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We construct an effective QCD light-front Hamiltonian for both mesons and baryons in the chiral limit
based on the generalized supercharges of a superconformal algebra. The superconformal construction is
shown to be equivalent to a semiclassical approximation to light-front QCD and its embedding in anti–de
Sitter space. The specific breaking of conformal invariance inside the superconformal algebra uniquely
determines the effective confinement potential. The generalized supercharges connect the baryon and
meson spectra to each other in a remarkable manner. In particular, the π=b1 Regge trajectory is identified as
the superpartner of the nucleon trajectory. However, the lowest-lying state on this trajectory, the π-meson, is
massless in the chiral limit and has no supersymmetric partner.
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I. INTRODUCTION

Light-front (LF) holographic QCD has brought impor-
tant insights into hadron dynamics, especially to the
confinement problem. In Refs. [1,2] a remarkable equiv-
alence between the bound-state equations of the light-front
Hamiltonian in 3þ 1 physical space-time (for a review of
light-front physics see [3]) and those obtained in five-
dimensional anti–de Sitter space (AdS5) has been observed:
The holographic coordinate z in AdS5 space can be
identified with the boost-invariant light-front separation ζ
between constituents [4]. This holographic equivalence
allows one to relate the effective light-front potential for
bosons to the symmetry-breaking factor introduced in
AdS5. In the case of integer spin fields, the breaking of
the conformal isometries of AdS space can be done by
introducing an additional model-dependent factor into the
AdS action—a dilaton term eφðζÞ. The specific form of the
symmetry-breaking factor, however, is not fixed a priori,
but it can be deduced from the comparison with the
experimentally observed spectra. Linear Regge trajectories
demand for φðζÞ the form φðζÞ ¼ λMζ

2 [5,6]. The resulting
LF effective potential is harmonic and confining, and it also
includes a J-dependent constant term. This extra term is a
consequence of the separation between kinematical and
dynamical quantities for arbitrary spin [7], prescribed by
the light-front mapping of AdS bound-state equations. The
extra constant term has important phenomenological

consequences; in particular, it leads in the chiral limit to
a massless pion.
A large step forward in understanding why the effective

potential must have the form of a confining harmonic
potential was made by applying a method developed in
conformal quantum mechanics by de Alfaro, Fubini and
Furlan [8] (dAFF) to the light-front bound-state equa-
tions [9]. Starting from a conformally invariant action, a
new Hamiltonian can be constructed as a superposition of
the generators of the conformal algebra. Remarkably, the
action remains conformally invariant, and the form of
the resulting confining potential is uniquely fixed [9]. It
has the form of a harmonic oscillator and corresponds
to the quadratic dilaton term previously introduced by
purely phenomenological arguments [5,6]. However, the
J-dependent constant term, referred to above, cannot be
derived from the dAFF procedure. Furthermore, for half-
integer spin a dilaton term in the AdS action does not lead
to confinement [10], and therefore an additional Yukawa-
like interaction term ψ̄ρðζÞψ has to be added to the
fermionic action. This interaction term in the action leads
to a potential VðζÞ in the corresponding Dirac equation, and
again has to be determined phenomenologically—one finds
that the linear baryon Regge trajectories, with equal spacing
in the orbital and radial excitations, as observed phenom-
enologically, requires the form VðζÞ ¼ λBζ [11,12].
Recently, we have shown [13] that a comparison of the

half-integer LF bound-state equations with the Hamiltonian
equations of superconformal quantum mechanics fixes the
form of the LF potential in full agreement with the
phenomenologically deduced form VðζÞ ¼ λBζ. This pro-
cedure, originally developed by Fubini and Rabinovici
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(FR) [14], is the superconformal extension of the procedure
applied by dAFF [8]. In brief: A new evolution
Hamiltonian can be constructed using a generalized super-
charge which is a superposition of the original supercharge
together with a spinor operator which occurs only in the
superconformal algebra. The resulting superconformal
quantum mechanics applied to the fermionic light front
bound-state equations is completely dual to LF holographic
QCD; this is in contrast to conformal quantum mechanics
without supersymmetry, which is dual to the bosonic sector
of LF holographic QCD only up to a constant term, which
in turn is fixed only by embedding the LF wave equations
for arbitrary integer spin into LF holographic QCD.
As we shall discuss in this paper, superconformal

quantum mechanics applied to LF bound-state equations
also implies striking similarities between the meson and
baryon spectra. In fact, as we shall show, the holographic
QCD light-front Hamiltonians for the states on the pion and
proton trajectories are identical if one shifts the internal
angular momentum of the meson (LM) by one unit with
respect to that of the baryon (LB), LM ¼ LB þ 1. The
baryon and meson trajectories are actually observed to be
linear in the squared massesM2 ∝ ðnþ LÞ, as predicted by
LF holographic QCD, a feature not obvious for states
satisfying effective bound-state equations (Dirac or gener-
alized Rarita-Schwinger). The slope of the trajectories in
the principal quantum number n and the orbital angular
momentum L are also very similar. In fact, the best fits to
the numerical values for the Regge slopes agree within
�10% for all hadrons, mesons and baryons; this leads to a
near degeneracy of meson and baryon levels in the model.
The idea to apply supersymmetry to hadron physics is

certainly not new [15–17]. In [15] mesons and baryons are
grouped together in a big supermultiplet, a representation
of U6=21. In [16] the supersymmetry results of Miyazawa
[15] are recovered in a QCD framework, provided that a
diquark configuration emerges through an effective string
interaction. This approach relies heavily on the fact that in
SUð3ÞC a diquark can be in the same color representation as
an antiquark, namely a 3̄. A meson is formed by a quark-
antiquark pair and a baryon by a quark and a diquark,
which remains color singlet. It is plausible to assume that
the color force between a quark and a diquark is approx-
imately equal to that between a quark and an antiquark;
from this, an effective supersymmetry between mesons and
baryons follows. An apparent difficulty in this approach is
that the pion and the nucleon would have the same mass
and, thus, supersymmetry would be badly broken [17]. In
fact, in the chiral limit—the limit of massless quarks—the
pion is massless, and this state has no obvious super-
symmetric partner: there is no (nearly) massless baryonic
state. In the direct diquark approach [15–17] there is no
natural way to take into account the special role of the pion.
In certain aspects, our approach is similar to the

diquark picture described above. The light-front clustering

decomposition used here divides the baryon constituents
into a special constituent, the active quark, and the rest, the
spectator cluster, which could be identified with a diquark.
However, in contrast to the direct diquark picture, the
problem of a baryonic partner of the pion does not occur in
our approach. It yields a massless pion, but the supercharge,
which transforms meson into baryon wave functions,
annihilates the pion wave function and therefore it has
no baryonic partner. The details of this mechanism, which
only occurs for a massless pion, are explained in Sec. IVA.
The approach described here, in contrast to the direct

diquark picture of Refs. [15–17], is by no means restricted
to a special number of colors. Indeed, in this effective
theory the color quantum number does not appear explic-
itly. However, since it is an offspring of the Maldacena
AdS/CFT correspondence [18], it is reminiscent of an
NC → ∞ theory. This interpretation is also in accordance
with the zero width of all states, including the excited ones.
It is interesting to note that there exists a genuine super-
symmetric approach to the meson-baryon relation relying
on the NC → ∞ limit. Armoni and Patella [19] consider
N ¼ 1 supersymmetric SUðNCÞ; in their approach, the
meson is formed by a bosonic string from a quark to an
antiquark, whereas the baryon is formed by a fermionic
string between two quarks. In the large NC limit the string
tension for both objects become equal: “supersymmetric
relics” [20] from the supersymmetric theory lead to equal
string tension for mesons and baryons in SUðNCÞ.
We emphasize that the supersymmetric relations between

the observed baryons and mesons, which we derive here,
are not a consequence of supersymmetric QCD with scalar
quarks and gluinos. Since no supersymmetric partners of
the fundamental QCD fields have been observed, such a
theory is evidently broken below the TeV scale. The
relations derived here are relations between the wave
functions of hadrons, not field operators. In fact, the
relations obtained in the framework of supersymmetric
quantum mechanics reflect properties of the confining
mechanism in an effective semiclassical theory. One thus
expects deviations from experiment which are of the same
order as in light-front holographic QCD.
This article is organized as follows: After briefly

reviewing some important results of light-front holographic
QCD in Sec. II, we discuss in Sec. III the construction of
the bound-state Hamiltonian within the superconformal
algebra and the breaking of dilation invariance following
[14]. The search for the supersymmetric partners of the
baryon trajectories is discussed in Sec. IV. A summary of
the main results and our conclusions are presented in
Sec. V. Some useful formulas for the derivations presented
in this article are given in the appendixes.

II. LIGHT-FRONT HOLOGRAPHIC QCD

We first briefly review some principal results of light-
front holographic QCD [21]. There, an integer-spin field in
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AdS5, with a free hadronic field at the four-dimensional
border ζ ¼ 0, is split into a component ΦJðζÞ, describing
the behavior in the bulk, and a plane wave with an integer
J-spinor describing the Minkowski space-time behavior,

Φν1���νJðP; ζÞ ¼ ΦJðζÞeiP·xϵν1���νJðPÞ: ð1Þ

The four-momentum squared is the mass squared of the
hadron represented by the free field, P2 ¼ M2.
A Schrödinger-like wave equation [2,7] follows from

the AdS action for arbitrary integer spin-J modified by a
dilaton term eφðζÞ,

�
−

d2

dζ2
þ 4L2 − 1

4ζ2
þUðζ; JÞ

�
ϕJðζÞ ¼ 0; ð2Þ

where we have factored out the scale ð1=ζÞJ−3=2 and dilaton
factors from the AdS field ΦJ by writing ΦJðζÞ ¼
ðR=ζÞJ−3=2e−φðζÞ=2ϕJðζÞ. Equation (2) has exactly the form
of a LF wave equation for massless quarks with a LF
effective potential U and LF angular momentum L. The
latter is related to the total spin-J and the product of the
AdS mass μ with the AdS radius R by

ðμRÞ2 ¼ L2 − ðJ − 2Þ2: ð3Þ

The potential U is related to the dilaton profile by [6,7]

Uðζ; JÞ ¼ 1

2
φ00ðζÞ þ 1

4
φ0ðζÞ2 þ 2J − 3

2ζ
φ0ðζÞ: ð4Þ

The holographic variable ζ is identified with the LF
invariant transverse separation: ζ2 ¼ b2⊥uð1 − uÞ [1,2],
where b⊥ is the transverse separation of the constituents
and u is the longitudinal light-front momentum fraction.
In the case of the quadratic dilaton profile φðζÞ ¼ λMζ

2,
the LF effective potential is Uðζ; JÞ ¼ λ2Mζ

2 þ 2λMðJ − 1Þ,
and the holographic bound-state wave equation (2) can be
written as

�
−

d2

dζ2
þ λ2Mζ

2 þ 2λMðJ − 1Þ þ 4ν2 − 1

4ζ2

�
ϕJ ¼ M2ϕJ;

ð5Þ

for a meson with total spin-J. Near ζ ¼ 0 the regular
solution behaves as ϕJðζÞ ∼ ζνþ1

2, corresponding to twist
2þ ν. In LF holographic QCD one thus has ν ¼ LM, where
LM is the LF angular momentum of the meson,
LM ¼ jLz

Mjmax. The eigenvalues of (5) predict the meson
spectrum

M2
n;L;J ¼ 4

�
nþ J þ LM

2

�
λM; ð6Þ

for λM > 0, where n indicates the radial excitation quantum
number: the number of nodes in the wave function.
Similarly, the AdS field for arbitrary half-integer spin-J

can be factorized into a bulk wave function Ψ�
J ðζÞ and a

plane wave with a Rarita-Schwinger or Dirac spinor with
momentum P and mass M, representing a freely propa-
gating baryon at the AdS border,

Ψ�
ν1���νJ−1=2ðP; ζÞ ¼ Ψ�

J ðζÞeiP·xu�ν1���νJ−1=2ðPÞ; ð7Þ

where the chiral spinors u�ν1���νJ−1=2 ¼ 1
2
ð1� γ5Þuν1���νJ−1=2

satisfy the equations

γ · Pu�ν1���νJ−1=2ðPÞ ¼ Mu∓ν1���νJ−1=2ðPÞ;
γν1u

�
ν1���νJ−1=2ðPÞ ¼ 0: ð8Þ

The spinors u� have positive and negative chirality,
respectively.
The bound-state wave equations for the AdS bulk wave

functions Ψ�
J can be derived from the action for arbitrary

half-integer spin-J if one includes the effective interaction
VðζÞ ¼ λBζ. The result is [7]

�
−

d2

dζ2
þλ2Bζ

2þ2λB

�
νþ1

2

�
þ λBþ

4ν2−1

4ζ2

�
ψþ
J ¼M2ψþ

J ;

ð9Þ
�
−

d2

dζ2
þ λ2Bζ

2 þ 2λB

�
νþ 1

2

�
− λB þ 4ðνþ 1Þ2 − 1

4ζ2

�
ψ−
J

¼ M2ψ−
J ; ð10Þ

where we have factored out the scale ð1=ζÞJ−5=2 by writing
Ψ�

J ðζÞ ¼ ðR=ζÞJ−5=2ψ�
J ðζÞ, and ν is related to the product

of the AdS fermionic mass and the AdS radius R by

ν ¼ μR −
1

2
: ð11Þ

The baryon spectrum which follows from (9), (10) is

M2
n;ν ¼ 4ðnþ νþ 1ÞλB; ð12Þ

for λB > 0. The eigenvalues given by (12) do not depend
explicitly on J, an important result also found in Ref. [22].

III. SUPERCONFORMAL ALGEBRA AND
BREAKING OF DILATATION SYMMETRY

We will now show how the preceding results can be
systematically derived using superconformal algebra, but
with important new consequences. One starts with the
simplest supersymmetric algebra of two fermionic operators,
the supercharges Q and Q†, and a Hamiltonian H [23]
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fQ;Q†g ¼ 2H; ð13Þ

fQ;Qg ¼ fQ†; Q†g ¼ 0; ð14Þ

½Q;H� ¼ ½Q†; H� ¼ 0: ð15Þ

A simple realization is

Q ¼ ψ†ð−ipþWÞ; Q† ¼ ψðipþWÞ; ð16Þ

where p is the canonical momentum operator; ψ and ψ† are
fermionic operators with anticommutation relation

fψ ;ψ†g ¼ 1; ð17Þ

and W is an arbitrary potential (the superpotential).
A realization using Pauli matrices ~σ is

ψ ¼ 1

2
ðσ1 − iσ2Þ; ψ† ¼ 1

2
ðσ1 þ iσ2Þ; ð18Þ

leading to

B ¼ 1

2
½ψ†;ψ � ¼ 1

2
σ3; ð19Þ

where B is the generator of Uð1Þ transformations
ψ → eiαψ , ψ† → e−iαψ† with eigenvalues þ 1

2
and − 1

2
.

In the Schrödinger picture the supercharges are realized
as operators in L2ðR1Þ, with p ¼ −id=dx,

Q ¼ ψ†
�
−

d
dx

þWðxÞ
�
; ð20Þ

and

Q† ¼ ψ

�
d
dx

þWðxÞ
�
; ð21Þ

leading to the supersymmetric Hamiltonian

H ¼ 1

2
fQ;Q†g ¼ 1

2

�
−

d2

dx2
þW2ðxÞ − 2W0ðxÞB

�
:

ð22Þ

The Hamiltonian operates on 2-spinors

jϕi ¼
�
ϕ1

ϕ2

�
; ð23Þ

of which one component can be attributed to fermion
number 1 and the other 0. Imposing conformal symmetry
leads to an unique choice of W [14,24], namely

WðxÞ ¼ f
x
; ð24Þ

with a dimensionless constant f.
Introducing the spinor operators

S ¼ ψ†x; S† ¼ ψx; ð25Þ

one can construct the larger algebra [25] (superconformal
algebra), which contains the conformal algebra with the
dilatation generator D and the special conformal trans-
formation generator K. The extended algebraic structure is

1

2
fQ;Q†g ¼ H;

1

2
fS; S†g ¼ K; ð26Þ

fQ; S†g ¼ f − Bþ 2iD; ð27Þ

fQ†; Sg ¼ f − B − 2iD; ð28Þ

where the operators

H ¼ 1

2

�
−

d2

dx2
þ f2 þ 2Bf

x2

�
; ð29Þ

K ¼ 1

2
x2; ð30Þ

D ¼ i
4

�
d
dx

xþ x
d
dx

�
ð31Þ

satisfy the conformal algebra

½H;D� ¼ iH; ½H;K� ¼ 2iD; ½K;D� ¼ −iK:

ð32Þ

The other anticommutators of spinor operators van-
ish: fQ;Qg ¼ fQ; Sg ¼ � � � ¼ 0.
Fubini and Rabinovici considered several ways to con-

struct a new compact quantum-mechanical evolution
operator inside the superconformal algebra. The most
straightforward way is to directly follow the procedure
of dAFF [8] and construct a linear combination of the (old)
Hamiltonian and the generator of special conformal trans-
formations [14,24], which breaks supersymmetry explic-
itly. There is, however, the interesting possibility of
constructing a new Hamiltonian using the superposition
of generalized supercharges within the superconformal
algebra [14] and thus preserving supersymmetry. This is
the procedure we shall follow here. To this end, we slightly
generalize the definitions of FR [14] and introduce a new
supercharge R as a linear combination of the generators Q
and S,

Rλ ¼ Qþ λS: ð33Þ
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This leads, in analogy to the dAFF procedure in conformal
quantum mechanics, to the introduction of a constant with
nonzero dimensions; in fact, since Q has dimension ½x−1�,
and S has dimension ½x1�, λ must therefore have dimen-
sion ½x−2�.
One can now construct a new evolution operator G

inside the superconformal algebra in terms of the new
supercharge R,

fRλ; R
†
λg ¼ G; ð34Þ

fRλ; Rλg ¼ fR†
λ ; R

†
λg ¼ 0; ð35Þ

½Rλ; G� ¼ ½R†
λ ; G� ¼ 0: ð36Þ

We find

G ¼ 2H þ 2λ2K þ 2λðfI − BÞ; ð37Þ

which is a compact operator for λ ∈ R.
The supercharge operator R†

λ transforms a state jϕi into
the state R†jϕi with a different fermion number (see
Appendix B). By construction, the evolution operator G
commutes with Rλ; it thus follows that the states jϕi and
R†jϕi have identical eigenvalues. In fact, if jϕEi is an
eigenstate of G with E ≠ 0,

GjϕEi ¼ EjϕEi; ð38Þ

then GR†
λ jϕEi ¼ R†

λGjϕEi ¼ ER†
λ jϕEi, and thus R†

λ jϕEi is
also an eigenstate of G with the same eigenvalue.
The new Hamiltonian G is diagonal. In the Schrödinger

representation

G11 ¼ −
d2

dx2
þ λ2x2 þ 2λf − λþ 4ðf þ 1

2
Þ2 − 1

4x2
; ð39Þ

G22 ¼ −
d2

dx2
þ λ2x2 þ 2λf þ λþ 4ðf − 1

2
Þ2 − 1

4x2
; ð40Þ

with G10 ¼ G01 ¼ 0. For f ≥ 1
2
and λ > 0 the spectra of

both operators are identical,

En ¼ 4

�
nþ f þ 1

2

�
λ: ð41Þ

Comparing (9), (10) with (39), (40) we recover the result
of Ref. [13], namely that the modified Hamiltonian G of
superconformal quantum mechanics is the same as the
Hamiltonian derived in LF holographic QCD, provided we
identify ϕ2ðxÞ, the eigenfunction of G22, with the positive
chirality wave function ψþ

J ðζÞ, identify ϕ1ðxÞ, the eigen-
function of G11, with ψ−

J ðζÞ, and take f − 1
2
¼ ν ¼ LB and

λ ¼ λB. The consequences of this remarkable result have
been discussed extensively in Ref. [13].

In Ref. [13] the Uð1Þ operator (19) B ¼ ½ψ†;ψ � was
identified in the light front with the Dirac matrix γ5 which
acts on physical spinors. In that paper we have shown that
the supercharges relate the chirality-plus component of a
baryonic wave function with the chirality-minus compo-
nent of the same baryonic state. In the usual applications
of supersymmetry, however, the supercharges connect
bosonic to fermionic states. We therefore shall explore
in the next section the possibility of relating mesonic with
baryonic wave functions by the supercharges within the
superconformal algebra. In this case, the supercharges act
on some internal space. The supercharges in [13] and those
used in the following are therefore only formally related.
The bosonic operators H;D and K, however, have in both
cases the same physical meaning. In particular, we will
show that G11 and G22, Eqs. (39) and (40), match our
light-front holographic equations for both the pion and
nucleon trajectories. The extension of this superconformal
connection to the Δ-ρ families will also be discussed.

IV. BARYON-MESON SUPERSYMMETRY

A. The superpartner of the nucleon trajectory

In the case of baryons, the assignment of the leading-
twist parameter ν in Eqs. (9), (10), as given in Table I [13],
successfully describes the structure of the light baryon
orbital and radial excitations [26]. The assignment ν ¼ LB
for the lowest trajectory, the nucleon trajectory, is straight-
forward and follows from the stability of the ground state—
the proton—and the mapping to LF quantized QCD.
The bound-state equations for the nucleon trajectory are

[cf. Eqs. (9), (10)]�
−

d2

dζ2
þ λ2Bζ

2 þ 2λBðLB þ 1Þ þ 4L2
B − 1

4ζ2

�
ψþ
J ¼ M2ψþ

J ;

ð42Þ�
−

d2

dζ2
þ λ2Bζ

2 þ 2λBLB þ 4ðLB þ 1Þ2 − 1

4ζ2

�
ψ−
J ¼ M2ψ−

J :

ð43Þ
We will now search for the meson supersymmetric

partners of the nucleon trajectory. We choose as starting
point the leading-twist chirality component ψþ

J ðζÞ which
satisfies (42). With the identifications x ¼ ζ; f − 1

2
¼ LB

and λ ¼ λB, the plus chirality component ψþ
J ðζÞ is also an

TABLE I. Orbital quantum number assignment for the leading-
twist parameter ν for baryon trajectories according to parity P
and internal spin S.

S ¼ 1
2

S ¼ 3
2

P ¼ þ ν ¼ LB ν ¼ LB þ 1
2

P ¼ − ν ¼ LB þ 1
2

ν ¼ LB þ 1
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eigenfunction of G22, Eq. (40). This identification allow us
to define an effective “baryon number” NB as a convenient
convention to label our “meson” and “baryon” states. In
terms of the Uð1Þ operator B ¼ 1

2
½ψ†;ψ �

NB ¼ 1

2
− B; ð44Þ

with eigenequations

NBjϕiM ¼ 0; ð45Þ

NBjϕiB ¼jϕiB; ð46Þ

where jϕiB has only a lower component (ϕ1 ¼ 0) and jϕiM
only an upper component (ϕ2 ¼ 0),

jϕiB ¼
�

0

ϕ2

�
; jϕiM ¼

�
ϕ1

0

�
: ð47Þ

Therefore, the supersymmetric partner of the baryonic
Hamiltonian G22 (40), the Hamiltonian G11 (39), should
describe a meson trajectory. Indeed, the Hamiltonian G11

with the above-mentioned substitutions agrees with the
bound-state equation (5) for mesons with J ¼ LM, pro-
vided we identify f þ 1

2
¼ LM ¼ LB þ 1 and set λM ¼ λB.

The lowest state on the mesonic trajectory, with J ¼ LM ¼
0 (the pion) is massless in the chiral limit. It corresponds to
a negative value of f, namely f ¼ − 1

2
, and thus its baryonic

partner would have LB ¼ −1, which is an unphysical state.
As discussed in Appendix A, this remarkable result also
follows directly from the superconformal algebra. As
shown there, the operator which transforms a mesonic
state into its baryonic supersymmetric counterpart, anni-
hilates the meson state if f ¼ − 1

2
.

We have thus derived the astonishing result that the pion
has no supersymmetric partner even though no explicit
breaking of supersymmetry has been introduced. Since the
supercharges Rλ; R

†
λ , which connect mesonic and baryonic

wave functions, commute with the Hamiltonian G
(34)–(36), it follows that if jϕiM is a mesonic state with
eigenvalue E, GjϕiM ¼ EjϕiM, then there exists also a
baryonic state R†

λ jϕiM ¼ jϕiB with the same eigenvalue E.
Indeed, as discussed in the proceeding section,

GjϕiB ¼ GR†
λ jϕiM ¼ R†

λGjϕiM ¼ EjϕiB: ð48Þ

However, for the specific eigenvalue E ¼ 0we can have the
trivial solution

jϕðE ¼ 0ÞiB ¼
�
0

0

�
: ð49Þ

This remarkable feature underlines the special role played
by the pion in light-front holographic QCD. As a unique
state of zero energy, it plays the same role as the unique

vacuum state in a supersymmetric quantum field
theory [23,27].
It is interesting to note that the case of negative f was not

considered in [14], since the classical potential f
2x2 þ λ2x2

has no stable ground state for f < 0. Nevertheless, the
lowest-lying bound state of G11 with f ¼ − 1

2
has the

normalizable wave function x
1
2e−λMx

2=2. This situation is
reminiscent of the light-front holographic correspondence:
Angular momentum L ¼ 0 corresponds to a tachyonic
AdS mass μ2 < 0 [see Eq. (3)], but nonetheless the
Breitenlohner-Freedman stability bound [29] is still
satisfied.
We thus obtain from superconformal quantum mechan-

ics a very satisfactory result: Both the nucleon and the
I ¼ 1; S ¼ 0mesons lie on linear trajectories with the same
slope and the same radial and orbital excitation energies.
The lowest-lying state on the meson trajectory is the
massless pion. In superconformal quantum mechanics it
corresponds to the value f ¼ −1=2, and therefore it has no
supersymmetric partner.
In the framework of superconformal quantum mechanics

all eigenstates with eigenvalues different from zero have
supersymmetric partners. We emphasize that the pion with
f ¼ − 1

2
and zero mass is unique: It is annihilated by the

fermion-number-changing supercharge R†
λ , and it therefore

has no supersymmetric partner (see Fig. 1). This is in
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FIG. 1 (color online). Meson-nucleon superconformal connec-
tion. The predicted value of M2 in units of 4λ for mesons with
S ¼ 0 (red triangles), and baryons with S ¼ 1

2
(blue squares) is

plotted vs the orbital angular momentum L. The π meson has no
baryonic partner. The baryon quantum number assignment is
taken from Ref. [13]. Nucleon trajectories with the same L but
dierent J are degenerate.
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accordance with the spectroscopy derived from light-front
holographic QCD, where baryon and meson partners
have the masses M2

B ¼ 4λBðnþ LB þ 1Þ and M2
M ¼

4λMðnþ LMÞ respectively. This result follows from
Eqs. (12) and (6) with ν ¼ LB and J ¼ LM, respectively.
If one takes λB ¼ λM in LF holographic QCD, which is
automatic in the superconformal theory, the spectral results
are then identical for LM ¼ LB þ 1.
The predictions of supersymmetric quantum mechanics

are based on the fact that the supercharge operator Rλ

transforms baryon states with angular momentum LB into
their mesonic superpartners with angular momentum
LM ¼ LB þ 1. The operator R†

λ operates in the opposite
direction. The pion has a very special role: Its existence is
predicted by the superconformal algebra, and according to
the formalism, it is massless and has no supersymmetric
partner. We have thus established a complete correspon-
dence between the light-front holographic QCD results and
supersymmetric quantum mechanics.
The superconformal predictions presented in Fig. 1

should be understood as a zeroth-order approximation.
There are, however, several phenomenological corrections
to this initial approximation. First, the slope of the π=b1
trajectory is not exactly identical to the slope of the nucleon
trajectory: For the mesons

ffiffiffiffiffiffi
λM

p ¼ 0.59 GeV, whereas for
the nucleons

ffiffiffiffiffi
λB

p ¼ 0.49 GeV [21]. This makes the b1
heavier than its supersymmetric partner, the nucleon. In
terms of LF holographic QCD this indicates that for this
internal spin configuration, the confining force between the
spectator and the cluster in the baryon is weaker than
between the constituents of the meson; this makes the
meson a more compact object since hr2i ∼ 1=λ. Second, the
negative parity nucleon states are systematically higher
than the nucleons with positive parity, a fact which in LF
holographic QCD has been taken into account phenom-
enologically by the half-integer twist assignment ν ¼ Lþ 1

2

given in Table I. It is expected that this effect could be
explained by the different quark configurations and sym-
metries of the baryon wave function [30–32].
The nucleon-meson superpartner pairs are plotted in

Fig. 2 with their measured masses. The observed difference
in the squared masses of the supersymmetric partners
indicates that the most important breaking of supersym-
metry is due to the difference between λB and λM. Only
confirmed PDG states have been included [34].

B. The mesonic superpartners of the delta trajectory

The essential physics derived from the superconformal
connection of nucleons and mesons follows from the action
of the fermion-number-changing supercharge operator Rλ.
As we have discussed in the previous section, this operator
transforms a baryon wave function with angular momen-
tum LB into a superpartner meson wave function with
angular momentum LM ¼ LB þ 1 (see Appendix B), a

state with the identical eigenvalue—the hadronic mass
squared. We now check if this relation holds empirically
for other baryon trajectories.
We first observe that baryons with positive parity and

internal spin S ¼ 3
2
, such as the Δ3

2
þð1232Þ, and baryons

with negative parity and internal spin S ¼ 1
2
, such as the

Δ1
2
−ð1620Þ, lie on the same trajectory; this corresponds to

the phenomenological assignment ν ¼ LB þ 1
2
, given in

Table I. From (12) we obtain the spectrum [35]

M2ðþÞ
n;LB;S¼3

2

¼ M2ð−Þ
n;LB;S¼1

2

¼ 4

�
nþ LB þ 3

2

�
λB: ð50Þ

If we now apply the superconformal relation LM ¼ LB þ 1
and λM ¼ λB we predict a meson trajectory with
eigenvalues

M2
n;LM

¼ 4

�
nþ LM þ 1

2

�
λM; ð51Þ

which is, precisely, the expression for the spectrum of the ρ
meson (6) for J ¼ LM þ 1. Again, one sees that the lowest-
lying mesonic state, in this case the ρ meson, has no
superpartner, since LM would be negative.
Since the phenomenological value of λ for the Δ

trajectory is close to that of the ρ trajectory,
ffiffiffiffiffi
λΔ

p ¼ 0.51
and

ffiffiffiffiffi
λρ

p ¼ 0.54 (see Ref. [21]), one can expect good
agreement for the masses of the supersymmetric partners.
This is indeed the case, as can be seen from Fig. 3, where
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FIG. 2 (color online). Supersymmetric meson-nucleon partners:
Mesons with S ¼ 0 (red triangles) and baryons with S ¼ 1

2
(blue

squares). The experimental values of M2 are plotted vs
LM ¼ LB þ 1. The solid line corresponds to

ffiffiffi
λ

p ¼ 0.53 GeV.
The π has no baryonic partner.
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we have included the confirmed Δ and J ¼ Lþ S, S ¼ 1,
vector-meson states from Ref. [34].
Using the assignment ν ¼ LB þ 1

2
from Table I and the

comparison of Eq. (9) with Eq. (40) [or Eq. (10) with
Eq. (39)], we obtain the relation f ¼ νþ 1

2
¼ LB þ 1 ¼

LM for the superconformal relation LM ¼ LB þ 1. Thus
from (39) we obtain the LF Hamiltonian for the super-
partner vector-meson trajectory,

G11 ¼ −
d2

dζ2
þ λ2Mζ

2 þ 2λMðLM − 1Þ þ 4ðLM þ 1
2
Þ2 − 1

4ζ2
;

ð52Þ

with λ ¼ λM ¼ λB. This expression is to be compared with
the light-front holographic Hamiltonian which follows
from (5) for J ¼ LM þ 1 and ν ¼ LM,

HLF ¼ −
d2

dζ2
þ λ2Mζ

2 þ 2λMLM þ 4L2
M − 1

4ζ2
: ð53Þ

Thus, by extending the meson-baryon connection for
baryons with ν ¼ LB þ 1

2
we obtain an identical expression

for the vector-meson spectrum, but with a different LF
Hamiltonian. This somewhat less satisfactory feature of the
Δ-ρ relations is reflected in the transformation under the
supercharge R†

λ (Appendix B). The ρ-meson wave function
ϕ1, that is, the eigenfunction of G11 with f ¼ 0, is not
annihilated by the action of R†

λ [see Eq. (B31)]. Indeed the

terms which determine the angular momentum, the singular
terms in the two Hamiltonians G11 and G22, Eqs. (39) and
(40) respectively, are identical for f ¼ 0. Thus in this case,
the unphysical value of the angular momentum, LB ¼ −1,
is the only reason to exclude the baryonic superpartner of
the ρ. This is in contrast to the case of the pion, where the
fermion-number-changing operator R†

λ actually annihilates
the pion wave function, Eq. (B29), since it is a zero-mass
eigenmode.

V. SUMMARY AND CONCLUSIONS

Conformal and superconformal quantum mechanics
[8,14], together with light-front holographic QCD [21],
has revealed the importance of conformal symmetry and its
breaking within the algebraic structure for understanding
the confinement mechanism of QCD.
If one introduces the mass scale for hadrons using the

method developed by de Alfaro et al. [8], one obtains a
confining theory for mesons while retaining a conformally
invariant action. If one applies the dAFF procedure to light-
front Hamiltonian theory, the form of the LF potential is
uniquely fixed to that of a harmonic oscillator in the
invariant LF radial variable ζ [9]. It predicts color confine-
ment and linear Regge meson trajectories with the same
slope in the radial and orbital excitations n and L. If one
compares the construction of the confining LF potential
with the Hamiltonian obtained in light-front holographic
QCD, then the dilaton factor in the modified AdS action is
uniquely fixed [5,6]. The appearance of the extra spin-
dependent constant term in the LF potential is a conse-
quence of the specific embedding of the LF wave equations
in AdS for arbitrary integer-spin [7]. This extra term is
essential for agreement with experiment, including the
prediction of a massless pion in the chiral limit.
In the case of half-integer spin, the dilaton in the AdS

action does not lead to confinement for baryons since
such a term can be absorbed into the wave function.
Confinement thus requires the addition of a Yukawa-like
term in the half-integer spin Lagrangian. However, this
apparent deficiency is cured [13] by the application of
superconformal quantum mechanics.
Superconformal quantum mechanics can be constructed

by restricting the superpotential in Witten’s construction
[23] to a conformally invariant expression [14,24].
Remarkably, it is possible to introduce a mass scale into
the quantum-mechanical evolution equations, without vio-
lating supersymmetry, by introducing a new supercharge
which is a linear combination of generators of the super
conformal algebra [14]. Furthermore, by connecting the
resulting wave equations to the light-front holographic
formalism, one fixes not only the confining term for
baryons and mesons for all spins, but also the constant
terms in the LF potential. The resulting spectra reproduces
the principal observed features of mesonic and baryonic
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2
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Regge trajectories: The resulting trajectories are linear, and
the spacing of the radial excitations equals the spacing of
the orbital ones. Furthermore, the baryon masses depend
only on the LF angular momentum L, but not on the total
spin-J, as observed in experiment.
There are striking phenomenological similarities

between the baryon and meson spectra which would not
be expected from the underlying quark degrees of freedom,
given that in QCD the valence state in the meson case
consists of confined qq̄ excitations, and baryons are
normally considered qqq bound states. However, the
observed Regge trajectories are linear in the squared mass
for both cases, with equal spacings of the orbital and
angular excitations—both features which are typical for the
protostring theory such as the Veneziano model [37]. These
essential features also follow from the light-front clustering
properties of the semiclassical approximation to strongly
coupled QCD and its holographic embedding in AdS space.
In this approximation a nucleon behaves as an active
quark and a spectator cluster, which resembles the usual
quark-diquark picture, and it is also described by a one-
dimensional effective theory. Furthermore, the coefficients
of the confining term for mesons and baryons agree within
�10%, although they would seem to be completely
unrelated. These similarities suggest that supersymmetric
relations are responsible for these remarkable features.
In Ref. [13] superconformal quantum mechanics was

used to describe baryonic states. There, the supercharges
were shown to relate the positive and negative chirality
components of the baryon wave functions, consistent with
parity conservation. In this paper we have shown that
supercharges, constructed formally as in [13], can also be
used to relate hadronic states with different fermion
number. This leads to remarkable relations between the
spectroscopy of baryons and mesons, thus extending the
applicability of light-front superconformal quantum
mechanics to hadronic physics.
An important feature of the Hamiltonian operators

(39), (40), which act on the two components of a super-
multiplet jϕi, is the difference in the singular term
of the potential. For one component of the Hamiltonian,
it is 1

4x2 ððf þ 1
2
Þ2 − 1Þ; for the other component, it is

1
4x2 ððf − 1

2
Þ2 − 1Þ. This has the consequence that the power

behavior of the wave function at the origin (twist) differs by
one unit for the two components. In light-front holographic
QCD this implies a difference of the LF angular momentum
by one unit, LM ¼ LB þ 1. Comparing the spectra of the
nucleon and the π=b1 trajectory one indeed observes this
approximate degeneracy (see Fig. 2). The leading-twist
wave function of the baryons is identified with the
component ϕ2 of the supermultiplet jϕi, and the wave
function of the mesons is identified with the component ϕ1.
As a consequence, the shared symmetric features of mesons
and baryons are in fact a consequence of the properties of
the superconformal algebra.

The problem for supersymmetry posed by the pion,
which is massless in the chiral limit, and therefore can have
no baryonic superpartner, is solved in a simple way: The
value of the dimensionless constant f of the conformal
potential (24) has for the pion and its radial excitations the
value f ¼ LM − 1

2
¼ − 1

2
. The supercharge R†

λ , (33), which
transforms the meson into the baryonic partner, annihilates
the pion state, and therefore there cannot be a baryonic
partner. The case f ¼ − 1

2
was not considered by Fubini and

Rabinovici [14], since the classical potential in this case
has no lower limit. Nevertheless, the pion wave function is
regular at the origin and normalizable.
We have previously demonstrated a correspondence

between superconformal quantum mechanics and light-
front holographic QCD [13]. In this approach, one must
explicitly assume in LF holographic QCD the same value
for the bosonic and baryonic gap scale λ. In contrast, in the
superconformal effective theory described here, the equal-
ity of λ for mesons and baryons is a consequence of the
approach.
We have also applied the same procedure to the ρ=a2 and

theΔ trajectories. The wave functions of the ρ trajectory are
identified with the component ϕ1, and the component ϕ2 of
the supermultiplet is identified with the Δ states. As for the
case of the π-nucleon connection, the properties of the
fermion-changing supercharge Rλ imply that the meson
angular momentum LM is one unit larger than the baryon
angular momentum LB, LM ¼ LB þ 1, consistent with the
Hamiltonians (39), (40). One indeed obtains excellent
agreement between the spectra of the mesonic and baryonic
states (see Fig. 3). The values of

ffiffiffiffiffiffi
λM

p
and

ffiffiffiffiffi
λB

p
are nearly

degenerate as predicted by superconformal quantum
mechanics.
There is, however, a problem with the ρ=a2-Δ connec-

tion in that half-integer twist is apparently required. For the
Δ trajectory the observed spectrum corresponds to half-
integer twist 2þ LB þ 1

2
, which also implies half-integer

twist for the mesons on the ρ=a2 trajectory. Although the
spectra of this half-integer twist obtained with the super-
conformal Hamiltonian operator (39) correspond fully to
those obtained by LF holographic QCD (and experiment),
the wave functions do not; they differ by a factor of x

1
2.

Related to this problem is the fact that the supercharge R†
λ

does not annihilate the ρ-wave function, but it formally
leads to a baryonic state with the same mass. However, this
state is excluded as a physical state, since it would have the
angular momentum LB ¼ −1.
It should be noted that the semiclassical equations of

light-front holographic QCD and superconformal quantum
mechanics are intended to be a zeroth-order approximation
to the complex problem of bound states in QCD. We also
emphasize that the quantum-mechanical supersymmetric
relations derived here are not a consequence of a super-
symmetry of the underlying quark and gluon fields; they
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are instead a consequence of the superconformal-confining
dynamics of the semiclassical theory and the clustering
inherent in light-front holographic QCD. Breaking of
conformal invariance by quark masses leads to a mass
splitting, but the supersymmetric connection between
mesons and baryons is not affected. This will be discussed
elsewhere.
In this paper we have concentrated on the consequences

of superconformal algebra for the spectral properties of
meson and baryons. Since the meson and baryon wave
functions are also related, there are also interesting dynami-
cal consequences, e.g., for elastic and transition form
factors. The b1 wave function is predicted to be identical
to the non-leading-twist wave function of the nucleon,
which in turn is related to the leading-twist wave function
via a parity transform (see [13]); therefore, at low resolution
the form factors of the nucleon and the b1 are related.
Another dynamical consequence of the model is that for
high resolution, at large momentum transfer when the
baryon cluster is resolved into its individual constituents,
the twists of the superpartners are equal: The higher value
of L of the meson, LM ¼ LB þ 1, is compensated by the
additional constituent in the baryon.
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APPENDIX A: OTHER POSSIBLE
EVOLUTION OPERATORS

Fubini and Rabinovici have discussed three different
ways of constructing compact Hamiltonians from the
superconformal algebra. Some care should be taken,
however, in transferring their interpretation to our appli-
cation. The emphasis in [8] and later in [14,24] was on
quantum mechanics as a one-dimensional field theory and
the investigation of the vacuum structure in this field theory.
Therefore only the case with a stable classical potential,
implying f > 0, was considered. In our search for semi-
classical bound-state equations, however, the lowest state
is a hadronic state. Furthermore, in the field theoretical
investigations of FR the dimensionless constant f is an
arbitrary positive parameter, each value of f representing a
different field theory with a different vacuum. In our
investigations, where the procedure of dAFF [8] and its
extension by FR [14] has been embedded in LF holo-
graphic QCD, the dimensionless constant f determines the
angular momentum and we are confined to the series of
discrete values representing the orbital excitations.
Nevertheless, it is informative to discuss the three different
ways to construct the compact Hamiltonian representing
hadronic bound states from our perspective as well. For
generality purposes we use in the appendixes for the

dimensionful constants the symbols w and v, which can
be positive or negative. In our applications to meson and
baryon spectroscopy we are restricted w > 0.
The simplest way to construct a Hamiltonian with

discrete spectrum in the frame of the superconformal
algebra is to apply directly the method of dAFF [8].
This yields the Hamiltonian [14,24], again in the slightly
generalized notation

G0 ¼ fQ;Q†g þ w2K: ðA1Þ
Both supersymmetry and dilatation symmetry are broken
here. The two components of the eigenspinor of G0 have
different spectra,

ðG0Þ11ϕ1 ¼ ð4nþ 2f þ 3Þjwjϕ1; ðA2Þ

ðG0Þ22ϕ2 ¼ ð4nþ 2f þ 1Þjwjϕ2; ðA3Þ
and thus supersymmetry is broken from the onset for
all levels. This approach would yield a LF potential
UðζÞ ¼ w2ζ2, without any additional constants which
occur in LF holographic QCD [see (5), (9), (10)], and
which are phenomenologically very important.
On the other hand, the approach where supersymmetry is

conserved by constructing a new Hamiltonian from the
spinor operator Rw, a superposition of the supercharges Q
and S within the superalgebra [14],

Rw ¼ Qþ wS; ðA4Þ

conserves supersymmetry for f > 1
2
, since Rw commutes

with the evolution operator

GðwÞ ¼ fRw; R
†
wg: ðA5Þ

Therefore Rwjϕwi is an eigenstate of Gw with identical
eigenvalue as the eigenstate jϕwi.
The spectra of GðwÞ for real values of f and w are

E1 ¼ ð4nþ 2Þjwj þ 2

����f þ 1

2

����jwj þ 2

�
f −

1

2

�
w; ðA6Þ

E2 ¼ ð4nþ 2Þjwj þ 2

����f −
1

2

����jwj þ 2

�
f þ 1

2

�
w; ðA7Þ

where E1 are eigenvalues of G11 representing mesonic
states and E2 the eigenvalues ofG22 for baryons. For w < 0

and f > − 1
2
the spectra are independent of f,

E1 ¼ 4ðnþ 1Þjwj; ðA8Þ

E2 ¼ 4njwj; ðA9Þ
and therefore cannot lead to angular excitations of the
corresponding LF Hamiltonians. For f ¼ − 1

2
and w > 0,

we have
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E1 ¼ 4nw; ðA10Þ

E2 ¼ 4ðnþ 1Þw: ðA11Þ

There exists no baryonic state

jϕi ¼
�

0

ϕB

�
ðA12Þ

with zero energy. The reason for this seeming contradiction
with the above-mentioned commutation relation lies in the
fact that the operator R†

w annihilates the mesonic state
[see (B29)].

APPENDIX B: TRANSFORMATION
OPERATORS AND QUANTUM-MECHANICAL

EVOLUTION

The generalized hypercharge R has the commutation
relations

½GðwÞ; Rv� ¼ −2ðw − vÞR−w; ðB1Þ

½GðwÞ; R†
v� ¼ 2ðw − vÞR†

−w; ðB2Þ

with the new Hamiltonian GðwÞ ¼ fRw; R
†
wg.

For v ¼ w the commutator vanishes, therefore, if jϕi is
an eigenstate of G, Rwjϕi is also an eigenstate with the
same eigenvalue. Therefore the spinor supercharge R
transforms the baryonic superpartner with angular momen-
tum LB into the mesonic one with angular momentum
LM ¼ LB þ 1. The operator R†

w acts in the opposite
direction.
For v ¼ −w, however, we have the typical commutation

behavior of a raising and lowering operator respectively,

½GðwÞ; R−w� ¼ −4wR−w; ðB3Þ

½GðwÞ; R†
−w� ¼ 4wR†

−w: ðB4Þ

That is, if jϕi is an eigenfunction of G with eigenvalue E,
then R−wjϕi is an eigenstate with the energy Eþ 4w. This
means that a baryonic state with angular momentum LB
and radial excitation n is transformed into a mesonic
state with angular momentum LM ¼ LB þ 1 and radial
excitation nþ 1, which has the same energy as the baryonic
state with angular momentum LB and radial excita-
tion nþ 1.
There is also a bosonic raising operator, that is, a raising

operator which does not change fermion number. It is
composed of the bosonic operators of the superconformal
algebra. Generalizing again slightly the operators intro-
duced by FR in Ref. [14],

Lv ¼ H þ v2K þ 2ivD; ðB5Þ

one obtains from the algebra (26) the commutation
relations

½GðwÞ; Lw� ¼ 4wLw; ðB6Þ

½GðwÞ; L−w� ¼ −4wLw: ðB7Þ

These relations imply also that Lw is a raising operator,
which transforms a baryon with LB; n into a baryon with
LB; nþ 1, and the same with the mesons. Since it is
composed of operators of the conformal group, it can also
be applied to the lowest mesonic state, although there is no
supersymmetric partner.
Since the hypercharges Rw change the angular momen-

tum by one unit, it is tempting to look for an operator which
also leads to angular excitations. Such an operator which
increases the angular momentum by one unit is easily
constructed and has the form

Λw ¼ fQ;ψg þ wfS†; Sg þ 1

ζ
ψ†ψ : ðB8Þ

If jϕiL is an eigenstate to the Hamiltonian operator GL

constructed with f ¼ Lþ 1
2
, then jϕiLþ1 ¼ ΛwjϕiL is an

eigenstate to GLþ1, constructed with f ¼ Lþ 1þ 1
2
. This

operator Λ is, however, not an element of the super-
conformal algebra. The action of the different operators
in the baryon-meson system is illustrated in Fig. 4.

1. Quantum-mechanical evolution

In this paper, as in [13], we have concentrated on
algebraic aspects and its consequences for the spectra.
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FIG. 4. Radial excitations and transformations by elements of
the superconformal algebra for a baryon-meson system with a
given f − 1

2
¼ LB ≥ 0.

SUPERCONFORMAL BARYON-MESON SYMMETRY AND … PHYSICAL REVIEW D 91, 085016 (2015)

085016-11



We now briefly discuss the quantum-mechanical time
evolution. The Hamiltonian of unbroken superconformal
quantum mechanics, H [Eq. (22)], is the translation
operator for the time variable t

i
d
dt

jϕi ¼ Hjϕi: ðB9Þ

The quantum-mechanical evolution of the operator (37),

G ¼ 2H þ 2w2K þ 2wðfI − BÞ; ðB10Þ

follows from the action of the generators H and K on the
state jϕi. We have (see Appendix C in Ref. [21])

e−iHϵjϕðtÞi ¼ jϕðtÞi þ d
dt

jϕðtÞiϵþOðϵ2Þ; ðB11Þ

e−iKϵjϕðtÞi ¼jϕðtÞi þ d
dt

jϕðtÞiϵt2 þOðϵ2Þ: ðB12Þ

There follows

GjϕðτÞi ¼
�
i
d
dτ

þ 2wðfI − BÞ
�
jϕðτÞi; ðB13Þ

where the new evolution parameter τ is related to t in
(B9) by

dτ ¼ dt
2ð1þ w2t2Þ ; ðB14Þ

as in dAFF [8]. From the eigenvalue equation GjϕEi ¼
EjϕEi follows the stationary state solution

jϕEðτÞi ¼ jϕEð0Þie−iðEI−2wðfI−BÞÞτ: ðB15Þ

2. Operators in matrix form

It is sometimes convenient to work with a special matrix
representation of the superconformal algebra. For conven-
ience we give here an explicit realization in the Schrödinger
picture. We define

q ¼ −
d
dx

þ f
x
; q† ¼ d

dx
þ f

x
: ðB16Þ

Then we can write the spinor operators Q and S as

Q ¼
�
0 q
0 0

�
; Q† ¼

�
0 0

q† 0

�
; ðB17Þ

and

S ¼
�
0 x
0 0

�
; S† ¼

�
0 0

x 0

�
: ðB18Þ

The Hamiltonian H ¼ 1
2
fQ;Q†g in matrix form is

2H ¼
�
qq† 0

0 q†q

�
¼
�
− d2

dx2 þ
fðfþ1Þ

x2 0

0 − d2

dx2 þ
fðf−1Þ

x2

�
:

ðB19Þ
The Hamiltonian G ¼ fRw; R

†
wg is

G ¼
 
− d2

dx2 þ w2x2 þ 2wf − wþ 4ðfþ1
2
Þ2−1

4x2 0

0 − d2

dx2 þ w2x2 þ 2wf þ wþ 4ðf−1
2
Þ2−1

4x2

!
; ðB20Þ

where

Rw ¼
�
0 − d

dx þ f
x þ wx

0 0

�
; ðB21Þ

and

R†
w ¼

�
0 0

d
dx þ f

x þ wx 0

�
: ðB22Þ

The operator Lw [Eq. (B5)] is

Lw ¼ H þ 1

2

�
w2x2 −

d
dx

x − x
d
dx

�
I; ðB23Þ

and its adjoint

L†
w ¼ H þ 1

2

�
w2x2 þ d

dx
xþ x

d
dx

�
I: ðB24Þ

Finally, the orbital raising operator [Eq. (B8)] is

Λw ¼
�
− d

dx þ fþ1
x þ wx2 0

0 − d
dx þ f

x þ wx2

�
: ðB25Þ

In this matrix form the upper component of the state jϕi
is the meson, the lower one the baryon

jϕi ¼
�
ϕM

ϕB

�
: ðB26Þ

Thus the effective baryon number operator NB ¼
1
2
ð1 − ½ψ†;ψ �Þ is in matrix form

NB ¼
�
0 0

0 1

�
: ðB27Þ
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It is easy to check that the state containing the pion, that
is, the eigenstate of (39) with f ¼ − 1

2
, namely

ϕπ ¼
1

N

ffiffiffi
x

p
e−wx

2=2; ðB28Þ

has no supersymmetric partner, since

R†
wjϕi ¼

�
0

ðq† þ wxÞϕπ

�
¼
�
0

0

�
: ðB29Þ

Likewise, one checks that the state containing the ρ meson,
where f ¼ 0, with the wave function

ϕρ ¼
1

N
xe−wx

2=2; ðB30Þ

has formally a superpartner, but with negative angular
momentum LB ¼ −1. Indeed,

R†
wjϕi ¼

�
0

ðq† þ wxÞϕρ

�
¼
�

0

ϕρ

�
: ðB31Þ
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