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We compute the gluon and ghost propagators of Yang-Mills theory in linear covariant gauges from the
coupled system of Dyson-Schwinger equations. For small values of the gauge fixing parameter ξ ∼ 0.1, the
deviations to the Landau gauge already become clearly visible. For the ghost dressing function, this is
reflected in a logarithmic infrared suppression. Also, the gluon dressing function changes—but only
quantitatively—and the gluon propagator remains finite at zero momentum. From the results, a running
coupling is extracted.
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I. INTRODUCTION

Quantum chromodynamics is a theory rich with physical
phenomena, e.g., asymptotic freedom, confinement, and
dynamical mass creation, to name only a few well-known
examples. The investigation of its low energy regime faces
the challenge of being nonperturbative and requires corre-
sponding methods like lattice simulations or functional
methods.
In this paper we will investigate Yang-Mills theory—i.e.,

we will neglect all quark effects—with Dyson-Schwinger
equations (DSEs). The basic quantities in this approach are
correlation functions of fields. The lowest ones, the
propagators, are particularly important, as they encode
most of the nonperturbative dynamics. As correlation
functions are gauge dependent quantities, the choice of a
gauge is required. This allows us, to some extent, to avoid
or alleviate some difficulties. For example, different gauges
feature a different number of fields and/or interactions.
Thus gauges with a minimal number of both have a
technical advantage over others. Indeed, the gauge which
was most prominently used during the last decades fulfills
this criterion: The Landau gauge has two fields (gluon
and ghost) and three primitively divergent vertices.
Calculations in this gauge have advanced as far as the
self-consistent calculation of its primitively divergent
vertices [1–4]. Of course, there are also other reasons
for the attractiveness of the Landau gauge. One is the fact
that the transverse correlation functions form a closed
system and decouple from the longitudinal ones [5].
Historically, the simple form of the ghost-gluon vertex
played an important role, as it provided the entry point to
the coupled system of gluon and ghost propagators [6].
Since then, much work on the propagators has been done;
see, for example, [1,2,5–17].
Other gauges besides the Landau gauge have also been

used in the past. Among them, the Coulomb gauge is the
gauge where the study of the elementary Green functions

has also progressed rather far [18–21]. Another example is
the maximal Abelian gauge, the correlation functions of
which have also been studied to some extent, e.g., [22,23].
And, last but not least, there are the linear covariant gauges,
the end point of which is the Landau gauge. Within the
functional framework, they have been investigated only
occasionally, e.g., [24,25]. Results from different gauges
offer the possibility of testing the gauge (in)dependence of
observables. Naturally, observables are gauge independent,
but truncating the underlying functional equations can spoil
this property. In this respect linear covariant gauges play
a special role, as they allow us to change the gauge
continuously and have the Landau gauge as their end
point, which is well studied.
At first sight, the extension to a nonvanishing value of

the gauge fixing parameter of the linear covariant gauges,
ξ, may seem rather straightforward once the necessary
techniques are mastered. However, the little knowledge we
have about this family of gauges for providing a guide in
the construction of a truncation for functional equations is
mostly based on an extrapolation from the Landau gauge.
In addition, the longitudinal parts of the correlation
functions have to be considered.
In this context it is interesting to note that with lattice

calculations the extension to a nonzero ξ is also a nontrivial
issue. However, the main reason for this is the fact that
conventional gauge fixing techniques are based on the
extremization of a functional; see Eq. (2) below. Such
functionals exist for the Landau gauge, the maximal
Abelian gauge, and the Coulomb gauge, but for linear
covariant gauges one can show that such a functional
cannot be constructed in the conventional way and that
alternative methods are required [26–29]; see Ref. [30] for
an overview on this topic.
Here we present an exploratory investigation of the

propagators in linear covariant gauges using Dyson-
Schwinger equations. The truncation we use is motivated
by its successful application in the Landau gauge. Lacking
information on the transverse parts of the vertices we
construct models that smoothly connect to the Landau*markus.huber@uni‑graz.at
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gauge but contain only the minimally required ingredients
like the correct ultraviolet (UV) behavior. For the longi-
tudinal parts, we rely on information provided by Ward
identities. The resulting system of equations is then solved
self-consistently.
The article is organized as follows. Yang-Mills theory in

linear covariant gauges is discussed in Sec. II. The Dyson-
Schwinger equations for the propagators are introduced in
Sec. III, where the IR behavior of the ghost propagator is
also investigated. The numerical results are presented in
Sec. IVand in Sec. V we summarize. In the Appendix some
details of the Dyson-Schwinger equations are discussed.

II. LINEAR COVARIANT GAUGES

The action of Yang-Mills theory, SYM ¼ 1
4

R
d4xFa

μνFa
μν,

is invariant under gauge transformations of the gauge
field Aa

μ,

Aa
μ →Aa

μ−Dab
μ θb; Dab

μ ¼ δab∂μþgfabcAc
μ: ð1Þ

The Landau gauge is defined as minimizing the norm of
the gauge fields

R½A� ¼
Z

d4xAa
μAa

μ ð2Þ

with respect to gauge transformations. Any gauge field
configuration obeying ∂μAa

μ ¼ 0 fulfills this criterion.
However, nonperturbatively, this gauge fixing is not unique
and the issue of Gribov copies arises [31]. The restriction to
the hyperplane ∂μAa

μ ¼ 0 introduces auxiliary fields called
ghosts via localization of the Jacobian determinant:

Sgf ¼
Z

d4x

�
1

2ξ
ð∂μAa

μÞ2 − c̄aMabcbÞ
�
: ð3Þ

In the limit ξ ¼ 0, the condition ∂μAa
μ ¼ 0 is strictly

enforced. This is the case of the Landau gauge. ξ > 0
corresponds to a Gaussian distribution along the gauge
orbit centered at ∂μAa

μ ¼ 0, with a width of ξ. Gribov copies
manifest then in the existence of several such Gaussians.
The dressed gluon propagator is parametrized as

Dab
μνðpÞ ¼ Dab;T

μν ðpÞ þ ξδab
pμpν

p4
; ð4Þ

with

Dab;T
μν ðpÞ ¼ δab

p2
Zðp2ÞPμνðpÞ ð5Þ

being the transverse part. PμνðpÞ ¼ gμν − pμpν=p2 is the
transverse projector. As is known from the Slavnov-Taylor
identity for the gluon propagator, the longitudinal part stays
bare. In perturbative calculations, where Zðp2Þ ¼ 1 is used,
the Feynman gauge with ξ ¼ 1 simplifies the calculations,

but in a nonperturbative setting the dressing of the trans-
verse part negates that and the Feynman gauge is not
simpler. Another peculiar value for ξ is 3, for which the
ghost self-energy becomes finite; see Table I. This is the
Yennie gauge. The unitary gauge is ξ → ∞.
The inverse of the propagator, the two-point function, is

written as

Γab
μνðpÞ ¼ ðΓab;T

μν ðpÞ þ ξ−1δabpμpνÞ; ð6Þ

with

Γab;T
μν ðpÞ ¼ δabZ−1ðp2ÞPμνðpÞp2: ð7Þ

The ghost propagator DabðpÞ is parametrized by

DabðpÞ ¼ −δabGðp2Þ 1

p2
: ð8Þ

The two dressing functions of the ghost-gluon vertex are
taken as the parts transverse and longitudinal with respect
to the gluon leg:

Γabc
μ ðk;p; qÞ ¼ igfabcðDgg

T ðk2;p2; q2ÞPμνðkÞpν

þDgg
L ðk2;p2; q2ÞkμÞ: ð9Þ

The momenta k, p, q are those of the gluon, the antighost,

and the ghost. The bare vertex Γabc;ð0Þ
μ ðk;p; qÞ is obtained

by setting Dgg
T ðk2;p2;q2Þ¼1 and Dgg

L ðk2;p2;q2Þ¼p ·k=k2.
In the Landau gauge the ghost-gluon vertex is often used
without radiative corrections. In particular, it is known that
it is UV finite [32]. This is no longer true for ξ > 0 and we
implement the running of the vertex via the following
model:

Dgg
T ðk2;p2; q2Þ ¼ Gðp̄2Þαgg1 Zðp̄2Þβgg1 : ð10Þ

p̄2 is ðp2 þ q2 þ k2Þ=2. The exponents αgg1 and βgg1 can be
found in Table II in the Appendix, where their calculation is
also discussed since they are the same ones used for the
renormalization group improvement. Using Table I, it can
be easily checked that this expression has the correct UV
behavior.

TABLE I. The anomalous dimensions of the propagators and
vertices.

Green function Anomalous dimension

Ghost propagator δ ¼ − 9−3ξ
44

Gluon propagator γ ¼ − 13−3ξ
22

Ghost-gluon vertex γghg ¼ − 3ξ
22

Three-gluon vertex γ3g ¼ 17−9ξ
44
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The full three-gluon vertex has 14 tensors, of which four
form the transverse subspace. Motivated by results in the
Landau gauge, where it was shown by explicit calculations
that all dressing functions of the transverse tensors are
negligible except for the contribution from the tree-level
tensor [3], we restrict ourselves to this tensor given by

Γabc;ð0Þ
μνρ ðp; q; rÞ ¼ igfabcððr − qÞμgνρ þ permÞ: ð11Þ

The transverse part of the full three-gluon vertex is then
written as the transversely projected bare tensor with a
dressing D3gðk2; p2; q2Þ, given by

D3gðk2; p2; q2Þ ¼ Gðp̄2Þα3g1 Zðp̄2Þβ3g1 : ð12Þ

For the longitudinal parts of the vertices, we use Ward
identities. They are obtained from the invariance of the path
integral under gauge transformations; see Refs. [33–36] for
details:

1

Z

Z
DΦGae−SYM−Sgf−Sgh−Ssources ¼ 0; ð13Þ

where

Ga ¼ Dab
μ ðxÞ δ

δAb
μðxÞ

þ gfabc
�
cc

δ

δcb
þ c̄c

δ

c̄b

�
ð14Þ

is the Ward operator. From this identity we calculate the
Ward identities for the three-point functions by applying
further derivatives. As an approximation, we keep only the
terms of lowest order in g. The resulting expressions are
then used for the longitudinally projected vertices in the
DSEs. For the ghost-gluon vertex, we obtain

Dgg
L ðk2;p2; q2Þ

¼ q2G−1ðq2Þ − p2G−1ðp2Þ − k2 − p · k
k2

; ð15Þ

and for the three-gluon vertex,

ipμΓabc
μνρðp; q; rÞ ¼ gfabcðΓT

νρðrÞ − ΓT
νρðqÞÞ: ð16Þ

III. THE PROPAGATOR DYSON-SCHWINGER
EQUATIONS

Based on the invariance of the path integral under
translations of the fields, the equations of motion for all
correlation functions can be derived; see, e.g., [8,37] for
details. On a formal level the DSEs in linear covariant
gauges look the same as in the Landau gauge, viz.,

ðDabðpÞÞ−1 ¼ − ~Z3p2 þ g2 ~Z1

Z

q
Dcdðpþ qÞDef

μνðqÞΓfdb
ν ð−q;pþ q;−pÞΓeac;ð0Þ

μ ðq;p;−q − pÞ ð17Þ

ðDab
μνðpÞÞ−1 ¼ δabPμνðpÞp2Z3 þ ξ−1δabpμpν þ g2 ~Z1

Z

q
DcdðqÞDefðpþ qÞΓbfd

ν ð−p;pþ q;−qÞΓace;ð0Þ
μ ðp; q;−p − qÞ

−
g2

2
Z1

Z

q
Dcd

ρσðqÞDef
αβðpþ qÞΓbfd

νβσ ð−p; pþ q;−qÞΓace;ð0Þ
μρα ðp; q;−p − qÞ þ � � � ; ð18Þ

see also Fig. 1.
R
q stands for

R
d4q=ð2πÞ4 and ~Z1 and Z1

are the renormalization constants of the ghost-gluon
and three-gluon vertices, respectively, whereas ~Z3 is the

renormalization constant of the ghost propagator and Z3

that for the gluon propagator. The dots represent two-loop
terms and the tadpole diagram. The latter is typically
neglected as it does not contribute perturbatively and its
nonperturbative impact is small at best [38]. The two-loop
terms, on the other hand, are important in the midmomen-
tum regime, at least in the Landau gauge [2,39]. However,
for the moment we leave these contributions aside.
Before we can aim at quantitative results, we would need
more detailed information about the vertices in general,
which is not available.
We bring the DSEs now into a form amenable to

numerical computation. We start with the ghost propagator
DSE (17). Plugging in explicit expressions for the propa-
gators and vertices, it becomes

FIG. 1. Truncated two-point Dyson-Schwinger equations. All
internal propagators are dressed. Thick blobs denote dressed
vertices. Wiggly lines are gluons, dashed ones ghosts. Plots were
created with JaxoDraw [40].
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GðxÞ−1 ¼ ~Z3 þ
g2Nc

~Z1

4

Z

q

GðzÞ
xy2z

ððx2 þ ðy − zÞ2 − 2xðyþ zÞÞZðyÞDgg
T ðy; z; xÞ − 2ξyðxþ y − zÞDgg

L ðy; z; xÞÞ: ð19Þ

Here and in the following, we use x ¼ p2, y ¼ q2, and z ¼ ðpþ qÞ2. Switching to hyperspherical coordinates, we can
integrate out two angles and the integrand reduces to two terms:

GðxÞ−1 ¼ ~Z3 þ
g2Nc

4π3

Z
dqdφ

q sinðφÞ2
zZcðzÞ

�
−
sinðφÞ2DAc̄c

T ðy; z; xÞ
ZAðyÞ

þ ξ
q cosφ

p
DAc̄c

L ðy; z; xÞ
�
: ð20Þ

The final expression is obtained by plugging in the Ward identity for the ghost-gluon vertex from Eq. (15):

G−1ðxÞ ¼ ~Z3 þ
g2Nc

~Z1

8π3

Z
dydφ

sinðφÞ2
z

GðzÞ
�
−sinðφÞ2DAc̄c

T ðy; z; xÞZðyÞ þ ξ
p cosφ
qGðxÞ þ ξ cosðφÞ2

�
; ð21Þ

where one term vanished due to the angle integration.
From this expression the infrared (IR) behavior of the

ghost propagator can be inferred. As wewill argue, the term
proportional to ξ is IR leading, which entails a different IR
behavior from the Landau gauge. In the Landau gauge,
only the first term appears, which goes to zero for p → 0

since the product GðzÞZðyÞDAc̄c
T ðy; z; xÞ vanishes faster

than the rest of the integrand. If that were different for
ξ > 0, the qualitative IR behavior of the propagators or
the ghost-gluon vertex would need to change drastically.
We will assume that this is not the case and will support this
by an explicit calculation. For low external momentum p,
the third part becomes

ξ
g2Nc

~Z1

8π3

Z
dydφ

sinðφÞ2
y

cosðφÞ2GðyÞ: ð22Þ

If GðyÞ were IR divergent or constant this would lead
to an IR divergence in the integral. In turn this would mean
that GðxÞ on the left-hand side would vanish, in contra-
diction to the original assumption. Thus the ghost dressing
function must be IR suppressed to make the integrand
convergent. The numerical results will indeed show this
behavior.
We now turn to the gluon propagator DSE. To transform

it into a scalar equation we project it with the transverse
projector. Note that then only the transverse part of the
ghost-gluon vertex appears. Splitting the gluon loop by
orders in ξ, the DSE reads

Z−1ðp2Þ¼Z3þg2Nc
~Z1

Z

q
GðyÞGðzÞKgh

Z ðx;y;zÞDgg
T ðx;y;zÞ

þg2NcZ1

Z

q
ðZðyÞZðzÞKgl

Z ðx;y;zÞD3gðx;y;zÞ

þξKgl;ξ
Z þξ2Kgl;ξ2

Z ZðxÞ−1Þ: ð23Þ

The kernels are given in Eq. (A1) in the Appendix. Note
that in Kgl;ξ

Z , the gluon dressing function appears in various
combinations.
Before the system of equations can be solved some

further modifications are required. They are related to the
UV behavior of the equations, which should consistently
produce the one-loop resummed perturbation theory.
However, the truncation spoils this property. Since the
employed Newton method is sensitive to a consistent UV
behavior, we restore this property by adding renormaliza-
tion group improvement terms [1]. The procedure on how
to do this is described in the Appendix. The issue of
spurious UV divergences which are subtracted perturba-
tively is also discussed there [38]. The final equations
including these modifications can be found in the Appendix
in Eqs. (A3) and (A4).
An interesting question with regard to the IR behavior of

Green functions is if a scaling solution also exists for
nonzero ξ. Such a solution is characterized by power laws
for the dressing functions [6,41]. A DSE analysis using a
bare vertex approximation found that this is not possible if
one requires that the longitudinal gluon propagator stays
bare [24]. This also holds if dressed vertices are considered
[42]. The only way out would be nontrivial cancellations in
the loop diagrams, which, however, we do not find here.
However, given the analytic result that the ghost dressing
function is IR suppressed, it is hard to see how a scaling
solution could be realized.

IV. RESULTS

Using the framework provided by DoFun [37,43] and
CrasyDSE [44] the system of DSEs (A3) and (A4) is solved
using a standard Newton method; see, e.g., [7,43,45].
Solutions for various values of ξ, including 0, are deter-
mined. It turned out that for a nonzero gauge fixing
parameter, a higher precision is required and that with
the currently employed setup the value of ξ is limited to
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ξ≲ 0.4. For larger values, numerical artifacts become
too large.
Our results are shown in Fig. 2. Even though Yang-Mills

theory does not have a physical scale, one can use the string
tension or quark potential methods to set one artificially.
To inherit this scale, we use the distinct bump in the Landau
gauge gluon dressing function as a marker. Using trunca-
tion schemes including the vertices one can obtain with this
method very good agreement with the running coupling in
the universal perturbative regime [1]. Here we used lattice
results from Ref. [46] and calculated the scale setting factor
from the Landau gauge result. It was then applied for all
values of ξ.
First differences to the Landau gauge are seen in the

ghost dressing function which starts to bend down in the
IR. This effect, which can be seen already for very small
values of the gauge fixing parameter, ξ ∼ 0.001, where the
gluon dressing function is still unaffected, is in agreement
with the qualitative IR analysis in Sec. III. The IR
suppression is logarithmic and not as strong as p2, which
would make the ghost propagator IR finite. This behavior
was found in an earlier DSE analysis [25]. In another study
using a variational method, the ghost dressing function was

found to be constant at low momenta [47]. Around ξ ¼ 0.1
the gluon dressing also starts to change and the bump in the
midmomentum regime becomes bigger. At this value of the
gauge fixing parameter, the ghost dressing function already
deviates in the IR severely from the Landau gauge. Raising
ξ further, the ghost dressing function becomes even more
IR suppressed. The effect in the gluon dressing is most
drastic in the midmomentum regime, where the bump gets
enlarged. At small momenta the gluon dressing function
always vanishes like p2, so that the propagator is IR finite.
This is in agreement with the result of Ref. [47]. The UV
behavior for both propagators changes as expected.
While for small values of ξ the proximity to the well-

known Landau gauge most likely makes the results trust-
worthy, it is unclear how well the employed approxima-
tions work for larger values of ξ. In particular, the shift of
the bump in the gluon dressing function to higher momenta
and the large increase in height indicates that the employed
truncation may still lack some important features. An
obvious possibility for improving the truncation is that
of vertex dressings. The employed models are rather simple
and do not capture any nontrivial structures in the non-
perturbative regime.
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FIG. 2 (color online). Ghost (left panel) and gluon (right panel) dressing functions for various values of ξ.

2 4 6 8 10
p[GeV]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2 4 6 8 10
p[GeV]

1

2

3

4

FIG. 3 (color online). Running couplings from the ghost-gluon (left panel) and three-gluon (right panel) vertices.
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We also calculate the running couplings, as extracted
from the ghost-gluon and three-gluon vertices [6,48]:

αggðp2Þ ¼ αðμ2Þ½Dggðp2Þ�2G2ðp2ÞZðp2Þ; ð24Þ

α3gðp2Þ ¼ αðμ2Þ½D3gðp2Þ�2Z3ðp2Þ: ð25Þ

Note that the ghost-gluon vertex enters explicitly, in
contrast to the Landau gauge, where it is UV finite. The
results are shown in Fig. 3. In the perturbative regime they
all agree, as expected from universality. The large bump in
the gluon dressing function leads to a rise at intermediate
momenta for a larger ξ. For increasing values of ξ, the bump
in the coupling also moves to higher values. Unfortunately,
our results do not show any sign of a slowing down of that
movement, so that for large enough values of ξ this will be
in conflict with perturbative universality. This hints again at
a shortcoming of the vertex models for larger values of ξ.
Finally, we note that a desired property of our solution is

that it fulfills a confinement criterion based on the Polyakov
loop potential [49,50]. The important property is that the
gluon propagator is IR suppressed relative to the ghost
propagator, which then leads to a confining Polyakov loop
potential.

V. SUMMARY AND CONCLUSIONS

In this work we presented results for the propagators of
Yang-Mills theory in linear covariant gauges from Dyson-
Schwinger equations. The truncation was kept quite simple,
with the only dynamic quantities being the propagators.
For the vertices, models were used for the transverse parts
that respect the correct UV behavior and the longitudinal
parts were taken from their Ward identities in leading order
in g. From the results for the propagators, a running
coupling was extracted.

Analytically, we could show from the ghost propagator
DSE that the ghost dressing function must be IR sup-
pressed. The numerical results confirmed that behavior.
Thus the ghost propagator has a different IR behavior from
the Landau gauge. The gluon propagator, on the other hand,
qualitatively has the same IR behavior; viz., it becomes
constant. With an increasing value of the gauge fixing
parameter ξ, the bump in the gluon dressing function shifts
towards larger momenta and becomes higher. However, this
may be a truncation artifact. To investigate this issue
further, dedicated investigations of the vertices—or at least
the use of improved models—would be required.
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APPENDIX: DETAILS ON THE
DYSON-SCHWINGER EQUATIONS

OF THE PROPAGATORS

The kernels for the gluon propagator DSE in Eq. (23) are
given by

Kgh
Z ðx; y; zÞ ¼ −

ðx2 − 2xðyþ zÞ þ ðy − zÞ2Þ
12x2yz

; ðA1aÞ

Kgl
Z ðx; y; zÞ ¼

ðx2 − 2xðyþ zÞ þ ðy − zÞ2Þðx2 þ 10xðyþ zÞ þ y2 þ 10yzþ z2Þ
24x2y2z2

; ðA1bÞ

Kgl;ξ
Z ðx; y; zÞ ¼ ðx3ðyþ zÞ þ x2ð9y2 − 4yzþ 9z2Þ þ xð−9y3 þ y2zþ yz2 − 9z3Þ − ðy − zÞ2ðy2 þ z2ÞÞ

24x2y2z2

−
ZðzÞðx − zÞðx2 − 2xðy − 5zÞ þ ðy − zÞ2Þ

24xy2z2ZðxÞ −
ZðyÞðx − yÞðx2 þ 2xð5y − zÞ þ ðy − zÞ2Þ

24xy2z2ZðxÞ ; ðA1cÞ

Kgl;ξ2

Z ðx; y; zÞ ¼ ðx2 − 2xðyþ zÞ þ ðy − zÞ2Þ
24y2z2

: ðA1dÞ
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To solve the system of equations, a standard Newton
method is employed. A stable iteration is only achieved if
the anomalous dimensions are reproduced self-consistently.
However, one-loop resummed perturbation theory requires
a resummation of the diagrams not included in the
truncation. In the Landau gauge, one possible remedy is
to modify the vertex models such that the correct running is
produced, or, in other words, to use momentum dependent
renormalization constants [1,6,38]. Because of the presence
of the mixed terms in the kernel Kgl;ξ

Z , this procedure needs
to be modified: Every term gets multiplied by a so-called
renormalization group improvement factor to obtain the
correct one-loop running [1]. This factor is generically

Fðα; β; p̄2Þ ¼ Gðp̄2ÞαZðp̄2Þβ; ðA2Þ

where p̄2 is ðxþ yþ zÞ=2. This choice ensures that for large
loop momenta q, the argument becomes y while being
symmetric in all momenta. The exponents α and β are
determined such that the logarithmic running in the UV is
correct. In additionwewould require, as in the Landau gauge,
thatFðα; β; p̄2Þwould become constant in the IR if the ghost
propagator were IR constant. However, since the ghost
propagator is not IR constant, the latter condition should
be improved in future calculations, particularly as it canhave a
quantitative influence on the results [3,38]. However, we
adopt it here due to its simplicity. The final DSEs then read

G−1ðxÞ ¼ ~Z3 þ
g2Nc

8π3

Z
dydφ

sinðφÞ2
z

�
− sinðφÞ2DAc̄c

T ðy; z; xÞZðyÞFðαgg1 ; βgg1 ; p̄2Þ

þ ξFðαgg2 ; βgg2 ; p̄2Þ
�
p cosφ
qGðxÞ þ cosðφÞ2

��
GðzÞ; ðA3Þ

Z−1ðp2Þ ¼ Z3 þ g2Nc

Z

q
GðyÞGðzÞKgh

Z ðx; y; zÞDgg
T ðx; y; zÞFðαgg1 ; βgg1 ; p̄2Þ

þ g2Nc

Z

q
ðZðyÞZðzÞKgl

Z ðx; y; zÞD3gðx; y; zÞFðα3g1 ; β3g1 ; p̄2Þ þ ξ ~Kgl;ξ
Z þ ξ2Kgl;ξ2

Z ZðxÞ−1Þ; ðA4Þ

with the new kernel given by

~Kgl;ξ
Z ðx; y; zÞ ¼ ðx3ðyþ zÞ þ x2ð9y2 − 4yzþ 9z2Þ þ xð−9y3 þ y2zþ yz2 − 9z3Þ − ðy − zÞ2ðy2 þ z2ÞÞ

24x2y2z2
Fðα3g3 ; β3g3 ; p̄2Þ

−
ZðzÞðx − zÞðx2 − 2xðy − 5zÞ þ ðy − zÞ2Þ

24xy2z2ZðxÞ ZðxÞFðα3g2 ; β3g2 ; p̄2Þ

−
ZðyÞðx − yÞðx2 þ 2xð5y − zÞ þ ðy − zÞ2Þ

24xy2z2ZðxÞ ZðxÞFðα3g2 ; β3g2 ; p̄2Þ: ðA5Þ

The renormalization constants have all been dropped in
favor of the renormalization group improvement terms.
Note that the renormalization group improvement terms for
two terms also include an additional factor ZðxÞ. The values
for the exponents are given in Table II.
A particular problem of the gluon propagator DSE is the

appearance of spurious divergences. There are several ways

to get rid of them. We adopt the one from Ref. [38] here.
There it was shown that their origin is purely perturbative.
Consequently we can calculate them analytically and use
these expressions to subtract them. The generic structure of
the subtraction term is Csub=p2, with

Csub ¼ Λ2
QCDbω

−1−γ
X∞

n¼0

ðln ðΛ2=Λ2
QCDÞÞ−γþn

n!ð−γ þ nÞ ; ðA6Þ

where Λ is the UV cutoff and ΛQCD is defined as the
position of the one-loop Landau pole, viz., Λ2

QCD ¼ se−1=ω.
ω is given by 11NcαðsÞ=12=π, where αðsÞ is the running
coupling at a perturbative scale s. The coefficient b is
determined from the high momentum behavior in the gluon
propagator DSE:

TABLE II. The exponents α for the RG improvement terms.
The β’s are all 0 because the exponents were derived as if the
ghost dressing function were IR constant.

α3g1 − 9ξ−17
3ðξ−3Þ αgg1 − 2ξ

ξ−3

α3g2 − 4ð3ξ−2Þ
3ðξ−3Þ αgg2 − 2ð3ξþ13Þ

3ðξ−3Þ

α3g3 − 2ðξþ3Þ
ξ−3
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b ¼ g2Nc

64π2
ðGðsÞ2þ2αgg

1 ZðsÞ2βgg1

− 6GðsÞ2α3g1 ZðsÞ2þ2β3g
1 − 3ξGðsÞα3g3 ZðsÞβ3g3 Þ: ðA7Þ

Again, the part proportional to ξ2 does not contribute.
To deal with the logarithmic divergences, a momentum
subtraction scheme is used where the dressings are fixed at
the value of the Landau gauge result at a perturbative scale.
We tested explicitly that the combination of these two
procedures leads to cutoff independent results by varying
Λ2 by a factor of 10.
Other ingredients for the numerical calculation are

functions for extrapolating the dressings beyond the regime

where they are calculated. For the UV the perturbative
expressions

GUVðxÞ ¼ GðsÞ
�
ω ln

�
Λ2

Λ2
QCD

��
δ

; ðA8Þ

ZUVðxÞ ¼ ZðsÞ
�
ω ln

�
Λ2

Λ2
QCD

��
γ

ðA9Þ

are used. The anomalous dimensions can be found in
Table I. At low momenta we employ a simple extrapolation
of the form ap2 for the gluon propagator. For the ghost
propagator we use a constant for ξ ¼ 0 and a=ðbþ lnp2Þ
for ξ > 0.
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