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We study the influence of a background uniform magnetic field and boundary conditions on the vacuum
of a quantized charged spinor matter field confined between two parallel neutral plates; the magnetic field is
directed orthogonally to the plates. The admissible set of boundary conditions at the plates is determined by
the requirement that the Dirac Hamiltonian operator be self-adjoint. It is shown that, in the case of a
sufficiently strong magnetic field and a sufficiently large separation of the plates, the generalized Casimir
force is repulsive, being independent of the choice of a boundary condition, as well as of the distance
between the plates. The detection of this effect seems to be feasible in the foreseeable future.
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I. INTRODUCTION

Zero-point oscillations in the vacuum of quantized
matter fields that are subject to boundary conditions have
been studied intensively over more than six decades since
H.B.G.Casimir [1,2] predicted a force between grounded
metal plates, see reviews in [3–5]. The existence of this
force is one of the few macroscopic manifestations of
quantum theory, together with other remarkable phenom-
ena such as superfluidity, superconductivity, kaon and
neutrino oscillations, spectrum of black-body radiation.
The Casimir force between material boundaries has now
been measured quite accurately, it agrees with theoretical
predictions, see, e.g., [6,7], as well as other publications
cited in [5], and this opens a way for various applications in
modern nanotechnology.
The Casimir force is closely related to the van der Waals

force between material bodies at such separation distances
(> 10−8 m) that the retardation owing to the finiteness of
the velocity of light becomes important. In view of this,
it seems that the following two circumstances have to be
clearly noted. The first one is that, as long as the
intermolecular van der Waals forces are attractive, almost
all experimental measurements reveal the attractive Casimir
force; an evidence for the repulsive Casimir force has
appeared just several years ago [8]. The second one is that,
as long as the intermolecular van der Waals forces are due
to electromagnetic fluctuations, the Casimir effect is caused
by zero-point oscillations in the vacuum of the quantized
electromagnetic field. The Casimir effect with other (non-
electromagnetic) quantized fields is mostly regarded as
merely an academic exercise that could hardly be validated
in laboratory. However, the nonelectromagnetic fields can
be charged, and this opens a new prospect allowing one to
consider the Casimir effect as that caused by zero-point
oscillations in the vacuum of quantized charged matter

fields in the presence of material boundaries and a back-
ground (classical) electromagnetic field inside the quanti-
zation volume. Whether the Casimir effect of this kind is
attractive or repulsive—we shall get an answer in the
present paper.
Let us start by recalling that the effect of the background

uniform electromagnetic field alone on the vacuum of
quantized charged matter was studied long ago, see [9–13]
and review in [14]. The case of a background field filling
the whole (infinite) space is hard to be regarded as realistic,
whereas the case of a background field confined to the
bounded quantization volume for charged matter looks
much more plausible, it can even be regarded as realizable
in laboratory. Moreover, there is no way to detect the
energy density which is induced in the vacuum in the first
case, whereas the pressure from the vacuum onto the
boundary, resulting in the second case, is in principle
detectable. One may suggest intuitively that the pressure, at
least in certain circumstances, is positive, i.e. directed from
the inside to the outside of the quantization volume. A
natural question is then, whether the pressure depends on a
boundary condition imposed on the quantized charged
matter field at the boundary?
Thus, an issue of a choice of boundary conditions

acquires a primary importance, requiring a thorough exami-
nation. It should be recalled that, in the conventional case of
the Casimir effect with the quantized electromagnetic field,
there exist physical motivations for different boundary
conditions, for instance, corresponding to metallic or
dielectric plates, see, e.g., [5]. Such motivations seem to
be lacking for the case of quantized charged matter fields,
but it was not distressing as long as this case, as we have
already mentioned, was regarded as a purely academic one.
Otherwise, in a situation which is supposed to be physically
sensible, one should be guided by general principles, such
as comprehensiveness and mathematical consistency, while
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seeking out boundary conditions. Namely, in the context of
first-quantized theory, a quest is for the operator of a
physical observable to be self-adjoint rather than
Hermitian. This is stipulated by the mere fact that a multiple
action is well defined for the self-adjoint operator only,
allowing for the construction of functions of the operator,
such as evolution, resolvent, zeta-function and heat kernel
operators, with further implications upon second quantiza-
tion. Whether the quest can be fulfilled successfully is in
general determined by the Weyl–von Neumann theory of
self-adjoint operators, see, e.g., [15,16]. Thus, the require-
ment of the self-adjointness for the operator of one-particle
energy (Dirac Hamiltonian operator in the case of quantized
relativistic spinor fields) renders the most general set of
boundary conditions, which may be further restricted by
additional physical considerations.
To avoid a misunderstanding, let us emphasize once

more that quantized matter fields are assumed to be
confined within the boundaries, and an issue of what is
out of the boundaries is not touched upon. In a sense, this
setup is the same as that in modeling hadrons as bags
containing the quark matter, see [17,18]. In distinction to
the conventional setup for the Casimir effect, the impact of
background fields on confined quantized matter fields is
added along the lines discussed above. This generalization
implies that the boundaries perceive an additional physical
meaning, serving as a source of background fields which
are inside the quantization volume.
In the present paper, we consider the Casimir effect in the

generalized setup for a quantized charged spinor matter
field in the background of an external uniform magnetic
field; both the quantized and external fields are confined
between two parallel plates, and the external field is
orthogonal to the plates. It should be noted that a similar
problem has been studied more than a decade ago [19–21]
in a setup which is somewhat closer to the conventional
setup for the Casimir effect. Namely, the authors of [19–21]
assume that both the quantized and external fields are not
confined between the plates but extend outside; the plates
in their setup are regarded as the places where constraints
on quantized fields are imposed, rather than as the real
boundaries of the quantization volume. One of the purposes
of the present paper is to compare the results obtained
in these two different physical situations. According to
[19–21], there is no room for the validation of the
aforementioned intuitive suggestion: the pressure in all
circumstances is negative, i.e. the plates are attracted. On
the contrary, by studying a response of the vacuum of the
confined quantized spinor matter field on the external
magnetic field with the strength lines terminating at the
plates, I shall show that, in the case of a sufficiently strong
magnetic field and a sufficiently large separation of the
plates, the pressure from the vacuum onto the plates is
positive, being independent of the choice of a boundary
condition and even of the distance between the plates.

In the next section we consider in general the problem of
the self-adjointness for the Dirac Hamiltonian operator. In
Sec. III we discuss the vacuum energy which is induced by
an external uniform magnetic field and compare the appro-
priate expressions for the cases of the unbounded quantiza-
tion volume and the quantization volume bounded by two
parallel plates. A condition determining the spectrum of
wave number vector in the direction of the magnetic field is
chosen in Sec. IV. Expressions for the Casimir energy and
force are obtained in Sec. V. The conclusions are drawn and
discussed in Sec. VI. Some details of the derivation of results
are given in Appendices A and B.

II. SELF-ADJOINTNESS OF THE DIRAC
HAMILTONIAN OPERATOR

Defining a scalar product as

ðξ; χÞ ¼
Z
Ω
d3rξ†χ;

we get, using integration by parts,

ðξ; HχÞ ¼ ðH†ξ; χÞ − i
Z
∂Ω

dσ · ξ̄γχ; ð1Þ

where ξ̄ ¼ ξ†γ0 and

H ¼ H† ¼ −iγ0γ · ð∂ − ieAÞ þ eA0 þ γ0m; ð2Þ

is the formal expression for the Dirac Hamiltonian operator
in an external electromagnetic field (natural units ℏ¼ c¼ 1
are used), ∂Ω is a two-dimensional surface bounding
the three-dimensional spatial region Ω. Operator H is
Hermitian (or symmetric in mathematical parlance),

ðξ; HχÞ ¼ ðH†ξ; χÞ; ð3Þ

if

Z
∂Ω

dσ · ξ̄γχ ¼ 0. ð4Þ

It is almost evident that the latter condition can be satisfied
by imposing different boundary conditions for χ and ξ. But,
a nontrivial task is to find a possibility that a boundary
condition for ξ is the same as that for χ; then the domain of
definition ofH† (set of functions ξ) coincides with that ofH
(set of functions χ), and operator H is called self-adjoint.
The action of a self-adjoint operator results in functions
belonging to its domain of definition only, and, therefore, a
multiple action and functions of such an operator can be
consistently defined.
Condition (4) is certainly fulfilled when the integrand

in (4) vanishes, i.e.
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n · ξ̄γχjr∈∂Ω ¼ 0; ð5Þ

where n is the unit normal which may be chosen as pointing
outward to the boundary. To fulfill the latter condition, we
impose the same boundary condition for χ and ξ in the form

χjr∈∂Ω ¼ Kχjr∈∂Ω; ξjr∈∂Ω ¼ Kξjr∈∂Ω; ð6Þ

where K is a matrix (element of the Clifford algebra) which
is determined by two conditions:

K2 ¼ I ð7Þ

and

K†γ0n · γK ¼ −γ0n · γ: ð8Þ

Using the standard representation for γ-matrices,

γ0 ¼
�
I 0

0 −I

�
; γ ¼

�
0 σ

−σ 0

�
ð9Þ

(σ1, σ2 and σ3 are the Pauli matrices), one can get

K ¼
�
0 ϱ−1

ϱ 0

�
; ð10Þ

where condition

n · σϱ ¼ −ϱ†n · σ; ð11Þ

defines ϱ as a rank-2 matrix depending on four arbitrary
parameters [22]. An explicit form for matrix K is

K ¼ ð1þ u2 − v2 − t2ÞI þ ð1 − u2 þ v2 þ t2Þγ0
2iðu2 − v2 − t2Þ

× ðun · γ þ vγ5 − it · γÞ; ð12Þ

where γ5 ¼ −iγ0γ1γ2γ3, and t ¼ ðt1; t2Þ is a two-
dimensional vector which is tangential to the boundary.
Hence, the boundary condition ensuring the self-
adjointness of operator H (2) is written explicitly as

�
I −

Iðcosh2 ~ϑþ 1Þ − γ0sinh2 ~ϑ

2i cosh ~ϑ
½n · γ coshϑ

þ γ5 sinhϑ cos θ − iðγ1 cosϕþ γ2 sinϕÞ sinhϑ sin θ�
�

× χjr∈∂Ω ¼ 0 ð13Þ

(the same condition is for ξ), where

½n · γ; γ1�þ ¼ ½n · γ; γ2�þ ¼ ½γ1; γ2�þ ¼ 0; ð14Þ

and we have employed parametrization

u¼ cosh ~ϑcoshϑ; v¼ cosh ~ϑsinhϑcosθ;

t1¼ cosh ~ϑsinhϑsinθcosϕ; t2¼ cosh ~ϑsinhϑsinθsinϕ;

−∞<ϑ<∞; 0≤ ~ϑ<∞; 0≤θ<π; 0≤ϕ<2π:

ð15Þ

Parameters of the boundary condition, ϑ, ~ϑ, θ and ϕ, can be
interpreted as the self-adjoint extension parameters. It
should be noted that, in addition to (5), the following
combination of χ and ξ is also vanishing at the boundary:

1

2
ξ̄½Iðcosh2 ~ϑþ1Þþγ0sinh2 ~ϑ�½Icoshϑ−n ·γγ5 sinhϑcosθ

þ in ·γðγ1cosϕþγ2 sinϕÞsinhϑsinθ�χjr∈∂Ω¼0: ð16Þ

Clearly, parametrization (15) is relevant for the case of
1 ≤ u2 − v2 − t2 <∞ only. The case of 0< u2 − v2 − t2 ≤ 1

corresponds to the imaginary values of ~ϑ: Re ~ϑ ¼ 0,
0 ≤ Im ~ϑ < π=2. At ϑ ¼ ~ϑ ¼ θ ¼ ϕ ¼ 0 one obtains the
well-known MIT bag boundary condition [23,24], see
reviews in [17,18]:

ðI þ in · γÞχjr∈∂Ω ¼ ðI þ in · γÞξjr∈∂Ω ¼ 0; ð17Þ

and relation (16) takes form

ξ̄χjr∈∂Ω ¼ 0: ð18Þ

The case of −∞ < u2 − v2 − t2 < 0 is hard to be regarded
as physically acceptable, since a link to the MIT bag
boundary condition is lacking.
It should be noted that, in the case of the two-

dimensional Dirac-Weyl Hamiltonian operator emerging
in the framework of the tight-binding model description of
long-wavelength electronic excitations in graphene, themost
general boundary condition is also four-parametric [25], but
the K-matrix is chosen to be Hermitian in this case.
Returning to the case of operator H (2), we note that, if

the boundary is disconnected, consisting of several con-
nected components, ∂Ω ¼ ⋃J∂ΩðJÞ, then there are four
(ϑJ, ~ϑJ, θJ and ϕJ) self-adjoint extension parameters
corresponding to each of the components, ∂ΩðJÞ.
However, if some symmetry is present, then the number
of self-adjoint extension parameters can be diminished.
For instance, let us consider spatial region Ω which is
bounded by two noncompact noncontiguous surfaces,
∂ΩðþÞ and ∂Ωð−Þ. Choosing coordinates r ¼ ðx; y; zÞ in
such a way that x and y are tangential to the boundary,
while z is normal to it, we identify the position of ∂Ωð�Þ
with, say, z ¼ �a=2. If regionΩ is invariant under rotations
around a normal to the boundary surfaces (that is the case of
a region bounded by parallel planes), then the boundary
condition should be independent of the components of the
γ-vector, which are tangential to the boundary, i.e.
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θþ ¼ θ− ¼ 0: ð19Þ
Operator H (2) acting on functions which are defined in
such a region is self-adjoint if condition

�
I −

Iðcosh2 ~ϑ� þ 1Þ − γ0sinh2 ~ϑ�
2i cosh ~ϑ�

× ð�γ3 coshϑ� þ γ5 sinh ϑ�Þ
�
χjz¼�a=2 ¼ 0; ð20Þ

holds (with the same condition holding for ξ). The latter
ensures the fulfilment of constraint

ξ̄γ3χjz¼�a=2 ¼ 0; ð21Þ

as well as of relation

1

2
ξ̄½Iðcosh2 ~ϑ� þ 1Þ þ γ0sinh2 ~ϑ��
× ðI coshϑ� ∓ γ3γ5 sinhϑ�Þ�χjz¼�a=2 ¼ 0: ð22Þ

III. INDUCED VACUUM ENERGY IN THE
MAGNETIC FIELD BACKGROUND

The operator of a spinor field which is quantized in a
static background is presented in the form

Ψ̂ðt; rÞ ¼
XZ
Eλ>0

e−iEλtψλðrÞâλ þ
XZ
Eλ<0

e−iEλtψλðrÞb̂†λ ; ð23Þ

where â†λ and âλ (b̂†λ and b̂λ) are the spinor particle
(antiparticle) creation and destruction operators, satisfying
anticommutation relations

½âλ; â†λ0 �þ ¼ ½b̂λ; b̂†λ0 �þ ¼ hλjλ0i; ð24Þ

wave functions ψλðrÞ form a complete set of solutions to
the stationary Dirac equation

HψλðrÞ ¼ EλψλðrÞ; ð25Þ

λ is the set of parameters (quantum numbers) specifying a
one-particle state with energy Eλ; symbol

PR
denotes

summation over discrete and integration (with a certain
measure) over continuous values of λ. Ground state jvaci
is defined by condition

âλjvaci ¼ b̂λjvaci ¼ 0: ð26Þ
The temporal component of the operator of the energy-
momentum tensor is given by expression

T̂00 ¼ i
4
½Ψ̂†ð∂0Ψ̂Þ − ð∂0Ψ̂

TÞΨ̂†T − ð∂0Ψ̂
†ÞΨ̂

þ Ψ̂Tð∂0Ψ̂
†TÞ�; ð27Þ

where superscript T denotes a transposed spinor.
Consequently, the formal expression for the vacuum
expectation value of the energy density is

ε ¼ hvacjT̂00jvaci ¼ −
1

2

XZ
jEλjψ†

λðrÞψλðrÞ: ð28Þ

Let us consider the quantized charged massive spinor
field in the background of a static uniform magnetic
field; then A0 ¼ 0 and the gauge in H (2) can be chosen
as A ¼ ð−yB; 0; 0Þ, where B is the magnetic field
strength which is directed along the z-axis in Cartesian
coordinates r ¼ ðx; y; zÞ. The one-particle energy
spectrum is

Enk ¼ �ωnk; ð29Þ
where

ωnk¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njeBjþk2þm2

q
; −∞<k<∞;n¼0;1;2;…;

ð30Þ

k is the value of the wave number vector along the z-axis,
and n numerates the Landau levels. Although a solution to
the Dirac equation in the background of a static uniform
magnetic field is well-described in the literature, see,
e.g., [26], we list it below for self-consistency. Taking
eB > 0 for definiteness, the solution with positive energy,
Enk ¼ ωnk, is

ψqnkðrÞ ¼
eiqxeikz

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωnkðωnk þmÞp

2
666664C1

0
BBBBB@

ðωnk þmÞYq
nðyÞ

0

kYq
nðyÞffiffiffiffiffiffiffiffiffiffiffi

2neB
p

Yq
n−1ðyÞ

1
CCCCCAþC2

0
BBBBB@

0

ðωnk þmÞYq
n−1ðyÞffiffiffiffiffiffiffiffiffiffiffi

2neB
p

Yq
nðyÞ

−kYq
n−1ðyÞ

1
CCCCCA

3
777775; n ≥ 1 ð31Þ

and
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ψ ð0Þ
q0kðrÞ ¼

eiqxeikz

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω0kðω0k þmÞp C0Y

q
0ðyÞ

0
BB@

ω0k þm

0

k

0

1
CCA; ð32Þ

where −∞ < q < ∞ and

Yq
nðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeBÞ1=2
2nn!π1=2

s
exp

�
−
eB
2

�
yþ q

eB

�
2
�
Hn

� ffiffiffiffiffiffi
eB

p �
yþ q

eB

��
; ð33Þ

HnðuÞ is the Hermite polynomial. The solution with
negative energy, Enk ¼ −ωnk, is given in Appendix A,
see (A1) and (A2). The case of eB < 0 is obtained by
charge conjugation, i.e. changing eB → −eB and multi-
plying the complex conjugates of the previous expressions
by iγ2 (the energy sign is changed to the opposite).
In the case of n ≥ 1, two linearly independent solutions,

ψ ð1Þ
qnkðrÞ and ψ ð2Þ

qnkðrÞ, are orthogonal, if the appropriate

coefficients, Cð1Þ
j and Cð2Þ

j ðj ¼ 1; 2Þ, obey condition

X
j¼1;2

Cð1Þ�
j Cð2Þ

j ¼ 0: ð34Þ

By imposing further condition

X
j¼1;2

jCðj0Þ
j j2 ¼ jC0j2 ¼ 1; j0 ¼ 1; 2; ð35Þ

we arrive at the wave functions satisfying the requirements
of orthonormality

Z
d3rψ ðjÞ†

qnk ðrÞψ ðj0Þ
q0n0k0 ðrÞ ¼ δjj0δnn0δðq − q0Þδðk − k0Þ;

j; j0 ¼ 0; 1; 2 ð36Þ

and completeness

X
sgn ðEnkÞ

Z
∞

−∞
dq

Z
∞

−∞
dk

�
ψ ð0Þ
q0kðrÞψ ð0Þ†

q0k ðr0Þ

þ
X∞
n¼1

X
j¼1;2

ψ ðjÞ
qnkðrÞψ ðjÞ†

qnk ðr0Þ
�
¼ Iδðr − r0Þ: ð37Þ

With the use of relationZ
∞

−∞
dq½Yq

nðyÞ�2 ¼ jeBj; ð38Þ

the formal expression for the vacuum expectation value of
the energy density in the uniform magnetic field is readily
obtained:

ε∞ ¼ −
jeBj
2π2

Z
∞

−∞
dk

X∞
n¼0

inωnk; ð39Þ

where in ¼ 1 − 1
2
δn0; the superscript on the left-hand side

indicates that the magnetic field fills the whole (infinite)
space. The integral and the sum in (39) are divergent and
require regularization and renormalization. This problem
has been solved long ago by Heisenberg and Euler [11] (see
also [13]), and we just list here their result

ε∞ren ¼
1

8π2

Z
∞

0

dτ
τ
e−τ

�
eBm2

τ
coth

�
eBτ
m2

�
−
m4

τ2
−
1

3
e2B2

�
;

ð40Þ

note that the renormalization procedure involves subtrac-
tion at B ¼ 0 and renormalization of the charge.
Let us turn now to the quantized charged massive spinor

field in the background of a static uniform magnetic field in
spatial region Ω bounded by two parallel surfaces ∂ΩðþÞ
and ∂Ωð−Þ; the position of ∂Ωð�Þ is identified with
z ¼ �a=2, and the magnetic field is orthogonal to the
boundary. In addition to the plane wave propagating with
wave number vector k along the z-axis, see (31) and (32),
let us consider also the plane wave propagating in the
opposite direction, which in the case of eB > 0 takes form

ψqn−kðrÞ ¼
eiqxe−ikz

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωnkðωnk þmÞp

2
666664 ~C1

0
BBBBB@

ðωnk þmÞYq
nðyÞ

0

−kYq
nðyÞffiffiffiffiffiffiffiffiffiffiffi

2neB
p

Yq
n−1ðyÞ

1
CCCCCAþ ~C2

0
BBBBB@

0

ðωnk þmÞYq
n−1ðyÞffiffiffiffiffiffiffiffiffiffiffi

2neB
p

Yq
nðyÞ

kYq
n−1ðyÞ

1
CCCCCA

3
777775; n ≥ 1 ð41Þ
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and

ψ ð0Þ
q0−kðrÞ ¼

eiqxe−ikz

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω0kðω0k þmÞp ~C0Y

q
0ðyÞ

0
BBB@

ω0k þm

0

−k
0

1
CCCA: ð42Þ

Then the solution to (25) in region Ω is chosen as a superposition of two plane waves propagating in opposite directions,

ψqnlðrÞ ¼ ψqnklðrÞ þ ψqn−klðrÞ; ð43Þ

where all restrictions on the values of coefficients Cj and ~Cj ðj ¼ 0; 1; 2Þ are withdrawn for a while, and the values of wave
number vector kl ðl ¼ 0;�1;�2;…Þ are determined from boundary condition, see (20),

�
I −

Iðcosh2 ~ϑ� þ 1Þ − γ0sinh2 ~ϑ�
2i cosh ~ϑ�

ð�γ3 coshϑ� þ γ5 sinhϑ�Þ
�
ψqnlðrÞjz¼�a=2 ¼ 0. ð44Þ

The last condition can be written as a set of conditions on the coefficients:

8>>>>><
>>>>>:

MðnÞ
11 C1 þMðnÞ

12 C2 þMðnÞ
13

~C1 þMðnÞ
14

~C2 ¼ 0

MðnÞ
21 C1 þMðnÞ

22 C2 þMðnÞ
23

~C1 þMðnÞ
24

~C2 ¼ 0

MðnÞ
31 C1 þMðnÞ

32 C2 þMðnÞ
33

~C1 þMðnÞ
34

~C2 ¼ 0

MðnÞ
41 C1 þMðnÞ

42 C2 þMðnÞ
43

~C1 þMðnÞ
44

~C2 ¼ 0

9>>>>>=
>>>>>;
; n ≥ 1 ð45Þ

and

(
½Mð0Þ

11 ΘðeBÞ þMð0Þ
22 Θð−eBÞ�C0 þ ½Mð0Þ

13 ΘðeBÞ þMð0Þ
24 Θð−eBÞ� ~C0 ¼ 0

½Mð0Þ
31 ΘðeBÞ þMð0Þ

42 Θð−eBÞ�C0 þ ½Mð0Þ
33 ΘðeBÞ þMð0Þ

44 Θð−eBÞ� ~C0 ¼ 0

)
; ð46Þ

where

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

MðnÞ
11 ¼

h
ðωnl þmÞðeϑsgnðeBÞ cosh ~ϑsgnðeBÞÞΘðEnlÞ þ iklðeϑsgnðeBÞ cosh ~ϑsgnðeBÞÞΘð−EnlÞ

i
eikla=2;

MðnÞ
12 ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njeBjp ðeϑsgnðeBÞ cosh ~ϑsgnðeBÞÞΘð−EnlÞeikla=2;

MðnÞ
13 ¼ MðnÞ�

11 ; MðnÞ
14 ¼ −MðnÞ�

12 ;

MðnÞ
21 ¼ −i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njeBjp ðe−ϑsgnðeBÞ cosh ~ϑsgnðeBÞÞΘð−EnlÞeikla=2;

MðnÞ
22 ¼

h
ðωnl þmÞðe−ϑsgnðeBÞ cosh ~ϑsgnðeBÞÞΘðEnlÞ þ iklðe−ϑsgnðeBÞ cosh ~ϑsgnðeBÞÞΘð−EnlÞ

i
eikla=2;

MðnÞ
23 ¼ −MðnÞ�

21 ; MðnÞ
24 ¼ MðnÞ�

22 ;

MðnÞ
31 ¼ MðnÞ�

33 ; MðnÞ
32 ¼ −MðnÞ�

34 ;

MðnÞ
33 ¼

h
ðωnl þmÞðe−ϑ−sgnðeBÞ cosh ~ϑ−sgnðeBÞÞΘðEnlÞ þ iklðe−ϑ−sgnðeBÞ cosh ~ϑ−sgnðeBÞÞΘð−EnlÞ

i
eikla=2;

MðnÞ
34 ¼ −i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njeBjp ðe−ϑ−sgnðeBÞ cosh ~ϑ−sgnðeBÞÞΘð−EnlÞeikla=2;

MðnÞ
41 ¼ −MðnÞ�

43 ; MðnÞ
42 ¼ MðnÞ�

44 ;

MðnÞ
43 ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njeBjp ðeϑ−sgnðeBÞ cosh ~ϑ−sgnðeBÞÞΘð−EnlÞeikla=2;

MðnÞ
44 ¼

h
ðωnl þmÞðeϑ−sgnðeBÞ cosh ~ϑ−sgnðeBÞÞΘðEnlÞ þ iklðeϑ−sgnðeBÞ cosh ~ϑ−sgnðeBÞÞΘð−EnlÞ

i
eikla=2

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

; ð47Þ
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here the step function is defined as ΘðuÞ ¼ 1 at u > 0 and
ΘðuÞ ¼ 0 at u < 0, sgnðuÞ ¼ ΘðuÞ − Θð−uÞ is the sign
function, and we have introduced notations

ωnl ≡ ωnkl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njeBj þ k2l þm2

q
ð48Þ

and, similarly, Enl ≡ Enkl .

Thus, the spectrum of wave number vector kl is
determined from condition

detMðnÞ ¼ 0; ð49Þ

where

detMðnÞ ¼ ðmþ ωnlÞ2fe2ikla½mðcosh2 ~ϑþ þ 1Þ þ sgnðEnlÞωnlsinh2 ~ϑþ þ 2ikl cosh ~ϑþ coshϑþ�
× ½mðcosh2 ~ϑ− þ 1Þ þ sgnðEnlÞωnlsinh2 ~ϑ− þ 2ikl cosh ~ϑ− coshϑ−� − 2½mðcosh2 ~ϑþ þ 1Þ þ sgnðEnlÞωnlsinh2 ~ϑþ�
× ½mðcosh2 ~ϑ− þ 1Þ þ sgnðEnlÞωnlsinh2 ~ϑ−� − 4k2l ðcosh2 ~ϑþ þ cosh2 ~ϑ− þ 2 cosh ~ϑþ cosh ~ϑ− sinhϑþ sinhϑ−Þ
þ e−2ikla½mðcosh2 ~ϑþ þ 1Þ þ sgnðEnlÞωnlsinh2 ~ϑþ − 2ikl cosh ~ϑþ coshϑþ�
× ½mðcosh2 ~ϑ− þ 1Þ þ sgnðEnlÞωnlsinh2 ~ϑ− − 2ikl cosh ~ϑ− coshϑ−�g; n ≥ 1 ð50Þ

and

detMð0Þ ≡ ½Mð0Þ
11 ΘðeBÞ þMð0Þ

22 Θð−eBÞ�½Mð0Þ
33 ΘðeBÞ þMð0Þ

44 Θð−eBÞ�
− ½Mð0Þ

13 ΘðeBÞ þMð0Þ
24 Θð−eBÞ�½Mð0Þ

31 ΘðeBÞ þMð0Þ
42 Θð−eBÞ�

¼ eikla½ðmþ ω0lÞðeϑþ cosh ~ϑþÞΘðE0lÞ þ iklðeϑþ cosh ~ϑþÞΘð−E0lÞ�½ðmþ ω0lÞðe−ϑ− cosh ~ϑ−ÞΘðE0lÞ

þ iklðe−ϑ− cosh ~ϑ−ÞΘð−E0lÞ� − e−ikla½ðmþ ω0lÞðeϑþ cosh ~ϑþÞΘðE0lÞ − iklðeϑþ cosh ~ϑþÞΘð−E0lÞ�
× ½ðmþ ω0lÞðe−ϑ− cosh ~ϑ−ÞΘðE0lÞ − iklðe−ϑ− cosh ~ϑ−ÞΘð−E0lÞ�: ð51Þ

It should be recalled that, owing to boundary condition
(44), the normal component of current

jqnl ¼ ψ̄qnlðrÞγψqnlðrÞ ð52Þ

vanishes at the boundary, see (21):

j3qnljz¼�a=2 ¼ 0: ð53Þ

This signifies that the quantized matter is confined within
the boundaries.

Given solution ψ ð0Þ
q0lðrÞ, we impose the condition on its

coefficients C0 and ~C0:(
jC0j2 þ j ~C0j2 ¼ 2π

a ;

C�
0
~C0 þ ~C�

0C0 ¼ 0;
ð54Þ

in particular, the coefficients can be chosen as

C0 ¼
ffiffiffi
π

a

r
eiπ=4; ~C0 ¼

ffiffiffi
π

a

r
e−iπ=4: ð55Þ

In the case of n ≥ 1, two linearly independent solutions,

ψ ð1Þ
qnlðrÞ and ψ ð2Þ

qnlðrÞ, are orthogonal, if the appropriate

coefficients, Cð1Þ
j ; ~Cð1Þ

j and Cð2Þ
j ; ~Cð2Þ

j ðj ¼ 1; 2Þ, obey
condition

(P
j¼1;2 C

ð1Þ�
j Cð2Þ

j ¼ 0;

Cð1Þ
j Cð2Þ

j0 ¼ ~Cð1Þ
j

~Cð2Þ
j0 ; jCðj0Þ

j j ¼ j ~Cðj0Þ
j j; j; j0 ¼ 1; 2.

ð56Þ

We impose further condition:

(P
j¼1;2 jCðj0Þ

j j2 ¼ π
a ;P

j¼1;2½Cðj0Þ�
j

~Cðj0Þ
j þ ~Cðj0Þ�

j Cðj0Þ
j � ¼ 0; j0 ¼ 1; 2;

ð57Þ

in particular, the coefficients can be chosen as

Cð1Þ
1 ¼

ffiffiffiffiffiffi
π

2a

r
eiπ=4; ~Cð1Þ

1 ¼
ffiffiffiffiffiffi
π

2a

r
e−iπ=4;

Cð1Þ
2 ¼

ffiffiffiffiffiffi
π

2a

r
e−iπ=4; ~Cð1Þ

2 ¼
ffiffiffiffiffiffi
π

2a

r
e−3iπ=4 ð58Þ

and
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Cð2Þ
1 ¼

ffiffiffiffiffiffi
π

2a

r
e−iπ=4; ~Cð2Þ

1 ¼
ffiffiffiffiffiffi
π

2a

r
eiπ=4;

Cð2Þ
2 ¼

ffiffiffiffiffiffi
π

2a

r
eiπ=4; ~Cð2Þ

2 ¼
ffiffiffiffiffiffi
π

2a

r
e3iπ=4 ð59Þ

As a result, wave functions ψ ðjÞ
qnlðrÞ ðj ¼ 0; 1; 2Þ satisfy the

requirements of orthonormality

Z
Ω
d3rψ ðjÞ†

qnl ðrÞψ ðj0Þ
q0n0l0 ðrÞ ¼ δjj0δnn0δll0δðq − q0Þ;

j; j0 ¼ 0; 1; 2 ð60Þ

and completeness

X
sgn ðEnlÞ

Z
∞

−∞

dq
X
l

�
ψ ð0Þ
q0lðrÞψ ð0Þ†

q0l ðr0Þ

þ
X∞
n¼1

X
j¼1;2

ψ ðjÞ
qnlðrÞψ ðjÞ†

qnl ðr0Þ
�
¼ Iδðr − r0Þ: ð61Þ

Consequently, we obtain the following formal expression
for the vacuum expectation value of the energy per unit area
of the boundary surface

E
S
≡

Z
a=2

−a=2
dzε ¼ −

jeBj
2π

X
sgn ðEnlÞ

X
l

X∞
n¼0

inωnl: ð62Þ

IV. DETERMINATION OF THE SPECTRUM
OF WAVE NUMBER VECTOR ALONG THE

MAGNETIC FIELD

The spectrum of wave number vector in the direction of
the magnetic field depends on four self-adjoint extension
parameters, ϑþ; ~ϑþ; ϑ− and ~ϑ−, see (44). In general, the
values of these self-adjoint extension parameters may vary
arbitrarily from point to point of the boundary surface.
However, such a generality seems to be excessive, lacking
physical motivation, and we shall assume in the following
that the self-adjoint extension parameters are independent
of coordinates x and y.
The equation determining the spectrum of kl, see (49),

can be given in the form

e2ikla ¼ e−2iηkl ; ð63Þ
or

sinðklaþ ηklÞ ¼ 0; ð64Þ

where

ηkl ¼
1

2
arctan

2kl cosh ~ϑþ coshϑþ
mðcosh2 ~ϑþ þ 1Þ þ sgnðEnlÞωnlsinh2 ~ϑþ

þ 1

2
arctan

2kl cosh ~ϑ− coshϑ−
mðcosh2 ~ϑ− þ 1Þ þ sgnðEnlÞωnlsinh2 ~ϑ−

∓ 1

2
arctan

2kl
ffiffiffiffi
Δ

p

β
; n ≥ 1; ð65Þ

Δ ¼ f½mðcosh2 ~ϑþ þ 1Þ þ sgnðEnlÞωnlsinh2 ~ϑþ� cosh ~ϑ− sinhϑ−

− ½mðcosh2 ~ϑ− þ 1Þ þ sgnðEnlÞωnlsinh2 ~ϑ−� cosh ~ϑþ sinhϑþg2
þ 4k2l cosh ~ϑþ cosh ~ϑ−½cosh ~ϑþ cosh ~ϑ−ðsinhϑþ − sinhϑ−Þ2
− ðcosh ~ϑþ − cosh ~ϑ−Þ2 sinhϑþ sinhϑ−� þ 2njeBjðsinh2 ~ϑþ − sinh2 ~ϑ−Þ2; ð66Þ

β ¼ ½mðcosh2 ~ϑþ þ 1Þ þ sgnðEnlÞωnlsinh2 ~ϑþ�½mðcosh2 ~ϑ− þ 1Þ þ sgnðEnlÞωnlsinh2 ~ϑ−�
þ 2k2l ðcosh2 ~ϑþ þ cosh2 ~ϑ− þ 2 cosh ~ϑþ cosh ~ϑ− sinhϑþ sinhϑ−Þ ð67Þ

[two signs in (65) correspond to two roots of the quadratic equation for variable e2ikla], and

ηkl ¼ arctan

�
kl

mþ ω0l
ðeϑþ cosh ~ϑþÞ−sgnðE0lÞ

�
þ arctan

�
kl

mþ ω0l
ðe−ϑ− cosh ~ϑ−Þ−sgnðE0lÞ

�
ðn ¼ 0Þ: ð68Þ

It should be noted that value kl ¼ 0 is not permissible. Really, we have in the case of kl ¼ 0:

ψ ðjÞ
qnlðrÞjz¼a=2 ¼ ψ ðjÞ

qnlðrÞjz¼−a=2; ð69Þ
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and boundary condition (44) can be presented in the form

Rψ ðjÞ
qnlðrÞjkl¼0 ¼ 0; ð70Þ

where

8>>>>><
>>>>>:

R11¼−ieϑþ cosh ~ϑþ; R12¼0; R13¼1; R14¼0;

R21¼0; R22¼ ie−ϑþ cosh ~ϑþ; R23¼0; R24¼1;

R31¼ ie−ϑ− cosh ~ϑ−; R32¼0; R33¼1; R34¼0;

R41¼0; R42¼−ieϑ− cosh ~ϑ−; R43¼0; R44¼1

9>>>>>=
>>>>>;
:

ð71Þ

The determinant of matrix R is nonzero at all values of the
self-adjoint extension parameters:

detR ¼ cosh2 ~ϑþ þ 2 cosh ~ϑþ cosh ~ϑ− coshðϑþ þ ϑ−Þ
þ cosh2 ~ϑ−: ð72Þ

Hence, Eq. (70) allows for the trivial solution only,

ψ ðjÞ
qnlðrÞjkl¼0 ¼ 0; consequently, value kl ¼ 0 is excluded

by the boundary condition.
It is not clear which of the signs in (65) should be chosen.

This ambiguity can be avoided by imposing restriction

ϑþ ¼ ϑ− ¼ ϑ; ~ϑþ ¼ ~ϑ− ¼ ~ϑ; ð73Þ

then (65) and (68) take form

ηkl ¼ arctan
2klcosh ~ϑcoshϑ

mðcosh2 ~ϑþ1ÞþsgnðEnlÞωnlsinh2 ~ϑ
; n≥0;

ð74Þ

and the spectrum of kl consists of values of the same sign,
say, kl > 0; values of the opposite sign (kl < 0) should be
excluded to avoid double counting. Note that the spectrum
of kl depends on the number of the Landau level, n, and on
the sign of the one-particle energy, sgnðEnlÞ, in this case as
does in general.
By imposing further restriction

~ϑ ¼ 0; ð75Þ

we arrive at the kl-spectrum which is determined by
condition

cosðklaÞ þ
m

kl coshϑ
sinðklaÞ ¼ 0; ð76Þ

being the same for all Landau levels and for both signs of
the one-particle energy. Note, that relations (20) and (22) in
this case take forms

ðI � iγ3 coshϑþ iγ5 sinhϑÞχjz¼�a=2 ¼ 0 ð77Þ

and

ξ̄ðI coshϑ ∓ γ3γ5 sinhϑÞχjz¼�a=2 ¼ 0; ð78Þ

respectively.
In the following our concern will be in the case of one

self-adjoint extension parameter with the kl-spectrum that
is independent of n and of sgnðEnlÞ, see (76).

V. CASIMIR ENERGY AND FORCE

As was already mentioned, the expression for the
induced vacuum energy per unit area of the boundary
surface, see (62), can be regarded as purely formal, since it
is ill-defined due to the divergence of infinite sums over l
and n. To tame the divergence, a factor containing a
regularization parameter should be inserted in (62). A
summation over values kl > 0, which are determined by
(76), can be performed with the use of the Abel-Plana
formula and its generalizations [27,28]. In the case of
coshϑ ¼ ∞, which is formally equivalent to the case of
m ¼ 0, the well-known version of the Abel-Plana formula
(see, e.g., [5]),X
kl>0

fðk2l ÞjcosðklaÞ¼0

¼ a
2π

Z
∞

−∞
dkfðk2Þ þ ia

π

Z
∞

0

dκ
f½ð−iκÞ2Þ� − f½ðiκÞ2Þ�

e2κa þ 1
;

ð79Þ
is used. In the case ofm= coshϑ > 0, the use is made of the
following version of the Abel-Plana formula, that is derived
in Appendix B and which, at ϑ ¼ 0, coincides after redefi-

nition fðω2Þ→ fðω2Þ
h
1þ m

aðω2þm2Þ
i

with formula (15)

in [28],X
kl>0

fðk2l Þ ¼
a
2π

Z
∞

−∞
dkfðk2Þ

þ ia
π

Z
∞

0

dκΛðκÞff½ð−iκÞ2Þ� − f½ðiκÞ2Þ�g

−
1

2
fð0Þ þm coshϑ

2π

Z
∞

−∞
dk

fðk2Þ
k2cosh2ϑþm2

;

ð80Þ

where

ΛðκÞ ¼
κ coshϑ −m − m coshϑ

aðκ coshϑþmÞ
ðκ coshϑþmÞe2κa þ κ coshϑ −m

: ð81Þ

Here, in (79) and (80), fðω2Þ as a function of complex
variable ω decreases sufficiently fast at large distances from
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the origin of the complex ω-plane. The regularization in the
second term on the right-hand side of (79) and (80) can be
removed; then

iff½ð−iκÞ2Þ� − f½ðiκÞ2Þ�g

¼ −
2jeBj
π

X∞
n¼0

in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − 2njeBj −m2

q
ð82Þ

with the range of κ restricted to κ >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njeBj þm2

p
for the

corresponding terms. As to the first term on the right-hand
side of (79) and (80), one immediately recognizes that it is
equal to ε∞ (39) multiplied by a. Hence, if one ignores for a
moment the last terms on the right-hand side of (80), then the
problem of regularization and removal of the divergency in
expression (62) is the same as that in the case of no
boundaries, when the magnetic field fills the whole space.
Defining the generalized Casimir energy as the vacuum
energy per unit area of the boundary surface, which is
renormalized in the sameway as in the case of no boundaries,
we obtain at m= coshϑ > 0:

Eren

S
¼ aε∞ren −

2jeBj
π2

a
X∞
n¼0

in

Z
∞

Mn

dκΛðκÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 −M2

n

q

þ jeBj
2π

X∞
n¼0

inMn −
jeBjm coshϑ

2π2

×
Z

∞

−∞
dk

X∞
n¼0

in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

n

p
k2cosh2ϑþm2

; ð83Þ

where

Mn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njeBj þm2

q
; ð84Þ

ε∞ren is given by (40). The sums and the integral in the last two
lines on the right-hand side of (83) [which are due to the terms
in the last line on the right-hand side of (80) andwhich can be
interpreted as describing the proper energies of the boundary
planes containing the sources of the magnetic field] are
divergent, but this divergency is of no concern for us, because
it has no physical consequences. Rather than the generalized
Casimir energy, a physically relevant quantity is the gener-
alized Casimir force which is defined as

F ¼ −
∂
∂a

Eren

S
; ð85Þ

and which is free from divergencies. We obtain

F ¼ −ε∞ren −
2jeBj
π2

X∞
n¼0

in

Z
∞

Mn

dκϒðκÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 −M2

n

q
; ð86Þ

where

ϒðκÞ≡ −
∂
∂a aΛðκÞ ¼

½ð2κa − 1Þðκ2cosh2ϑ −m2Þ − 2κm coshϑ�e2κa − ðκ coshϑ −mÞ2
½ðκ coshϑþmÞe2κa þ κ coshϑ −m�2 : ð87Þ

It should be noted that limit coshϑ → ∞ for F (86) is
smooth [i.e. the limiting value coincides with the result
obtained with the use of (79)]. Thus, for a particular choice
of the boundary condition yielding spectrum kl ¼ π

a ðlþ 1
2
Þ

ðl ¼ 0; 1; 2;…Þ, we obtain

Eren

S

				
ϑ¼�∞

¼ aε∞ren −
2jeBj
π2

a
X∞
n¼0

in

Z
∞

Mn

dκ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 −M2

n

p
e2κa þ 1

ð88Þ

and, using integration by parts,

Fjϑ¼�∞ ¼ −ε∞ren −
2jeBj
π2

X∞
n¼0

in

Z
∞

Mn

dκ
e2κa þ 1

κ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 −M2

n

p :

ð89Þ

The integral in (88) can be taken after expanding the factor
with denominator as

P∞
j¼1ð−1Þj−1e−2jκa. In this way,

we obtain the following expressions for the Casimir
energy

Eren

S

				
ϑ¼�∞

¼ aε∞ren−
jeBj
π2

X∞
n¼0

inMn

X∞
j¼1

ð−1Þj−1 1
j
K1ð2jMnaÞ

ð90Þ

and the Casimir force

Fjϑ¼�∞ ¼ −ε∞ren −
2jeBj
π2

X∞
n¼0

inM2
n

X∞
j¼1

ð−1Þj−1

×

�
K0ð2jMnaÞ þ

1

2jMna
K1ð2jMnaÞ

�
; ð91Þ
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whereKρðuÞ is the Macdonald function of order ρ. The case
of ϑ ¼ �∞, as was already mentioned, is formally equiv-
alent to the case of a massless spinor field,m ¼ 0; however,
it has to be kept in mind that the ϑ-independent piece of
the Casimir force, −ε∞ren, diverges in the limit of m → 0,
see (40).
Note also that the antiperiodic boundary condition,

χjz¼a=2 þ χjz¼−a=2 ¼ 0 ð92Þ

(the same condition is for ξ), ensures the self-adjointness of
the Dirac Hamiltonian operator, but current (52) does not
vanish at the boundary: instead, the influx of the quantized
matter at one boundary surface equals the outflux of the
quantized matter at the other boundary surface. The
spectrum of the wave number vector which is orthogonal
to the boundary is kl ¼ 2π

a ðlþ 1
2
Þ ðl ¼ 0;�1;�2;…Þ, and

the Casimir energy and force take forms

�
Eren

S

�
antiperiod

¼ aε∞ren −
2jeBj
π2

a
X∞
n¼0

in

Z
∞

Mn

dκ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 −M2

n

p
eκa þ 1

ð93Þ
and

ðFÞantiperiod ¼ −ε∞ren −
2jeBj
π2

X∞
n¼0

in

Z
∞

Mn

dκ
eκa þ 1

κ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 −M2

n

p ;

ð94Þ
respectively, or, in the alternative representation,�
Eren

S

�
antiperiod

¼ aε∞ren

−
2jeBj
π2

X∞
n¼0

inMn

X∞
j¼1

ð−1Þj−1 1
j
K1ðjMnaÞ;

ð95Þ
and

ðFÞantiperiod ¼ −ε∞ren −
2jeBj
π2

X∞
n¼0

inM2
n

X∞
j¼1

ð−1Þj−1

×
�
K0ðjMnaÞ þ

1

jMna
K1ðjMnaÞ

�
: ð96Þ

VI. CONCLUSION AND DISCUSSION

In the present paper, we have considered the influence of
a background uniform magnetic field and boundary con-
ditions on the vacuum of a quantized charged spinor matter
field confined between two parallel plates separated by
distance a. If the magnetic field is directed orthogonally to
the plates and the normal component of the current of
quantized matter is assumed to vanish at the plates, then the
Dirac Hamiltonian operator is self-adjoint under a set of
boundary conditions depending on four arbitrary functions
of two coordinates which are tangential to the plates.
Ignoring this functional dependence and restricting ourselves
to the case when the spectrum of the wave number vector
along the magnetic field is independent of the number of the
Landau level, see (76), we arrive at a set of boundary
conditions depending on one parameter, ϑ, see (77). Under
these circumstances the Casimir force is shown to take the
form of (86), where ε∞ren is given by (40) and ϒðκÞ is given
by (87). For a particular boundary condition, ϑ ¼ �∞,
the Casimir force is given by (89) or, alternatively, by
(91). The latter is to be compared with the case of the
antiperiodic boundary condition, see (92), when the normal
component of the current is not vanishing at the boundary
and the Casimir force takes the form of (94) or, alternatively,
of (96).
In the limit of a weak magnetic field, jBj ≪ m2jej−1, one

has (see [11])

ε∞ren ¼ −
1

360π2
e4B4

m4
: ð97Þ

Thus, at jBj → 0 the first term on the right-hand side of (86)
vanishes, and, substituting the sum in the remaining piece
there by integral

R∞
0 dn, we get

Fþ ε∞ren ¼ −
1

3π2

Z
∞

m
dκϒðκÞðκ2 −m2Þ3=2; jeBj≪ m2;

ð98Þ

which in the limits of large and small distances between the
plates take the forms:

F þ ε∞ren ¼
(
− 3

16π3=2
m3=2

a5=2
e−2ma½1þOð 1

maÞ�; ϑ ¼ 0

− tanh2ðϑ=2Þ
2π3=2

m5=2

a3=2
e−2ma½1þOð 1

maÞ�; ϑ ≠ 0

)
; ma ≫ 1 ð99Þ
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and

F þ ε∞ren ¼ −
7

8

π2

120

1

a4
; ma ≪ 1: ð100Þ

Result (99) at ϑ ¼ 0 is already known, see [3], as well as
result (100) is for a long time [17] (the latter equals 1=16 of
the appropriate result in the case of the antiperiodic
boundary condition [29]).

In the limit of a strong magnetic field, jBj ≫ m2jej−1,
one has (see, e.g., [14])

ε∞ren ¼ −
e2B2

24π2
ln
2jeBj
m2

; ð101Þ

while the remaining piece of the force is

F þ ε∞ren ¼ −
jeBj
2π2

�Z
∞

m
dκϒðκÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 −m2

p
þ 4

X∞
n¼1

Z
∞

2njeBj

dκ
e2κa þ 1

κ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − 2njeBj

p �
: ð102Þ

The latter expression in the limit of large distances between the plates take forms

F þ ε∞ren ¼

8><
>:

− jeBj
16π3=2

m1=2

a3=2
e−2ma

�
1þO

�
1
ma

��
; ϑ ¼ 0

− jeBjtanh2ðϑ=2Þ
2π3=2

m3=2

a1=2
e−2ma

�
1þO

�
1
ma

��
; ϑ ≠ 0

9>=
>;;

ffiffiffiffiffiffiffiffiffi
jeBj

p
a ≫ ma ≫ 1 ð103Þ

and

F þ ε∞ren ¼ −
jeBj
2π2

Z
∞

m
dκϒðκÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 −m2

p
−
� ffiffiffi

2
p

π

�3=2 jeBj7=4ffiffiffi
a

p e−2
ffiffiffiffiffiffiffiffi
2jeBj

p
af1þO½ð

ffiffiffiffiffiffiffiffiffi
jeBj

p
aÞ−1� þO½e−2ð

ffiffi
2

p
−1Þ

ffiffiffiffiffiffiffiffi
2jeBj

p
a�g;

ffiffiffiffiffiffiffiffiffi
jeBj

p
a ≫ 1; ð104Þ

while, in the limit of small distances between the plates,
we get

F þ ε∞ren ¼ −
jeBj
48a2

; ma ≪ 1;
ffiffiffiffiffiffiffiffiffi
jeBj

p
a ≫ 1

ð105Þ

and (100) atma ≪
ffiffiffiffiffiffiffiffiffijeBjp

a ≪ 1. Result (103) at ϑ ¼ 0 and
result (105) were obtained earlier in [20]; the latter of the
results equals 1=4 of the appropriate result in the case of the
antiperiodic boundary condition [19].
We can conclude that the Heisenberg-Euler term, ε∞ren

(40), is dominating at a relatively large separation of the
plates, a ≫ m−1, at a nonweak magnetic field. Since the
right-hand side of (40) is negative, the Casimir force in this
case, F ≈ −ε∞ren, is repulsive (the pressure from the vacuum
onto the plates is positive), being independent of the choice
of boundary conditions at the plates, as well as of the
distance between the plates. In the opposite case of a
relatively small separation of the plates, a ≪ m−1, at a
sufficiently weak magnetic field, jBj ≪ m2jej−1, the
Heisenberg-Euler term is negligible, and the Casimir force
is attractive, being power dependent on the distance
between the plates, see (100) and (105). We remind that
the results for the case of the MIT bag boundary condition

are obtained at ϑ ¼ 0, while the results for the case of the
antiperiodic boundary condition are obtained at ϑ ¼ �∞
by change a → a=2.
Let us compare our results with those of the authors of

[19–21]. As was already mentioned in Introduction, these
authors assume that both the quantized and external fields
are not confined within the plates. Due to this circumstance,
the Heisenberg-Euler-term contribution to the Casimir
effect is absent in their approach. As to the remaining
part, it is calculated in the cases of the antiperiodic
boundary condition [19,21] and the MIT bag boundary
condition [20]; our results for F þ ε∞ren in these particular
cases agree with the results in [19–21]. Note also that the
Casimir effect with a quantized charged scalar matter field
in the background of an external uniform magnetic field has
been comprehensively analyzed in [30].
Usually, the Casimir effect is validated experimentally

for the separation of parallel plates to be of order of
10−8–10−5 m, see, e.g., Ref. [5]. So, even if one takes the
lightest charged particle, electron (the Compton wave-
length, λC ¼ ℏðmcÞ−1, equals 3.86 × 10−13 m), then it
becomes clear that the limiting case of aλ−1C ≪ 1 [which
is appropriate to (100) and (105), when constants ℏ and c
are recovered] has no relation to physics reality. In the
realistic case of aλ−1C ≫ 1 the Casimir force is prevailed by
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the Heisenberg-Euler term, F ≈ −ε∞ren, since the corrections
depending on the separation distance and boundary con-
ditions are exponentially damped, see (99) and (103). Thus,
in the limit of a strong magnetic field, jBj ≫ Bcrit, we obtain

F ¼ 1

24π2
ℏc
λ4C

�
B
Bcrit

�
2

ln
2jBj
Bcrit

; ð106Þ

where constants ℏ and c are recovered, and Bcrit ¼
ℏcðλ2CjejÞ−1 equals 4.41 × 1013 G. Such supercritical mag-
netic fields may be attainable in some astrophysical objects,
such as neutron stars and magnetars [31], and also gamma-
ray bursters in scenarios involving protomagnetars [32]; the
proper account for the influence of Casimir pressure (106) on
physical processes in these objects should be taken.
Supercritical magnetic fields are not feasible in terrestrial

laboratories where the maximal values of steady magnetic
fields are of order of 105 G, see, e.g., [33]. In the case
of a subcritical magnetic field, jBj ≪ Bcrit, we obtain by
rewriting (97):

F ¼ 1

360π2
ℏc
λ4C

�
B
Bcrit

�
4

: ð107Þ

Let us compare this with the attractive Casimir force which
is due to the quantized electromagnetic field [1],

FðEMÞ ¼ −
π2

240

ℏc
a4

; ð108Þ

and define ratio

F

FðEMÞ ¼ −
2

3π4

�
a
λC

�
4
�

B
Bcrit

�
4

: ð109Þ

At a ¼ 10−6 m and B ¼ 105 G the attraction is prevailing
over the repulsion by six orders of magnitude,
FðEMÞ=F ≈ −106, and the Casimir force is
FðEMÞ ≈ −1.3 mPa. However, at a ¼ 10−4 m and B ¼
105 G the repulsion becomes dominant over the attraction
by two orders of magnitude, F=FðEMÞ ≈ −102 and the
Casimir force takes value F ≈ 0.009 mPa. Otherwise, the
same value of the Casimir force is achieved at a ¼ 10−5 m
and B ¼ 106 G. Thus, an experimental observation of the
influence of the background magnetic field on the Casimir
pressure seems to be possible in a foreseen future in
terrestrial laboratories.
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APPENDIX A: SOLUTION TO THE DIRAC
EQUATION WITH NEGATIVE ENERGY

The solution with negative energy, Enk ¼ −ωnk, takes
the following form in the case of eB > 0 (magnetic field is
directed along the z-axis):

ψqnkðrÞ ¼
e−iqxe−ikz

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωnkðωnk þmÞp

2
666664 ~C1

0
BBBBB@

kY−q
n ðyÞ

−
ffiffiffiffiffiffiffiffiffiffiffi
2neB

p
Y−q
n−1ðyÞ

ðωnk þmÞY−q
n ðyÞ

0

1
CCCCCAþ ~C2

0
BBBBB@

−
ffiffiffiffiffiffiffiffiffiffiffi
2neB

p
Y−q
n ðyÞ

−kY−q
n−1ðyÞ
0

ðωnk þmÞY−q
n−1ðyÞ

1
CCCCCA

3
777775; n ≥ 1 ðA1Þ

and

ψ ð0Þ
q0kðrÞ ¼

e−iqxe−ikz

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω0kðω0k þmÞp ~C0Y

−q
0 ðyÞ

0
BBB@

k

0

ω0k þm

0

1
CCCA:

ðA2Þ
The solution corresponding to the plane wave propagating along the z-axis in the opposite direction is obtained from (A1)
and (A2) by changing k → −k (coefficients ~C0; ~C1; ~C2 should be changed to C0; C1; C2).
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APPENDIX B: ABEL-PLANA SUMMATION
FORMULA

Let us rewrite condition (76) as

PðklÞ ¼ 0; ðB1Þ

where

PðkÞ ¼ cosðkaÞ þ m
k coshϑ

sinðkaÞ: ðB2Þ

We assign labels l ¼ 0; 1; 2;…, to the consecutively
increasing positive roots of (B1), kl > 0; appropriately,
labels l ¼ −1;−2;…, are assigned to the consecutively
decreasing negative roots of (B1), kl < 0. Then one can
write

X∞
l¼0

fðk2l Þ ¼
1

2

X∞
l¼−∞

fðk2l Þ ¼
a
4π

Z
C¼

dωfðω2ÞGðωÞ;

ðB3Þ

where

GðωÞ ¼ 1þ i
a

d
dω

lnPðωÞ ðB4Þ

and contour C¼ on the complex ω-plane consists of two
parallel infinite lines going closely on the lower and upper
sides of the real axis, see Fig. 1. By deforming the parts of
contour C¼ into contours C⊓ and C⊔ enclosing the lower
and upper imaginary semiaxes, see Fig. 1, we get

Z
C¼

dωfðω2ÞGðωÞ ¼
Z
C⊓

dωfðω2ÞGðωÞ

þ
Z
C⊔

dωfðω2ÞGðωÞ; ðB5Þ

where it is implied that all singularities of f as a function of
complex variable ω lie on the imaginary axis at some
distances from the origin. In view of obvious relation

lim
k→0þ

ðk� iκÞ2 ¼ lim
k→0þ

ð−k ∓ iκÞ2 ¼ ð�iκÞ2

for real positive k and κ, the right-hand side of (B5) is
rewritten in the following way:Z

C¼
dωfðω2ÞGðωÞ ¼ i

Z
∞

0

dκff½ð−iκÞ2�

− f½ðiκÞ2�g½Gð−iκÞ −GðiκÞ�: ðB6Þ

Taking account for relation

Gð−iκÞ þ GðiκÞ ¼ 2; ðB7Þ

we further obtainZ
C¼

dωfðω2ÞGðωÞ

¼ 2i
Z

∞

0

dκff½ð−iκÞ2Þ� − f½ðiκÞ2Þ�gGð−iκÞ

− 2i
Z

∞

0

dκf½ð−iκÞ2Þ� þ 2i
Z

∞

0

dκf½ðiκÞ2Þ�: ðB8Þ

By rotating the paths of integration in the last and before the
last integrals in (B8) by 90° in the clockwise and anti-
clockwise directions, respectively, we finally getZ

C¼
dωfðω2ÞGðωÞ

¼ 2i
Z

∞

0

dκff½ð−iκÞ2Þ� − f½ðiκÞ2Þ�gGð−iκÞ

þ 4

Z
∞

0

dkfðk2Þ: ðB9Þ

Note that the explicit form of function GðωÞ is

GðωÞ ¼ ðω coshϑþ imÞe−iωa − im sinðωaÞ
ωa

ω coshϑ cosðωaÞ þm sinðωaÞ : ðB10Þ

Since the numerator of GðωÞ (B10) contributes to the
integral on the left-hand side of (B9) at values ω ¼ kl only,
one may change the numerator with the use of relation
(B1). We can employ this arbitrariness and change GðωÞ to

FIG. 1. Contours C¼, C⊓ and C⊔ on the complex ω-plane; the
positions of poles of GðωÞ are indicated by crosses.
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~GðωÞ in such a way that ~Gð−iκÞ will become exponentially
decreasing at large values of κ. Namely, we make
substitution

m
sinðωaÞ
ωa

→ −
m2

ω2cosh2ϑþm2

coshϑ
a cosðωaÞ : ðB11Þ

However, then additional simple poles appear at ω ¼ 0 and
at cosðωaÞ ¼ 0. Subtracting the contribution of these poles,
we obtainZ

C¼
dωfðω2ÞGðωÞ

¼ 2i
Z

∞

0

dκff½ð−iκÞ2Þ� − f½ðiκÞ2Þ�g ~Gð−iκÞ

þ 4

Z
∞

0

dkfðk2Þ

−
i
a

Z
C¼

dω
fðω2Þ
ω

þm coshϑ
a

×
Z
C¼

dω
fðω2Þ

ω2cosh2ϑþm2

e−iωa

cosðωaÞ ; ðB12Þ

where

~GðωÞ ¼
ðω coshϑþ imÞe−iωa þ im2

ω2cosh2ϑþm2
coshϑ

a cosðωaÞ
ω coshϑ cosðωaÞ þm sinðωaÞ :

ðB13Þ

The last integral on the right-hand side of (B12) is trans-
formed into integrals along the imaginary axis on the
complex ω-plane in the same manner as previously, see
(B5)–(B9). In this way we get

Z
C¼

dωfðω2ÞGðωÞ

¼4i
Z

∞

0

dκff½ð−iκÞ2Þ�−f½ðiκÞ2Þ�gΛðκÞþ4

Z
∞

0

dkfðk2Þ

−
2π

a
fð0Þþ4

mcoshϑ
a

Z
∞

0

dk
fðk2Þ

k2cosh2ϑþm2
; ðB14Þ

where the contribution of the pole at ω ¼ 0 is explicitly
written, and

ΛðκÞ ¼ 1

2

�
~Gð−iκÞ − 1

a
m coshϑ

κ2cosh2ϑ −m2

e−κa

coshðκaÞ
�

ðB15Þ

is explicitly given by (81). It should be noted that the
contribution of poles on the imaginary axis at
ω ¼ �im= coshϑ, stemming from substitution (B11), is
canceled. Recalling (B3), we rewrite (B14) into the form
given by (80).
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