the Ward identity is satisfied. However,
this is impossible in the case where the 2PI effective action
is truncated at finite loop order because the actual

Ward identity obeyed by the 2PIEA is WAð2Þ
c ≠ WAð1Þ

c .
The manifestation of this fact in the symmetry improve-
ment formalism is a singularity: l → ∞ as v

R
Δ−1

G → 0 so
as to leave a finite right-hand side in the first equation of
motion.
It is now necessary to introduce the constraint through a

limit process, and choose the scaling of l in the limit such
that the scalar equation of motion is traded for the
constraint. To this end we set

v
Z
y
Δ−1

G ðx; yÞ ¼ ηm3; ð3:32Þ

and take the limit η → 0. Note that, in extension of Pilaftsis
and Teresi [9], one may allow separate regulators ηi for
each Goldstone mode i ¼ 1;…; N − 1, but there is nothing
much to gain from this and it leads to no new difficulties so
we take a common regulator ηi ¼ η. m is an arbitrary fixed
mass scale, conveniently taken to be ∼mH, which serves to
make η dimensionless. The modified equations of motion
become

∂Γð2Þ=VT
∂v ¼ lη

v
m3; ð3:33Þ

δΓð2Þ

δΔGðz; wÞ
¼ −

lη2

v
m6: ð3:34Þ

If we choose to scale η and the l such that l0 ≡ lη=v is a
constant and lη2=v → 0 then

∂Γð2Þ=VT
∂v ¼ l0m3; ð3:35Þ

δΓð2Þ

δΔGðz; wÞ
¼ 0; ð3:36Þ

in addition to the Ward identity and the ΔH equation of
motion. In practice, in the symmetry broken phase, one
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simply discards the first equation of motion and solves the
second one in conjunction with the Ward identity, which
suffices to give a closed system. In the symmetric phase
v ¼ 0 and the Ward identity is trivial, but Γð2Þ also does not
depend linearly on v, hence one can take the previous
equations of motion with l0 ¼ 0. Note that we can, and do,
keep a nonzero m2

G in the intermediate stages of the
computation to serve as an infrared regulator.
To recap the procedure: first we define a symmetry

improved effective action using Lagrange multipliers and
compute the equations of motion. Second, note that the
equations of motion are singular when the constraints are
applied. Third, regulate the singularity by slightly violating
the constraint. Fourth, pass to a suitable limit where
violation of the constraint tends to zero. We require the
limiting procedure to be universal in the sense that no
additional data (arbitrary forms of the Lagrange multiplier
fields) need be introduced into the theory.
We now extend this logic to the 3PI case. To that end we

introduce the symmetry improved 3PIEA

~Γð3Þ ¼ Γð3Þ þ i
2

Z
x
ld
AðxÞWAð1Þ

c ðxÞ½PTðφ; xÞ�cd −Bf½WAð1Þ
cd �;

ð3:37Þ
where the second term is the same as the 2PI symmetry
improvement term and the third term contains the extended
symmetry improvement. B is the new Lagrange multiplier

and f½WAð1Þ
cd � is an arbitrary functional which vanishes if

and only if its argument vanishes. Substituting the SSB
ansatz we obtain

~Γð3Þ ¼ Γð3Þ − lW1 − Bf½W2�: ð3:38Þ

The equations of motion are

∂Γð3Þ=VT
∂v ¼ l0m3 þ B

Z
xz

δf
δW2ðx; yÞ

V̄ðx; y; zÞ; ð3:39Þ

δΓð3Þ

δΔGðr; sÞ
¼ −B

Z
xy

δf
δW2ðx; yÞ

Δ−1
G ðx; rÞΔ−1

G ðs; yÞ;

ð3:40Þ

δΓð3Þ

δΔHðr; sÞ
¼ B

Z
xy

δf
δW2ðx; yÞ

Δ−1
H ðx; rÞΔ−1

H ðs; yÞ; ð3:41Þ

δΓð3Þ

δV̄ðr; s; tÞ ¼ vB
Z
xyz

δf
δW2ðx; yÞ

× δð4Þðx − rÞδð4Þðy − sÞδð4Þðz − tÞ; ð3:42Þ

δΓð3Þ

δVNðr; s; tÞ
¼ 0; ð3:43Þ

W1 ¼ 0; ð3:44Þ

W2 ¼ 0; ð3:45Þ

where we already take the previous limiting procedure to
eliminate l and W1. In (3.42) we have inserted a factor of
1 ¼ R

z δ
ð4Þðz − tÞ for later convenience. Now we devise a

limiting procedure such that the right-hand sides of two of
(3.40), (3.41) and (3.42) vanish. The remaining equation
must be chosen so that it can be replaced by the constraint
(3.45) and still give a closed system. Note that (3.42)
cannot be eliminated because there is not enough informa-
tion to reconstruct V̄ from ΔG=H using W2. Thus we must
eliminate either ΔG or ΔH, or else artificially restrict the
form of V̄.
We show that the desired simplification of the equations

of motion can be achieved without restricting V̄ under the
assumption that δf=δW2ðx; yÞ is a spacetime independent
constant. Note that this is not required by Poincaré
invariance (only the weaker condition δf=δW2ðx; yÞ ¼
gðjx − yj2Þ is mandated). We temporarily adopt this
assumption without further explanation, though in
Appendix A we will show that it can be justified by the
introduction of the d’Alembert formalism.
Computing the left-hand side of (3.42) using (2.19) and

displaying only the two-loop terms explicitly we obtain

δΓð3Þ

δV̄ðr; s; tÞ ¼ −
ℏ2

2
ðN − 1Þ

×
Z
xyz

�
V̄ðx; y; zÞ þ λv

3
δðx − yÞδðx − zÞ

�
× ΔHðx; rÞΔGðy; sÞΔGðz; tÞ þOðℏ3Þ:

ð3:46Þ

Without symmetry improvement one sets this quantity to
zero, giving an equation equivalent to the one we derived in
the previous section, (2.26) (up to a group theory factor,
since the variables in the one case are Δab and V and in the
other ΔG, ΔH and V̄). This equation is now modified by the
symmetry improvement to

−
ℏ2

2
ðN − 1Þ

Z
xyz

�
V̄ðx; y; zÞ þ λv

3
δðx − yÞδðx − zÞ

�
× ΔHðx; rÞΔGðy; sÞΔGðz; tÞ þOðℏ3Þ

¼ vB
Z
xyz

δf
δW2ðx; yÞ

δð4Þðx − rÞδð4Þðy − sÞδð4Þðz − tÞ:

ð3:47Þ

Convolving with the inverse propagators Δ−1
H Δ−1

G Δ−1
G

gives
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−
ℏ2

2
ðN − 1Þ

�
V̄ða; b; cÞ þ λv

3
δða − bÞδða − cÞ

�
þOðℏ3Þ

¼ vB
Z
xyz

δf
δW2ðx; yÞ

Δ−1
H ðx; aÞΔ−1

G ðy; bÞΔ−1
G ðz; cÞ

¼
�
B
Z
xy

δf
δW2ðx; yÞ

Δ−1
H ðx; aÞΔ−1

G ðy; bÞ
�
W1: ð3:48Þ

The right-hand side now vanishes due to (3.44). With the
regulator (3.32) in place, we have that the symmetry
improvement term in the V̄ equation of motion vanishes
faster than the naive Bδf=δW2 scaling manifest in
(3.42). Schematically, the right-hand side scales as
Bðδf=δW2Þm2

Hm
4
Gv ∼ Bðδf=δW2Þm8

Hη
2=v. So long as

Bδf=δW2 does not blow up as fast as η−2 as η → 0 the
symmetry improvement has no effect on V̄.
Now we investigate the Goldstone propagator.

Substituting (2.19) into (3.40) we find the symmetry
improved equation of motion for ΔG,

Δ−1
G ðr; sÞ ¼ Δ−1

0Gðr; sÞ − ~ΣGðr; sÞ; ð3:49Þ

where we have defined the 3PI symmetry improved self-
energy,

~ΣGðr; sÞ≡ 2i
ℏðN − 1Þ

�
δΓ3

δΔGðr; sÞ

þ B
Z
xy

δf
δW2ðx; yÞ

Δ−1
G ðx; rÞΔ−1

G ðs; yÞ
�
: ð3:50Þ

Substituting in Γð3Þ
3 to two-loop order, we find

~ΣGðr; sÞ

¼ iℏλ
6

Tr½ðN þ 1ÞΔG þ ΔH�δð4Þðr − sÞ

− iℏ
Z
abcd

�
V̄ða; b; rÞ þ 2λv

3
δð4Þða − rÞδð4Þðb − rÞ

�
× V̄ðc; d; sÞΔHða; cÞΔGðb; dÞ

þ 2i
ℏðN − 1ÞB

Z
xy

δf
δW2ðx; yÞ

Δ−1
G ðx; rÞΔ−1

G ðs; yÞ

þOðℏ2Þ: ð3:51Þ

The first term corresponds to the Hartree-Fock diagram
(Fig. 1, far left); the second term corresponds to the sunset
diagrams (Fig. 4) and the third term is the symmetry
improvement term. The equation of motion for ΔH can be
written in the same form with a suitable definition
for a symmetry improved self energy ~ΣHðr; sÞ, where
the symmetry improvement term now has the
form ∼B

R ðδf=δW2ÞΔ−1
H Δ−1

H .

If we assume δf=δW2 is constant, we find that ~ΣG and
~ΣH scale as ðBδf=δW2Þm4

G ∼ ðBδf=δW2Þm6
Hη

2=v2 and
ðBδf=δW2Þm4

H ∼ ðBδf=δW2Þm4
Hη

0, respectively. Thus,
by choosing a regulator such that Bδf=δW2 goes to a
finite limit, the equations of motion for V̄ and ΔG are
unmodified and the equation of motion for ΔH is modified
by a finite term. This is the desired limiting procedure.
Adopting it gives the final set of equations of motion:

δΓð3Þ

δΔGðr; sÞ
¼ 0; ð3:52Þ

δΓð3Þ

δV̄ðr; s; tÞ ¼ 0; ð3:53Þ

δΓð3Þ

δVNðr; s; tÞ
¼ 0; ð3:54Þ

W1 ¼ 0; ð3:55Þ
W2 ¼ 0: ð3:56Þ

IV. RENORMALIZATION

Here we undertake a general description of the renorm-
alization problem at zero temperature. Our detailed
considerations follow in Secs. IVA and IV B for two-
and three-loop truncations, respectively. Finite temperature
results are given for the Hartree-Fock approximation in
Sec. V. The two-loop renormalization of the theory in
Sec. IVA is nontrivial already even though the vertex
equation of motion can be solved trivially. This is because
the symmetry improvement breaks the nPIEA equivalence
hierarchy by modifying the Higgs equation of motion.
Generically, modifications of the equations of motion

following from the 2PIEA will lead to an inconsistency of
the renormalization procedure since the 2PIEA is self-
consistently complete at two-loop order (in the action, i.e.
one- loop order in the equations of motion). However, we
will see that the wave function and propagator renormal-
ization constants (normally trivial in ϕ4 at one loop)
provide the extra freedom required to obtain consistency.
Then in Sec. IV B we will renormalize the theory at three
loops. Nonperturbative counterterm calculations are gen-
erally much more difficult than the analogous perturbative
calculations, hence many of the manipulations were per-
formed in a supplemental Mathematica notebook [19]. The
results of this section are finite equations of motion for
renormalized quantities which must be solved numerically.

FIG. 4. Sunset self-energy graph.
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We leave the numerical implementation to future work,
except in the case of the Hartree-Fock approximation.
We wish to demonstrate the renormalizability of the

equations of motion (3.52)–(3.56). First we examine the
symmetric phase, since on physical grounds SSB is
irrelevant to renormalizability. In the symmetric phase
v ¼ 0 and the Ward identity (3.55) is trivially satisfied,
while (3.56) requires ΔG ¼ ΔH as expected. Further,
iteration shows that (3.53) and (3.54) have the solution V̄ ¼
VN ¼ 0 as expected on general grounds: there is no three-
point vertex in the symmetric phase. As a result, the
symmetry improved 3PIEA in the symmetric phase is
equivalent to the ordinary 2PIEA,

~Γð3Þ½φ ¼ 0;Δ; V ¼ 0� ¼ Γð2Þ½φ ¼ 0;Δ�; ð4:1Þ

which is known to be renormalizable, either by an implicit
construction involving Bethe-Salpeter integral equations or
an explicit algebraic BPHZ (Bogoliubov-Parasiuk-Hepp-
Zimmerman) style construction which has nontrivial con-
sistency requirements (but which has been shown to be
equivalent to the Bethe-Salpeter method) [10,20,21]. Thus,
only divergences arising from nonzero V pose any new
conceptual problems.
We will extend the BPHZ style procedure of [20,22],

which was adapted to symmetry improved 2PIEA by [9]
and to 3PIEA for three dimensional pure glue QCD
(without symmetry improvement) by [8]. The essence of
the procedure is quite simple. Consider for example the
quadratically divergent integral

R
q iΔG=HðqÞ. Since

ΔG=HðqÞ is determined self-consistently this is a compli-
cated integral which must be evaluated numerically.
However, the UV behavior of the propagator should
approach q−2 as q → ∞. (Note that Weinberg’s theorem
[23] implies that the self-consistent propagators have this
form up to powers of logarithms [22], though renormaliza-
tion group theory shows the true large-momentum behavior
of the propagators is a power law with an anomalous
dimension. This implies that a truncated nPIEA does not
effect a resummation of large logarithms.) Now we can add
and subtract an integral with the same UV asymptotics,

Z
q
iΔG=HðqÞ ¼

Z
q

�
iΔG=HðqÞ −

i
q2 − μ2 þ iϵ

�

þ
Z
q

i
q2 − μ2 þ iϵ

; ð4:2Þ

where μ is an arbitrary mass subtraction scale (not a cutoff
scale). The first term is now only logarithmically divergent
and the second term can be evaluated analytically in a
chosen regularization scheme such as dimensional regu-
larization. A further subtraction of this kind can render the
first term finite.

We write the renormalized propagators as

Δ−1
G=H ¼ p2 −m2

G=H − ΣG=HðpÞ; ð4:3Þ

ΣG=HðpÞ ¼ Σa
G=HðpÞ þ Σ0

G=HðpÞ þ Σr
G=HðpÞ; ð4:4Þ

where mG=H is the physical mass and the (renormalized)
self-energies have been separated into pieces according
to their asymptotic behavior: Σa

G=HðpÞ ∼ p2ðlnpÞc1 ,
Σ0
G=H ∼ ðlnpÞc2 and Σr

G=H ∼ p−2 as p → ∞, respectively.

The pole condition requires ΣG=Hðp2 ¼ m2
G=HÞ ¼ 0. We

also introduce the auxiliary propagator Δμ
G=H ¼

ðp2 − μ2 − Σa
G=HðpÞÞ−1. The propagator ΔG=H can be

expanded in Δμ
G=H:

ΔG=HðpÞ ¼ Δμ
G=HðpÞ

þ ½Δμ
G=HðpÞ�2ðm2

G=H − μ2 þ Σ0
G=H þ Σr

G=HÞ
þOð½Δμ

G=HðpÞ�3½Σ0
G=HðpÞ�2Þ:

ð4:5Þ

This allows us to extract the leading-order asymptotics of
diagrams as p → ∞.
We now do a similar analysis to isolate the leading

asymptotics for V at large momentum. Suppressing OðNÞ
indices we can write Vðp1; p2; p3Þ ¼ λvfðp1

v ; p2

v ; p3

v Þ where
p1 þ p2 þ p3 ¼ 0. Now V → 0 as v → 0 implies that
fðχ1; χ2; χ3Þ ∼ χαðln χÞc3 , where α < 1 and χ is represen-
tative of the largest scale among χ1, χ2 and χ3.
Now consider the vertex equation of motion (2.26) or
Fig. 3. The triangle graph goes like

R
l l

3α−6ðlnlÞ3c3−3c1 ∼
χ3α−2ðln χÞ3c3−3c1 if α ≠ 2=3 or ðln χÞ1þ3c3−3c1 if α ¼ 2=3,
which is dominated by the bubble graph which goes
like

R
l l

α−4ðlnlÞc3−2c1 ∼ χαðln χÞc3−2c1 if α ≠ 0 or
ðln χÞ1þc3−2c1 if α ¼ 0. Thus, to a leading approximation
the large momentum behavior is obtained by dropping the
triangle graph from the equation of motion. This can also be
seen by taking v → 0 at fixed pi which suppresses the
triangle graph relative to the bubble graph.
We now define auxiliary vertex functions V̄μ and Vμ

N
which have the same asymptotic behavior as V̄ and VN ,
respectively, though depend only on the auxiliary propa-
gators. We define V̄μ and Vμ

N by taking the equations of
motion for V̄ and VN , dropping the triangle graphs, and
making the replacements V̄ → V̄μ, VN → Vμ

N , and
ΔG=H → Δμ

G=H. These equations are shown in Fig. 5.
This gives a pair of coupled linear integral equations,
analogous to the Bethe-Salpeter equations, for V̄μ and Vμ

N
which can be solved explicitly by iteration. (Details of this
calculation are presented in Sec. IV B). Unfortunately the
result is only analytically tractable in fewer than 1þ 3
dimensions, so we confine the analytical results depending
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on the explicit forms of V̄μ and Vμ
N to this case. In the

physically most interesting case of 1þ 3 dimensions, V̄μ

and Vμ
N must be numerically determined at the same time as

V̄ and VN .
By using these auxiliary propagators and vertices we

can isolate the divergent contributions to the equations of
motion and so obtain the required set of counterterms to
remove them.

A. Two-loop truncation

The theory simplifies dramatically at two-loop order. It
follows from (2.26) that at this order V → V0 (up to a
renormalization). Substituting this into the action gives,
apart from the symmetry improvement terms, the standard
2PIEA. This is an example of the equivalence hierarchy
previously discussed. Another simplification is that the
logarithmic enhancement of the propagators in the UV due
to Σa

G=H vanishes at this level (Σa
G=H is generated by the

diagram Φ5 appearing at three-loop order). In this case
Δμ

G ¼ Δμ
H ≡ Δμ ¼ ðp2 − μ2Þ−1. However, the reduction is

not trivial because now the Higgs equation of motion has
been replaced by a Ward identity. The equations of motion
reduce to

Δ−1
G ðx; yÞ ¼ −

�
∂μ∂μ þm2 þ λ

6
v2
�
δð4Þðx − yÞ

−
iℏ
6
ðN þ 1ÞλΔGðx; xÞδð4Þðx − yÞ

−
iℏ
6
λΔHðx; xÞδð4Þðx − yÞ

−
iℏ
9
λ2v2ΔHðx; yÞΔGðx; yÞ; ð4:6Þ

Δ−1
H ðx; yÞ ¼ −

λv2

3
δð4Þðx − yÞ þ Δ−1

G ðx; yÞ; ð4:7Þ

vm2
G ¼ 0: ð4:8Þ

The first line is the tree-level term, the second and third
lines are the Hartree-Fock self-energies, the fourth line is
the sunset self-energy, and the last two lines are the Ward
identities W2 and W1, respectively.
To renormalize the theory we regard all parameters

heretofore as bare parameters and introduce renormalized
counterparts using the same letters:

ðϕ;φ; vÞ → Z1=2ðϕ;φ; vÞ; ð4:9Þ

m2 → Z−1Z−1
Δ ðm2 þ δm2Þ; ð4:10Þ

λ → Z−2ðλþ δλÞ; ð4:11Þ

Δ → ZZΔΔ; ð4:12Þ

V → Z−3=2ZVV: ð4:13Þ

Hereafter whenever we refer to a bare parameter we
indicate this with a subscript “B,” e.g. m2

B etc. The wave
function renormalizations for Δ and V can be obtained
from their definitions Δ ∼ hϕϕi and ΔΔΔV ∼ hϕϕϕi,
respectively. Due to the presence of composite operators
in the effective action, additional counterterms are required
compared to the standard perturbation theory: δm2

0 and δλ0
for terms in the bare action, δm2

1 for one-loop terms, δλA1 for
terms of the form ϕiϕiΔjj, δλB1 for ϕiϕjΔij terms, δλA2 for
ΔiiΔjj and δλB2 for ΔijΔij. Similarly, Δ and V are given
independent renormalization constants ZΔ and ZV , respec-
tively. We give terms in the sunset graphs a universal δλ
counterterm.
The renormalized equations of motion are (see

Appendix B for more detail)

Δ−1
G ðpÞ ¼ ZZΔp2 −m2 − δm2

1 − ZΔ
λþ δλA1

6
v2

−
ℏ
6
½ðN þ 1Þλþ ðN − 1ÞδλA2 þ 2δλB2 �Z2

ΔT G

−
ℏ
6
ðλþ δλA2 ÞZ2

ΔT H

þ iℏ

�ðλþ δλÞv
3

�
2

Z3
ΔIHGðpÞ; ð4:14Þ

Δ−1
H ðpÞ ¼ −ZΔ

ðλþ δλÞv2
3

þ Δ−1
G ðpÞ; ð4:15Þ

vm2
G ¼ 0; ð4:16Þ

where for convenience we have defined

T G=H ¼
Z
q
iΔG=HðqÞ; ð4:17Þ

IHGðpÞ ¼
Z
q
iΔHðqÞiΔGðp − qÞ: ð4:18Þ

= +

FIG. 5. Defining equation for the auxiliary vertex functions V̄μ

and Vμ
N , obtained by taking the corresponding equations of

motion for V̄ and VN , dropping the triangle graphs, and making
the replacements V̄ → V̄μ, VN → Vμ

N , and ΔG=H → Δμ
G=H . The

filled triangle represents the auxiliary vertices and the lines
represent the auxiliary propagators. Crossed circles are bare
vertices as before.
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The tadpole integrals T G=H correspond to the Hartree-Fock
graphs and IHGðpÞ corresponds to the sunset self-energy
graph. From these we identify the self-energy parts:

Σa
G=HðpÞ ¼ ðZZΔ − 1Þp2 ¼ 0; ð4:19Þ

Σ0
G=HðpÞ þ Σr

G=HðpÞ ¼ −iℏ
�ðλþ δλÞv

3

�
2

Z3
ΔIHGðpÞ:

ð4:20Þ

Note that the Goldstone and Higgs self-energies are equal
to this order as a consequence of the vertex Ward identity.
This is essentially where our treatment differs from [9].
By using the auxiliary propagators to extract the diver-

gences in T G=H and IHGðpÞ and absorbing them into the
counterterms (see Appendix B), we find the finite equations
of motion:

Δ−1
G ðpÞ ¼ p2 −m2 −

λ

6
v2 −

ℏ
6
ðN þ 1ÞλT fin

G −
ℏ
6
λT fin

H

þ iℏ

�
λv
3

�
2

½I fin
HGðpÞ − I fin

HGðmGÞ�; ð4:21Þ

Δ−1
H ðpÞ ¼ p2 −m2 −

λv2

3
−
λ

6
v2 −

ℏ
6
ðN þ 1ÞλT fin

G

−
ℏ
6
λT fin

H þ iℏ

�
λv
3

�
2

½I fin
HGðpÞ − I fin

HGðmHÞ�:

ð4:22Þ

The finite parts T fin
G=H and I fin

HGðpÞ are

I fin
HGðpÞ ¼ IHGðpÞ − Iμ; ð4:23Þ

T fin
G=H ¼ T G=H − T μ þ iðm2

G=H − μ2ÞIμ

−
Z
q
i½ΔμðqÞ�2ΣμðqÞ; ð4:24Þ

where the auxiliary quantities are

T μ ¼
Z
q
iΔμðqÞ; ð4:25Þ

Iμ ¼
Z
q
½iΔμðqÞ�2; ð4:26Þ

ΣμðqÞ ¼ −iℏ
�
λv
3

�
2
�Z

l
iΔμðlÞiΔμðqþ lÞ − Iμ

�
: ð4:27Þ

(For details see Appendix B.) These equations are the main
result of this section. We expect they could be solved
numerically using techniques similar to [21], though we
leave the numerical implementation for later work.

B. Three-loop truncation

We consider now the three-loop truncation of the
effective action. The vertex equation of motion is shown
in Fig. 3, and we have already argued that the leading
asymptotics at large momentum are captured by the
auxiliary vertex defined by its equation of motion in
Fig. 5. Subtracting these two equations we find that the
right-hand side is finite (indeed the auxiliary vertices were
constructed to guarantee this). Thus the problem of
renormalizing the vertex equation of motion reduces to
the problem of renormalizing the auxiliary vertex equation
of motion.
It is temporarily more convenient to go back to the OðNÞ

covariant form we had before introducing the SSB ansatz.
Introduce the covariant auxiliary vertex Vμ

abc which is
related to V̄μ and Vμ

N by an equation analogous to (3.13).
Iterating the equation of motion, we find the solution

Vμ
abc ¼ KabcdefV0def; ð4:28Þ

where the six-point kernel Kabcdef obeys the Bethe-
Salpeter-like equation

Kabcdef ¼ δadδbeδcf þ
1

3!

X
π

�
−
3iℏ
2

�
δπðaÞh

×WπðbÞπðcÞkgΔ
μ
kiΔ

μ
gjKhijdef; ð4:29Þ

where
P

π is a sum over permutations of the incoming legs.
This equation is shown in Fig. 6. (4.29) can be written in a
form that makes explicit all divergences (see Appendix C)
and replaces the bare vertex W by a four-point ker-

nel Kð4Þ
abcd ∼ λ=ð1þ λIμÞ.

In fewer than four dimensions Kð4Þ
abcd is finite and every

correction to the tree-level value is asymptotically sub-
dominant. Thus the leading term at large momentum is the
tree-level term and, instead of the full auxiliary vertex as we
have defined it, one can simply take Vμ

abc ¼ V0abc, dra-
matically simplifying the renormalization theory. A similar
simplification happens to the auxiliary propagator due to

= +

=

FIG. 6. Solution for the auxiliary vertex function in terms of a
six-point kernelKabcdef which is represented by the gray box (the
indices run from top to bottom down the left side, then the right).
The vertical black bar in the kernel equation of motion represents
symmetrization of the external lines (with a factor of 1=3!).
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the logarithmic (rather than quadratic) divergence of
Φ5-generated self-energy in < 1þ 3 dimensions. This
confirms statements made in the literature (supported by
numerical evidence though without proof, to our knowl-
edge) to the effect that the asymptotic behavior of Green
functions is free (e.g. [8]).
Unfortunately, the situation is much more difficult in

four dimensions and the renormalization of the nPIEA for
n ≥ 3 in d > 3 remains an open problem, both in general
and in the present case. The problem can be seen from the
behavior of the auxiliary vertex which is discussed further
in Appendix C. For the sake of obtaining analytical results
we restrict the rest of this section to < 1þ 3 dimensions.
The renormalization of the 1þ 3 dimensional case is left to
future work.
We derive the counterterms for 1þ 2 dimensions in

Appendix D. There are only two interesting comments
about this derivation: the first is that we require an addi-
tional (nonuniversal) counterterm for the sunset graph
linear in V; the second is that, consistent with the super-
renormalizability of ϕ4 theory in 1þ 2 dimensions, only
δm2

1 is required to UV-renormalize the theory. Every other
counterterm is finite and exists solely to maintain the
pole condition for the Higgs propagator despite the vertex

Ward identity. The resulting finite equations of motion are

Δ−1
G ¼ −

�
∂μ∂μ þm2 þ λ

6
v2
�

− ½Σ0
GðpÞ − Σ0

GðmGÞ�; ð4:30Þ

for the Goldstone propagator,

V̄ ¼ −
λv
3
þ iℏ½VNðV̄Þ2ðΔHÞ2ΔG þ ðV̄Þ3ΔHðΔGÞ2�

þ iℏλ
6

½VNðΔHÞ2 þ ðN þ 1ÞV̄ðΔGÞ2 þ 4V̄ΔGΔH�;
ð4:31Þ

for the Higgs-Goldstone-Goldstone vertex, and

VN ¼ −λvþ iℏ½ðN − 1ÞðV̄Þ3ðΔGÞ3 þ ðVNÞ3ðΔHÞ3�

þ iℏλ
2

½ðN − 1ÞV̄ΔGΔG þ 3VNðΔHÞ2�; ð4:32Þ

for the triple Higgs vertex.
The finite Goldstone self-energy is

−Σ0
GðpÞ ¼ −

ℏ
6
ðN þ 1ÞλðT G − T μÞ − ℏ

6
λðT H − T μÞ

− iℏ

�
−2

λv
3
− V̄

�
ΔHΔGV̄ þ ℏ2½VNðV̄Þ3ðΔHÞ3ðΔGÞ2 þ ðV̄Þ4ΔHΔHðΔGÞ3�

þ ℏ2λ

3
½V̄VNðΔHÞ3ΔG þ ðN þ 1ÞV̄ V̄ ΔHðΔGÞ3 þ 3V̄ V̄ ðΔGÞ2ΔHΔH�

þ ℏ2λ2

18
½ðN þ 1ÞðΔGÞ3 þ ΔHΔHΔG − ðN þ 2ÞBμ�; ð4:33Þ

where the BBALL integral is Bμ ¼ R
qp Δ

μðqÞΔμðpÞΔμ

ðpþ qÞ. The graph topologies are shown in Fig. 7. Finally,
the Higgs equation of motion is

Δ−1
H ðpÞ ¼ ðm2

G þ Σ0
GðmHÞ −m2

HÞ

×
V̄ðp;−p; 0Þ

V̄ðmH;−mH; 0Þ
þ Δ−1

G ðpÞ: ð4:34Þ

The unusual form of this equation is a result of the pole
condition Δ−1

H ðmHÞ ¼ 0. We defer the numerical imple-
mentation of these equations to future work.

V. SOLUTION OF THE HARTREE-FOCK
APPROXIMATION

In the Hartree-Fock approximation one drops the
IHGðpÞ term in the two-loop equations of motion, or
equivalently drops the sunset diagram. In this case the
problem simplifies dramatically because the self-energy is
momentum independent. The machinery of the auxiliary
propagators introduced previously is now unnecessary
and T G=H ¼ T ∞

G=H þ T fin
G=H can be written as the sum of

divergent and finite parts which can be evaluated in closed
form. In the Matsubara formalism at finite temperature
T the time contour is taken on the imaginary axis with
periodic boundary conditions of period −iβ, where
β ¼ 1=T. Integration over the timelike momentum

FIG. 7. Feynman graph topologies appearing in the self-energy
function Σ0

GðpÞ in (4.33).
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component p0 becomes a sum over discrete Matsubara
frequencies ωn ¼ 2πn=β, n ¼ 0;�1;�2;…. Using stan-
dard tricks [14] the sum over frequencies can be performed,
giving

T ∞
G=H ¼ −

m2
G=H

16π2

�
1

ϵ
− γ þ 1þ ln ð4πÞ

�
þOðϵÞ; ð5:1Þ

T fin
G=H ¼ T vac

G=H þ T th
G=H; ð5:2Þ

T vac
G=H ¼ m2

G=H

16π2
ln

�
m2

G=H

μ2

�
; ð5:3Þ

T th
G=H ¼

Z
q

1

ωq

1

eβωq − 1
; ð5:4Þ

where the divergent and finite vacuum parts have been
evaluated using MS in d ¼ 4 − 2ϵ dimensions at the
renormalization point μ (note that [9] adopts a slightly
different convention for T vac

G=H which amounts to a redefi-
nition of μ not affecting physical results). γ ≈ 0.577 is the
Euler-Mascheroni constant. In the thermal part q is the

spatial momentum vector and ωq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

G=H

q
. We

substitute these expressions into the equations of motion
(4.14)–(4.16) and demand that the kinematically distinct
divergences proportional to v, T vac

G=H, T
th
G=H independently

vanish. The other renormalization conditions are that
residue of the pole of the propagator equals one, which
requires ZZΔ ¼ 1, and that the tree-level relation m2

H ¼
λv2
3
þm2

G holds at zero temperature. These conditions
determine the renormalization constants

Z ¼ ZΔ ¼ 1; ð5:5Þ

δm2
1 ¼

ðN þ 2Þℏλm2

96π2ϵ

ðϵκ þ 1Þ
1 − ℏλðNþ2Þðϵκþ1Þ

96π2ϵ

; ð5:6Þ

δλA1 ¼ ðN þ 4Þλ
ðN þ 2Þm2

δm2
1; ð5:7Þ

δλA2 ¼ δλB2 ¼ N þ 2

N þ 4
δλA1 ; ð5:8Þ

where κ ≡ 1 − γ þ ln 4π ≈ 2.95. Note that the undeter-
mined constant δλ can be consistently set to zero at this
order. The finite equations of motion are

m2
G ¼ m2 þ λ

6
v2 þ ℏλ

6
ðN þ 1ÞT fin

G þ ℏλ
6
T fin

H ; ð5:9Þ

m2
H ¼ λv2

3
þm2

G; ð5:10Þ

vm2
G ¼ 0: ð5:11Þ

Finally, if we demand the zero temperature tree-level
relation v2ðT ¼ 0Þ≡ v̄2 ¼ −6m2=λ we must set the
renormalization point μ2 ¼ m̄2

H ≡m2
HðT ¼ 0Þ ¼ λv̄2=3.

The analogue of the equations of motion (5.9)–(5.11)
corresponding to previous work on the symmetry improved
2PIEA is ([9,24] generalized to arbitrary N)

m2
G ¼ m2 þ λ

6
v2 þ ℏλ

6
ðN þ 1ÞT fin

G þ ℏλ
6
T fin

H ; ð5:12Þ

m2
H ¼ m2 þ λ

2
v2 þ ℏλ

6
ðN − 1ÞT fin

G þ ℏλ
2
T fin

H ; ð5:13Þ

vm2
G ¼ 0: ð5:14Þ

Note that only the Higgs equation of motion differs, as
expected. In the standard formalism without symmetry
improvement one replaces (5.14) with

0 ¼ v

�
m2 þ λ

6
v2 þ ℏλ

6
ðN − 1ÞT fin

G þ ℏλ
2
T fin

H

�
: ð5:15Þ

These equations of motion, or gap equations, possess
a phase transition and a critical point where
m2

H ¼ m2
G ¼ v2 ¼ 0. Using the result for massless particles

T th
G=HðmG=H ¼ 0Þ ¼ T2=12, we find the same value of the

critical temperature,

T⋆ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12v̄2

ℏðN þ 2Þ

s
; ð5:16Þ

independent of the formalism used. However, the order of
the phase transition differs in the three cases. This stands in
contrast to the large-N approximation, which correctly
determines the order of the phase transition but gives a
critical temperature larger by a factor of

ffiffiffiffiffiffiffiffi
3=2

p þOðN−1Þ
(see [24,25]).
We present numerical solutions of equations (5.9)–(5.15)

with N ¼ 4, v ¼ 93 MeV and m̄H ¼ 500 MeV. These
values are chosen to represent the low energy mesonic
sector of QCD, and to enable direct comparison with [24].
Our results are also closely comparable with [25],
though they take m̄H ≈ 600 MeV. The solution is imple-
mented in Python as an iterative root finder based on
scipy.optimize.root [26] with an estimated Jacobian or, if
that fails to converge, a direct iteration of the gap equations.
The Bose-Einstein integrals in (5.4) can be precomputed to
save time. We show the results for the scalar field v, Higgs
mass mH and Goldstone mass mG in Figs. 8, 9, and 10,
respectively.
Figure 8 shows vðTÞ, the order parameter of the phase

transition. Below the critical temperature there is a broken
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phase with v ≠ 0, but the symmetry is restored when v ¼ 0
above the critical temperature. Note, however, that the
unimproved and symmetry improved 3PIEA have unphys-
ical metastable broken phases at T > T⋆, signalling a first-
order phase transition. The symmetry improved 2PIEA
correctly predicts the second-order nature of the phase
transition. Though unphysical, the symmetry improved
3PIEA behavior is much more reasonable than the unim-
proved 2PIEA: the strength of the first-order phase tran-
sition is reduced and the metastable phase ceases to exist at
a temperature much closer to the critical temperature than
for the unimproved 2PIEA. Figure 9 shows the Higgs mass
mHðTÞ. The phase transition behavior above is seen again,

and again all three methods agree in the symmetric phase,
giving the usual thermal mass effect. Finally, Fig. 10 shows
the Goldstone boson mass. The unimproved 2PIEA
strongly violates the Goldstone theorem, but both sym-
metry improvement methods satisfy it as expected. Note
that the Goldstone theorem is even satisfied in the unphys-
ical metastable phase predicted by the symmetry improved
3PIEA. All three methods correctly predict mG ¼ mH in
the symmetric phase.

VI. TWO DIMENSIONS AND THE COLEMAN-
MERMIN-WAGNER THEOREM

Recall that the Coleman-Mermin-Wagner theorem [27],
which has been interpreted as a breakdown of the
Goldstone theorem [28], is a general result stating that
the spontaneous breaking of a continuous symmetry is
impossible in d ¼ 2 or d ¼ 1þ 1 dimensions. This occurs
due to the infrared divergence of the massless scalar
propagator in two dimensions. We show that the symmetry
improved gap equations satisfy this theorem despite the
direct imposition of Goldstone’s theorem. Thus symmetry
improvement passes another test that any robust quantum
field theoretical method must satisfy. (Note that symmetry
improvement is not required to obtain consistency of
nPIEA with the Coleman-Mermin-Wagner theorem, but
neither does it ruin it.)
The general statement of the result is that

R
x Σðx; 0Þ

diverges whenever massless particles appear in loops in
d ¼ 2, thus, by (2.17) and (3.19) v ¼ 0 and a mass gap is
generated. We will show this explicitly using the Hartree-
Fock gap equations (5.9)–(5.11), where in two dimensions,

T vac
a ðMSÞ ¼ −

1

4π
ln

�
m2

a

μ2

�
: ð6:1Þ

FIG. 8 (color online). Expectation value of the scalar field v ¼
hϕi as a function of temperature T computed in the Hartree-Fock
approximation using the unimproved 2PIEA (solid black), the
Pilaftsis and Teresi symmetry improved 2PIEA (dash dotted blue)
and our symmetry improved 3PIEA (solid green). In the
symmetric phase (dashed black) all methods agree. The vertical
grey line at T ≈ 131.5 MeV corresponds to the critical temper-
ature which is the same in all methods.

FIG. 9 (color online). The Higgs mass mH as a function of
temperature T computed in the Hartree-Fock approximation
using the unimproved 2PIEA (solid black), the Pilaftsis and
Teresi symmetry improved 2PIEA (dash dotted blue) and our
symmetry improved 3PIEA (solid green). In the symmetric phase
(dashed black) all methods agree. The vertical grey line at T ≈
131.5 MeV corresponds to the critical temperature which is the
same in all methods.

FIG. 10 (color online). The Goldstone massmG as a function of
temperature T computed in the Hartree-Fock approximation
using the unimproved 2PIEA (solid black), the Pilaftsis and
Teresi symmetry improved 2PIEA (dash dotted blue) and our
symmetry improved 3PIEA (solid green). In the symmetric phase
(dashed black) all methods agree. The vertical grey line at T ≈
131.5 MeV corresponds to the critical temperature which is the
same in all methods.
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(Note that the renormalization can be carried through
without difficulty in two dimensions. Only the δm2

1

counterterm is needed.) We must show that the gap
equations possess no solution for m2

G ¼ 0. It is clear that
if v ≠ 0, T vac

G diverges as m2
G → 0 if we take μ as a

constant, and T vac
H diverges if we take μ2 ∝ m2

G asm2
G → 0.

Either way there is no solution. At finite temperature the
Bose-Einstein integral T th

a also has an infrared divergence
as ma → 0 which does not cancel against the singularity of
the vacuum term. It can be shown that the singularity is due
to the Matsubara zero mode.
For v ¼ 0 on the other hand, the gap equations reduce to

m2
H ¼ m2

G ¼ m2 −
1

4π

ℏ
6
ðN þ 2Þλ ln

�
m2

G

μ2

�
; ð6:2Þ

which always has a positive solution. If m2 > 0 then one
can choose the renormalization point μ2 ¼ m2

G so that the
tree-level relationshipm2

G ¼ m2 holds. Ifm2 < 0 a positive
mass is dynamically generated and one requires a renorm-

alization point μ2 > m2
G expð 24πjm2j

ℏðNþ2ÞλÞ nonperturbatively

large in the ratio λ=jm2j, reflecting the fact that perturbation
theory is bound to fail in this case.

VII. OPTICAL THEOREM AND DISPERSION
RELATIONS

In this section we examine the analytic structure of
propagators and self-energies in the symmetry improved
3PI formalism. A physical quantity of particular interest is
the decay width ΓH of the Higgs, which is dominated by
decays to two Goldstones. ΓH is given by the optical
theorem in terms of the imaginary part of the self-energy
evaluated on-shell (see, e.g. [29], Chap. 7):

−mHΓH ¼ ImΣHðmHÞ: ð7:1Þ
(This is valid so long as ΓH ≪ mH; otherwise, the full
energy dependence of ΣHðpÞ must be taken into account.)
The standard one-loop perturbative result gives

ΓH ¼ N − 1

2

ℏ
16πmH

�
λv
3

�
2

; ð7:2Þ

which comes entirely from the Goldstone loop sunset
graph. Each part of this expression has a simple interpre-
tation in relation to the tree-level decay graph (Fig. 11). The
N − 1 is due to the sum over final state Goldstone flavors,
the factor of 1=2 is due to the Bose statistics of the two
particles in the final state, the ℏ=16πmH is due to the final
state phase space integration and the ðλv=3Þ2 is the absolute
square of the invariant decay amplitude.
The Hartree-Fock approximation fails to reproduce this

result regardless of the use or not of symmetry improve-
ment. This is because there is no self-energy apart from a

mass correction. Thus the Hartree-Fock approximation
always predicts that the Higgs is stable. Attempts to repair
the Hartree-Fock approximation through the use of an
external propagator lead to a nonzero but still incorrect
result. This is because an unphysical value of mG still
appears in loops. Satisfactory results are obtained within
the symmetry improved 2PI formalism for both on- and off-
shell Higgs [9]. Here we show that the symmetry improved
3PIEA can not yield a satisfactory value for ΓH at the two-
loop level.
From (4.22),

ImΣHðpÞ ¼
ℏ
6
ðN þ 1ÞλImT fin

G þ ℏ
6
λImT fin

H

− ℏ

�
λv
3

�
2

Im½iI fin
HGðpÞ�

¼ ℏ
6
ðN þ 1ÞλImT G þ ℏ

6
λImT H

− ℏ

�
λv
3

�
2

Im½iIHGðpÞ�; ð7:3Þ

which can be written in terms of the unsubtracted T G=H and
IHG because all of the subtractions are manifestly real.
Now we show that ImT G=H ¼ 0. To do this we introduce
the Källén-Lehmann spectral representation of the propa-
gators [30],

ΔG=HðqÞ ¼
Z

∞

0

ds
ρG=HðsÞ

q2 − sþ iϵ
; ð7:4Þ

where the spectral densities ρG=HðsÞ are real and positive
for s ≥ 0 and obey the sum rule

Z
∞

0

dsρG=HðsÞ ¼ ðZZΔÞ−1 ¼ 1; ð7:5Þ

where the last equality holds at two-loop order (we have
adapted the standard formula to our renormalization
scheme).
(Note that this standard theory actually conflicts with the

asymptotic p2ðlnp2Þc1 form assumed for the self-energy
when the Φ5 graph is included, so that our argument must
be refined at the three-loop level. The essential problem is
that the self-consistent nPI propagator is not resumming

H

a

a

FIG. 11. Tree level of decay of the Higgs (H) to two Goldstone
bosons a ¼ 1; � � � ; N − 1.
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large logarithms. However, it seems unlikely that a refine-
ment of the argument to account for this fact will change
the qualitative conclusions of this section since, as will be
shown shortly, the predicted ΓH is wrong by group theory
factors in addition to the Oð1Þ factors which could be
compensated by a modification of ρG=H.)
Then,

Im
Z
q
i
Z

∞

0

dμ2
ρG=Hðμ2Þ

q2 − μ2 þ iϵ
¼ Im

Z
∞

0

dμ2ρG=Hðμ2ÞT μ

¼ 0: ð7:6Þ

This allows us to obtain a dispersion relation relating the
real and imaginary parts of the self-energies,

0¼ Im
Z
q
i

1

q2−m2
G=H−ΣG=HðqÞ

¼
Z
q

q2−m2
G=H−ReΣG=HðqÞ

½q2−m2
G=H−ReΣG=HðqÞ�2þ½ImΣG=HðqÞ�2

: ð7:7Þ

Finally, we have left to compute Im½iIHGðpÞ� which can
be written

Im½iIHGðpÞ� ¼ Imi
Z
q

Z
∞

0

ds1

Z
∞

0

ds2
iρNðs1Þ

q2 − s1 þ iϵ
iρGðs2Þ

ðp − qÞ2 − s2 þ iϵ

¼ Imi
Z

∞

0

ds1

Z
∞

0

ds2ρNðs1ÞρGðs2Þ
Z
q

i
q2 − s1 þ iϵ

i
ðp − qÞ2 − s2 þ iϵ

¼ 1

16π2

Z
∞

0

ds1

Z
∞

0

ds2ρNðs1ÞρGðs2ÞIm
Z

1

0

dx ln

�
μ2

−xð1 − xÞp2 þ xs1 þ ð1 − xÞs2 − iϵ

�
: ð7:8Þ

The imaginary part of the x integral is only nonzero forffiffiffiffiffi
s1

p þ ffiffiffiffiffi
s2

p
<

ffiffiffiffiffi
p2

p
. We denote the region of s1;2 integra-

tion by Ω. Then the imaginary part of the x integral can be
evaluated straightforwardly, giving

Im½iIHGðpÞ� ¼
1

16πp2

Z
Ω
ds1ds2ρNðs1ÞρGðs2Þ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − ð ffiffiffiffiffi

s1
p þ ffiffiffiffiffi

s2
p Þ2

q
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − ð ffiffiffiffiffi

s1
p

−
ffiffiffiffiffi
s2

p Þ2
q

: ð7:9Þ

Now, since the each term of the integrand is positive and
the square root is ≤ p2, we have

Im½iIHGðpÞ� ≤
1

16π

Z
Ω
ds1ds2ρNðs1ÞρGðs2Þ ≤

1

16π
;

ð7:10Þ

using the sum rule for ρN=GðsÞ. Finally, we have

ΓH ≤
ℏ

16πmH

�
λv
3

�
2

; ð7:11Þ

which is smaller than the expected value for all N > 3.
N ¼ 2 and 3 are cases where one could possibly obtain an
(accidentally) reasonable result, depending on the precise
form of the spectral functions, but it is clear that one should
not generically expect a correct prediction of ΓH from the
symmetry improved 3PIEA at two loops. The source of the
problem is the derivation of the two-loop truncation where

we dropped the vertex correction term in (3.24), resulting in
a truncation of the true Ward identity (3.20) that keeps the
one-loop graphs in ΣG but not in V̄. The diagram contrib-
uting to ΓH above is thus the Goldstone self-energy shown
in Fig. 12 which has the incorrect kinematics and lacks the
required group theory ðN − 1Þ and Bose symmetry ð1=2Þ
factors as well. In fact, a perturbative evaluation of Fig. 12
gives ΓH ¼ 0 due to the threshold at p2 ¼ m2

H! What we
have shown is that no matter the form of the exact spectral
functions, there cannot be a nonperturbative enhancement
of this graph large enough to give the correct ΓH for N > 3.
The neglected vertex corrections give a leading OðℏÞ
contribution to ΓH which must be included.
Now we consider the three-loop truncation of the

symmetry improved 3PIEA. Since one-loop vertex correc-
tions appear at this order we expect that ΓH should be
correct at least to OðℏÞ. Since the previous result was
incorrect by group theory factors already at OðℏÞ our task
simplifies to seeking only theOðℏÞ decay width, and so we
make use of only the one-loop terms in the Higgs equation
of motion, which are displayed in Fig. 13. Furthermore, by

aa

H

a

FIG. 12. The self-energy diagram from (4.22) which, due to the
inconsistent truncation of the Ward identity, gives the incorrect
absorptive part to the Higgs propagator in the two-loop truncated
symmetry improved 3PIEA. a ¼ 1; � � � ; N − 1 labels Goldstone
boson lines and H labels the Higgs boson line.
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iterating the equations of motion we may replace all
propagators and vertices by their perturbative values to
OðℏÞ. This will leave out contributions of higher-order
decay processes such as H → GGGG. We leave the
numerical task of computing the exact decay width pre-
dicted by the symmetry improved 3PIEA to future work.
The contributions of the various terms in Fig. 13 to the

imaginary part of ΣH can be determined using Cutkosky
cutting rules [29]. In particular, the Hartree-Fock diagram
and the first bubble vertex correction diagram (left diagram,
bottom row Fig. 13) have no cuts such that all cut lines can
be put on shell. Also, cuts through intermediate states with
both Goldstone and Higgs lines contribute to the process
H → HG, which vanishes due to the zero phase space at
threshold. This means we can drop the sunset diagram and
the last bubble vertex correction (right diagram, bottom row
Fig. 13). Similarly cuts through two intermediate Higgs
lines can be dropped sinceH → HH is impossible on shell.
This mean we can drop the contributions to the triangle and
remaining bubble diagram where the leftmost vertex is VN

rather than V̄. The contributions we are interested in can
now be displayed explicitly:

−ΣH ⊃ V̄v

⊃ v

�
iℏ

�
−
λv
3

�
3
Z
l

1

ðl − pÞ2 −m2
G þ iϵ

×
1

l2 −m2
G þ iϵ

1

l2 −m2
H þ iϵ

þ iℏλ
6

ðN þ 1Þ
�
−
λv
3

�

×
Z
l

1

ðl − pÞ2 −m2
G þ iϵ

1

l2 −m2
G þ iϵ

�
; ð7:12Þ

where the first and second term are the triangle and bubble
graphs, respectively. We now cut the Goldstone lines by

replacing each cut propagator ðp2 −m2
G þ iϵÞ−1 →

−2πiδðp2 −m2
GÞ to give −2iImΣH (because the cutting

rules give the discontinuity of the diagram, which is 2i
times the imaginary part), yielding

−2iImΣH ⊃ −iℏv
��

−
λv
3

�
3 1

−m2
H
þ λ

6
ðN þ 1Þ

�
−
λv
3

��

×
Z
l
2πδððl − pÞ2Þ2πδðl2Þ

¼ iℏ
λ2v2

322
ðN − 1Þ

Z
l
2πδððl − pÞ2Þ2πδðl2Þ:

ð7:13Þ
The integral can be evaluated by elementary techniques,

givingZ
l
2πδððl − pÞ2Þ2πδðl2Þ

¼ 1

4π2

Z
d4l × δðl2 − 2l · pþ p2Þδðl2Þ

¼ 1

4π2

Z
dl0dl4πl2 × δð−2l0mH þm2

HÞδðl2
0 − l2Þ

¼ 1

π

Z
dll2

1

2mH

δðmH
2
− lÞ

2 mH
2

¼ 1

8π
; ð7:14Þ

and finally

−ImΣHðmHÞ ¼
N − 1

2

ℏ
16π

�
λv
3

�
2

þOðℏ2Þ: ð7:15Þ

This exactly matches the expected ΓH, including group
theory and Bose symmetry factors. The full nonperturba-
tive solution will give corrections to this accounting
for loop corrections as well as cascade decay processes
H → GG → ðGGÞ2 → � � �. We leave the evaluation of this
to future work; however, we have shown that the one-loop
vertex corrections are required to get the correct ΓH at
leading order.

VIII. DISCUSSION

The symmetry improvement formalism of Pilaftsis and
Teresi is able to enforce the preservation of global sym-
metries in two particle irreducible effective actions,
allowing among other things the accurate description of
phase transitions in strongly coupled theories using numeri-
cal methods that are relatively cheap compared to lattice
methods. As an example of this, during the preparation of
this manuscript it was shown that the symmetry improved
2PIEA solves problems with infrared divergences of
the standard model effective potential due to massless

aaa a

H

q = 0

a

q = 0

H a

q = 0

H a

q = 0

H a

FIG. 13. One-loop contribution to the Higgs self-energy. The
tadpole and sunset graphs are from the Higgs self-energy ΣG,
while the four remaining terms come from vertex corrections via
the Ward identity (3.20). The momentum incoming from the
lower Goldstone leg is zero, and the crossed vertex represents a
factor of v.
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Goldstone bosons [31], though that study was carried out
without the gauge sector. It also shows that the symmetry
improved 2PIEA performs better than an ad hoc resum-
mation scheme proposed in the prior literature. This
is heartening, though not wholly surprising due to the
inherent self-consistency of nPIEA, a topic we plan to
discuss in a forthcoming publication.
However, the development of a first principles non-

perturbative kinetic theory for the gauge theories of real
physical interest requires the use of n-particle irreducible
effective actions with n ≥ 3. We have taken a step in this
direction by extending the symmetry improvement formal-
ism to the 3PIEA for a scalar field theory with spontaneous
breaking of a global OðNÞ symmetry. We found that an
extra Ward identity involving the vertex function must be
imposed. Since the constraints are singular this required a
careful consideration of the variational procedure, namely
one must be careful to impose constraints in a way that
satisfies d’Alembert’s principle. Once this is done the
theory can be renormalized in a more or less standard
way, though the counterterms differ in value from the
unimproved case. We derived finite equations of motion
and counterterms for the Hartree-Fock truncation, two-loop
truncation, and three-loop truncation of the effective action.
We found several important qualitative results. First,

symmetry improvement breaks the equivalence hierarchy
of nPIEA. Second, the numerical solution of the Hartree-
Fock truncation gave mixed results: Goldstone’s theorem
was satisfied, but the order of the phase transition was
incorrectly predicted to be weakly first order (though there
was still a large quantitative improvement over the unim-
proved 2PIEA case). Third, the two-loop truncation incor-
rectly predicts the Higgs decay width as a consequence of
the optical theorem, though the three-loop truncation gives
the correct value, at least to OðℏÞ. These results could be
considered strong circumstantial evidence that one should
not apply symmetry improvement to nPIEA at a truncation
to less than n loops. One could test this conjecture further
by, for example, computing the symmetry improved
4PIEA. We predict that unsatisfactory results of some kind
will be found for any truncation of this to < 4 loops.
Our renormalization of the theory at two and three loops

was performed in vacuum. The only finite temperature
computation performed here was for the Hartree-Fock
approximation. The extension of the two- or three-loop
truncations to finite temperature, or an extension to non-
equilibrium situations, will require a much heavier numeri-
cal effort than what we have attempted. It would also be
interesting to compare the self-consistent Higgs decay rate
in the symmetry improved 2PI and 3PI formalisms. We
leave these investigations to future work. Similarly, we
presented analytical results for the renormalization of the
three-loop truncation only in 1þ 2 dimensions, since the
renormalization was not analytically tractable in 1þ 3
dimensions. This is also left to future work. The general

renormalization theory presented here, based on counter-
terms, is difficult to use in practice. It will be interesting
to see if symmetry improvement could work along
with the counterterm-free functional renormalization group
approach [32]. Such an approach may not be easier to set up
in the first place, but once developed would likely be easier
to extend to higher-loop order and n than the current
method. Of course it will be interesting to see if this work
can be extended to gauge symmetries and, eventually, the
standard model of particle physics. If successful, such an
effort could serve to open a new window to the non-
perturbative physics of these theories in high temperature,
high density and strong coupling regimes.
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APPENDIX A: THE D’ALEMBERT FORMALISM

The assumption that δf=δW2 can be consistently
taken to be constant requires explanation. Constrained
Lagrangian problems are generally underspecified unless
one invokes some principle like d’Alembert’s principle
(that the constraint forces are “ideal”; i.e., they do no work
on the system) to specify the constraint forces. Note
that while it is usually stated that enforcing constraints
through Lagrange multipliers is equivalent to applying
d’Alembert’s principle, this is no longer automatically the
case if the constraints involve a singular limit as happens in
the field theory case. This leads to a real ambiguity in the
procedure which requires the analyst to input physical
information to resolve it. In the case of mechanical systems
the analyst is expected to be able to furnish the correct form
of the constraints by inspection of the system. However, the
interpretation of “work” and “constraint force” in the field
theory case is subtle and the appropriate generalization is
not obvious. Here we argue, by way of a simple mechanical
analogy, that the procedure which leads to the maximum
simplification of the equations of motion is the correct field
theory analogue of d’Alembert’s principle in mechanics.
d’Alembert’s principle is empirically verifiable for a

given mechanical system, but for us it forms part of the
definition of our approximation scheme, which we refer to
as the “d’Alembert formalism.” The result of Sec. III was a
set of unambiguous f-independent equations of motion and
constraint at some fixed order of the loop expansion, say l
loops. The use of any other limiting procedure requires the
analyst to specify a spacetime function’s worth of data
ahead of time, representing the “work” that the constraint
forces do. The resulting equations of motion represent a
different formulation of the system and will have a different
solution depending on the choice of “work” function.
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Imagine that we are competing against another analyst
to find the most accurate solution for a particular system.
It is possible that a competing smart analyst could choose
a work function that results in a more accurate solution
than ours, also working at l loops. However, we could
beat the other analyst by working in the d’Alembert
formalism but at higher loop order. We conjecture that
the optimum choice of work function (in the sense of
guaranteeing the optimum accuracy of the resulting
solution of the l-loop equations) is merely a clever
repackaging of information contained in > l-loop cor-
rections. (We have no proof of this conjecture. Indeed
it is hard to see if any alternative to the d’Alembert
formalism is practicable.) Thus we choose the
d’Alembert formalism, which has the virtue of being a
definite procedure requiring little cleverness from the
analyst, at the cost of potentially having a suboptimal
accuracy for a given loop order.
To illustrate the connection with a mechanics problem

consider a classical particle in two dimensions constrained
to x2 þ y2 ¼ r2. The motion is uniformly circular:

�
x
y

�
¼ r

�
cos ðωtþ ϕÞ
sin ðωtþ ϕÞ

�
: ðA1Þ

The action is

S ¼
Z

Ldt − λf½w�; ðA2Þ

L ¼ 1

2
mð_x2 þ _y2Þ; ðA3Þ

where the constraint is wðtÞ ¼ xðtÞ2 þ yðtÞ2 − r2 ¼ 0 and
f½w� ¼ 0 if wðtÞ ¼ 0. The equations of motion are

mẍðtÞ ¼ −2λ
δf

δwðtÞ xðtÞ; ðA4Þ

mÿðtÞ ¼ −2λ
δf

δwðtÞ yðtÞ: ðA5Þ

In this mechanics problem we could set f½w� ¼ R
wðtÞdt

and carry through the problem in the standard way
without any complications. But to mimic the field theory
case, where a limiting procedure is required, we take
f½w� ¼ R

wðtÞ2dt. In this case,

δf
δwðtÞ ¼ 2wðtÞ → 0 as w → 0: ðA6Þ

This requires λ → ∞ such that λδf=δw approaches a finite
limit. Importantly, it must approach a t independent limit,
otherwise an unspecified function of time enters the
equations of motion: mẍðtÞ ¼ −kðtÞxðtÞ, etc. This limit

can be achieved by restricting the class of variations
considered. Let xðtÞ¼ rðtÞcosθðtÞ and yðtÞ¼ rðtÞsinθðtÞ,
where δrðtÞ ¼ rðtÞ − r parametrizes deviations from the
constraint surface. Then wðtÞ ¼ 2rδrðtÞ þOðδr2Þ. We
want _wðtÞ ¼ 0 which is obviously satisfied by δrðtÞ ¼ δr.
We are arguing that we only consider variations of this

restricted form. The variations along the constraint surface
[i.e. variations of θðtÞ] are unrestricted as they should be.
Only variations orthogonal to the constraint surface are
restricted. This is equivalent to d’Alembert’s principle. To
see this we compute the second derivative of r2 to obtain
_θ2 − k ¼ ̈r

r. When the constraint is enforced ̈r ¼ 0, hence
_k ≠ 0 implies θ̈ ≠ 0: the constraint forces are causing
angular accelerations, doing work on the particle. At
constant radius, the centripetal force only changes if the
angular velocity changes.
In the field theory case we have (3.56). For any given

value of V̄ and ΔG, only one value of ΔH satisfies the
constraint, given by

Δ−1⋆
H ðx; yÞ ¼

Z
z
V̄ðx; y; zÞvþ Δ−1

G ðx; yÞ; ðA7Þ

where the ⋆ denotes the constraint solution. This is a
holonomic constraint: in principle, we could substitute this
into the effective action directly and not worry about
Lagrange multipliers at all (this is very messy analytically,
though it may be numerically feasible). We suggest that one
restrict variations of Δ−1

H to be of the form Δ−1⋆
H ðx; yÞ þ δk,

where δk is a spacetime independent constant. This way we
guarantee

δf
δW2ðx; yÞ

¼ 2W2ðx; yÞ ¼ −2δk ¼ const; ðA8Þ

and all the desired simplifications go through. Variations of
the other variables are unrestricted. Because the constraint
force Bδf=δW2 disappears from the ΔG, V̄ and VN
equations of motion the constraint “does no work” on
these variables, and the other variables (v and ΔH) are
determined solely by the constraint equations. This seems a
fitting field theory analogy for d’Alembert’s principle.

APPENDIX B: DERIVING COUNTERTERMS
FOR TWO-LOOP TRUNCATIONS

In this section we derive the counterterms required to
renormalize the 3PIEA and equations of motion in the
two-loop truncation as discussed in Sec. IVA. Substituting
the expressions for bare fields and parameters in terms of
the renormalized fields and parameters according to
(4.9)–(4.13) gives the renormalized effective action
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Γð3Þ ¼
Z
x

�
−Z−1

Δ
m2 þ δm2

0

2
v2 −

λþ δλ0
4!

v4
�
þ iℏ

2
ðN − 1ÞTr ln ðZ−1Z−1

Δ Δ−1
G Þ þ iℏ

2
Tr ln ðZ−1Z−1

Δ Δ−1
H Þ

−
iℏ
2
ðN − 1ÞTr

��
ZZΔ∂μ∂μ þm2 þ δm2

1 þ ZΔ
λþ δλA1

6
v2
�
ΔG

�

−
iℏ
2
Tr

��
ZZΔ∂μ∂μ þm2 þ δm2

1 þ ZΔ
3λþ δλA1 þ 2δλB1

6
v2
�
ΔH

�
þ Γð3Þ

3 ; ðB1Þ

which agrees with the nongraphical terms of [9] Eq. (4.4) upon setting N ¼ 2, dropping an irrelevant constant ∝ Tr lnZ−1

and noting our different conventions (m2
here ¼ −m2

PT and λhere ¼ 6λPT). The δλ terms can be derived by substituting
λBφBcφ

c
B → Z−2ðλþ δλA1 ÞZv2 and λBφBaφBb → Z−2ðλþ δλB1 ÞZv2δaNδbN into the definition of Δ−1

0ab.
The graph functional becomes

Γð3Þ
3 ¼ Φ1 −

ℏ2ðλþ δλÞv
3!

ZVZ3
Δ

Z
xyzw

ΔHðx; yÞ½ΔHðx; zÞΔHðx; wÞVNðy; z; wÞ

þ ðN − 1ÞΔGðx; zÞΔGðx; wÞV̄ðy; z; wÞ� − Φ2 þOðℏ3Þ; ðB2Þ
with

Φ1 ¼
ℏ2

24
½ðN þ 1Þλþ ðN − 1ÞδλA2 þ 2δλB2 �Z2

ΔðN − 1ÞΔGΔG

þ ℏ2

24
½3λþ δλA2 þ 2δλB2 �Z2

ΔΔHΔH þ ℏ2

24
2ðλþ δλA2 ÞZ2

ΔðN − 1ÞΔGΔH ðB3Þ

Φ2 ¼
ℏ2

4
ðN − 1ÞZ2

VZ
3
ΔV̄ V̄ ΔHΔGΔG þ ℏ2

12
Z2
VZ

3
ΔVNVNΔHΔHΔH: ðB4Þ

The δλA=B2 terms can be found from substituting λBΔBaaΔBbb → Z−2ðλþ δλA2 ÞZ2Z2
ΔΔaaΔbb and λBΔBabΔBba →

Z−2ðλþ δλB2 ÞZ2Z2
ΔΔabΔba into Φ1. The Φ1 terms correspond to the Hartree-Fock approximation and agree with the

remaining terms of Eq. (4.4) of [9]. The remaining Oðℏ2Þ terms in Γð3Þ
3 give the sunset diagrams on replacing V̄ and VN by

the solution of their equations of motion at Oðℏ0Þ, which give VN ¼ 3V̄ ¼ −Z−1
V ðλþ δλÞv × δð4Þðx − yÞδð4Þðx − zÞ. We

find that ZV cancels on elimination of V̄ and VN . It also disappears from the Ward identity once V̄ is eliminated and, hence,
plays no role in the further development.
Going to momentum space, the final result is (up to an irrelevant constant)

Γð3Þ ¼
Z
x

�
−Z−1

Δ
m2 þ δm2

0

2
v2 −

λþ δλ0
4!

v4
�
þ iℏ

2
ðN − 1ÞTr lnðΔ−1

G Þ þ iℏ
2
Tr lnðΔ−1

H Þ

−
iℏ
2
ðN − 1Þ

Z
k

�
−ZZΔk2 þm2 þ δm2

1 þ ZΔ
λþ δλA1

6
v2
�
ΔGðkÞ

−
iℏ
2

Z
k

�
−ZZΔk2 þm2 þ δm2

1 þ ZΔ
3λþ δλA1 þ 2δλB1

6
v2
�
ΔHðkÞ

þ ℏ2

24
½ðN þ 1Þλþ ðN − 1ÞδλA2 þ 2δλB2 �Z2

ΔðN − 1Þ
Z
k
ΔGðkÞΔGðkÞ

þ ℏ2

24
½3λþ δλA2 þ 2δλB2 �Z2

Δ

Z
k
ΔHðkÞΔHðkÞ þ

ℏ2

24
2ðλþ δλA2 ÞZ2

ΔðN − 1Þ
Z
k
ΔGðkÞΔHðkÞ

þ ℏ2

4

�ðλþ δλÞv
3

�
2

Z3
ΔðN − 1Þ

Z
kl
ΔHðkÞΔGðlÞΔGðkþ lÞ

þ ℏ2

12
½ðλþ δλÞv�2Z3

Δ

Z
kl
ΔHðkÞΔHðlÞΔHðkþ lÞ: ðB5Þ

From this expression, we derive the renormalized equations of motion (4.14)–(4.16)
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The divergent integrals T G=H (4.17) and IHGðpÞ (4.18)
enter into the equations of motion. IHGðpÞ can be rendered
finite by a single subtraction,

IHGðpÞ ¼ Iμ þ I fin
HGðpÞ; ðB6Þ

where Iμ ¼ R
q ½iΔμðqÞ�2. Since we wrote the propagators

with the physical masses explicit, it is crucial to also
subtract a portion of the finite piece I fin

HGðmG=HÞ so that the
pole of the propagator is fixed at the physical mass of the
Goldstone/Higgs propagator, respectively. We make this
subtraction separately so as to have a universal Iμ.
The tadpole integrals T G=H require two subtractions

each since
R
q i½ΔμðqÞ�2Σ0

G=HðqÞ is logarithmically diver-
gent. To that end we introduce

ΣμðqÞ ¼ −iℏ
�ðλþ δλÞv

3

�
2

Z3
Δ

×
�Z

l
iΔμðlÞiΔμðqþ lÞ − Iμ

�
; ðB7Þ

which is asymptotically the same as Σ0
G=HðqÞ, so thatR

q i½ΔμðqÞ�2½Σ0
G=HðqÞ − ΣμðqÞ� is finite. For later conven-

ience we writeZ
q
i½ΔμðqÞ�2ΣμðqÞ ¼ ℏ

�ðλþ δλÞv
3

�
2

Z3
Δc

μ: ðB8Þ

Then

T G=H ¼ T μ − iðm2
G=H − μ2ÞIμ

þ ℏ

�ðλþ δλÞv
3

�
2

Z3
Δc

μ þ T fin
G=H; ðB9Þ

where T μ ¼ R
q iΔ

μðqÞ. Note that T μ and cμ are real and
Iμ is imaginary, so that all of the subtractions can be
absorbed into real counterterms.
The counterterms are found by eliminating m2

G=H and
demanding that the divergences proportional to different
powers of v2 and T fin

G=H separately vanish. Further, we

enforce Δ−1
G ðmGÞ ¼ 0 and Δ−1

H ðmHÞ ¼ 0 and that the
counterterms are momentum independent. This gives eight
equations for the seven constants Z; ZΔ; δm2

1; δλ
A
1 ; δλ

A
2 ; δλ

B
2

and δλ, however one of them is redundant and a solution
exists [19].
We find nontrivial field strength renormalizations,

Z ¼ Z−1
Δ ¼

�
1þ iℏλ

3
½I fin

HGðmHÞ − I fin
HGðmGÞ�

	
2

; ðB10Þ

and a nonzero

δλ ¼ −λ� λ

�
1þ iℏλ

3
½I fin

HGðmHÞ − I fin
HGðmGÞ�

	
3

ðB11Þ

(the two solutions arise because δλ only enters
the equations of motion in the quadratic combination
ðλþ δλÞ2). These counterterms are normally trivial
(Z ¼ ZΔ ¼ 1 and δλ ¼ 0) for ϕ4 theory at two loops.
However, due to the modification of the Higgs equation of
motion, we requireZΔ ≠ 1 in order to enforceΔ−1

H ðmHÞ ¼ 0
and this is then compensated by Z and δλ in order to recover
the other renormalization conditions. The other counter-
terms can be obtained for any regulator, but the expres-
sions are bulky and unenlightening even for dimensional
regularization in d ¼ 4 − 2ϵ dimensions, so we leave their
explicit forms in the supplemental Mathematica notebook.

APPENDIX C: AUXILIARY VERTEX AND
RENORMALIZATION IN THREE

AND FOUR DIMENSIONS

As described in Sec. IV B the renormalization of the
three-loop 3PIEA requires the definition of an auxiliary
vertex Vμ

abc with the same asymptotic behavior as the full
self-consistent solution at large momentum. This auxiliary
vertex can be found in terms of a six-point kernelwhich obeys
the integral equation (4.29) illustrated inFig. 6. Solving (4.29)
by iteration generates an infinite number of terms, one of
which is illustrated in Fig. 14. Each contribution is in one-to-
one correspondence with the sequence of permutations
π1π2 � � � πn � � � of the propagator lines (read from left to right
in relation to the diagram). Now we divide the permutations
into two classes: “stabilizers,” for which πðaÞ ¼ a, and
“derangements,” for which πðaÞ ¼ b or c.
Any sequence of permutations is of the form of an

alternating sequence of runs of (possibly zero) stabilizers,
separated by derangements. Consider a run of n stabilizers,
� � � πaðπ1π2 � � � πnÞπb � � �, where πa and πb are derange-
ments and π1 through πn are all stabilizers. The case for
n ¼ 2 is shown in Fig. 14. Each stabilizer creates a
logarithmically divergent loop on the bottom two lines
∼ − λIμ. Derangements on the other hand, if they create
loops at all, create loops with > 2 propagators, and hence
are convergent. Thus all divergences in Kabcdef can be
removed by rendering a single primitive divergence finite.
Note that the whole series

P∞
n¼0 � � � πað

Q
n
i¼1 πiÞπb, where

again πa;b are derangements and fπig are stabilizers, can be
summed because the series is geometric. The result is that
the six-point kernel can be determined by an equation like

a

b

c

d

e

f

FIG. 14. A contribution to the six-point kernelKabcdef resulting
from (left to right) a derangement, two stabilizers and another
derangement. The dashed boxes surround the permutations (to
aid visualization only). Only stabilizers lead to divergent loops.
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(4.29), except that the sum over all permutations is replaced
by a sum over derangements only, and the bare vertexW is

replaced by a four-point kernel Kð4Þ
abcd ∼ λ=ð1þ λIμÞ.

Denoting this four-point kernel by a square vertex, we
can finally write the solution for Vμ

abc in Fig. 15.
This expression forVμ

abc can be dramatically simplified in
3 or 1þ 2 dimensions because Iμ is finite and the geometric

sum in Kabcd converges. Indeed Kð4Þ
abcdðp1; p2; p3; p1þ

p2 − p3Þ ∼ λ=½1þ λ=ðp1 þ p2Þ4−d� → λ as p1;2;3;4 → ∞.
Further, every loop integral in Fig. 15 likewise converges,
and every loop yields a factor of ∼1=p4−d. Thus, the

dominant behavior as p → ∞ is just the tree-level behavior
and we can eliminate the auxiliary vertex completely.
However, in 4 or 1þ 3 dimensions Vμ

abc apparently

cannot be simplified further. First Kð4Þ
abcd must be renor-

malized, then the bubble appearing in the nontrivial terms
in Fig. 15 (or the equivalent integral equation) must be
renormalized, then the resulting series must be summed
(or the equivalent integral equation solved), noting that on
the basis of power counting every term is apparently
equally important. On this basis we expect that no compact
analytic expression for Vμ

abc, or even its asymptotic
behavior, exists and that the renormalization must be
accomplished as part of the self-consistent numerical
solution of the full equations of motion.
This style of argument can be quickly generalized to

many other theories, such as gauge theories, where the
diagrammatic expansion has a similar combinatorial struc-
ture to scalar OðNÞ theory, showing up the well known
problem of the renormalization of nPIEA for n ≥ 3 in four
dimensions. The discussion here certainly does not solve
this problem, which remains open, to our knowledge,
though we hope this discussion may be helpful.

APPENDIX D: DERIVING COUNTERTERMS FOR
THREE-LOOP TRUNCATIONS

In this section we work in 1þ 2 dimensions as discussed
in Sec. IV B. The effective action is as in Appendix B
(before eliminating V̄ and VN) except we introduce a new
counterterm δλ → δλC for the second term in (B2) and add
the three-loop diagrams,

Φ3 ¼ Z4
VZ

6
Δ

�
ðN − 1Þ iℏ

3

3!
VNðV̄Þ3ðΔHÞ3ðΔGÞ3 þ

iℏ3

4!
ðVNÞ4ðΔHÞ6 þ ðN − 1Þ iℏ

3

8
ðV̄Þ4ΔHΔHðΔGÞ4

�
; ðD1Þ

Φ4 ¼
iℏ3ðλþ δλÞ

24
Z2
VZ

5
Δ½2ðN − 1ÞV̄VNðΔHÞ3ΔGΔGþðN2 − 1ÞV̄ V̄ ΔHðΔGÞ4 þ 3VNVNðΔHÞ5

þ 22ðN − 1ÞV̄ V̄ ðΔGÞ3ΔHΔH�; ðD2Þ

Φ5 ¼
iℏ3ðλþ δλÞ2

144
Z4
Δf½ðN − 1ÞΔGΔG þ ΔHΔH�2 þ 2ðN − 1ÞðΔGÞ4 þ 2ðΔHÞ4g: ðD3Þ

The equations of motion following from Γð3Þ are then

Δ−1
G ¼ −

�
ZZΔ∂μ∂μ þm2 þ δm2

1 þ ZΔ
λþ δλA1

6
v2
�

−
ℏ
6
½ðN þ 1Þλþ ðN − 1ÞδλA2 þ 2δλB2 �Z2

ΔT G −
ℏ
6
ðλþ δλA2 ÞZ2

ΔT H − iℏZ2
VZ

3
Δ

�
−2

ðλþ δλCÞZ−1
V v

3
− V̄

�
ΔHΔGV̄

þ ℏ2Z4
VZ

6
Δ½VNðV̄Þ3ðΔHÞ3ðΔGÞ2 þ ðV̄Þ4ΔHΔHðΔGÞ3�

þ ℏ2ðλþ δλÞ
3

Z2
VZ

5
Δ½V̄VNðΔHÞ3ΔG þ ðN þ 1ÞV̄ V̄ ΔHðΔGÞ3 þ 3V̄ V̄ ðΔGÞ2ΔHΔH�

þ ℏ2ðλþ δλÞ2
18

Z4
Δ½ðN þ 1ÞðΔGÞ3 þ ΔHΔHΔG�; ðD4Þ

=

+

+

+

+. . .

FIG. 15. Solution for the auxiliary vertex Vμ
abc in terms of the

four-point kernel which sums all iterated bubble insertions.
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for the Goldstone propagator,

V̄ ¼ −
ðλþ δλCÞv

3
Z−1
V þ iℏZ2

VZ
3
Δ½VNðV̄Þ2ðΔHÞ2ΔG þ ðV̄Þ3ΔHðΔGÞ2�

þ iℏðλþ δλÞ
6

Z2
Δ½VNðΔHÞ2 þ ðN þ 1ÞV̄ðΔGÞ2 þ 4V̄ΔGΔH�; ðD5Þ

for the Higgs-Goldstone-Goldstone vertex,

VN ¼ −ðλþ δλCÞvZ−1
V þ iℏZ2

VZ
3
Δ½ðN − 1ÞðV̄Þ3ðΔGÞ3 þ ðVNÞ3ðΔHÞ3� þ

iℏðλþ δλÞ
2

Z2
Δ½ðN − 1ÞV̄ΔGΔG þ 3VNðΔHÞ2�;

ðD6Þ
for the triple Higgs vertex, and finally

0 ¼ Δ−1
G ðp ¼ 0Þv; ðD7Þ

0 ¼ ZVZΔV̄ðp;−p; 0Þvþ Δ−1
G ðpÞ − Δ−1

H ðpÞ; ðD8Þ

for the Ward identities.
Note that the only divergent integrals in these equations are the linearly divergent tadpole integrals T G=H and the

logarithmically divergent BBALL integrals [last line of (D4)]. By power counting with reference to Fig. 7, one finds that the
third, fourth, and fifth lines of (D4) produce finite self-energy contributions with leading asymptotics ∼p−1, p−4, and p−2,
respectively. We can separate finite and divergent parts of Δ−1

G as

Δ−1
G ¼ −

�
∂μ∂μ þm2 þ λ

6
v2
�
− ½Σ0

GðpÞ − Σ0
GðmGÞ� − Σ∞

G ðpÞ; ðD9Þ

where

−Σ0
GðpÞ ¼ −

ℏ
6
ðN þ 1ÞλðT G − T μÞ − ℏ

6
λðT H − T μÞ

− iℏ

�
−2

ðλþ δλCÞZ−1
V v

3
− V̄

�
ΔHΔGV̄ þ ℏ2½VNðV̄Þ3ðΔHÞ3ðΔGÞ2 þ ðV̄Þ4ΔHΔHðΔGÞ3�

þ ℏ2ðλþ δλÞZ2
Δ

3
½V̄VNðΔHÞ3ΔG þ ðN þ 1ÞV̄ V̄ ΔHðΔGÞ3 þ 3V̄ V̄ ðΔGÞ2ΔHΔH�

þ ℏ2ðλþ δλÞ2Z4
Δ

18
½ðN þ 1ÞðΔGÞ3 þ ΔHΔHΔG − ðN þ 2ÞBμ�; ðD10Þ

and

−Σ∞
G ðpÞ ¼ −Σ0

GðmGÞ −
�
ðZZΔ − 1Þ∂μ∂μ þ δm2

1 þ
δλA1
6

v2 þ ðZΔ − 1Þ λþ δλA1
6

v2
�

−
ℏ
6
ðN þ 1ÞλT μ −

ℏ
6
½ðN − 1ÞδλA2 þ 2δλB2 �T G −

ℏ
6
½ðN þ 1Þλþ ðN − 1ÞδλA2 þ 2δλB2 �ðZ2

Δ − 1ÞT G

−
ℏ
6
λT μ −

ℏ
6
δλA2T H −

ℏ
6
ðλþ δλA2 ÞðZ2

Δ − 1ÞT H

− iℏðZ2
VZ

3
Δ − 1Þ

�
−2

ðλþ δλCÞZ−1
V v

3
− V̄

�
ΔHΔGV̄

þ ℏ2ðZ4
VZ

6
Δ − 1Þ½VNðV̄Þ3ðΔHÞ3ðΔGÞ2 þ ðV̄Þ4ΔHΔHðΔGÞ3�

þ ℏ2ðλþ δλÞZ2
Δ

3
ðZ2

VZ
3
Δ − 1Þ½V̄VNðΔHÞ3ΔG þ ðN þ 1ÞV̄ V̄ ΔHðΔGÞ3 þ 3V̄ V̄ ðΔGÞ2ΔHΔH�

þ ðN þ 2Þℏ
2ðλþ δλÞ2Z4

Δ
18

Bμ; ðD11Þ
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are the finite and divergent parts, respectively, and we
introduced the BBALL integral Bμ ¼ R

qp Δ
μðqÞΔμðpÞΔμ

ðpþ qÞ. In this split we have already assumed that
ðλþ δλCÞZ−1

V and ðλþ δλÞZ2
Δ are finite, which will turn

out to be the case. Renormalization requires Σ∞
G ðpÞ ¼ 0.

Note the explicit subtraction of Σ0
GðmGÞ in order to fulfill

the mass shell condition. Doing the same now for Δ−1
H ,

we find the pole condition

0 ¼ ZVZΔV̄ðmH;−mH; 0Þvþm2
H −m2

G − Σ0
GðmHÞ;

ðD12Þ

which requires

ZVZΔ ¼ m2
G þ Σ0

GðmHÞ −m2
H

V̄ðmH;−mH; 0Þv
≡ κ; ðD13Þ

which is finite. We take for our other renormalization
conditions the separate vanishing of kinematically inde-
pendent divergences, implying

ZZΔ ¼ 1; ðD14Þ

δm2
1 ¼ −Σ0

GðmGÞ −
ℏ
6
ðN þ 2ÞλT μ þ ðN þ 2Þℏ

2λ2

18
Bμ;

ðD15Þ

δλA1 ¼ −
ðZΔ − 1Þλ

ZΔ
ðD16Þ

Z2
VZ

3
Δ ¼ 1; ðD17Þ

0 ¼ ðN − 1ÞδλA2 þ 2δλB2

þ ½ðN þ 1Þλþ ðN − 1ÞδλA2 þ 2δλB2 �ðZ2
Δ − 1Þ; ðD18Þ

0 ¼ δλA2 þ ðλþ δλA2 ÞðZ2
Δ − 1Þ: ðD19Þ

We also choose the conditions

ðλþ δλÞZ2
Δ ¼ λ; ðD20Þ

ðλþ δλCÞZ−1
V ¼ λ; ðD21Þ

to recover the tree-level asymptotics for V̄ and VN . These
conditions give a closed system of nine equations for the
nine quantities Z, ZΔ, ZV , δm2

1, δλ
A
1 , δλ

A=B
2 , δλ, and δλC.

These conditions determine

δλA2 ¼ δλB2 ¼ −
λðZ2

Δ − 1Þ
Z2
Δ

¼ ðκ2 − 1Þλ; ðD22Þ

ZV ¼ κ3; ðD23Þ

ZΔ ¼ κ−2; ðD24Þ

Z ¼ κ2; ðD25Þ

δλ ¼ ðκ4 − 1Þλ; ðD26Þ

δλC ¼ ðκ3 − 1Þλ: ðD27Þ

Note that if κ ¼ 1 all of the counterterms except δm2
1

vanish. This is a manifestation of the super-renormaliz-
ability of ϕ4 theory in 1þ 2 dimensions. The nonzero,
indeed finite, values of all of the other counterterms are not
required to UV-renormalize the theory, but only to maintain
the pole condition for the Higgs propagator despite the
vertex Ward identity.
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