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We study a scenario allowing a solution of the strong charge parity problem via the Peccei-Quinn
mechanism, implemented in gravity with torsion. In this framework there appears a torsion-related
pseudoscalar field known as the Kalb-Ramond axion. We compare it with the so-called Barbero-Immirzi
axion recently proposed in the literature also in the context of the gravity with torsion. We show that they
are equivalent from the viewpoint of the effective theory. The phenomenology of these torsion-descended
axions is completely determined by the Planck scale without any additional model parameters. These
axions are very light and very weakly interacting with ordinary matter. We briefly comment on their
astrophysical and cosmological implications in view of the recent BICEP2 and Planck data.
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I. INTRODUCTION

The recent discovery of the Higgs boson at the LHC has
completed the list of the known particles, providing the last
missing element necessary for the standard model (SM) to
be the framework for particle physics. However, it is well
known that the SM suffers from various internal problems
indicating that this is not a fundamental theory, and in fact it
should be considered just as an effective low-energy theory.
The strongCP problem is one of these problems. It emerges
from adding to the QCD Lagrangian the so called θ term

L ⊃ θ
αs
2π

TrðG ∧ GÞ; ð1Þ

written in terms of the QCD gluon field strength 2-form G.
This is a renormalizable and gauge invariant term, which
violates CP and is allowed in any generic gauge theory in
four dimensions. In the SM it contributes to CP-odd
observables such as the neutron electric dipole moment,
which is stringently constrained by experiment, pushing the
θ parameter down to 10−10. Since the natural value of this
parameter should be of order one, this becomes a fine-
tuning problem. The question of why it turns out to be so
small is the strong CP problem.
A solution of the strong CP problem has been found by

Peccei and Quinn in the periodicity of the nonperturbative
QCD θ vacuum [1] by promoting the θ parameter in Eq. (1)
to be a field θðxÞ. Then the interaction θðxÞTrðG ∧ GÞ
generates in the θ vacuum a nontrivial potential for θðxÞ,
selecting a zero vacuum expectation value hθi ¼ 0. The

fluctuations around this vacuum represent a pseudoscalar
field aðxÞ, dubbed the axion. Then dynamically the CP-
violating term (1) is replaced by the CP-conserving
interaction aðxÞTrðG ∧ GÞ.
The θ parameter can be promoted to be a field, by means

of a pseudoscalar field, ϕðxÞ, of any origin, coupled to the
Pontryagin density TrðG ∧ GÞ of the gluon field. This
could be a Goldstone boson of a Uð1ÞA symmetry,
spontaneously broken at some scale much larger than
the electroweak scale of 250 GeV, to be compatible with
the experimental data as well as with astrophysics and
cosmology. There are many symmetry based proposals of
this kind in the literature, as possible solutions of the strong
CP problem (for a recent review see Ref. [2]). A character-
istic feature of this approach is that all the couplings of the
axion are determined by the scale of symmetry breaking,
which is a free parameter.
On the other hand it is well known that various scenarios

for the Planckian physics involve axionlike fields [3–6].
Those fields can play the same role as the conventional
Goldstone-type axions in the solution of the strong CP
problem, but with all their couplings completely deter-
mined by the Planck scale.
In particular the axionlike fields may appear rather

naturally in a field theory on the torsionful manifolds with
its metric sector treated as a “rigid” background. The first
scenario of this kind was proposed in Ref. [7], where an
axionlike field appears as a consequence of the constraint
imposed on the quantum theory requiring the conservation
of the torsion charge, as suggested by the classical theory.
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Recently, in Ref. [8], the axion has been introduced as a
pseudoscalar field, the so-called Barbero-Immirzi (BI)
axion, interacting with gravity via the Nieh-Yan (NY)
density [9,10]. One of the motivations for the introduction
of this field was the possibility of eliminating the confusing
divergence present in theUð1ÞA rotated fermion measure of
the Euclidean path integral on the manifolds with torsion.
In addition to the usual Pontryagin density, in this case
there appears a Nieh-Yan term, which becomes divergent
when the regularization is removed [11]. The significance
of this divergence was debated in the literature [12,13] and
a consensus on its status has not yet been reached. In the
model of Ref. [8] this divergence can be absorbed by a
redefinition of the Barbero-Immirzi field. This axionlike
field was also proposed in Ref. [14], in order to solve the
strong CP problem in the Peccei-Quinn spirit.
In the present paper, we show that the conservation of the

torsion charge, within the framework of Ref. [7], is
equivalent to demanding a vanishing Nieh-Yan density.
This constraint can be implemented into the quantum
theory by means of a Lagrange multiplier, identified with
the so-called Kalb-Ramond (KR) axion [15], due to its
similarity with the axionlike field coming from string
theory.
Despite the starting points of Refs. [7–8] seeming to be

different, they have the same physical properties when the
torsion is integrated out. Therefore, within the effective
theory, the Kalb-Ramond [15] and the Barbero-Immirzi [8]
axions are equivalent. We rigorously demonstrate this
equivalence and study the solution of the strong CP
problem based on these torsion-descended (TD) axions.
Then we examine their possible cosmological and astro-
physical implications.
In the present manuscript we concentrate on the dis-

cussion of axions in Einstein-Cartan theory of gravity with
torsion. For discussions on the role of axions motivated by
Chern-Simons-type terms, see Ref. [16], where as a
cosmological application, the accelerated expansion of
the Universe has been considered [16,17].
The article is organized as follows. In Sec. II we sketch

the classical Einstein-Cartan gravity with torsion. In Sec. III
we discuss the two procedures for quantizing the model,
and show that despite their different origin, they are
equivalent as effective theories. In Sec. IV we consider
some cosmological and astrophysical implications of these
torsion-descended axions. Finally, we summarize our
present study in Sec. V.

II. CLASSICAL GRAVITY SETUP

We consider the Einstein-Cartan theory of gravity—a
minimal construction of gravitational theory allowing the
connection to possess a nonvanishing torsion [18,19]. The
Cartan’s structure equations, relating curvature and torsion
with the vierbein eaμ and the spin connection ωμ

ab, read

dea þ ωa
b ∧ eb ¼ T a; ð2Þ

dωa
c þ ωa

b ∧ ωb
c ¼ Ra

c; ð3Þ

where ea ¼ eaμdxμ and ωa
b ¼ ðωμÞabdxμ are the vierbein

and spin connection 1-form respectively. Hereon, bold
symbols will denote differential forms, while greek and
latin indices stand for spacetime and Lorentz indices
respectively. Additionally, the vierbein is related with the
curved metric gμν through

gμν ¼ ηabeaμebν ; ð4Þ

where ηab ¼ diagð−1;þ1;þ1;þ1Þ is the Minkowski met-
ric in four dimensions. The spin connection can be split into
ωab ¼ ~ωab þKab, where the tilde indicates a torsion-free
quantity and the contorsion tensor Kab encodes the
information about the torsion through the relation
T a ¼ Ka

b ∧ eb. Similarly, Eq. (3) together with the
decomposition of the spin connection yields to

Rac ¼ ~Rac þ ~DKac þKa
b ∧ Kbc: ð5Þ

The Einstein-Cartan action can be written as

Sgr ¼
1

4κ2

Z
ϵabcdR

ab ∧ ec ∧ ed; ð6Þ

where κ2 ¼ 8πGN ¼ 8πM2
Pl with GN and MPl being the

Newton’s constant and the Planck scale, respectively.
In the following, the SM fields are assumed to live in a

curved torsionful spacetime. The nontrivial coupling of
matter with torsion enters in the fermionic sector through
the covariant derivative,

Dψ ¼ dψ þ 1

4
ωabγabψ þ {eAψ þ {gBψ ; ð7Þ

where A and B denote the Uð1Þem and SUð3Þc gauge
boson 1-forms respectively and γab ¼ 1

2
½γa; γb�. Therefore,

the complete model is described by the action

S ¼ Sgr −
1

2

X
f

Z
ðψ̄fγ ∧⋆ Dψf −Dψ̄f ∧⋆ γψfÞ

−
1

2

Z
F ∧⋆ F −

Z
Tr½G ∧⋆ G�; ð8Þ

where ψ̄ ¼ −iψ†γ0 is the usual Dirac adjoint, γ ¼ γa ea

and the subscript f indicates the SM fermionic flavors.
The symbol ⋆ denotes Hodge duality, while G and F are
the SUð3Þc and Uð1Þem gauge field strength 2-form
respectively.
When the action in Eq. (8) is varied with respect to the

vierbein field, one obtains the corresponding Einstein-
Cartan equation of motion,
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Rab −
1

2
ηabR ¼ κ2τab; ð9Þ

where τab is the energy-momentum tensor of the system. In
its form Eq. (9) looks similar to the Einstein equation
derived within general relativity (GR). However, the two
equations are different because the presence of torsion
gives rise to an antisymmetric part in both sides of the
equation, absent in GR.
On the other hand, the variation of the action with respect

to the spin connection yields to an algebraic equation of
motion for the torsion,

T abc ¼ −
κ2

2
ϵabcd

X
f

J5 df ; ð10Þ

where J5 df ¼ iψ̄fγ
dγ5ψf is the fermionic axial current.

Notice that only the completely antisymmetric part of the
torsion couples to the fermionic fields. This part corre-
sponds to its axial irreducible component,

S ¼ 1

3!
ϵabcdT abced: ð11Þ

Now we rewrite Eq. (8), showing explicitly only those
terms which depend on the torsion axial component

S ¼ S0 þ
3

4κ2

Z
S ∧⋆ S −

3

4

Z
J5 ∧⋆ S; ð12Þ

where S0 ¼ ~Sgr þ ~Sψ þ Sgk and Sgk represents the gauge
field kinetic terms [the last two terms in Eq. (8)]. The entity
J5 ¼ P

fðJ5fÞa ea denotes the axial current 1-form, where
the sum runs for all the fermionic flavors f.

III. QUANTUM THEORY AND TD AXIONS

The quantization of the model with the action given
in Eq. (12) can be carried out on the basis of the path
integral representation for the generating functional.
However, at present it is unknown if this procedure is
applicable to the quantization of the whole gravity sector.
(For the current status of this problem see, for instance,
Refs. [20].)
In the scenario studied here, the SM fields lie on a

torsionful manifold, whose only quantum gravity effects
enter through the torsion, while the metric or Riemmanian
curvature remains as a classical variable. Quantum torsion
seems to be easily treatable because the equation of motion
for the torsion (10) is algebraic, showing that the torsion is a
nonpropagating field, which can be exactly integrated out
from the theory.
However, as it was observed in Ref. [7], this treatment of

the torsion should be done with caution. It follows from
Eqs. (10)–(11), that S ∝ J5f. Since the action (12) is Uð1ÞA
symmetric, the Nöther current J5f is conserved at classical

level, leading, as follows from the above relation, to the
conservation of the torsion charge QS ¼

R ⋆ S.
On the other hand, we know that the fermionic measure

of the path integral is not Uð1ÞA invariant. This fact
manifests as the anomalous nonconservation of J5 at the
quantum level. As pointed out in Ref. [7], this must be
taken into account before integrating out the torsion, in
order to maintain the self consistency of the constructed
effective theory. Following Ref. [7], an effective quantum
theory can be constructed through a constraint requiring the
conservation of the torsion charge d ⋆ S ¼ 0. Notice that
this is a gauge invariant condition, which is important for
the self consistency of the SM sector of the theory. Later we
show that this condition eliminates the divergent part of
the Uð1ÞA anomaly mentioned in Sec. I and affecting the
tractability of the quantum theory in the presence of the
torsion.
The quantum generating functional, with this condition

incorporated, takes the form

Z ¼
Z Y

φ

DφDS eiS½φ�δðd ⋆ SÞ; ð13Þ

where S½φ� is the action given in Eq. (12) and φ denotes
all the fields except for eaμ, treated as a rigid background.
The argument of the delta in Eq. (13) can be passed to the
effective action using the integral representation

δðd ⋆ SÞ ¼
Z

Dϕe
R

iϕd⋆S ¼
Z

Dϕe−
R

idϕ∧⋆S: ð14Þ

This allows us to write

Z ¼
Z Y

φ

DφeiS0

Z
DSDϕ

× exp

�
i
Z �

3

4κ2
S ∧⋆ S−

3

4
J5 ∧⋆ S − dϕ ∧⋆ S

��
;

ð15Þ

where J5 ¼ P
fJ

5
f.

Since S is a nonpropagating field, we can integrate it
out in the standard way [7,19] carrying out a variable
transformation

S0 ¼ S −
2

3
κ2dϕ −

1

2
κ2J5; ð16Þ

with the Jacobian equal to unity. This new variable appears
in the exponent in Eq. (15) only in the bilinear combination
S ∧⋆ S and, therefore, can be exactly integrated out. As a
result we get the effective action
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Seff ¼ S0 −
3κ2

16

Z
J5 ∧⋆ J5

−
1

2

Z
dΦ ∧⋆ dΦþ

ffiffiffi
3

2

r
κ

2

Z
Φd ⋆ J5: ð17Þ

For convenience we have made a redefinition Φ ¼ffiffiffiffiffiffiffiffi
2=3

p
κϕ. Notice that the integration out of the torsion

makes ΦðxÞ a dynamical field with the canonical kinetic
term. As follows from the last term in Eq. (17) this field is
pseudoscalar. It is what we called in the introduction the
KR axion field.
At the quantum level, the last term of Eq. (17) is nothing

but the axial anomaly [21]. In the path integral language
d ⋆ J5 ≠ 0 is the manifestation of the Uð1ÞA noninvariance
of the fermionic measure [22], mentioned in the
introduction.
On the Riemann-Cartan manifolds the axial anomaly

was first studied in Refs. [23]. However, as shown in
Ref. [11], the computation of such an anomaly gives rise, in
general, to an additional previously missed term, called
Nieh-Yan topological density [9] so that under a Uð1ÞA
rotation of the fermion fields ψ the fermion measure
experiences a nontrivial variation [11,23]

DψDψ̄ → DψDψ̄ × exp

�
iα

Z �
αemQ̄2

π
F ∧ F

þ αsNq

2π
Tr½G ∧ G� þ Nf

8π2
Rab ∧ Rab

þ 2M2ðT a ∧ T a − ea ∧ eb ∧ RabÞ
��

: ð18Þ

Here αem and αs are the electromagnetic and QCD
couplings, respectively, Nf is the total number of fermionic
flavors, Nq is the number of quarks and Q̄2 ¼ P

fQ
2
f,

where Qf is the charge of f fermionic flavor. The last term
in Eq. (18) is the NY topological density with the regulator
multiplier being divergent when the regularization is
removed, M → ∞. As mentioned in Sec. I the status of
this divergence is still debated in the literature.
However we find that in the approach of Ref. [7] it is

irrelevant since the NY term N vanishes identically due to
the condition d ⋆ S ¼ 0 imposed on quantum theory by
insertion of the corresponding delta function in Eq. (13).
In fact this follows from the identity derived in Ref. [9],

N ≡ T a ∧ T a −Rab ∧ ea ∧ eb ¼ dðea ∧ T aÞ; ð19Þ

and the definition of the field S in Eq. (11) written in the
form

⋆ S ∝ ea ∧ T a: ð20Þ

Then from Eqs. (19)–(20) it follows that

d ⋆ S ¼ 0 ⇒ N ¼ 0: ð21Þ

Thus, neglecting the Nieh-Yan term in the axial anomaly,
we can write for the axial current

d ⋆ J5 ¼ −
αemQ̄2

π
F ∧ F −

αsNq

2π
Tr½G ∧ G�

−
Nf

8π2
~Rab ∧ ~Rab: ð22Þ

The right-hand side is written in terms of torsion-free
quantities. This is attainable by the introduction of proper
counterterms, as shown in Ref. [7].
Now we substitute the identity (22) into Eq. (17) and

obtain the resulting effective action of the model,

Seff ¼ S0 −
1

2f2Φ

Z
J5 ∧⋆ J5 −

αemQ̄2

πfΦ

Z
ΦF ∧F

−
1

2

Z
dΦ ∧⋆ dΦ−

1

8π2

Z �
ΘþNf

fΦ
Φ

�
~Rab ∧ ~Rab

−
αs
2π

Z �
θþNq

fΦ
Φ

�
Tr½G ∧G�: ð23Þ

Here we introduced a parameter

fΦ ¼ κ−1
ffiffiffiffiffiffiffiffi
8=3

p ≃ 4 × 1018 GeV; ð24Þ

analogous to the decay constants of fields with derivative
couplings, such as Goldstones of spontaneously broken
symmetries.
In the effective action (23) we added the QCD and the

gravitational θ and Θ terms. They are the gauge and
gravitational Pontryagin densities allowed by the gauge
symmetries of the theory. These terms are also needed for
the model completeness, and play the role of counterterms
for the axial anomaly quantum corrections. They do not
affect the previous derivation, since due to their topological
nature they do not change the equations of motion.
Recently in Ref. [8] there has been proposed an alter-

native scenario in gravity with torsion also leading to an
axionlike field. This scenario is inspired, in particular, by
the Chern-Simons modified gravity motivated in its turn by
string theory. The gravitational action according to Ref. [8]
is modified at the classical level by the term

Stot ¼ S þ
Z

βðxÞN ; ð25Þ

where S is the action given in Eq. (8) or (12). This action,
being used in the quantum generating functional, allows
one to absorb the divergent NY part of the anomalous
Uð1ÞA variation of the fermion measure (18) by a renorm-
alization of the field βðxÞ called in Ref. [8] the BI axion.
The field βðxÞ becomes a dynamical field with the
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canonical kinetic term after excluding a nondynamical
torsion field using the classical equation of motion

S ¼ 2

3
κ2dβ þ 1

2
κ2J5; ð26Þ

derived from the action (25). This is equivalent to integrat-
ing out the torsion field S in the generating functional
carrying out the transformation (16). Note that the field
βðxÞ in the classical action (25) is nothing but a Lagrange
multiplier setting the classical level constraintN ¼ 0. Now
one can immediately realize that in view of the identities
(19)–(20) it is equivalent to the constraint d ⋆ S ¼ 0, which
in the approach of Ref. [7] was set at quantum level as a
constraint incorporated in the generating functional (13) or
(15). On the other hand both approaches lead to the same
effective quantum theory with the effective action given in
Eq. (23) with the identification of the KR and BI axions
ΦðxÞ≡ βðxÞ. As we have seen KR and BI axions originate
from rather different treatments of quantum theory in the
presence of the torsionful gravity. Nevertheless from
the point of view of low-energy effective theory and
the resulting phenomenology they both are equivalent
particles, which we call from now on TD axions.
Additionally, the TD axions may also appear in the

context of the torsion-induced quintessential axions [16].
In this framework, the axial current is modified by the
addition of the Chern-Simons-type terms, in order to be
conserved in the zero mass limit. The complete cancellation
of the torsion sector in the anomaly can be addressed
requiring the torsion to be an exterior derivative of a
pseudoscalar field, identified later with the axion [16].
Remarkably, this approach leads to the same effective
theory as Refs. [7–8] for a constant dilaton field.

IV. PHENOMENOLOGY AND COSMOLOGY
WITH TD AXIONS

In the effective action in Eq. (23) of the considered TD
axions the last term is the most important in the context of
the strong CP problem. The presence of the coupling of an
axionlike field to the gluon field Pontryagin density is the
necessary and sufficient condition for the solution of
the strong CP problem via the Peccei-Quinn mechanism.
The TD axion decay constant fΦ introduced in Eq. (23)
represents a typical energy scale of the model, related to the
Planck scale. Thus, the TD axions Φ emerge without any
accompanying free parameter. This drastically distin-
guishes them from the axions introduced as Goldstone
fields of spontaneously broken symmetries, requiring at
least one free model parameter, i.e., the scale of symmetry
breaking.
In principle in certain models both the TD and Goldstone

axions can coexist mixing with each other [14]. We do not
consider this case here since in the presence of the TD

axions, solving the strong CP problem without free
parameters, introduction of other axions looks excessive.
Focusing on the last term in Eq. (23), let us write down

θðxÞ ¼ θ þ ΦðxÞNq=fΦ. The main point of the Peccei-
Quinn mechanism is that the coupling ∼

R
θðxÞTr½G ∧ G�

generates a nontrivial potential for the θðxÞ field.
The periodicity of this potential in θ [24] selects the
unique nontrivial minimum hθðxÞi ¼ 0, corresponding to
hΦðxÞi ¼ −θfΦ=Nq. Perturbations around this vacuum
generate the physical pseudoscalar axion field aðxÞ ¼
ΦðxÞ − hΦðxÞi. Thus the only surviving piece of the last
term of Eq. (23) is the CP-conserving interaction
aðxÞTr½G ∧ G�. This solves the strong CP problem with
the help of the TD axions. The massma of the TD axion can
be calculated in the usual way, as is done for any axion field
(for a review cf. Ref. [25]), and depends only on the
parameter fΦ defined in Eq. (24). The nontrivial mass is
generated by instantons and for the value in Eq. (24) it turns
out to be

ma ≈ mπ
fπ
fΦ

ffiffiffiffiffiffiffiffiffiffiffiffi
mumd

p
mu þmd

∼ 10−12 eV; ð27Þ

where fπ ¼ 93 MeV is the π-meson decay constant and
mπ; mu;d are the masses of π-meson and u; d quarks. Such
an extremely light particle, having the inverse Planck mass
suppressed interactions with gauge fields, is unobservable
in laboratory experiments.
Nonetheless, an axion with these properties may play a

significant cosmological and astrophysical role, since it
must satisfy the existing limits related to its origins. These
aspects of the torsion-descended axions considered here
have been studied in Ref. [14]. It has been shown that such
axions safely pass all the known astrophysical constraints,
which originate from the energy loss of a stellar core in the
form of axions and its impact on stellar evolution.
An interesting cosmological prediction applied to the

torsion-descended axions, also discussed in Ref. [14], is the
production of axion isocurvature perturbations in which
amplitude is constrained from the above by Wilkinson
Microwave Anisotropy Probe [26]. Assuming that they are
the dominant component of dark matter in the Universe it
was found for the upper limit [14]

HI ≤ 1010 GeV; ð28Þ

for the Hubble expansion rate HI during inflation. Now we
can estimate the tensor-to-scalar ratio r ¼ PT=PS using
expressions for the power spectra of the scalar PS and
tensor PT perturbations [27]

PS ≈
1

8π2

�
H2

I

ϵM2
P

�
; PT ≈

2

π2

�
H2

I

M2
P

�
: ð29Þ
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Here MPl ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
≈ 2.44 × 1018 GeV is the reduced

Planck scale and ϵ is the standard slow-roll parameter.
We use the Planck Collaboration result PS ≈ 2.19 × 10−9

(see Refs. [28,29]) and find from Eq. (29)

HI ≈ 2.5 × 104 GeV
ffiffiffi
r

p
: ð30Þ

Using the limit (28) one finds the prediction for the
cosmology with torsion-descended axions

r ≤ 1.6 × 10−9: ð31Þ

This is in dramatic contradiction with the recently pub-
lished result by BICEP2 [30], r ¼ 0.2þ0.07

−0.05 . Nevertheless,
the situation has recently changed after the publication of
the Planck Collaboration detailed analysis of the impact
of the diffuse galactic dust polarized emission on the
measurements of the polarization of the cosmic microwave
background (CMB) [31]. It has been shown that the
BICEP2 result can be accounted for in the presence of
this dust. Thus, the torsion-descended axions, considered
in the present paper, are currently not excluded by the
cosmological data. Their cosmological test via the
tensor-to-scalar ratio r is postponed for the future.
Results of improved measurements of r, taking into
account the complications with the diffuse galactic dust,
are expected to come in the near future from the Keck Array
[32] and BICEP3 [33] telescopes. The first results of the
joint analysis of BICEP2/Keck Array and Planck data have
been recently issued [34] showing only an upper limit
r < 0.12 at 95% C.L. New results from BICEP3, which
will improve this limit, are expected during 2015 and 2016
seasons [34].
The following final note might be in order. If the

considered scenario is incorporated into the extradimen-
sional setup [35] amended with the torsion [36] the
fundamental D-dimensional Planck scale M� could be
reduced down to the TeV values, dramatically changing
the phenomenology and cosmology of the TD axions.
In fact, making a rescaling MPl → M� ≥ 100 GeV in
Eqs. (24) and (27), we find the values ma ≤ 30 keV and
fΦ ≥ 100 GeV. Then for the rate of a → γγ we get
Γaγγ ≤ 10−16 eV. As to the cosmological aspects of the
extradimensional TD axions, they require a dedicated
study. In particular, the value of the tensor-to-scalar ratio
r cannot be obtained from (31) by the simple rescaling of
MPl. Let us recall that the bound in Eq. (31) was obtained
using the limit (28) derived in Ref. [14] with the
assumption that the axions be out of thermal equilibrium

with photons during inflation. This condition can be
violated for the values of Γaγγ given above. The role of
the extradimensional TD axions as a dark matter candidate
should also be reconsidered. The corresponding study is in
progress and its results will be published elsewhere.

V. CONCLUSIONS

We considered a solution of the strong CP problem via
the Peccei-Quinn mechanism, implemented into the theory
of gravity with torsion. We showed that the self-consistency
condition of quantum theory d ⋆ S ¼ 0 proposed in
Ref. [7] is equivalent to the requirement of vanishing
Nieh-Yan topological density on the spacetime manifold.
The Lagrange multiplier field, incorporating this constraint,
leads to the torsion-descended axion coupled to the gluon
Pontryagin density, Tr½G ∧ G�, and therefore allows appli-
cation of the Peccei-Quinn mechanism for solving the
strong CP problem.
We considered the Kalb-Ramond and the Barbero-

Immirzi axions proposed in the literature from quite
different theoretical perspectives. We found that from the
viewpoint of the effective theory these two torsion-
descended axions are equivalent.
An important property of the torsion-descended axions is

that their phenomenology has no free parameters, rather
they are completely determined by the Planck scale or,
equivalently, by Newton’s gravity constant. The torsion-
descended axion masses and their characteristic decay
constants are extremely small due to the Planck suppres-
sion, typical for this family of axions rooted in gravity. We
demonstrated the compatibility of the torsion-descended
axions with all the existing cosmological and astrophysical
limitations, as well as prospects for testing them in the near
future measurements of the tensor-to-scalar ratio of the
perturbation modes of the CMB. We also estimated the
possible role of extra dimensions in phenomenology and
cosmology of torsion-descended axions.
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