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We study ferromagnetism at high density of neutrons in the QCD hadron phase, by using the simplest
chiral effective model incorporating magnetic fields and the chiral anomaly. Under the assumption of
spatial homogeneity, we calculate the energy density as a function of neutron density, with a magnetization
and a neutral pion condensation in the style of Dautry and Neyman. We find that at a high density the
energy of the ferromagnetic order is lower than that of the ordinary neutron matter, and the reduction effect
is enhanced by the anomaly. Compared to the inhomogeneous phase with the alternating layer structure,
our ferromagnetic phase turns out to be unfavored. However, once an axial vector meson condensation is
taken into account in our simplest model, the ferromagnetic energy density is lowered significantly, which
still leaves some room for a possible realization of a QCD ferromagnetic phase and ferromagnetic
magnetars.
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I. MOTIVATION: QCD AND
FERROMAGNETISM

Ferromagnetic order in nature always attracts interest for
study as it manifests microscopic structure of matter and
materials. Among observed magnetic fields in nature,
perhaps the strongest stable magnetic field is on the surface
of magnetars, which goes up to 1015½G� and more [1–3].
The mechanism for generating such a strong field has yet to
be uncovered, and it is natural for the origin to resort to the
high density of neutrons of which the neutron stars consist.
In fact, after the discovery of pulsars, the possibility of
ferromagnetism at neutron stars was proposed [4–7].
However, numerical simulations of neutron matter with
realistic internucleon potentials have not shown the
ferromagnetic phase [8]. So the possibility of the ferro-
magnetic phase at high density neutron matter, if it exists
in nature, waits for a new mechanism of the spontaneous
magnetization.
In this paper, we study the possibility of the ferromag-

netic phase at high density of neutrons, by using the
simplest but general chiral effective action. Low energy
dynamics of neutrons is governed by the chirally symmetric
interactions through pions and the spin-magnetic coupling
with magnetic fields. Our model consists of dense neutrons
coupled with neutral pions and magnetic fields, together
with the chiral anomaly term. These are indispensable
ingredients, and we see the outcome for the magnetic phase
from this minimal model.
The reason for choosing the neutral pion is simply for the

realization of the ferromagnetism, as other pion condensa-
tions such as charged pion condensation [9,10] have not
been shown to exhibit a ferromagnetism. In addition, with a

neutral pion condensation of the form Π0ðxÞ ∝ sin k · x, a
neutron lattice is formed with an alternating layer structure
(ALS) [11–14]; then the neutron spins cancel each other,
and macroscopic magnetization would not emerge. In this
paper, instead we analyze a neutral pion condensation of
the different form Π0ðxÞ ¼ q · x following Dautry and
Neyman [15],1 and generalize the study to include magnetic
fields and QCD anomaly.
Our study is motivated by the earlier work [17] in which,

together with M. Eto and T. Hatsuda, the author proposed a
mechanism for a ferromagnetic phase at high density of
neutrons. The mechanism utilizes a neutral pion domain
wall [18] coupled to the magnetic field through the QCD
chiral anomaly [19]. A spontaneous magnetization was
shown in [17] in the approximation of a single wall and
one-loop neutrons. In this paper, we generalize the idea,
and study in the simplest chiral model the Fermi energy of
the dense neutrons and its backreaction due to the pion
condensation and the magnetic fields. A successive array of
the domain walls can be approximated by the linear pion
condensation of Dautry and Neyman.
Let us describe what we find in this paper.
(i) Toy model of neutral fermions.

First we provide a toy model of a neutral fermion
with a Zeeman coupling to magnetic fields. Under
the assumption of the spatial homogeneity, we
calculate the energy density of the ferromagnetic
phase and show that it is favored compared to the
ordinary fermion matter (Sec. II).

(ii) Simplest chiral model and ferromagnetic order.
The toy model of the neutral fermions is the

essential part of the chiral model of neutrons and
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1For a recent review on the condensation (called chiral density
wave), see [16].
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pions. We analyze the simplest chiral effective
model of dense neutrons and neutral pions, together
with the magnetic field coupling and the QCD
anomaly. We find that the neutral pion condensation
of form proposed by Dautry and Neyman is pre-
cisely in the same place as the magnetization,
under the assumption of the spatial homogeneity.
The energy density of the ferromagnetic-pion-
condensation phase is lower than the ordinary
neutron matter at high density around ρ > 5ρ0 where
ρ0 is the standard nuclear density. Furthermore, the
chiral anomaly term actually helps the ferromagnetic
order. The generated magnetic field is ∼40 ½MeV�
∼Oð1017Þ½G� (Secs. IIIA–IIIB).

(iii) Comparison to ALS.
We compare our energy density with that of the

inhomogeneous ALS phase (which does not exhibit
a magnetization), and find that the ALS phase is
favored. The energy gain of the ALS is by several
times greater than that of our ferromagnetic phase
(Sec. IIIC).

(iv) Axial vector meson condensation.
To seek the possibility of the ferromagnetism, we

look at the axial vector meson condensation accom-
panied by our model. Indeed, any axial vector meson
plays the same role as the neutral pions, and the axial
vector meson condensation further reduces the
energy density of the ferromagnetic phase signifi-
cantly. Incorporation of a higher vector meson tower
and its condensation is studied by using the AdS/
CFT correspondence (Sec. IIID).

In summary, we analyze the ferromagnetic order of our
simplest chiral model of dense neutrons with magnetic
fields and the QCD anomaly. We find that our ferromag-
netic order, as its simplest form, is not favored compared to
the ALS phase. We further find that the axial vector meson
condensation and the QCD anomaly, together with the pion
condensation of Dautry and Neyman, significantly helps
the reduction of the energy density, which suggests a
necessity for further investigation for a realization of the
ferromagnetic phase. The analysis in this paper is for the
minimal model as we have emphasized above, so the result
should be understood only qualitatively. Incorporation of
realistic nuclear forces and nucleon contact terms, and also
inclusion of electrons and protons, would be important for a
further progress for realizing the QCD ferromagnetic phase
at high density of neutrons.
The organization of this paper is as follows. In Sec. II, we

provide the toy model of neutral fermions and study a
ferromagnetism at high density. In Secs. IIIA–IIIB, we
analyze the simplest chiral model of neutrons with the
pions, magnetic fields and the chiral anomaly. In Sec. IIIC,
we present our result on the energy plot and a comparison
to the ALS phase is made. In Secs. IIID–IIIE, incorporation
of the axial vector meson condensation is studied, with the

help of the AdS/CFT correspondence. Section IV is for a
summary and discussions.

II. TOY MODEL OF DENSE
NEUTRAL FERMIONS

A. Fermions, magnetization and constant
magnetic field

We are interested in the effect of spin and its magneti-
zation, for a general fermion system. The magnetization is a
condensation of a spin operator of fermions. Since for
relativistic systems the spin operator of a fermion ψðxÞ is
given by a spatial component of an axial current,

SiðxÞ ¼
1

2
ψ̄γiγ5ψ ; ð2:1Þ

we can systematically write an action for the fermion with
the spin-magnetic coupling. We consider the following
general system of a neutral fermion. It is a system of a free
neutral fermion ψðxÞ with a mass m in four spacetime
dimensions, with a Zeeman coupling under a dynamical
magnetic field Bi,

Lfermion ¼ ψ̄ði∂μγ
μ −mþ iγ0μÞψ þ αψ̄γiγ5ψBi −

1

2
B2
i :

ð2:2Þ

A chemical potential μ for the fermion number is intro-
duced such that we can treat the fermion density ρ. Since
the magnetization is a backreaction to the spacetime
magnetic field, we have included the kinetic term for the
magnetic field Bi. The second term in (2.2) is the Zeeman
coupling α between the spin of the fermion and the
magnetic field Bi. The Zeeman coupling is a part of a
so-called Pauli term.2

The Lagrangian (2.2) has a structure favoring the
ferromagnetic order. Suppose we allow only a constant
magnetic field; then integrating out Bi classically in (2.2)
results in a ferromagnetic spin-spin interaction ðψ̄γiγ5ψÞ2.
We study the structure and also a similarity to the Nambu-
Jona-Lasinio (NJL) model later in Sec. II D.
Our fermion does not have a charge, since we are

interested in effects induced particularly by the spin-
magnetic interaction.3 So in our model there is no standard
canonical coupling between the gauge field for the
magnetic field and the fermion ψ . Normally, for a charged

2One would notice that the interaction term added in (2.2) does
not respect the Lorentz invariance, as only the spatial index i is
summed. However, since we need the density for our analysis, the
chemical potential term already broke the Lorentz invariance in
(2.2), so we need not worry about it.

3For charged fermions, the magnetic field provides Landau
levels which may change the story quite a bit, and will bring an
interesting outcome. We come back to the charged fermion case
elsewhere.
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spin-1=2 fermion with an electric charge e, the Zeeman
coupling is measured in the unit of a Bohr magneton, as

α ¼ g
2

e
2m

ð2:3Þ

where g is the “g factor” and e=2m is the Bohr magneton.
Our fermion does not have the electric charge, so we treat α
as a general spin-magnetic coupling. The relation (2.3) can
be thought of as a reference, for example for a neutron
which will be treated in Sec. III.
Under a constant magnetic field Bi, we consider the

behavior of the dense neutral fermions. We quantize the
spin of the fermion along the direction of the magnetic
field. Then there are two Fermi seas; one is for the up spin
and the other is for the down spin. In the presence of the
background magnetic field Bi, due to the spin-magnetic
Zeeman coupling, we have a Zeeman splitting for the
Fermi energy for spin up and down states.
It is easy to evaluate the free energy of each spin

sector. In the nonrelativistic fermions where mass m is
large compared to the Fermi energy of the fermions, we
obtain

F↑ ¼ −
ð2mÞ3=2
15π2

ðμ −m − αBÞ5=2

F↓ ¼ −
ð2mÞ3=2
15π2

ðμ −mþ αBÞ5=2: ð2:4Þ

The difference is just the sign of the Zeeman coupling, due
to the spins. We have denoted B as the magnitude of the
magnetic field Bi. The total free energy of the system,
including the magnetic field energy is given by

F¼−
ð2mÞ3=2
15π2

½ðμ−m−αBÞ5=2þðμ−mþαBÞ5=2� þ 1

2
B2:

ð2:5Þ

In the remainder of this section, we analyze this free energy
and study the ferromagnetism.

B. Ferromagnetism at higher density

1. Complete polarization of the spins

A large magnetic field is expected to correspond to a
high density of the fermion. For a large magnetic field, one
of the two terms for the spins in the free energy becomes ill
defined; the expression (2.5) is valid only when

μ −m − jαjB > 0: ð2:6Þ

For a large magnetic field, this condition is not met. In that
case, we need to use the following expression for the free
energy:

F ¼ −
ð2mÞ3=2
15π2

ðμ −mþ jαjBÞ5=2 þ 1

2
B2: ð2:7Þ

The spins are fully aligned (see Fig. 1, left).
To turn this free energy (as a function of the chemical

potential) to the energy (as a function of the fermion
density), let us make a Legendre transform. The fermion
number density is given by

ρ≡ −
∂F
∂μ ¼ ð2mÞ3=2

6π2
ðμ −mþ jαjBÞ3=2: ð2:8Þ

Then the energy is given by

E≡ F þ μρ ¼ mρþ 35=3π4=3

21=35

1

m
ρ5=3 − jαjBρþ 1

2
B2:

ð2:9Þ

The interpretation of each term is quite clear. The first term
is the fermion mass energy, as ρ is the number density of the
fermion. The second term is the Fermi energy. The third
term is due to the spin-magnetic coupling. And the last term
is for the magnetic field self energy.
We would like to find an energy minimum for a given

fermion density ρ. It is quite straightforward, since the last
two terms in the energy can be written as a perfect squared,

E ¼ mρþ 35=3π4=3

21=35

1

m
ρ5=3 þ 1

2
ðB − jαjρÞ2 − 1

2
α2ρ2:

ð2:10Þ

So, to minimize the energy, a spontaneous magnetization
should take place,

Fermion 
energy

Fermion 
energy

Spin 
up 

Spin 
down 

Spin 
up 

Spin 
down 

FIG. 1 (color online). The fermi surface and polarization
of spins. The spin-magnetic coupling modifies the depth of
the dispersion relation according to the fermion spins. Left: all the
spins are polarized. Right: there remains some density of the
opposite component of the spin.
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B ¼ jαjρ; ð2:11Þ

at which the energy density is given by

E ¼ mρþ 35=3π4=3

21=35

1

m
ρ5=3 −

1

2
α2ρ2: ð2:12Þ

2. Coexistence of both spins

The magnetization at the high density in the description
above assumes the complete polarization of the fermions.
At not-so-high density of the fermions, we expect that not
all the fermions are polarized (see Fig. 1, right). Let us see
indeed that this is the case.
From the original total free energy (2.5), the equilibrium

condition ∂F=∂B ¼ 0 is

0¼−
ð2mÞ3=2
15π2

5

2
α½−ðμ−m−αBÞ3=2þðμ−mþαBÞ3=2�þB:

ð2:13Þ

Note that this can be always satisfied at B ¼ 0. Therefore,
no magnetization is always a possibility of the equilibrium,
and we need to find whether the magnetized phase has a
lower energy density to conclude the ferromagnetism. As
we shall see, for lower density there is no magnetization,
while for a high density the ferromagnetism is preferred.
To see in more detail the density dependence, we

calculate the density ρ as

ρ≡−
∂F
∂μ ¼ ð2mÞ3=2

6π2
½ðμ−m− αBÞ3=2 þ ðμ−mþ αBÞ3=2�:

ð2:14Þ

We can eliminate μ by using the equilibrium condition
(2.13), to obtain the equilibrium condition in terms of the
density,

�
ρþ B

α

�
2=3

−
�
ρ −

B
α

�
2=3

¼ 4

ð3πÞ2=3 mαB: ð2:15Þ

This equation determines the magnitude of the spontaneous
magnetic field B, once the density ρ is given. (Again,
B ¼ 0 is an alternative solution satisfying this equation.)
We notice here that at a density

ρ ¼ 1

jαjB ð2:16Þ

Eq. (2.15) can make one term vanish. This is nothing but
the point when we make a transition to the fully polarized
phase which we considered earlier. Substituting (2.16) into
(2.15), we obtain the threshold density

ρ2 ¼
32π4

24
1

m3α6
: ð2:17Þ

If the density is above this value, ρ > ρ2, the system in
fully polarized and the analysis reduces to what we have
considered earlier.
There is another condition for which Eq. (2.15) can

have a nonvanishing solution for B. Using the following
expansion,

ð1þ ϵÞ2=3 − ð1 − ϵÞ2=3 ¼ 4

3
ϵþ 8

81
ϵ3 þOðϵ5Þ; ð2:18Þ

we notice that (2.15) can have a solution only when the
slope around B ∼ 0 can satisfy the following inequality:

ρ2=3 ·
4

3

1

jαjρ <
4mjαj
ð3π2Þ2=3 : ð2:19Þ

This condition is rephrased as

ρ1 ≡ π4

3

1

m2α6
< ρ: ð2:20Þ

When ρ ≤ ρ1, we find no solution for (2.15), other than
B ¼ 0. So, as is expected, for low density there is no
ferromagnetic phase.
In summary, we find the following possible phases in our

system;

8<
:

ρ ≤ ρ1 ∶ B ¼ 0

ρ1 < ρ < ρ2 ∶ B ¼ 0 or B ¼ nontrivial solution of ð2.15Þ; spinmixed

ρ2 ≤ ρ ∶ B ¼ 0 or B ¼ jαjρ ðspins fully polarizedÞ

C. Favoring the ferromagnetic phase

To study whether this ferromagnetic order can actually
occur in the system of our concern, let us compare the
resultant energy (2.12) with the energy with no magnetic
field (no magnetization).

Putting B ¼ 0 reduces the system to that of the ordinary
free fermion, and in the nonrelativistic case, once given the
density ρ, we know the total energy,

EB¼0 ¼ mρþ 35=3π4=3

10m
ρ5=3: ð2:21Þ
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The first term is the energy contribution from the fermion
mass, and the second term is the fermion kinetic energy
integrated to the Fermi surface.
We compare this EB¼0 with the total energy density with

the fully polarized spins (2.12), to have

E − EB¼0 ¼
35=3π4=3

10m
ð22=3 − 1Þρ5=3 − 1

2
α2ρ2: ð2:22Þ

It is easy to show that this is always negative for the
density ρ ≥ ρ2 which is the condition for the spin full
polarization; see (2.17). So we conclude that indeed
the ferromagnetic phase is preferred at the high density
ρ ≥ ρ2.
It is also straightforward to show that even in the

range ρ1 < ρ < ρ2, the ferromagnetic phase B ≠ 0 is
preferred. To show this, we need numerical calculations
since the energy for this phase is not expressed in an
analytic form.
Finally, let us see the value of the chemical potential

corresponding to the ferromagnetic phase, to find some
consistency conditions: first, a thermodynamic stability
condition, and second, the validity of the nonrelativistic
approximation. When all the spins are polarized, we have
(2.11) which can be substituted in the relation between the
density and the chemical potential (2.8), to find

μ ¼ mþ ð6π2Þ2=3
2m

ρ2=3 − α2ρ: ð2:23Þ

The thermodynamics stability condition is

∂μ
∂ρ > 0 ð2:24Þ

which tells just the fact that larger chemical potential
provides a higher density. Using our relation (2.23) at
the high density ferromagnetic phase, we have the thermo-
dynamic stability condition

ρ < ρ3 ≡ 22π4

3

1

m3α6
: ð2:25Þ

The value ρ3 is larger than ρ2, so the ferromagnetic phase is
stable for ρ2 < ρ < ρ3.
Second, we check the nonrelativistic approximation. If

we substitute the typical value ρ ¼ ρ2 for the ferromagnetic
phase to the relation (2.23), we find

μ −mþ jαjB ¼ 2 × 32π4
1

mα2
: ð2:26Þ

This is the height of the Fermi sea as measured from the
bottom of the dispersion relation, so the nonrelativistic
approximation is valid when this value is much smaller than
the mass m,

2 × 32π4

m2
≪ α2: ð2:27Þ

So our nonrelativistic approximation is valid when this
condition is met for the spin-spin interaction coefficient α2.
To gain more insight on the relation (2.27), let us adopt

hypothetically the expression of the magnetic moment for a
charged fermion (2.3) (although our fermion is neutral).
Using (2.3), the relation (2.27) is written as

25=23π2 ≪ jgje: ð2:28Þ

For example, the observed values for electrons are jgj ∼ 2
and e2=4π ∼ 1=137, so this nonrelativistic condition is not
met. Note however that in this paper we are interested in a
neutral fermion, not the electron which has a minimal
coupling to the magnetic field. In the next section, we study
neutrons in more detail. We will find that, although the g
factor for the neutrons is not so large, the nonrelativistic
approximation is valid: in addition to the magnetic field
coupling, there appears a pion coupling which plays the
same role, and the approximation is valid for the total
interactions. The pion condensation is the main subject of
the next section.

D. Similarity to the Nambu-Jona-Lasinio model

In the previous subsections, we have seen that the
ferromagnetic phase is preferred compared to the free
neutral fermions, when the density is large enough. Let
us briefly discuss the reason why the simple model (2.2) is
expected to favor a ferromagnetic phase as for homo-
geneous phases. Indeed, we find an interesting relation to
the famous NJL model [20,21] in the following. We can
naturally assume that the phases under consideration are
spatially homogeneous; therefore there is no electric field
generated. In that case, the field Bi serves as an auxiliary
field and we can integrate it out in our system (2.2).4 The
resultant Lagrangian is

Lfermion ¼ ψ̄ði∂μγ
μ −mþ iγ0μÞψ þ 1

2
α2ðψ̄γiγ5ψÞ2:

ð2:29Þ

Immediately we can see a resemblance to the NJL model,
the renowned model for a spontaneous chiral symmetry
breaking. The NJL model is characterized by a four-
fermion interaction ðψ̄ψÞ2, which can be thought of as a
squared of chiral condensate ψ̄ψ . The four-fermion inter-
action governs the condensation of the operator ψ̄ψ. Our
model can be considered as a generalization of the NJL

4Note that this integration is not allowed normally, but here we
ignore the electromagnetic propagation. However, for a discus-
sion of only a homogeneous phase, one can make the integration
and it provides an intuitive picture.
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model by replacing the ðψ̄ψÞ2 coupling with the spin-spin
interaction5 SiSi. Since fermions possess spins, once we
turn on a nonzero density for the fermions, the spin-spin
interaction may cause a spontaneous magnetization, as in
the case of the NJL model. In fact, the spin-spin interaction
is a popular interaction in condensed matter physics. When
the coefficient α2 of the last term is positive, the system is
expected to favor a spontaneous magnetization, i.e. a
ferromagnetic phase.
For the phase to be realized, a high density would be

necessary so that the neighboring fermions can interact.6

Therefore we also expect a phase transition from the normal
phase to the ferromagnetic phase as we increase the density,
and the critical density should be a function of the coupling
α and the mass of the fermion m since these are the only
parameters of our system. This is what we have seen in this
section, and the similarity to the NJL model allows us to
intuitively understand the origin of the ferromagnetism.
Before ending this section, we should note one thing.

Our analysis in this section assumes the homogeneity in
space. Normally one can allow an inhomogeneous profile
of the matter, which results in a spontaneous emergence of
a spatial modulation. A modulated phase would have
smaller energy density compared to the ferromagnetic
phase studied in this section. In the analysis in this section,
we treated only a constant magnetic field Bi. However,
normally the integration of Bi as a constant auxiliary field is
not allowed, because photons propagate and Bi is a part of
the photon kinetic term. Once one integrates out the
electromagnetic field properly, one finds a nonlocal action
of fermions. The integrated nonlocal action can be used for
analyses of inhomogeneous phases of the fermions; see
[22] for example. In this paper we consider a homogeneous
ferromagnetic phase, and whether it is realized or not
should be determined by a comparison with inhomo-
geneous phases. As for the QCD application, we discuss
the problem in the next section.

III. CHIRAL MODEL OF NEUTRONS WITH
PION CONDENSATION, MAGNETIC FIELD

AND ANOMALY

We saw in the previous section that a generic neutral
fermion system, with the simple Zeeman coupling, is
shown to exhibit a ferromagnetism, under the assumption
of the spatial homogeneity. As a concrete example, in
this section we investigate neutron matter at a high
density. Neutrons interact with each other not only via
the magnetic field and the spin-magnetic interaction but

also a pion exchange. Interestingly, the two interactions
have the same structure, under a simple profile for a pion
condensation. The pion condensation part is in the style of
Dautry and Nyman [15]. In addition, QCD has an axial
anomaly term which relates the two condensations—the
magnetic field and the pion condensation, and in fact
enhances each. The enhancement makes the total free
energy decrease. We evaluate the total energy density of
the ferromagnetic phase. Finally we compare the resultant
ferromagnetic phase with the well-studied ALS phase for
pion condensation.

A. Dense neutrons and pions with axial anomaly

1. Axial anomaly for the pion Lagrangian

Low energy action of QCD is given by the standard
Lagrangian of the linear sigma model dictated by the
breaking of the chiral symmetry,

L ¼ ψ̄ði∂μγ
μ − gðσ þ iγ5τ · πÞÞψ þ 1

2
ð∂μσÞ2

þ 1

2
ð∂μπÞ2 −m2

πfπσ − Vðσ2 þ π2Þ: ð3:1Þ

Here ψ ¼ ðp; nÞT is the nucleon field, and σ and π are
sigma model fields leading to pions. fπ is the pion
decay constant, and mπ is the pion mass. The global
symmetry is the chiral symmetry Uð2ÞL × Uð2ÞR. The
chiral symmetry is broken due to the chiral condensate,
σ2 þ π2 ¼ f2π , which is realized by the potential term V.
Once the sigma model field obtains the expectation
value, the nucleons acquire a mass, gfπ ¼ MN. In this
paper we do not consider the difference of the masses for
protons and neutrons.
In the ideal case with no proton, and no charged pions,

the Lagrangian is

Lσ ¼ ψ̄nði∂μγ
μ − gðσ − iγ5π3ÞÞψn þ

1

2
ð∂μσÞ2

þ 1

2
ð∂μπ3Þ2 −m2

πfπσ − Vðσ2 þ π23Þ; ð3:2Þ

where ψn is the neutron field. Since we want to deal with
finite density of neutrons, we include a chemical potential
term for the neutron,

Ln ¼ iψ̄nγ0μnψn: ð3:3Þ

In the presence of the magnetic field with which the
neutrons interact through their magnetic moment, we
add the following Lagrangian:

LB ¼ −
1

2
B2
i þ

1

2
ψ̄nγiγ5ψn

gne
2MN

Bi: ð3:4Þ

The first term is the energy of the magnetic field. The
second term is the Pauli term for the interaction between the

5To recover the Lorentz invariance of the interaction term of
the system, one can add the axial density squared term ðψ̄γ0γ5ψÞ2
so that the interaction recovers the Lorentz invariance. It is not
within the scope of this paper.

6Note that in the NJL model, in contrast, the fermion density is
not necessary for the condensation, and the phase is unique.
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magnetic moment of the neutron and the magnetic field.
Note that the spin density of the fermion is given by
1
2
ψ̄nγiγ5ψn, and gn is the neutron g factor.
In the presence of the magnetic field and the neutral pion

condensation which is spatially dependent, there exists an
axial anomaly term,

Lanom ¼ −i
e

4π2f2π
μem½ðσ þ iπ3Þ†∂iðσ þ iπ3Þ�Bi: ð3:5Þ

Here μem is the electromagnetic chemical potential. This
term is relevant for, for example, the neutral pion decay
π0 → 2γ via the axial anomaly, as is seen from the fact that
the electromagnetic chemical potential can be thought of as
a constant background electrostatic potential AðemÞ

0 . So our
total Lagrangian is

L ¼ Lσ þ Ln þ LB þ Lanom: ð3:6Þ

2. Neutral pion condensation

We consider a neutral pion condensate, following Dautry
and Nyman [15],

σ þ iπ3 ¼ fπ expðiq · xÞ; π1 þ iπ2 ¼ 0: ð3:7Þ

This corresponds to a specific condensation of the neutral
pion in the nonlinear representation, since the relation
between the linear and nonlinear representation is σ þ
iπ3 ∼ fπ expðiΠ0ðxÞÞ where Π0ðxÞ is the physical neutral
pion excitation. The condensation (3.7) corresponds to
Π0ðxÞ ∼ q · x, a linear profile in space. This can be
regarded as a dense parallel domain wall which was
considered in the context of anomaly-enhanced pion
condensation in [17].
In this paper, we generalize the study of Dautry and

Neyman (3.7) to include the magnetization and the QCD
anomaly. With this condensation (3.7), the anomaly term
Lanom is given simply as

Lanom ¼ e
4π2

μemqiBi: ð3:8Þ

In the following, without losing generality, we can turn on
only the x3 components of the magnetic field and q3, which
will be denoted as B and q.
According to Dautry and Nyman, if the condensation q is

large, the neutron spins are fully polarized. In the non-
relativistic approximation7 for the neutron Fermi momen-
tum, the free energy for the free neutrons in the background
pion condensation and the magnetic field is derived from
the Lagrangian above,

Fn ¼ −
ð2MNÞ3=2
15π2

�
μn −MN þ 1

2
gAq −

gneB
4MN

�
5=2

: ð3:9Þ

Here we have introduced the axial coupling gA which is, at
the tree level, equal to g in the σ-model Lagrangian Lσ . The
total free energy including the pion condensation and the
magnetic field is

F ¼ Fn þ f2πm2
π þ

1

2
f2πq2 þ

1

2
B2 −

e
4π2

μemqB: ð3:10Þ

The second term is from the pion mass term together with
the pion condensation (3.7). The third term is from the pion
kinetic term with (3.7). The last term is the axial
anomaly term.

3. Hamiltonian and the neutron density
carried by the anomaly

Our interest is the core of the neutron star where we
have the β-equilibrium. In addition to the neutrons, there
exist protons and electrons. The electromagnetic chemical
potential is given by

μem ¼ 1

2
ðμp − μeÞ ð3:11Þ

where μp and μe are proton and electron chemical potential,
respectively.8 Assuming the β-equilibrium, we impose
μn ¼ μp þ μe. And since we approximate the system by
the pure neutron matter for simplicity, we also impose the
charge neutrality condition in a trivial manner, ρp ¼
ρe ¼ 0, which is equivalent to have μp ¼ MN. Then the
anomaly term in the free energy (3.10) is written as

−
e
4π2

μemqB ¼ −
e
4π2

1

2
ðμp − ðμn − μpÞÞqB

¼ −
e
4π2

�
MN −

1

2
μn

�
qB: ð3:12Þ

We evaluate the energy density of the system as a
function of the neutron density and the condensation q
and the magnetic field B. The neutron density is com-
puted as

ρn ¼ −
∂F
∂μn

¼ ð2MNÞ3=2
6π2

�
μn −MN þ 1

2
gAq −

gneB
4MN

�
3=2

þ e
8π2

qB:

ð3:13Þ
7In this paper we consider the neutron density ρn up to

Oð10Þ × ρ0 where ρ0 is the standard nuclear density. According
to Luttinger’s theorem [23,24], Oð10Þ × ρ0 corresponds to the
chemical potential less than half of the neutron mass; thus the
nonrelativistic approximation is reliable.

8The factor 1=2 should be there, because the total free energy
given with the number density should be μpρp þ μeρe, and the
total electric charge is ρp − ρe. Its canonical conjugate is
1
2
ðμp − μeÞ.
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The last term is the anomaly-induced baryon charge. Using
the expression, the final result for the energy density is
given by

E ¼ F þ μnρn

¼ 35=3π4=3

21=35

1

MN

�
ρn −

e
8π2

qB

�
5=3

þ
�
MN −

1

2
gAqþ gneB

4MN

��
ρn −

e
8π2

qB

�

þ f2πm2
π þ

1

2
f2πq2 þ

1

2
B2 −

e
4π2

MNqB: ð3:14Þ

For a comparison, we write the expression of Dautry and
Nyman [15]:

E ¼ 35=3π4=3

21=35

1

MN
ðρnÞ5=3 þ

�
MN −

1

2
gAq

�
ρn

þ f2πm2
π þ

1

2
f2πq2: ð3:15Þ

This is obtained from (3.14) by just putting B ¼ 0. The
difference from just the pion condensation is obvious. Let
us look at the second term of (3.14), which in fact exhibits
the nature of our model explicitly. In the absence of the pion
condensation and the magnetic field, the second term is
simply ρnMN. This is the cost of the energy due to the mass
of the neutron. Now the cost for each neutron can be
reduced by the pion condensation due to the axial coupling,
and by the magnetic field times the neutron magnetic
moment, as MN → MN − 1

2
gAqþ gneB

4MN
. Furthermore, the

anomaly term can reduce effectively the density of the
neutrons, ρn → ρn − e

8π2
qB. In addition, the last term of

(3.14) is for the QCD anomaly, and it makes the total
energy decrease further.

B. Spontaneous magnetization and the pion
condensation

For a given density ρn of the neutrons, we can minimize
the energy E (3.14). Later we present our numerical results.
But here, to explain the intrinsic behavior of the system, we
evaluate the minimization of the energy in the absence of
the anomaly term. Without the anomaly term, the energy
density is simplified as

E ¼ 35=3π4=3

21=35

1

MN
ρ5=3n þ

�
MN −

1

2
gAqþ gneB

4MN

�
ρn

þ f2πm2
π þ

1

2
f2πq2 þ

1

2
B2: ð3:16Þ

The energy is quadratic in q and B, so we can analytically
find the minimum of the energy. In fact, the energy density
expression (3.16) can be brought to the following form with
the perfect squared,

E ¼ E0 þ
1

2
f2π

�
q −

gA
2f2π

ρn

�
2

þ 1

2

�
Bþ gne

4MN
ρn

�
2

;

ð3:17Þ

where the minimum energy is

E0 ¼
35=3π4=3

21=35

1

MN
ρ5=3n þMNρn −

g2A
8f2π

ρ2n −
g2ne2

32M2
N
ρ2n:

ð3:18Þ

The last term in the minimum energy density E0 is due to
the magnetic field. The first three terms are that of Dautry
and Neyman [15], and compared to that, our energy is
smaller by the last term.
The minimization of the energy is achieved when the

perfect squares in (3.18) vanish,

B ¼
�
−gn
4MN

�
eρn; ð3:19Þ

q ¼ gA
2f2π

ρn: ð3:20Þ

We have obtained the spontaneous magnetization of the
neutron matter. The generated magnetic field is a mono-
tonic function of the density, and in particular in this case of
the absence of the anomaly, it is a linear function in the
density.
The free energy Fn for the neutrons, (3.9), is for fully

polarized neutrons. Let us check if this can be achieved for
q and B which we obtained above for a given ρn. The
condition that the opposite spin state is absent is

μn −MN −
1

2
gAqþ gneB

4MN
< 0: ð3:21Þ

This means that the Fermi sea for the opposite spin state is
below the conducting band. At the minimum of the energy,
we obtain ρn dependence of the chemical potential μn from
(3.13) with the solution (3.20) and (3.19) as

μn ¼
ð6π2Þ2=3
2MN

ρ2=3n þMN −
�
g2A
4f2π

þ g2ne2

16M2
N

�
ρn: ð3:22Þ

In terms of ρn, the condition of the full polarization is
equivalent to

ð6π2ρnÞ2=3 < 4MN

�
g2A
4f2π

þ g2ne2

16M2
N

�
ρn: ð3:23Þ

Substituting values as MN ¼ 938 ½MeV�, e2=4π ¼ 1=137,
fπ ¼ 95 ½MeV�, gA ¼ 1, gn ¼ −3.8 and mπ ¼ 135 ½MeV�,
we obtain
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ρn > 0.39 ½fm−3�: ð3:24Þ
This shows that for the density around twice the standard
nuclear density, all the spins are polarized.
Another constraint comes from a thermal stability con-

dition. At any thermal equilibrium, we need to make sure

∂μn
∂ρn > 0: ð3:25Þ

The condition (3.25) can be evaluated as

ρn < 57.6 ½fm−3�: ð3:26Þ
The bound is extremely high density and unrealistic, so this
thermodynamic instability region is far above realistic
neutron density.

C. Anomaly enhancement and comparison
to the ALS phase

In the previous subsection, we found that even without
the anomaly term the total energy density is lowered by the
magnetic field. In fact, the magnetic coupling works in the
same manner as the pion coupling. Now let us see how
the anomaly term can help the condensation. The full
expression for the total energy density including the
anomaly term was given in (3.14), and we can find the
minimumenergy configuration by varyingq andB. Analytic
analysis is not easy since the energy is not quadratic in q and
B, so we perform a numerical analysis to find the energy
minimum. The numerical results are summarized in Fig. 2.
Figure 2 is a plot of the energy per neutron, as a function

of the neutron density ρn. The neutron density is

normalized by ρ0 which is the standard nuclear density.
The thick line is our result with the anomaly term. We
observe that for a larger density, the energy per neutron
decreases.
In Fig. 2, for a comparison, we show a thin curved line

which is the result of Dautry and Nyman [15] (that is, with
no magnetic field B but with the pion condensation q). The
dashed line in Fig. 2 is the energy density with both q and B
but without the anomaly term. We can see that the anomaly
term makes the energy per neutron decrease. The straight
line on the left is for free neutrons without the pion
condensation q and without B. So, as a comparison to
the ordinary neutron matter, we see that the ferromagnetic
phase is preferred at high density.
We plot the magnetic field as a function of ρn, in Fig. 3.

It is a monotonic function of the neutron density. We find
that the magnitude of the generated magnetic field is
Oð102Þ ½MeV� and thus it is of the QCD scale.

ffiffiffiffiffiffi
eB

p
∼

40 ½MeV� corresponds to Oð1017Þ½G�.
Now, let us discuss whether our ferromagnetic phase is

favored or not, in reality. The famous phase for a pion
condensation is the ALS phase [11–13], and we can
compare the result of the ALS phase with ours. See the
result of the ALS (Fig. 4) and compare it with our result
(Fig. 2). Already around ρn=ρ0 ∼ 5 the energy reduction of
the ALS phase compared to the ordinary neutron matter is
70 [MeV] (see Fig. 4), while for our ferromagnetic phase
the energy reduction is only 10 [MeV]. So, from this
comparison, we conclude that the ALS phase is favored
against our ferromagnetic phase.
Our analysis in this paper is with the simplest model of

neutrons, and we have not included full nuclear forces.
Once we include them in addition to our neutral pion
coupling and the Zeeman coupling, the total free energy
may change. In fact, in the following subsections, we
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FIG. 3 (color online). A plot of the magnetic field sponta-
neously generated, as a function of the neutron density ρn. The
neutron density is normalized by ρ0 (the standard nuclear
density). The evaluation is with the fully polarized neutrons.
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FIG. 2 (color online). A plot of the energy per neutron, as a
function of the neutron density ρn. Straight line: ordinary neutron
matter without the pion condensation. Thick curved line: our
result with both pion condensation q and magnetization B with
the QCD anomaly term. Thin curved line: the result of Dautry and
Neyman [15] with only the pion condensation q. Dashed line: the
energy with both q and B but without the QCD anomaly term.
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include axial vector meson condensation and it makes the
total energy further decrease drastically.
In summary, here our observation is that the ferromag-

netism is closely related to the neutral pion condensation,
and the axial anomaly can help the total energy to decrease
and enhance the magnetic field. The ferromagnetic phase
has an energy density smaller than that of the ordinary
neutron matter. But the energy of the ALS phase is smaller,
in the approximation presented.

D. Inclusion of axial vector meson condensation

In the previous subsections, we considered only the
neutral pion field for the coupling to the spins of the
neutrons. The spin operator of the neutron is nothing but
the spatial components of the axial current, and in QCD we
expect an infinite number of quark bound states which can
couple to the axial current. They are axial vector mesons
whose spectrum starts at the lowest with a1ð1260Þ meson.9

In this subsection, we add the contribution of this lowest
axial vector meson and find that it will further make the free
energy decrease, together with the full spin polarization.

The main system which we treat in this paper is
described by (2.2). On the other hand, the effective
Lagrangian for the axial vector meson aμðxÞ coupled to
the axial current and the neutrons is

L ¼ ψ̄ði∂μγ
μ −mþ iγ0μÞψ þ 1

2
gaNN ψ̄γμγ5ψaμ

þ 1

4
ð∂μaν − ∂νaμÞ2 −

m2
a

2
a2μ: ð3:27Þ

Here, gaNN is the coupling of the axial vector meson to the
neutron axial current, and ma is the mass of the meson.
For the lowest a1ð1260Þ meson, the measured value
is ma ¼ 1230� 40 ½MeV�.
As before, we concentrate on a homogeneous phase, and

assume a constant vacuum expectation value of the spatial
component of the axial vector meson,

haii ¼ const ≠ 0: ð3:28Þ

Then, rewriting bi ≡ aima, the effective Lagrangian is now

L ¼ ψ̄ði∂μγ
μ −mþ iγ0μÞψ þ gaNN

2ma
ψ̄γiγ5ψbi −

1

2
b2i :

ð3:29Þ

We observe that this Lagrangian has precisely the same
form as (2.2), so the same mechanism of lowering the free
energy by spin alignment can work.
This addition of the axial vector meson to the pion

system modifies the total free energy (3.10) a little bit. The
resultant free energy is

F¼−
ð2MNÞ3=2
15π2

�
μn−MNþ

1

2
gAq−

gne
4MN

Bþ gaNN

2ma
b

�
5=2

þ f2πm2
π þ

1

2
f2πq2þ

1

2
B2þ 1

2
b2 −

e
4π2

μemqB: ð3:30Þ

Here we determined the orientation of bi in space such that
it may strengthen the spin polarization, and denote b as the
magnitude of bi. Note that the axial vector meson b enters
exactly in the same manner as that of the pion condensation
q and the magnetic field B except for the anomaly term [the
last term in (3.30)]. So basically the addition of the axial
vector condensation enhances the spin polarization of the
neutrons, and further reduces the energy density.
As before, to gain intuition of the behavior of the system,

we first analyze the system without the anomaly term. Then
the total energy is

E¼ 35=3π4=3

21=35

1

MN
ρ5=3n þ

�
MN−

1

2
gAqþ

gneB
4MN

þ gaNN

2ma
b

�
ρn

þf2πm2
π þ

1

2
f2πq2þ

1

2
B2þ 1

2
b2: ð3:31Þ

FIG. 4. An energy plot taken from [13], comparing the ALS
phase and the Fermi gas (ordinary neutron matter). The horizontal
axis is the neutron density ρ in the unit of the standard nuclear
density ρ0, while the vertical axis is the energy gain per neutron.
The upper curve is for the Fermi gas and the lower curve is for the
ALS. Solid lines are for neutrons, and dashed lines are for
symmetric nuclear matter. The arrows indicate the energy
reduction by the ALS.

9One may wonder if there may be contributions from other
light mesons such as charged pions, rho mesons and omega
mesons. Although we do not treat them in this paper, we
comment on them briefly here. The charged pions can make a
condensation, together with the present neutral pions, but it
would not alter our argument so much as long as the neutral pion
condensation is the dominant one. The rho mesons can couple to
vector currents, and in particular charged rho mesons may
condense at a larger magnetic field (see for example [25]), which
would provide further exotic phases. The omega meson would
contribute significantly to the nuclear force which we ignored in
this paper, especially when the density is large. With the repulsive
core, the nucleon density does not fall down easily at larger
densities. Thus the ferromagnetic order is expected to be more
difficult to realize. These are just speculations and further detailed
study is necessary.
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Compared to (3.16), we find that we have additional terms,

ΔE ¼ gaNN

2ma
bρn þ

1

2
b2; ð3:32Þ

which are independent of the other variables q and B. So we
can minimize it independently of the other terms, and find

ΔE0 ¼ −
g2aNN

8m2
a
ρ2n ð3:33Þ

with an axial vector condensation

jhaiij ¼
b
ma

¼ gaNN

2m2
a
ρn: ð3:34Þ

To evaluate the energy ΔE0 in (3.33), we need the value
of the axial vector coupling gaNN . We refer to a generic
argument of the chiral symmetry by regarding the axial
vector meson as a gauge boson of the symmetry [26–28],

gaNN

ma
¼ 2gA

mπ
: ð3:35Þ

A naive substitution gA ∼ 1 and the mass for the pion and
the a1 meson provides gaNN ∼ 18. Another estimate is as
follows. We take care of one of the other equations coming
from the chiral symmetry argument [26–28], ma ¼

ffiffiffi
2

p
mρ,

which is not well satisfied by the physical masses of the ρ
meson and the a1 meson. So instead of using the a1 meson
mass in the chiral symmetry formula (3.35) we may use the
ρ meson mass mρ ¼ 770 ½MeV�. Then we obtain
gaNN ∼ 16. However, a lattice simulation with an axial
vector dominance provides gaNN ∼ 9 (see for example
[29]), so there is uncertainty for the coupling.
In our numerical estimate of the energy density, we

choose two typical values, gaNN ∼ 18 and 9. Our result is
shown in Fig. 5. We find that the energy per nucleon
drastically reduces further. Compared to the ALS phase, the
case with gaNN ∼ 18 has a lower energy and is thus favored.
The case with gaNN ∼ 9 is almost at the same order with the
ALS phase.

E. AdS/CFT treatment with a large Nc approximation

The AdS/CFT correspondence [30–32] is a well-
established tool for analyzing strongly coupled gauge
theory in a certain limit, and its application to QCD-like
gauge theories was widely studied. However the AdS/CFT
tools for strongly coupled gauge theories work practically
for large Nc gauge theories and at the limit of strong
coupling, so it would not be suitable for precision analysis
such as the energy gain via the condensation which is our
interest in this paper. Nevertheless, it is important to find
what kind of couplings among hadrons and the magnetic
field are present in QCD, and what the order of magnitude

is of the couplings. The AdS/CFT approach, called holo-
graphic QCD, is suitable for that purpose, and in this short
subsection we investigate it.
We use the Sakai-Sugimoto model [33,34] which is the

stringy setup closest to QCD at present. The nucleon meson
couplings were obtained in [35–38], and the QCD anomaly
term was calculated in [34].
Basically in holographic QCD we have a tower of

mesons, and this is true for the a1 mesons. We have an
infinite number of axial vector mesons. On the other hand,
we have only a single pion (that is, in the model there do not
appear excited resonances of the pion).
It is easy to read from [34] that the axial vector mesons

do not participate in the QCD anomaly term, so the only
contribution to the anomaly term is the pion coupling which
we considered in this paper. So we do not need to take care
of all the mixing between the axial vector mesons and the
magnetic field in the anomaly term, at the leading large Nc
expansion and at the strong coupling limit.
On the other hand, the contribution of the axial vector

meson to the nucleon spins, which we considered in the
previous subsection, comes to be a concern. Since we have
an infinite number of axial vector mesons, they all pile up
as a sum and would cause possibly a tremendous con-
tribution. We discuss the issue in the following.
First, in the AdS/CFT correspondence, the axial vector

mesons are gauge fields at higher dimensions, and their
interaction terms are basically given by the Yang-Mills
action in the higher dimensions. We need to excite only the
τ3 component of the isospin, while the Yang-Mills action
contains only a commutator-type interaction, so the direct
interaction among the constant axial vector mesons van-
ishes. This means that we do not need to consider the
interlevel interaction of the axial vector meson tower.
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FIG. 5 (color online). A plot of the energy per neutron, as a
function of the neutron density ρn. Beyond the previous figure for
the pion condensation, here we added two thick dashed lines,
showing the axial vector condensation. The upper thick dashed
line is for gaNN ¼ 9 and the lower is for gaNN ∼ 18.
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We have seen in the previous subsection that a single
axial vector meson reduces the total energy by (3.33), so
when there exists a tower of the axial vector mesons we
have an energy reduction

ΔE0 ¼ −ρ2n
X∞
i¼1

rðiÞ; rðiÞ ≡
�
gaðiÞNN

8maðiÞ

�
2

ð3:36Þ

where i is the label of the resonances, and i ¼ 1 corre-
sponds to the lowest a1ð1260Þ. From this expression, we
observe that all axial vector mesons contribute additively,
and the issue is the magnitude of the ratio gaðiÞNN=maðiÞ

when i increases.
The ratio can be calculated analytically by the AdS/CFT

correspondence [35]. However, the approximation of large
λ is not good, so here we provide only the resulting
numbers for a reference. The method developed in [35]
can be generalized easily for higher axial vector mesons,
and we find

rð2Þ=rð1Þ ≃ 1.06; rð3Þ=rð1Þ ≃ 1.07 ð3:37Þ
at the large t’Hooft coupling limit. So the ratio does not
decrease for larger i. This would be natural from the
original idea of gauged chiral symmetry by Wess and
Zumino [28] which derived the relation (3.35). Therefore,
the effect of the inclusion of the higher axial vector mesons
is important, and it has an effect of further reducing the total
energy density.
At large Nc limit, all the axial vector meson towers

reasonably contribute since the meson width is narrow, and
one would imagine a tremendous amount of energy
reduction by introducing all the axial vector meson towers.
However, it is unnatural and an artifact of the largeNc limit,
since in reality the meson width gets broader for higher
resonances and the higher mesons participate with higher
energy but also with more involved chiral interactions. So
here we just point out that axial vector meson condensation
has a tendency to further reduce the total energy density,
and the contribution from the tower of the resonances
would not be negligible.

IV. SUMMARY AND DISCUSSION

To search for a QCD ferromagnetism at high density of
neutrons, we studied the simplest chiral Lagrangian (3.6)
which accommodates neutrons at high density, the pion
condensation, the constant magnetic field with its self
energy and the QCD anomaly. The pion condensation is
a linear spatial profile of the neutral pion (3.7) in the style of
Dautry and Neyman [15] which generates a neutron spin
alignment.
We solved a self-consistent equation for the total energy

density for a given neutron density, by considering the
neutron Fermi energy, the pion self energy and also the self
energy of the constant magnetic field. We have shown that
the minimization of energy under the assumption of spatial

homogeneity leads to the ferromagnetic order preferred
compared to the ordinary neutron matter without the pion
condensation, at the neutron density ρ > 5ρ0 where ρ0 is
the standard nuclear density. The result is summarized
in Fig. 2. The generated magnetic field (see Fig. 3) isffiffiffiffiffiffi
eB

p
∼ 40 ½MeV� which is around Oð1017Þ½G�.

However, a comparison to the ALS phase [11–13],
which is with another neutral pion condensation providing
a spatially alternating spin order, shows that our ferromag-
netic order has a larger energy density and thus is not
favored (see Sec. III C).
We further included axial vector mesons in our model,

since the axial vector meson condensation has the same
coupling as the Dautry-Neyman neutral pion condensation.
We found that the axial vector meson enhances the energy
reduction of the ferromagnetic phase significantly (see
Sec. III D). In QCD there exists a tower of axial vector
meson resonances, and inclusion of the tower further
enhances the reduction, which we roughly evaluated with
the use of the AdS/CFT correspondence (Sec. III E).
We can summarize our results as follows:
(i) The simple chiral model with the linear neutral pion

condensation and magnetic field accommodates a
ferromagnetic order.

(ii) The QCD anomaly term lowers the ferromagnetic
energy.

(iii) The axial vector meson condensation further reduces
the energy significantly.

(iv) Our analysis is among spatially homogeneous
phases, and needs to be compared in more detail
with inhomogeneous phases such as the ALS.

Our study is based on the simple chiral model (3.6), so
the numerical results presented in this paper are not suitable
for a detailed comparison. For example, inclusion of
realistic nuclear forces and nucleon contact terms would
give more corrections. Nevertheless, in our analysis, in
particular the axial vector meson condensation is an
interesting and novel feature, and a further consideration
would be of worth. In the condensed phase of the axial
vector mesons, low energy propagation modes are of
interest, in view of recent progress [39] in the nonrelativ-
istic Nambu-Goldstone theorem [40,41].
In this paper, we concentrated on the hadron phase,10 not

a quark phase such as the color superconductivity. It would
be interesting to extend our calculation, if possible, to a
hadron-quark mixed phase. For a quark matter, the pos-
sibility of the ferromagnetism was studied in [45,46],
while the quark-hadron mixture phase was studied in the
context of neutron stars [47,48]. The high density phase of
QCD still leaves large room to be discussed [49], and
observations of the magnetars [50,51] and the magnetic
fields there should reveal more about the mystery of the
high density phase.

10See, for a recent attempt without a pion condensation, [42–44].
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