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In this paper we use two different but complementary approaches in order to study the ghost propagator
of a pure SU(3) Yang-Mills theory quantized in the linear covariant gauges, focusing on its dependence on
the gauge-fixing parameter ξ in the deep infrared. In particular, we first solve the Schwinger-Dyson
equation that governs the dynamics of the ghost propagator, using a set of simplifying approximations, and
under the crucial assumption that the gluon propagators for ξ > 0 are infrared finite, as is the case in the
Landau gauge ðξ ¼ 0Þ. Then we appeal to the Nielsen identities, and express the derivative of the ghost
propagator with respect to ξ in terms of certain auxiliary Green’s functions, which are subsequently
computed under the same assumptions as before. Within both formalisms we find that for ξ > 0 the ghost
dressing function approaches zero in the deep infrared, in sharp contrast to what happens in the Landau
gauge, where it is known to saturate at a finite (nonvanishing) value. The Nielsen identities are then
extended to the case of the gluon propagator, and the ξ-dependence of the corresponding gluon masses is
derived using as input the results obtained in the previous steps. The result turns out to be logarithmically
divergent in the deep infrared; the compatibility of this behavior with the basic assumption of a finite gluon
propagator is discussed, and a specific Ansatz is put forth, which readily reconciles both features.
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I. INTRODUCTION

The infrared (IR) behavior of Yang-Mills Green’s func-
tions in the Landau gauge has been the subject of numerous
studies in the past few years, both in the continuum and on
the lattice. Particularly important in this challenging quest
has been the two-point sector of the theory, where it has
been firmly established [1–5] that the gluon propagator
saturates in the deep IR, a behavior directly associated with
the dynamical generation of a momentum-dependent gluon
mass [6–13], and that the ghost propagator remains mass-
less, being accompanied by a dressing function that reaches
a finite value at the origin [14,15].1 Interestingly enough,
these characteristic features persist when implementing
the transition from pure Yang-Mills to real world QCD;
specifically, the inclusion of a small number of dynamical
light quarks induces quantitative but not qualitative changes
to the gluon and ghost propagators [20–24].
Given that the Green’s functions depend on both the

gauge-fixing scheme employed and the choice of the gauge
fixing parameter (gfp), it is important to explore their main
dynamical features in different gauges, in order to filter out
the truly gauge-independent properties of the theory. In
particular, it would be interesting to establish the extent of
validity and the possible modifications induced to the

underlying mechanisms that endow the fundamental
degrees of freedom, namely quarks and gluons, with their
corresponding dynamical masses. Furthermore, even
though physical observables are ostensibly gauge indepen-
dent, nonperturbative calculations are subject to trunca-
tions, which in turn may distort the delicate conspiracy of
terms that produce the required gauge cancellations. It
would be therefore a useful exercise to probe explicitly the
gauge (in)dependence of certain special combinations of
Green’s functions that are extensively used in a variety of
phenomenological applications [25–31].
Among the different classes of gauges, the linear

covariant (or Rξ) gauges [32] hold a prominent position.
The corresponding gauge-fixing term that must be added to
the standard Yang-Mills Lagrangian is given by 1

2ξ ð∂μAa
μÞ2,

where ξ represents the gfp; some characteristic values
include the aforementioned Landau gauge (ξ ¼ 0) and
the Feynman gauge (ξ ¼ 1). Rξ gauges have the advantage
of manifest Lorentz covariance, and are particularly easy to
use in diagrammatic calculations. In addition, by using the
novel algorithm proposed in [33], they can be implemented
in numerical simulations of lattice regularized Yang-Mills
theories even for ξ ≠ 0 [34].
In the present paper we initiate a study of the IR dynamics

of the Yang-Mills two-point functions within this latter
class of gauges, with the main objective to go beyond the
standard Landau gauge paradigm. To that end, wewill resort
to two distinct but complementary approaches: on the one

1For additional studies and alternative approaches, see e.g.,
[16–19] and references therein.
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hand the Schwinger-Dyson equations (SDEs) [35] of the
theory, and on the other the so-called Nielsen identities
(NIs) [36,37].
Within the SDE context, we focus exclusively on the

integral equation governing the dynamics of the ghost
dressing function, Fðq2Þ, which has a much simpler struc-
ture than the corresponding equation for the gluon propa-
gator. At the formal level, the SDE in question is written
down for general ξ, and after approximating the ghost-gluon
vertex by its tree-level value, the solutions are obtained for
the range 0 < ξ ≤ 1, thus spanning the values between the
Landau and the Feynman gauges. Our main finding is that,
contrary towhat occurs in the Landau gauge,Fðq2Þ vanishes
as q2 → 0 for all values of ξ within the aforementioned
interval. This drastic change in the infrared behavior of
Fðq2Þ away from the Landau gauge may be traced back to
the massless contributions associated with the ξ-dependent
part of the gluon propagator entering into the ghost SDE.
Specifically, even if one assumes that the cofactor Δðq2Þ of
the transverse part of the gluon propagator is finite in the
deep IR (as happens in the Landau gauge), it is a textbook
fact that the longitudinal part (proportional to ξ) receives no
quantum corrections, and maintains its tree-level form [see
Eq. (2.2)]. This massless contribution, in turn, introduces an
infrared divergence into the ghost SDE, which, within the
approximations employed, can be counteracted only if the
solution for Fðq2Þ vanishes in the deep IR. In particular, as
we will see in detail, Fðq2Þ vanishes at the very mild rate of
ð−cξ log q2=μ2Þ−1=2 (with c > 0).
We then turn to the NIs, which express the gauge

dependence of ordinary Green’s functions (propagators,
vertices, etc.) in terms of special auxiliary functions
associated with the extended Becchi-Rouet-Stora-Tyutin
(BRST) sector of the theory.2 In the case of the ghost
dressing function, the corresponding NI permits us to
estimate its first derivative of Fðq2Þ with respect to ξ,
for arbitrary values of ξ; however, for practical purposes we
limit our analysis to those ξ that satisfy the condition ξ ≪ 1.
The reason for this choice is that, in this particular limit, the
auxiliary functions appearing in the NI may be computed in
their one-loop dressed approximation, using as input the
gluon and ghost propagators known from the Landau
gauge. The emerging expressions, when evaluated in the
deep infrared, reproduce rather faithfully the behavior
obtained from the ghost SDE; specifically, up to a multi-
plicative factor, one recovers precisely the derivative of
ð−cξ log q2=μ2Þ−1=2 with respect to ξ.

Finally, taking advantage of the NI-based machinery
developed here, we go one step further, and study the ξ-
dependence of the gluon two-point function, which, in the
low momentum region under scrutiny translates directly
into a statement on the dynamically generated gluon mass.
The relevant auxiliary functions are evaluated using again
the approximations and assumptions employed in the
previous case. The result reveals that the ξ-derivative of
the gluon mass displays an IR logarithmic divergence,
which can be traced back to the masslessness of the ghost
propagator. As we explain in terms of an explicit example,
such a divergent derivative may originate from perfectly IR
finite gluon propagators, such as those found in the lattice
simulations of [34] for ξ ≪ 1.
The article is organized as follows. In Sec. II we set up

the Rξ ghost gap equation, discuss the approximations and
assumptions employed, and present its numerical solutions,
paying particular attention to the deep IR behavior. In
Sec. III we address the same problem from the point of
view of the NIs. Focusing on the identity satisfied by the
ghost dressing function, we evaluate it numerically within
the one-loop dressed approximation, which allows for the
determination of the leading IR behavior of F. The result
turns out to be in excellent qualitative agreement with that
found in the previous section. In Sec. III C the NI analysis is
extended to the gluon propagator. In particular, a constraint
on the IR behavior of the dynamical gluon mass is obtained,
and an Ansatz for the possible ξ-dependence of the gluon
mass is proposed. Our conclusions are presented in Sec. IV.
Finally, the technical details necessary to derive the Yang-
Mills NIs are summarized in the Appendix.

II. SCHWINGER-DYSON EQUATION ANALYSIS

In this section we carry out a general analysis of the SDE
that governs the ghost propagator, and eventually its
dressing function.

A. General considerations and approximations

The ghost gap equation (Fig. 1) can be obtained directly
from the one-loop ghost self-energy equation by fully
dressing the internal gluon and ghost lines and one of
the gluon ghost vertices appearing in it [35]. Dressing the
right vertex, the SDE for the ghost propagator in a linear
covariant gauge reads (factoring out the trivial color
structure δab)

D−1ðq2Þ ¼ q2 − iΠðq2Þ

¼ q2 þ ig2CA

Z
k
ðkþ qÞμDðkþ qÞΔμνðkÞΓν

× ðkþ q;−k;−qÞ; ð2:1Þ

where Πðq2Þ represent the ghost self-energy, CA is the
Casimir eigenvalue of the adjoint representation, and the

2The gfp dependence of Green’s functions can be in principle
obtained also by using the so-called Landau-Khalatnikov-Fradkin
(LKF) transformations [38,39]. These transformations have been
used only in an Abelian context and are in general formulated in
position space; therefore, their use for the problem at hand
appears to be less direct.
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integral measure is defined as
R
k ≡μϵ=ð2πÞd R ddk, with μ

the ’t Hooft mass and d ¼ 4 − ϵ the dimension of the space-
time. Δμν and D denote, respectively, the Rξ gluon and
ghost propagators, defined according to3

iΔμνðqÞ ¼ −i
�
PμνðqÞΔðq2Þ þ ξ

qμqν
q4

�
;

PμνðqÞ ¼ gμν −
qμqν
q2

;

iDðq2Þ ¼ i
Fðq2Þ
q2

; ð2:2Þ

where ξ is the non-negative gfp [32] (see alsoAppendixA 1),
and Fðq2Þ is the so-called ghost “dressing function.” Γν

represents the full ghost-gluon vertex, with (all momenta
entering)

Γνðq1 þ q2;−q1;−q2Þ
¼ Aðq1 þ q2;−q1;−q2Þqν2 þ Bðq1 þ q2;−q1;−q2Þqν1;

ð2:3Þ

where q1 (q2) is the gluon (antighost) momentum; at tree
level, Að0Þ ¼ 1 and Bð0Þ ¼ 0.
Then, using Eqs. (2.2) and (2.3), we may rewrite

Eq. (2.1) as

D−1ðq2Þ¼ q2þ ig2CAqμqν
Z
k
DðkþqÞΔðkÞPμνðkÞA

þ iξg2CA

Z
k
DðkþqÞ

�
1þk ·q

k2

��
Bþk ·q

k2
A
�
;

ð2:4Þ

where the common argument ðkþ q;−k;−qÞ of the form
factors A and B has been suppressed.
Solving this equation in its full generality would require

either independent knowledge of the gluon propagator and
the form factors of the ghost vertex for general ξ, or to
couple (2.4) to the corresponding SDEs describing Δ, A
and B. However, apart from the lattice study of [34], which
investigated the gluon propagator for very small values
of ξðξ < 10−3Þ, there is no direct knowledge of the
aforementioned quantities. As for solving the full coupled
system of SDEs, unfortunately it constitutes a task that lies
beyond our present powers.

Therefore, we will instead study the SDE of Eq. (2.4)
within the one-loop dressed approximation, which is
obtained by keeping the propagators fully dressed and
assigning tree-level values to A and B. In addition, we will
approximate the Δðq2Þ appearing in the first term on the
right-hand side (rhs) of Eq. (2.4) by the Landau gauge
propagator ΔLðq2Þ. The main underlying assumptions
behind this later approximation are that Δðq2Þ saturates
in the IR, assuming the standard form

Δ−1ðq2Þ ¼ q2Jðq2Þ −m2ðq2Þ; ð2:5Þ

and that the deviation between Δ−1ðq2Þ and ΔLðq2Þ in the
intermediate momenta region is relatively mild, at least for
0 ≤ ξ ≤ 1. Of course, as one approaches the region of
larger momenta, the perturbative behavior will eventually
set in; at one-loop order, Δ−1ðq2Þ renormalized in the
momentum-subtraction (MOM) scheme is given by

Δ−1ðq2Þ ∼ q2Jðq2Þ ¼ q2
�
1þ αsCA

8π

�
13

3
− ξ

�
log

q2

μ2

�
;

ð2:6Þ

where μ is the renormalization point. For example, for
the typical values used in this paper, i.e., μ ¼ 4.3 and
αðμ2Þ ¼ 0.22, the difference between the Landau and
Feynman gauge perturbative tails is no more than 7% in
the momenta range 2–5 GeV. In any case, as will become
clear in the ensuing analysis, the behavior of Fðq2Þ in the
deep IR is not particularly sensitive to the above consid-
erations; in fact, the complete knowledge of the gluon
propagator would only affect the subleading terms.
Thus, the simplified version (2.4) that we will consider is

given by

D−1ðq2Þ ¼ q2 þ ig2CA

Z
k
Dðkþ qÞ

�
qμqνΔLðkÞPμνðkÞ

þ ξ

�
1þ k · q

k2

�
k · q
k2

�
: ð2:7Þ

This particular integral equation must be properly renor-
malized, through the introduction of the appropriate renorm-
alization constants for D, ΔL, and ξ. As is well known, in
principle the complete renormalization procedure must be
carried out multiplicatively. As a result, in addition to the
ghost renormalization constantZc that will multiply the tree-
level term q2, further constants multiplying the remaining
terms on the rhs of Eq. (2.7) must be included; this, in turn,
adds an inordinate amount of complexity to the entire
problem. Following the standard approximation, we will
simply replace q2 → Zcq2, and set all multiplicative con-
stants equal to unity, thus employing subtractive instead of
multiplicative renormalization [40,41]. The actual expres-
sion for Zc is fixed from Eq. (2.7) through the momentum

FIG. 1. The ghost gap equation. White (respectively, black)
blobs represent connected (respectively, one-particle irreducible)
Green’s functions.

3Our conventions can be found in the Appendix.
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subtraction (MOM) renormalization condition D−1
R ðμ2RÞ ¼

μ2R, where μ
2
R is the renormalization point.

As an elementary check, we may recover from Eq. (2.7)
the one-loop expression for Fðq2Þ. In particular, setting
tree-level values for Dðkþ qÞ and ΔLðkÞ, it is straightfor-
ward to show that

F−1ðq2Þ ¼ 1þ ig2CA

4

�
ð3 − ξÞ

Z
k

1

k2ðkþ qÞ2

þ 2ð1 − ξÞ
Z
k

k · q
k4ðkþ qÞ2

�
: ð2:8Þ

Using standard integration formulas, setting q2E ¼ −q2, and
renormalizing in the aforementioned scheme, one obtains
for the renormalized ghost dressing function

F−1
R ðq2EÞ ¼ 1þ αsCA

16π
ð3 − ξÞ logðq2E=μ2Þ; ð2:9Þ

where we have defined αs ¼ g2=4π.

B. Numerical analysis

After a set of basic algebraic manipulations, together
with the shift kþ q → k, we may cast Eq. (2.7) in the form

D−1ðq2Þ ¼ q2þ ig2CA

Z
k
DðkÞ

�
q2k2− ðk ·qÞ2

ðkþqÞ2 ΔLðkþqÞ

þ ξ

4

�ðk2−q2Þ2
ðkþqÞ4 − 1

��
: ð2:10Þ

This last form of the ghost SDE is more convenient for the
numerical analysis that follows, because it allows us to
carry out exactly the angular integration in the term
proportional to ξ, while in the first term the angular
dependence has been passed from the unknown function
Dðkþ qÞ to the function ΔLðkÞ, which is known from
the lattice.
In order to solve this equation, we first pass to Euclidean

space using the standard substitution rules,

d4k → id4kE;

ðq2; k2; k · qÞ → ð−q2E;−k2E;−kE · qEÞ;
Δðq2Þ; Dðq2Þ → −ΔEðq2EÞ;−DEðq2EÞ; ð2:11Þ

and suppress throughout the subscript “E” in what follows.
Next, we introduce spherical coordinates (in d ¼ 4),
through the relations

x ¼ q2; y ¼ k2;

z ¼ ðkþ qÞ2 ¼ xþ yþ 2
ffiffiffiffiffi
xy

p
cos θ;Z

kE

¼ 1

ð2πÞ3
Z

π

0

dθsin2θ
Z

∞

0

dyy; ð2:12Þ

use the result

Z
π

0

dθ
sin2θ
z2

¼ π

2

�
1

xðx− yÞΘðx− yÞ þ 1

yðy− xÞΘðy− xÞ
�
;

ð2:13Þ

where ΘðxÞ is the Heaviside function, and factor out a q2

from both sides of Eq. (2.10). Thus, we obtain the final
equation for the (subtractively renormalized) ghost dressing
function FðxÞ,

F−1ðxÞ ¼ Zc −
αsCA

2π2

Z
∞

0

dyyFðyÞ
Z

π

0

dθ
sin4θ
z

ΔLðzÞ

þ ξ
αsCA

16π

�
1

x2

Z
x

0

dyyFðyÞ þ
Z

∞

x
dy

FðyÞ
y

�
;

ð2:14Þ

Before proceeding to the full numerical treatment of this
integral equation, it would be useful to identify some of its
main IR features by means of a more direct method. In
particular, if we assume that the FðxÞ reaches a finite value
in the IR (x → 0), inspection of Eq. (2.14) reveals that the
dominant term in that momentum region is the last one.
Indeed, the first term corresponds qualitatively to the
Landau gauge case: if the gluon propagator (ΔL) saturates
in the IR, this term is finite. The second term is also finite in
the IR, as the simple change of variable y ¼ tx immediately
demonstrates. Therefore, keeping only the dominant IR
contribution on the rhs of Eq. (2.14) we obtain

F−1ðxÞ ∼
x→0

ξ
αsCA

16π

Z
∞

x
dy

FðyÞ
y

: ð2:15Þ

This integral equation can be converted into a differential
equation, by differentiating both sides with respect to x; we
then obtain

F0ðxÞ ∼
x→0

ξc
F3ðxÞ
x

; c ¼ αsCA

16π
; ð2:16Þ

which is solved by

FðxÞ ∼
x→0

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a − 2ξc logðx=μ2Þ

p ; ð2:17Þ

with a a (possibly ξ dependent) constant, and μ a suitable
renormalization scale; the physical solution corresponds to
the positive sign. Notice that the IR solution given in
Eq. (2.17) requires the aforementioned non-negativity
condition ξ ≥ 0, since otherwise Fwould become complex;
in particular, from now on, we will restrict our attention
to ξ ∈ ½0; 1�.
Equation (2.17) predicts an important qualitative modi-

fication in the IR behavior of the ghost dressing functions,
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compared to what is known from the Landau gauge studies.
Specifically, whereas in the Landau gauge FLð0Þ ¼ const,
whenever ξ > 0 one finds that F is driven to zero at the
origin, namely Fð0Þ ¼ 0.
We next focus on the complete numerical evaluation of

Eq. (2.14). To this end, we will use as input for ΔL the fit to
the available SU(3) lattice data [4] introduced in [27] (see
Fig. 2). The value of the renormalization point within the
MOM scheme is μ ¼ 4.3 GeV. Notice that in Fig. 2 we
show also a fit displaying an IR maximum that must appear
due to the presence of divergent terms contributing to the
gluon (inverse) dressing function [42] (see also Sec. III B);
however, the results finally obtained from the solution of
the SDE are completely insensitive to the implementation
of this particular feature in the gluon propagator.
The solutions obtained for αs ¼ 0.29 and gfp values

ranging from 0 to 1 are shown in the left panel of Fig. 3.
The value of αs is chosen so that in the Landau gauge ξ ¼ 0
one reproduces the lattice data of [4] (see the black
continuous curve in Fig. 3); the 30% deviation from the
expected value of αs ¼ 0.22 (at μ ¼ 4.3 GeV) is due to the
use of the tree-level ghost vertex, as demonstrated in [43].
One immediately observes the drastic change in the IR

behavior of the ghost dressing function: at ξ ¼ 0 FLð0Þ is
finite, whereaswhen ξ ≠ 0Fð0Þvanishes. The IR behavior is
precisely the one described by the IR solution (2.17), where

a ¼ aðξÞ ¼ 0.12ð1þ ξÞ; c ¼ 0.035: ð2:18Þ

Evidently, the rate at which Fðq2Þ approaches zero is very
slow, and begins to set on at the rather low scale of about
100 MeV (upper panel of Fig. 3). However, the first
appreciable deviations from the FLðq2Þ obtained in the

Landau gauge manifest themselves at the higher scale of
about 300 MeV, where the Fðq2Þ displays a characteristic
maximum. This particular feature, in turn, may serve as a
guiding signal in future lattice simulations away from the
Landau gauge.
The overall effect of Fðq2Þ on the full ghost propagator

Dðq2Þ is shown in the right panel of Fig. 3. In particular,
one observes that the rate of divergence of the ghost
propagator at the origin becomes slightly softer compared
to that of the Landau gauge.
Let us conclude this section by determining for later

convenience the IR behavior of the derivative with respect
to ξ of the ghost dressing evaluated at ξ ¼ 0; one finds

∂ξFðxÞjξ¼0 ∼
x→0

cSDE log
x
μ2

×FLð0Þ; cSDE ¼
αsCA

16π

1

að0Þ ;

ð2:19Þ
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FIG. 2 (color online). The lattice SU(3) gluon propagator
evaluated in the Landau gauge [4] and the corresponding fit
used in our calculation [27]. The dashed curve shows a fit
featuring an IR maximum which is due to the presence of
(divergent) contributions to the gluon (inverse) dressing function
[42]. All functions are renormalized at μ ¼ 4.3 GeV.
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FIG. 3 (color online). Solution of the SDE (2.14) (upper panel)
and the associated ghost propagator (lower panel) for various
values of the gauge fixing parameter ξ. In the IR the solution
obtained is perfectly described by Eq. (2.17) after fitting for
determining the value of the arbitrary constant a. For comparison
we plot also the Landau gauge lattice data of [4].
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where we have used the fact that FLð0Þ ¼ 1=
ffiffiffiffiffiffiffiffiffi
að0Þp

.
Clearly, this quantity displays an IR logarithmic divergence;
substituting the numerical values of the constants involved
one obtains cSDE ¼ 0.15.

III. NIELSEN IDENTITIES

In this section we take a different but complementary
look at the problem, by resorting to a set of identities
originally introduced by Nielsen [36,37]; for all technical
details the reader is referred to the Appendix, where the
general derivation is summarized.

A. Ghost propagator

Consider the ghost two-point sector of the theory. The
corresponding NI is readily obtained by differentiating the
functional identity (A20) with respect to one antighost and
one ghost field; setting afterwards all fields and sources to
zero, one obtains the relation

∂ξΓcac̄bðq2Þ ¼ iΓc̄bχAd
μ
ðq; 0;−qÞΓcaA�μ

d
ðqÞ

− iΓcaχc�d
ðq; 0;−qÞΓcdc̄bðq2Þ; ð3:1Þ

where

Γcac̄bðq2Þ ¼ −iδabq2F−1ðq2Þ; Γcc̄ðq2Þ ¼ −Πðq2Þ:
ð3:2Þ

In Eq. (3.1) ϕ� denotes the antifield associated to the field
ϕ. In addition, χ represents the static (i,e., momentum
independent) source associated to the gfp ξ; therefore, and
despite their appearance, all functions in the identity above
are two-point functions.
Equation (3.1) can be further simplified by noticing that

the so-called ghost (or Faddeev-Popov) equation (A17)
yields

ΓcaA�b
μ
ðqÞ ¼ iδab

qμ
q2

Γcac̄bðq2Þ; ð3:3Þ

a result which allows to trade the function ΓcA� in (3.1) for a
ghost two-point function Γcc̄. Then, factoring out the trivial
color structure δab, one is left with the identity

∂ξΓcc̄ðq2Þ¼−
�
qμ

q2
Γc̄χAμ

ðq;0;−qÞþiΓcχc� ðq;0;−qÞ
�
Γcc̄ðq2Þ:

ð3:4Þ

In order to appreciate with a concrete example how the
NIs work, let us consider the explicit realization of Eq. (3.4)
at the one-loop level. The left-hand side (lhs) of Eq. (3.4)
can be immediately deduced from Eq. (2.8), yielding

∂ξΓ
ð1Þ
cc̄ ðq2Þ¼−

g2CA

4
q2
�Z

k

1

k2ðkþqÞ2þ2

Z
k

k ·q
k4ðkþqÞ2

�
:

ð3:5Þ

Turning to the rhs of (3.4), the diagrams contributing to the
auxiliary functions Γc̄χAμ

and Γcχc� at one-loop level are
shown in Fig. 4. Using the Feynman rules reported in the
Appendix and Ref. [44], one has the results

iΓð1Þ
c̄χAμ

ðq; 0;−qÞ ¼ g2CA

2

�
qσ

Z
k

1

k4
Pσ
μðkþ qÞ

−
Z
k

k · q
k4ðkþ qÞ2 ðkþ qÞμ

�
;

iΓð1Þ
cχc� ðq; 0;−qÞ ¼ i

g2CA

2

Z
k

k2 þ k · q
k4ðkþ qÞ2 : ð3:6Þ

Notice that the contribution proportional to ξ that
could be in principle generated from diagram ðbÞ of

FIG. 4. One-loop diagrams contributing to the auxiliary functions Γc̄χAμ
and Γcχc� appearing in the ghost two-point Nielsen identity

(3.1). Notice the presence of the mixed propagator ΔbA.
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Fig. 4 vanishes as a result of the Slavnov-Taylor identity
qμ1q

ν
2q

ρ
3Γμνρðq1; q2; q3Þ ¼ 0. Thus one finally has

�
qμ

q2
Γð1Þ
c̄χAμ

ðq; 0;−qÞ þ iΓð1Þ
cχc�ðq; 0;−qÞ

�
Γð0Þ
cc̄ ðq2Þ

¼ g2CA

4
q2
�Z

k

1

k2ðkþ qÞ2 þ 2

Z
k

k · q
k4ðkþ qÞ2

�
; ð3:7Þ

which, in view of Eq. (3.5), confirms the validity of
Eq. (3.4) at one-loop.

B. Small ξ limit and the one-loop dressed
approximation

Consider now the limit ξ ≪ 1; in this case, one can set
ξ ¼ 0 on both sides of Eq. (3.4), and use Eq. (3.2) to obtain

∂ξFðq2Þjξ¼0

¼ −
�
qμ

q2
ΓL
c̄χAμ

ðq; 0;−qÞ þ iΓL
cχc� ðq; 0;−qÞ

�
FLðq2Þ;

ð3:8Þ

where the auxiliary ghost functions appearing on the rhs are
now evaluated in the Landau gauge (see also the discussion
at the end of Appendix A 1). This last equation can be used
to deduce the IR behavior ofFðq2; ξÞ from the knowledge of
the basic Green’s functions in the Landau gauge. In particu-
lar, it allows us to compare the result obtained from the direct
evaluation of the rhs of Eq. (3.8) in the limit q2 → 0with the
corresponding expression derived in Eq. (2.19) in the SDE
context. To this end, we will study the auxiliary functions
ΓL
c̄χAμ

and ΓL
cχc� in the one-loop dressed approximation, in

which the diagrams contributing to each function are
obtained from those shown in Fig. 4 by fully dressing the
propagators, while keeping all vertices at their tree-level
values.4 The simple inspection of the diagrams given inFig. 4
suggests that, indeed, a logarithmic behavior similar to that of
Eq. (3.8) is expected to make its appearance. This is because
diagrams (a) and (c) may be essentially regarded as closed
ghost loops, which, due to the nonperturbative masslessness
of the ghost propagators entering in them, are known to
diverge logarithmically in the IR [42,45].
Let us then evaluate explicitly the one-loop dressed

expressions of ΓL
c̄χAμ

and ΓL
cχc� ; one has the following results:

qμ

q2
ΓL
c̄χAμ

ðq; 0;−qÞ ¼
1ldr

i
g2CA

2

�Z
k

ðk · qÞðk · qþ q2Þ
q2k4ðkþ qÞ2 FLðkÞFLðkþ qÞ−

Z
k

k2q2 − ðk · qÞ2
q2k4

FLðkÞΔLðkþ qÞ
�
;

iΓL
c̄χc� ðq; 0;−qÞ ¼

1ldr
i
g2CA

2

Z
k

k2 þ k · q
k4ðkþ qÞ2 FLðkÞFLðkþ qÞ: ð3:9Þ

The terms proportional to the product of two ghost dressing
functions FL in both functions are those corresponding to
the aforementioned ghost loops; therefore, in the deep IR
both functions display a logarithmic divergence, so that, in
turn, one has

∂ξFðq2Þjξ¼0 ∼
q2→0

cNI log
q2

μ2
× FLð0Þ; ð3:10Þ

where cNI a suitable constant and μ the renormalization
scale chosen. Notice that this is exactly the kind of behavior
found in Eq. (2.19) from the SDE analysis.
The qualitative agreement between Eqs. (2.19) and

(3.10) motivates a further quantitative study, focusing on
the actual value of the coefficient c obtained within the two
methods (SDE vs NI). To accomplish this, we evaluate
numerically the one-loop dressed contributions (3.9),
which are given by (Euclidean space)

qμ

q2
ΓL
c̄χAðq;0;−qÞ ¼

1ldr

g2CA

2ð2πÞ3
Z

π

0

dθsin2θcosθ

×
Z

∞

0

dy

�
cosθþ

ffiffiffi
x
y

r �
1

z
FLðyÞFLðzÞ

þ g2CA

3ð2πÞ3
Z

π

0

dθsin4θ
Z

∞

0

dyFLðyÞΔLðzÞ

¼ðaÞþðbÞ;

iΓL
c̄χc� ðq;0;−qÞ ¼

1ldr
−

g2CA

2ð2πÞ3
Z

π

0

dθsin2θ

×
Z

∞

0

dy

�
1þ

ffiffiffi
x
y

r
cosθ

�
1

z
FLðyÞFLðzÞ

¼ðcÞ; ð3:11Þ

where ðaÞ, ðbÞ and ðcÞ denote the contributions of the
diagrams appearing in Fig. 4. At this point all integrals can
be evaluated provided that we supply as input the Landau
gauge gluon propagator ΔL and the ghost dressing function
FL (see Figs. 2 and 3, respectively).
The results obtained for the three individual terms ðaÞ,

ðbÞ and ðcÞ of Eq. (3.11), as well as their sum, are shown on

4Note that the b-equation (A14) implies that every Green’s
function which involves the Nakanishy-Lautrup multiplier b
remains fixed at its tree-level value: therefore in the b-sector
the one-loop dressed approximation is exact.
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the left panel of Fig. 5. One sees that terms ðaÞ and ðcÞ
show the claimed logarithmic divergence, while in the case
of ðbÞ the gluon mass acts as an IR regulator, making
the integral convergent. Adding the three contributions
together one obtains the black continuous curve of Fig. 5,
yielding the IR behavior (3.10) with cNI ¼ 0.33; this value
should be compared to the value cSDE ¼ 0.15 obtained
from the SDE analysis. Given that the two values are
derived from two a priori completely distinct methods,
we find the proximity between the two values rather
encouraging.

C. Gluon propagator

The NI formalism may be extended in a straightforward
way to the case of the gluon propagator. Specifically, the
corresponding NI for the gluon two-point function ΓAA can
be derived by differentiating Eq. (A20) with respect to two
gluon fields, and setting afterwards all fields to zero. In
particular, one obtains the equation

∂ξΓAa
μAb

ν
ðqÞ ¼ −iΓAa

μχA
�ρ
c
ðq; 0;−qÞΓAc

ρAb
ν
ðqÞ

− iΓAb
ν χA

�ρ
c
ðq; 0;−qÞΓAc

ρAa
μ
ðqÞ: ð3:12Þ

Given that ΓAA is transverse to all orders, with its tree-level

value given by Γð0Þ
Aa
μAb

ν
ðqÞ¼iq2δabPμνðqÞ (see the Appendix),

this identity can be further simplified to read

∂ξΓAAðq2Þ ¼ −2iΓAχA� ðq; 0;−qÞΓAAðq2Þ; ð3:13Þ
where the color structure has been factored out, and we have
defined

ΓAχA� ðq; 0;−qÞ ¼ 1

d − 1
PμνðqÞΓAμχA�

ν
ðq; 0;−qÞ: ð3:14Þ

One can appreciate how the above identity works by
evaluating it at lowest order in perturbation theory. The
diagrams contributing to the function ΓAχA� at the one-loop
level are shown in Fig. 6; then the rhs of Eq. (3.13) reads

− 2iΓð1Þ
AμχA�

ρ
ðq; 0;−qÞΓð0Þ

AρAν
ðqÞ

¼ g2CAq2P
ρ
νðqÞ

�Z
k

ðk2 − q2Þ
k2ðkþ qÞ2PμρðkÞ−

Z
k

ðkþ qÞμkρ
k4ðkþ qÞ2

þ ð1− ξÞq2Pσ
μðqÞ

Z
k

kρkσ
k4ðkþ qÞ4

�
: ð3:15Þ

To complete the comparison, note that Πð1Þ
μν ðqÞ has been

evaluated in [46] [see Eq. (2.56)]; its derivative with respect
to ξ coincides with the result (3.15), once we take into
account that ΠμνðqÞ ¼ −ΓAμAν

ðqÞ.
Next, we consider the ξ ≪ 1 limit of Eq. (3.13),

obtaining

∂ξΔ−1ðq2Þjξ¼0 ¼ −2iΓL
AχA� ðq; 0;−qÞΔ−1

L ðq2Þ;
ΓAAðq2Þ ¼ iΔ−1ðq2Þ: ð3:16Þ

The rhs of this equation can then be evaluated within the
one-loop dressed approximation, yielding the expression

− 2iΓL
AχA� ðq; 0;−qÞ

¼
1ldr

− i
g2CA

d − 1

�Z
k

k2q2 − ðk · qÞ2
q2k4ðkþ qÞ2 FLðkÞFLðkþ qÞ

þ
Z
k

k2 − q2

ðkþ qÞ4
�
d − 2þ ðk · qÞ2

k2q2

�
ΔLðkÞFLðkþ qÞ

�
:

ð3:17Þ

FIG. 6. One-loop diagrams contributing to the auxiliary function ΓAμχA�
ν
appearing in the gluon two-point Nielsen identity (3.12).
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FIG. 5 (color online). Contributions of the one-loop dressed
auxiliary functions to the ghost two-point function Nielsen
identity. The IR region is perfectly described by the predicted
cNI log q2=μ2 behavior yielding cNI ¼ 0.33.
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One notices again the presence of a massless ghost loop,
which implies in turn the divergent IR behavior

∂ξΔ−1ðq2Þjξ¼0 ∼
q2→0

∂ξm2ðq2Þjξ¼0 ∼
q2→0

cNI log
q2

μ2
×m2

Lð0Þ;

ð3:18Þ
where the first expression on the rhs originates from the fact
that when q2 → 0, Δ−1ðq2Þ → m2ðq2Þ [see Eq. (2.5)], and
m2

Lðq2Þ denotes the dynamical gluon mass in the Landau
gauge [11–13].
The appearance of this particular behavior may be indeed

confirmed numerically. Specifically, after passing to the
Euclidean metric and introducing spherical coordinates,
one obtains

− 2iΓL
AχA� ðq; 0;−qÞ

¼
1ldr

−
g2CA

3ð2πÞ3
Z

π

0

dθsin4θ
Z

∞

0

dy
1

z1
FLðyÞFLðz1Þ

þ g2CA

3ð2πÞ3
Z

π

0

dθð3− sin2θÞsin2θ

×
Z

∞

0

dy
yðy− xÞ

z21
ΔLðyÞFLðz1Þ ¼ ðdÞ þ ðeÞ; ð3:19Þ

which can be evaluated using the Landau gauge propagator
and ghost dressing function introduced before. The results
are shown in Fig. 7; one observes a logarithmic IR
divergence in diagram ðdÞ, while the IR finiteness of
diagram ðeÞ is due to the presence of the dynamical gluon
mass. When summing everything together the IR behavior
is indeed the one described by Eq. (3.10), with cNI ¼ 0.13.
Finally, it is rather interesting to consider how the IR

divergence found in (3.18) might be reconciled with the
underlying assumption of an IR finite gluon propagator.
Given that, at present, the dynamical equation that
describes the gluon mass has only been derived in the
Landau gauge,5 one may only proceed by postulating an
Ansatz for m2ðq2Þ that would satisfy (3.18), and study its
consequences at the level of the corresponding gluon
propagators.
One such possibility is given by the following Ansatz for

the ξ-dependent mass function6

m2ðq2Þ ¼
�
aðξÞ þ cðξÞ

�
q2

μ2

�
ξ

log
q2

μ2

�
m2

Lðq2Þ; ð3:20Þ

with

aðξÞ ¼ a0 þ a1ξþ � � � ; cðξÞ ¼ c1ξþ � � � : ð3:21Þ

Notice that the (resummed) behavior ∼ðq2=μ2Þξ has been
also observed when studying the gfp dependence of
fermion propagators through LKF transformations [40,51].
Evidently, choosing a0 ¼ 1 and c1 ≡ cNI ¼ 0.13 ensures

that

m2ðq2Þ ∼
q2→0

ð1þ a1ξÞm2
Lð0Þ;

∂ξm2ðq2Þjξ¼0 ∼
q2→0

c log
q2

μ2
×m2

Lð0Þ; ð3:22Þ

in agreement with (3.18); in addition, small values of a1
would make the Rξ and Landau-gauge propagators and
dynamical masses to be rather close to each other, justify-
ing in retrospect our replacing Δ by ΔL when solving the
ghost SDE.
Evidently, within this approach, the sign of the coef-

ficient a1 remains undetermined. This sign, in turn, controls
the leading behavior of the gfp dependence of the gluon
mass (and correspondingly of the propagator) in the
deep IR: a positive a1 implies an increasing (decreasing)
mass (propagator), while for a1 negative the behavior
would be reversed. This is shown in Fig. 8, where the
left panels depict the ξ-dependence of the gluon dynamical
mass (3.20) for the two values a1 ¼ 0.2 (upper left)
and a1 ¼ −0.2 (lower left), while the corresponding
gluon propagators, obtained from the relation

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

10-4 10-3 10-2

(d)
(e)
Total
IR fit

0.1 1 10

FIG. 7 (color online). Contributions of the one-loop dressed
auxiliary functions to the gluon two-point function Nielsen
identity. Also in the gluon case the IR region is perfectly
described by the predicted b log q2=μ2 behavior, now with
cNI ¼ 0.13.

5For related studies in the Coulomb gauge, see [47–50].
6A simpler Ansatz would have been

m2ðq2Þ ¼
�
aðξÞ þ cðξÞ

�
q2

μ2

�
ξ
�
m2

Lðq2Þ;
with

aðξÞ ¼ 1 − c0 − a1ξþ � � � ; cðξÞ ¼ c0 þ � � �
and c0 ≡ cNI ≈ 0.13. In this case, however, the limits ξ → 0 and
q2 → 0 do not commute, contrary to what happens with the
Ansatz (3.20).
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Δ−1ðq2Þ ¼ q2JLðq2Þ þm2ðq2Þ, are shown on the right
panels of the same figure.
Notice that the case a1 ¼ 0 would be particularly inter-

esting, as it would imply that, at leading order in ξ, the Rξ

gluon mass and propagator coincide in the IR with the
corresponding quantities computed in the Landau gauge. In
addition, as can be appreciated fromFig. 9, the ξ-dependence
over the entire range of momenta would be minimal.

IV. CONCLUSIONS

In the present paper we have analyzed the nonperturba-
tive behavior of Yang-Mills Green’s functions quantized in
a linear covariant gauge, paying particular attention to its
dependence on the parameter ξ characterizing this class
of gauges. We have first focused on the ghost two-point
function and shown that, within a well-defined set of
approximations, the solutions of the corresponding SDE
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FIG. 8 (color online). ξ-dependence of the gluon mass (left panels) and gluon propagator (right panels) as predicted by the Ansatz
(3.20) for a1 ¼ −0.2 (upper panels) and a1 ¼ 0.2 (lower panels).
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FIG. 9 (color online). ξ-dependence of the gluon mass (left) and gluon propagator (right) as predicted by the Ansatz (3.20) for a1 ¼ 0.
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for ξ > 0 are such that the dressing function Fðq2Þ vanishes
as q2 → 0; this is in sharp contrast to the Landau gauge case
(ξ ¼ 0) where Fðq2Þ is known to saturate in the low
momentum region. The particular IR behavior found for
Fðq2Þ turned out to be in notable agreement with
that obtained from the Nielsen identity satisfied by this
function, within the one-loop dressed approximation
and for ξ ≪ 1. The NI analysis has been then extended
to the gluon two-point function, and shown to predict
the same kind of logarithmic divergence for the derivative
with respect to ξ of the dynamical gluon mass,
∂ξm2ðq2Þjξ¼0 ∼ c log q2=μ2 ×m2

Lð0Þ. A particular example

of a m2ðq2Þ that reconciles this behavior with the assumed
saturation of the gluon propagator away from the Landau
gauge was given, and its main features were studied
numerically.
Undoubtedly, lattice simulations would be crucial for

verifying or amending the findings of this preliminary SDE
study. As already mentioned, exploratory simulations in the
linear gauges have already been carried out for the gluon
propagator [34]; it would be interesting to extend them
to larger values of ξ, in order to determine whether the
observed IR saturation persists. Furthermore, the IR sup-
pression of the ghost dressing function predicted here may
serve as a definite reference when attempting to simulate
the ghost sector of the theory.
From the point of view of the SDEs, one may envisage

various improvements. To begin with, the replacement of
the fully dressed ghost-gluon vertex by the tree-level
expression inside the ghost SDE ought to be ameliorated.
This, in turn, would require the treatment of the corre-
sponding vertex SDE, for a general ξ, in the spirit of the
analysis presented in the Landau gauge [43]. To be sure,
subtractive instead of multiplicative renormalizability is
another longstanding drawback in practically all types of
SDE analysis; however, given that this problem cannot be
even solved within the context of the (easier) Landau
gauge, the prospects for a notable refinement in this
particular direction seem rather reduced.
It is also clear that additional theoretical work at the level

of the gluon propagator is an absolute requirement before
any firm statements could be made. In particular, no study
related to the possibility of gluon mass generation away
from the Landau gauge has been carried out to date; in the
present paper we have simply assumed the realization of
this scenario, based almost exclusively on the limited lattice
evidence of [34]. In particular, it would be essential to
derive the dynamical equation that governs the evolution of
the gluon mass for an arbitrary ξ, and explore the type of
solutions it might admit. This task is technically rather
complex, mainly due to the proliferation of terms with
respect to the Landau gauge case. Calculations in this
direction are already in progress, and we hope to report
progress in the near future.
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APPENDIX: DERIVATION OF THE
NIELSEN IDENTITIES

The action Γð0Þ of the SUðNÞ Yang-Mills theory can be
written as the sum of three terms,

Γð0Þ ¼ SYM þ SGFþFPG þ SBV; ðA1Þ

where the first term corresponds to the classical action

SYM ¼ −
1

4

Z
d4xFa

μνF
μν
a ;

Fa
μν ¼ ∂μAa

ν − ∂μAa
ν þ gfabcAb

μAc
ν; ðA2Þ

while the second to the gauge fixing and its associated
Faddeev-Popov action, written as

SGFþFPG ¼ s
Z

d4xc̄a
�
F a −

ξ

2
ba
�
: ðA3Þ

In the equation above ba is the Nakanishy-Lautrup multi-
plier, c̄a the antighost field, while F a represents, for the
moment, an arbitrary gauge fixing function. The only
restriction on this latter function is that it allows for the
inversion of the tree-level two-point functions of the A–b
sector, thus yielding the field propagators (in what follows
we will use an off-shell formalism, keeping explicitly the b
fields, which, otherwise, can be eliminated by making use
of their trivial equation of motion). Finally, s is the BRST
symmetry operator that acts on the elementary fields
according to

sAa
μ ¼ ð∂μδ

ab þ gfacbAc
μÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Dab
μ

cb; sca ¼ −
1

2
gfabccbcc;

sc̄a ¼ ba; sba ¼ 0; ðA4Þ

with Dab
μ the usual covariant derivative.

As can be explicitly seen above, the BRST variations of
the gauge and ghost fields are nonlinear in the quantum
fields; their renormalization is ensured by the introduction
of external sources, known as antifields, in the third term of
(A1), reading
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SBV ¼
Z

d4xðA�a
μ sAμ

a þ c�ascaÞ: ðA5Þ

The tree-level action (A1) will then satisfy the Slavnov-
Taylor (ST) identity

SðΓð0ÞÞ ¼ 0;

SðΓð0ÞÞ ¼
Z

d4x

�
δΓð0Þ

δA�a
μ

δΓð0Þ

δAμ
a
þ δΓð0Þ

δc�a

δΓð0Þ

δca
þ ba

δΓð0Þ

δc̄a

�
:

ðA6Þ

As the theory is anomaly-free, the ST identity (A6) holds
also for the full vertex functional Γ.
If we extend the BRST to include also the gauge

parameter ξ, we obtain an extended ST identity that gives
control over the gfp dependence of the Green’s function of
the theory [36,37]. Writing7

sξ ¼ χ; sχ ¼ 0; ðA7Þ
one obtains that

SGFþFPG ¼
Z

d4x

�
baF a −

ξ

2
b2a − c̄asF a

�

þ
Z

d4xc̄a
�
1

2
χba − χ

∂F a

∂ξ
�
; ðA8Þ

and therefore the tree-level action satisfies the extended
ST identity

S0ðΓð0ÞÞ ¼ 0; S0ðΓð0ÞÞ ¼ SðΓð0ÞÞ þ χ
∂Γð0Þ

∂ξ : ðA9Þ

Again, the identity above is valid for the full vertex
functional Γ; taking then a derivative with respect to χ
and setting it to zero afterwards, one obtains the NI

∂Γ
∂ξ






χ¼0

¼
Z

d4x

�
δΓ
δA�a

μ

δ2Γ
∂χδAμ

a
−

δ2Γ
∂χδA�a

μ

δΓ
δAμ

a
−

δ2Γ
∂χδc�a

δΓ
δca

−
δΓ
δc�a

δ2Γ
∂χδca − ba

δ2Γ
∂χδc̄a

�




χ¼0

: ðA10Þ

1. Linear covariant gauges

Even though the NI (A10) holds irrespectively of the
gauge fixing functional chosen, we will specialize from
now on to the case of linear covariant (or Rξ) gauges, which
are identified by the choice of the following gauge fixing
function:

F a ¼ ∂μAa
μ; ðA11Þ

and, in our conventions, the non-negativity condition on ξ
[32], needed to ensure that the (Euclidean) path integral
over the b fields is Gaussian.
Thus in the two-point gluon sector the Rξ gauge fixing

yields the tree-level propagators AA, Ab, bb given respec-
tively by

iΔab
μνðqÞ ¼ −iδab

1

q2

�
PμνðqÞ þ ξ

qμqν
q2

�
;

iΔab
μ ðqÞ ¼ δab

qμ
q2

; iΔab ¼ 0: ðA12Þ

For the ghost sector the tree-level propagator is instead
written as

iDabðqÞ ¼ iδab
1

q2
: ðA13Þ

Now observe that the b-equation

δΓ
δba

¼ ∂μAa
μ − ξba þ 1

2
c̄aχ; ðA14Þ

implies that the b-dependence is confined at tree level,
and so will the mixed bA propagator Δμ (and any vertex
involving the b field for that matter). Thus, beyond tree
level the only nontrivial propagators will be

iΔab
μνðqÞ ¼ −iδab

�
PμνðqÞΔðq2Þ þ ξ

qμqν
q2

�
;

iDabðqÞ ¼ iδab
Fðq2Þ
q2

; ðA15Þ

where Fðq2Þ is the ghost dressing function. The Feynman
rules for vertices involving fields and/or antifields can be
found in [44]; they need to be supplemented with one more
rule, describing the coupling of the χ source to a b and a c̄
field, which can be read off directly from Eq. (A14):

iΓc̄bbaχð−q; q; 0Þ ¼
1

2
δab: ðA16Þ

As already mentioned, this vertex will not receive quantum
corrections, and will be completely fixed by its tree-level
value given above. The Feynman rules involving the
Nakanishy-Lautrup multiplier b are summarized in Fig. 10.
In addition, the Faddeev-Popov equation,

δΓ
δc̄a

þ ∂μ δΓ
δA�a

μ
¼ 1

2
χba; ðA17Þ

implies that beyond tree level the dependence on c̄ of
the vertex functional Γ can only be realized through the
combination ~A�a

μ ¼ A�a
μ þ ∂μca; indeed, if Γ ¼ Γ½ ~A��

one has

7A pair of variables ðu; vÞ such that su ¼ v and sv ¼ 0 is
called a BRST doublet; notice that also c̄ and b form such a
doublet.
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δΓ
δc̄aðxÞ¼

Z
d4y

δΓ
δ ~Ab

μðyÞ
δ ~Ab

μðyÞ
δc̄aðxÞ ¼

Z
d4y

δΓ
δ ~Ab

μðyÞ
∂y
μδðx−yÞ

¼−∂x
μ

δΓ
δ ~Ab

μðxÞ
¼−∂x

μ
δΓ

δAb
μðxÞ

; ðA18Þ

with the last step due to the linearity of the field
transformation employed. Making then the change of
variable A�

μ → ~A�
μ, and introducing the reduced functional

~Γ through

~Γ ¼ Γ −
Z

d4x

�
ba∂μAa

μ −
ξ

2
ðbaÞ2

�
; ðA19Þ

one can restrict the sum over fields appearing in the rhs of
Eq. (A10) to the pairs ðAa

μ; ~A
�a
μ Þ and ðca; c�aÞ alone. In the

NI analysis carried out in this paper we have used only
“tilded” quantities, and therefore suppressed this symbol
everywhere. Incidentally, notice that it is Eq. (A19) that

implies the tree-level result Γð0Þ
Aa
μAb

ν
ðqÞ ¼ iq2δabPμνðqÞ.

The final form of the NI used is then written as

∂Γ
∂ξ






χ¼0

¼
Z

d4x

�
δΓ
δA�a

μ

δ2Γ
∂χδAμ

a
−

δ2Γ
∂χδA�a

μ

δΓ
δAμ

a
−

δ2Γ
∂χδc�a

δΓ
δca

−
δΓ
δc�a

δΓ
∂χδca

�




χ¼0

: ðA20Þ

Using the technique developed in [52], one can write the complete solution to the NI above [53]. Rewriting Eq. (A20) as8

∂Γ
∂ξ






χ¼0

¼
Z

d4x

�
δΨ
δA�a

μ

δΓ
δAμ

a
−

δΨ
δAa

μ

δΓ
δA�μ

a
þ δΨ
δca

δΓ
δc�a

−
δΨ
δc�a

δΓ
δca

�




χ¼0

; Ψ≡ ∂Γ
∂χ ; ðA21Þ

its full solution is given by [53]

Γ ¼
X
n≥0

1

n!
ξnΓn; Γn ¼ ½Δn

ΨΓ0�jξ¼0; ðA22Þ

where Γ0 ¼ Γjξ¼0 is the vertex functional in the Landau gauge, and in the Rξ gauges the Lie operator ΔΨ reads

ΔΨX ¼
Z

d4x

�
δX
δAa

μ

δΨ
δA�μ

a
þ δX
δA�a

μ

δΨ
δAμ

a
þ δX
δc�a

δΨ
δca

þ δX
δca

δΨ
δc�a

�
þ ∂X

∂ξ : ðA23Þ

If ξ ≪ 1 one can linearize Eq. (A22); the coefficient of the linear term Γ1 is then obtained by applying the Lie operator on
the Landau vertex functional Γ0. As the latter does not depend on the gfp ξ, within the linear approximation one has

∂ξΓ ¼ Γ1; ðA24Þ
with

Γ1 ¼
Z

d4x

�
δΓ0

δAa
μ

δΨ
δA�μ

a
þ δΓ0

δA�a
μ

δΨ
δAμ

a
þ δΓ0

δc�a

δΨ
δca

þ δΓ0

δca
δΨ
δc�a

�




ξ¼0

¼
Z

d4x

�
δΓ0

δA�a
μ

δ2Γ0

∂χδAμ
a
−

δ2Γ0

∂χδA�a
μ

δΓ0

δAμ
a
−

δ2Γ0

∂χδc�a
δΓ0

δca
−
δΓ0

δc�a

δΓ0

∂χδca
�
: ðA25Þ

We then see that the approximation employed in this paper on the full NIs is equivalent to differentiating Eq. (A24) with
respect to a ghost and an antighost [Eq. (3.8)], or two gluon fields [Eq. (3.16)].

FIG. 10. Feynman rules for the b-sector. Notice that, due to the b-equation (A14), there are no possible quantum correction to these
Feynman rules.

8The sign differences with respect to [53] are due to the different conventions used. In particular, our Yang-Mills action is obtained
from the one of [53] through the replacements: c̄ → −c̄, b → −b, c� → −c� and α → −ξ (which also implies θ → −χ when introducing
the doublet partner of the gfp parameter).
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