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We defend the Fock-space Hamiltonian truncation method, which allows us to calculate numerically
the spectrum of strongly coupled quantum field theories, by putting them in a finite volume and imposing a
UV cutoff. The accuracy of the method is improved via an analytic renormalization procedure inspired by
the usual effective field theory. As an application, we study the two-dimensional ϕ4 theory for a wide range
of couplings. The theory exhibits a quantum phase transition between the symmetry-preserving and
symmetry-breaking phases. We extract quantitative predictions for the spectrum and the critical coupling
and make contact with previous results from the literature. Future directions to further improve the accuracy
of the method and enlarge its scope of applications are outlined.
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I. INTRODUCTION

How do we extract predictions about a strongly coupled
quantum field theory (QFT) which is not exactly solvable?
The lattice would be one answer, but it is not the only one.
Hamiltonian truncation techniques, which generalize the
Rayleigh-Ritz method familiar from quantum mechanics,
are a viable deterministic alternative to the lattice
Monte Carlo (MC) simulations, at least for some theories.
These techniques remain insufficiently explored, compared
to the lattice, and their true range of applicability may be
much wider than what is currently believed. There exist
several incarnations of Hamiltonian truncation, some better
known than others, differing by the choice of basis and of
quantization frame. For example, discrete light cone
quantization (DLCQ) [1] and truncated conformal space
approach (TCSA) [2] are two representatives of this family
of methods.
Here we will be concerned with what is perhaps the

simplest setting for the Hamiltonian truncation—the ϕ4

theory in two spacetime dimensions. Moreover, we con-
sider the most straightforward realization of the method—
we quantize at fixed time rather than on the light cone,
and use the Fock-space basis for the Hilbert space rather
than the abstruse conformal bases.1 We expand the ϕ4

Hamiltonian into ladder operators, as on the first page of
every QFT textbook. We however take this Hamiltonian
more seriously than in most textbooks. Namely, we use it to

extract nonperturbative predictions, rather than as a mere
starting point for the perturbative calculations. Concretely,
we will (1) put the theory into a (large) finite volume, to
make the spectrum discrete, (2) truncate the Hilbert space
to a finite-dimensional subspace of low-energy states, and
(3) diagonalize the truncated Hamiltonian numerically.
In spite or perhaps because of its extreme simplicity, this

concrete idea has so far received even less attention than
its more sophisticated cousins mentioned above. The only
prior works known to us are [4,5].2 Here, we follow up on
these early explorations with our own detailed study.
While the basic idea and the qualitative conclusions

of our work will be similar to [4,5], our implementation
contains several conceptual and technical novelties. In
particular, we pay special attention to the convergence rate
of the method, and will develop analytical tools allowing us
to accelerate the convergence, improve the accuracy, and
better understand the involved systematic errors.
The advances reported in this paper, as well as the

ongoing progress in developing the other variants of the
Hamiltonian truncation [9–11], [12–14] make us hopeful
that in a not too distant future these methods will turn into
precision tools for studying strongly coupled QFTs.
The structure of the paper is clear from the table of

contents. In Sec. II we present the problem and the basic
methodology used to study the spectrum numerically.
Section III elucidates the ideas behind the renormaliza-

tion procedure, its implementations adopted in the numeri-
cal study, and provides some tests of the analytical results.
The reader afraid of the technicalities may skip it. Yet it is
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1The use of a conformal basis in two dimensions requires
compactifying the scalar field [3]; see the discussion in Sec. IV E.

2A more extensive description of this work can be found in
[6,7]. Another paper [8] studied the two-dimensional Yukawa
model without scalar self interaction.
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precisely this section which is the theoretical heart of
the paper.
Section IV contains the main numerical application of

the work, i.e. the calculation of the spectrum of the two-
dimensional ϕ4 theory. The dependence of the numerical
results on the physical and unphysical parameters is
analyzed carefully, and an estimate of the critical coupling
is provided. Computations were performed using a
PYTHON code included with the arXiv submission.
In Sec. V we compare our method to the existing ones

in the literature. Most of these prior studies focused in
particular on the critical coupling estimates.
We conclude in Sec. VI. Appendix A presents some

technical details useful for the practical implementation
of the procedure. Appendix B provides the perturbative
checks of our method, alongside a discussion of the Borel-
summability of the model.
We mention right away that this paper was developed in

parallel with Ref. [12] published three months ago and
devoted to the TCSA approach in d > 2 dimensions. The
concrete example treated in [12] was the ϕ4 theory in
d ¼ 2.5 dimensions, which has the same phase structure as
the d ¼ 2 case studied here. The attentive reader will notice
many similarities in Sec. IV regarding the physics dis-
cussion, and in Sec. III regarding the renormalization
procedure. However, concerning the latter, there is also
a difference of principle which will be stressed in
Sec. III E below.

II. THE PROBLEM AND THE METHOD

A. Hamiltonian

We study the two-dimensional ϕ4 theory, defined by the
following Euclidean action:

S ¼ S0 þ g
Z

d2x∶ϕ4∶; ð2:1Þ

S0 ¼
1

2

Z
d2x∶ð∂ϕÞ2 þm2ϕ2∶: ð2:2Þ

Here ∶∶ denotes normal ordering. Normal ordering of the
free massive scalar action S0 simply means that we set to
zero the ground state energy density (in infinite flat space,
and before adding the quartic perturbation). The quartic
interaction term is then assumed normal ordered with
respect to the mass m appearing in the free action. In
perturbation theory this simply corresponds to forbidding
the diagrams with lines beginning and ending inside the
same quartic vertex. In terms of operators, this means that
we are adding counterterms [15]:

∶ϕ4∶ ¼ ϕ4 − 6Zϕ2 þ 3Z2: ð2:3Þ

Here

Z ¼
Z

d2k
ð2πÞ2

1

k2 þm2
ð2:4Þ

is a logarithmically UV-divergent quantity.
Although absent in (2.1), below we also need to consider

perturbations given by the normal-ordered ϕ2 operator:

∶ϕ2∶ ¼ ϕ2 − Z: ð2:5Þ

The above equations specify what we mean by the theory
in infinite flat space, and also define the mass parameter m
and the quartic coupling g in terms of which we parametrize
the theory. All physical quantities (such as particle masses
and S-matrix elements) are then finite functions ofm and g.
Also the change of the ground state energy density due to
turning on the coupling g is finite and observable in this
theory. This change can be thought of as the contribution of
the theory (2.1) to the cosmological constant.
Since bothm and g are dimensionful, physics depends on

their dimensionless ratio ḡ ¼ g=m2, while m (or g) sets the
overall mass scale. We assume g > 0 to have a stable
vacuum. Both signs of m2 are interesting, but in this paper
we only consider the casem2 > 0. Notice that this does not
mean that we will always be in the phase of preserved Z2

symmetry ϕ → −ϕ, since the mass parameter undergoes
renormalization. In fact, as we see below, for m2 > 0 and
ḡ > ḡc ¼ Oð1Þ the theory finds itself in the phase where the
Z2 symmetry is spontaneously broken. This is a non-
perturbative phenomenon. For ḡ ≪ 1, the fate of the Z2

symmetry is of course determined by the sign of m2.
In this paper we study the above theory not in infinite

space but on a cylinder of the form S1L ×R, where S1L is the
circle of length L and R will be thought of as Euclidean
time. We will impose the periodic boundary conditions
around the circle. We will describe the theory on this
geometry in the Hamiltonian formalism, taking advantage
of the fact that the finite-volume spectrum is discrete.
Now, what is the Hamiltonian which describes the theory

(2.1) on S1L × R? The correct answer to this question
involves a subtlety, so let us proceed pedagogically.
We first discuss the Hamiltonian which describes the free

massive scalar. In canonical quantization, the field operator
is expanded into modes:

ϕðxÞ ¼
X
k

1ffiffiffiffiffiffiffiffiffiffiffi
2Lωk

p ðakeikx þ a†ke
−ikxÞ; ð2:6Þ

where the momenta k take discrete values k ¼ 2πn=L,
n ∈ Z, ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
, and the ladder operators satisfy

the usual commutation relations:

½ak; ak0 � ¼ 0; ½ak; a†k0 � ¼ δnn0 : ð2:7Þ

The Hilbert spaceH of the theory is the Fock space of these
ladder operators, spanned by the states
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jψi ¼ jk1;…; kmi ¼ Na†k1…a†km j0i; ð2:8Þ

whereN is the normalization factor to get a unit-normalized
state. The free scalar Hamiltonian is then given by

Hfree ¼ H0 þ E0ðLÞ; H0 ¼
X
k

ωka
†
kak: ð2:9Þ

The only subtlety here is the c-number term E0ðLÞ. The
point is that we want the oscillator part H0 of the finite-
volume Hamiltonian to be normal ordered. However, the
normal-ordering counterterm in infinite space and for finite
L is slightly different, and E0ðLÞ compensates for this
mismatch. It is nothing but the Casimir energy of the scalar
field, and is given by (see [16])

E0ðLÞ¼−
1

πL

Z
∞

0

dx
x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2L2þx2
p 1

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2L2þx2

p
−1

: ð2:10Þ

This expression can be derived in many equivalent ways.
One method is to regulate the difference of the zero-point
energies:

X
n

ωkn=2 − L
Z þ∞

−∞

dk
2π

ωk=2: ð2:11Þ

Another method is to compute the partition function of the
theory on the torus S1L1

× S1L2
, which can be done from

the path integral formulation of the theory. The partition
function defined in this way enjoys the property of modular
invariance. This method naturally produces a term in the
free energy of the form ð2πL2Þ × E0ðL1Þ.
We next discuss the finite-volume Hamiltonian for the

interacting theory. It will have the form

H ¼ E0ðLÞ þH0 þ gV4 þ…; ð2:12Þ

V4 ¼
Z

L

0

dx∶ϕ4∶L: ð2:13Þ

The normal ordering here is defined on the circle of length
L in the Hamiltonian sense, just putting all creation
operators to the left. Thus,

V4 ¼ gL
X

k1þk2þk3þk4¼0

1Q ffiffiffiffiffiffiffiffiffiffiffi
2Lωi

p ½ak1ak2ak3ak4

þ 4a†−k1ak2ak3ak4 þ 6a†−k1a
†
−k2ak3ak4

þ 4a†−k1a
†
−k2a

†
−k3ak4 þ a†−k1a

†
−k2a

†
−k3a

†
−k4 �: ð2:14Þ

The origin of the… terms in (2.12) lies again in the fact that
the normal-ordering counterterms added when defining V,

∶ϕ4∶L ¼ ϕ4 − 6ZLϕ
2 þ 3Z2

L; ZL ¼
X
n

1

2Lωkn

;

ð2:15Þ

are not exactly the same as in the infinite space definition
(2.3). The difference is

∶ϕ4∶ − ∶ϕ4∶L ¼ −6ðZ − ZLÞϕ2 þ 3ðZ2 − Z2
LÞ

¼ 6ðZL − ZÞ∶ϕ2∶L þ 3ðZL − ZÞ2; ð2:16Þ

where in the second equality we used ϕ2 ¼ ∶ϕ2∶L þ ZL.
To compute ZL − Z we rewrite Z in the form adapted to

the Hamiltonian quantization:

Z ¼
Z

dk
4π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p : ð2:17Þ

The difference ZL − Z is finite and readily calculated using
the Abel-Plana formula:

zðLÞ≡ ZL − Z

¼ 1

π

Z
∞

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2L2 þ x2

p 1

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2L2þx2

p
− 1

: ð2:18Þ

This allows us to complete the… terms in (2.12). Thus, the
Hamiltonian on a circle of finite length L corresponding to
the infinite space theory (2.1) is given by

H ¼ H0 þ g½V4 þ 6zðLÞV2� þ ½E0ðLÞ þ 3zðLÞ2gL�;
ð2:19Þ

V2 ¼
Z

L

0

dx∶ϕ2∶L ¼
X
k

1

2ωk
ðaka−k þ a†ka

†
−k þ 2a†kakÞ:

ð2:20Þ

We see that the Hamiltonian (2.19) differs from the
“naïve” Hamiltonian

H ¼ H0 þ V; V ¼ gV4 ð2:21Þ

by “correction terms,” proportional to E0ðLÞ and zðLÞ. The
presence of these terms is conceptually important. They
would be also straightforward to include into numerical
analysis, for any L. However, in this paper we focus on the
case Lm ≫ 1. In this regime the corrections due to E0ðLÞ
and zðLÞ are exponentially suppressed, and their numerical
impact is negligible. For this reason, and to simplify the
discussion, we omit the exponentially suppressed correc-
tions. With this proviso, from now on we will use the naive
Hamiltonian (2.21).
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B. Truncation

We next explain the truncation method. We work in the
Hilbert space H spanned by the free massive scalar states.
The HamiltonianH acts in this space, and the problem is to
diagonalize it. We thus use the free massive scalar states
as a basis into which we expand the eigenstates of the
interacting theory. Let us think of the Hamiltonian as an
infinite matrix Hij where i; j numbers the states in H:

Hij ¼ hijHjji: ð2:22Þ

Notice that the states jii as introduced above form an
orthonormal basis of H. To find the spectrum of the theory
in finite volume, we need to diagonalize the matrix Hij.
This diagonalization can be done separately in sectors
having fixed quantum numbers corresponding to the
operators commuting with the Hamiltonian.
The first such quantum number is the momentum:

½P;H� ¼ 0. In this paper we work in the sector of states
of vanishing total momentum:

P ¼ k1 þ…þ km ¼ 0: ð2:23Þ

In a large volume, the states of nonzero momentum should
correspond to boosted zero-momentum states, and their
energies should be related to zero-momentum energies by
the Lorentz-invariant dispersion relation. It would be
interesting to check this in future work.
The second conserved quantum number is the spatial

parity P, which acts as x → −x. It maps the state (2.8) into
Pjψi ¼ j−k1;…;−kmi. In this paper we work in the P-
invariant sector,3 whose orthonormal basis consists of the
states

jψ symi ¼ βðψÞðjψi þ PjψiÞ; ð2:24Þ

where βðψÞ is the normalization factor:

βðψÞ ¼ 1=
ffiffiffi
2

p
if Pjψi≠ jψi; 1=2 otherwise: ð2:25Þ

The restriction to the subspace P ¼ 0;P ¼ 1 will be tacitly
assumed in the rest of the paper.
The final conserved quantum number is the already

mentioned global Z2 symmetry ϕ → −ϕ (the field parity).
Its eigenvalue on the states (2.8) is ð−1Þm. Below we
consider both the Z2-even and Z2-odd sector.
Each of the two sectors Z2 ¼ �1 still contains infinitely

many states. We thus have to truncate the Hilbert space.
The truncation variable will be the H0 eigenvalue:

E ¼ ωk1 þ…þ ωkm : ð2:26Þ

We truncate by considering all states of E ≤ Emax. The
parameter Emax should be thought of as a UV cutoff. The
truncated Hilbert space is finite dimensional, and the matrix
Hij restricted to this space can be diagonalized numerically.
This is what we will do.
In principle, one could imagine alternative truncation

schemes. For example, one can truncate in the maximal
wave number kmax. Such a truncation would be closer to the
usual way one implements the UV cutoff in field theory. By
itself, however, it does not render the Hilbert space finite
dimensional. One could also think of truncating in the total
occupation number of the state, or in the individual
occupation numbers per oscillator, and so on. Our initial
exploration of such subsidiary cutoffs did not produce any
dramatic gains in the performance of the method. In the end
we decided to stick to the cutoff in E. As we will see in the
next section, this cutoff allows for a natural implementation
of the renormalization of the Hamiltonian, necessary to
improve the convergence of the method. In the future it may
be interesting to return to the other cutoffs, and explore
them more systematically.

III. UV CUTOFF DEPENDENCE
AND RENORMALIZATION

A. General remarks

It is not difficult to write a code which computes the Hij
matrix restricted to the E ≤ Emax subspace4 and diagonal-
izes it. The results of these numerical calculations will be
discussed below. As we will see, as the UV cutoff Emax is
increased, the energy levels computed using the truncated
Hilbert space (“truncated energy levels”) tend to some
finite limits. These limits should be naturally identified
with the exact energy levels. An interesting theoretical
question then arises: What is the convergence rate of the
method? There is also a related practical question: How
can the convergence be improved? These questions will be
discussed in this section.
By calculating the truncated energy levels we are

discarding the contribution to the low-energy physics
coming from the high-energy states of the Hilbert space.
Since the UV divergences have been already taken care of,
this contribution is power suppressed and goes to 0 as the
cutoff is increased. In the standard Wilsonian approach to
the renormalization group (RG), by integrating out high-
momentum (or short-distance) degrees of freedom one gets
a flow in the space of Hamiltonians, along which the same
physics is described in terms of low-momentum degrees of
freedom with renormalized couplings. We apply the same
philosophy to our case, although we may expect some

3The extension of our method to the P-odd sector is straight-
forward. We consider only the P-even sector, because we do not
expect bound states with P ¼ −1.

4See Appendix A for some tricks speeding up this
computation.
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differences, because our cutoff prescription—cutting off in
E—is different from the ones normally used in field theory.
First of all, it breaks the Lorentz invariance. Second, the
fact that we truncate in the total energy of the state, rather
than in that of its individual constituents, renders our cutoff
effectively nonlocal. Thus, we should be prepared to see
nonlocal as well as Lorentz-violating operators generated
by the flow. We will see, however, that to leading order it
will be sufficient to renormalize a few local operators in the
Hamiltonian. It will be possible to do this computation in
perturbation theory, since the potential we add to the free
Hamiltonian is a relevant deformation and becomes less
important in the UV. The dimensionless parameter which
sets the convergence of the truncated energy levels and the
asymptotic magnitude of the counterterms will be g=E2

max.
All these considerations will be made concrete in the
following.
We start our analysis from the exact eigenvalue

equation:

H:c ¼ Ec; ð3:1Þ

where c is an infinite-dimensional vector living in the full
Hilbert space H. Here and below, we use curly E to denote
energy levels of the interacting theory, while E is used to
denote free scalar energy levels.
In our methodology the Hilbert space is divided in two

subspaces:

H ¼ Hl ⊕ Hh; ð3:2Þ

where Hl is the low-energy sector of the Hilbert space,
treated numerically, while Hh is spanned by an infinite
number of discarded high-energy states. So we have
c ¼ ðcl; chÞt, and Eq. (3.1) takes the following form in
components:

Hll:clþHlh:ch¼Ecl; Hhl:clþHhh:ch¼Ech: ð3:3Þ

Here we denoted

Hαβ ≡ PαHPβ; ð3:4Þ

where Pα (α ¼ l; h) is the orthogonal projector on Hα.
Using the second equation in (3.3) to eliminate ch from

the first one, we obtain

½Hll −Hlh:ðHhh − EÞ−1:Hhl�:cl ¼ Ecl; ð3:5Þ

or, equivalently,

½Htrunc þ ΔH�:cl ¼ Ecl; ð3:6Þ

ΔH ¼ −Vlh:ðH0 þ Vhh − EÞ−1:Vhl: ð3:7Þ

This equation is very important. Notice that Hll ≡Htrunc is
nothing but the Hamiltonian truncated to the low-energy
Hilbert space. Notice furthermore that the mixing between
the high- and low-energy states is due only to V, sinceH0 is
diagonal.
Equation (3.6) is exact, yet it resembles the truncated

eigenvalue equation, with a correction ΔH. This equation
will be a very convenient starting point to answer the two
questions posed at the beginning of this section.
We will now start making approximations. First, we

expand ΔH in Vhh and keep only the zeroth term

ΔH ¼ −Vlh:ðH0 − EÞ−1:Vhl þ… ð3:8Þ

For dimensional reasons, we expect that the next term in the
expansion,

Vlh:ðH0 − EÞ−1:Vhh:ðH0 − EÞ−1:Vhl; ð3:9Þ

will be suppressed with respect to the one we keep by
g=E2

max. It will be very interesting to include this term in
future work, and we comment below about how this can
be done.
Equation (3.8) defines ΔH as an operator on Hl. The

definition depends on the eigenvalue E that we are trying to
compute. This subtlety will be dealt with below, while for
the moment let us replace E by some reference energy E�.
Even then, the definition seems impractical since it involves
a sum over infinitely many states in Hh. Indeed, the matrix
elements of ΔH according to this definition are given by

ðΔHÞij ¼ −
X

k∶Ek>Emax

VikVkj

Ek − E�
: ð3:10Þ

Fortunately, in the next section we give a simplified
approximate expression for ΔH not involving infinite
sums. As we will see, to leading order ΔH will be
approximated by a sum of local terms:

ΔH ≈
X
N

κNVN; VN ¼
Z

L

0

dx∶ϕðxÞN∶: ð3:11Þ

To this leading order, adding ΔH to Htrunc results in simply
renormalizing the local couplings. As we will see, a more
accurate expression for ΔH contains subleading correc-
tions, which in general cannot be expressed as integrals of
local operators. The appearance of these nonlocal correc-
tions is due to the above-mentioned fact that truncating in
total energy is not a fully local way of regulating the theory.

B. Computation of ΔH

Consider then the matrix elements (3.10) of ΔH for i; j
in the truncated basis. We write them in the form
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ðΔHÞij ¼ −
Z

∞

Emax

dE
MðEÞij
E − E�

; ð3:12Þ

MðEÞijdE≡ X
k∶E≤Ek<EþdE

VikVkj: ð3:13Þ

We are interested in the large-E asymptotics forMðEÞij. Of
course, for finite L the energy levels are discrete and this
function should be properly thought of as a distribution
(a sum of delta functions). However, since the high-energy
spectrum is dense, the fluctuations due to discreteness will
tend to average out when integrating in E. Below we find a
continuous approximation for MðEÞij, valid on average.
Such an approximation will be good enough for computing
the integral in (3.12) with reasonable accuracy. A small loss
of accuracy will occur because of the sharp cutoff at
E ¼ Emax; this will be discussed below in Secs. IV C–IV D.
Our calculation of MðEÞij will follow the method

introduced in [12], Sec. VC. It will be based on the fact
that the same quantity appears also in the following matrix
element:

CðτÞij ¼ hijVðτ=2ÞVð−τ=2Þjji

¼
Z

∞

0

dEe−½E−ðEiþEjÞ=2�τMðEÞij; ð3:14Þ

where we inserted a completeness relation in the second
step. A word about notation: the Euclidean time depend-
ence of various operators is always meant in the interaction
representation, e.g.

VðτÞ ¼ eH0τVe−H0τ: ð3:15Þ

If the time dependence is not shown, it means that the
operator is taken at τ ¼ 0.
Equation (3.14) says that CðτÞ is basically the Laplace

transform of MðEÞ. The leading nonanalytic part of CðτÞ
for τ → 0 will come from the leading piece of MðEÞ as
E → ∞. Our method will proceed by first extracting the
leading nonanalytic part of CðτÞ, and then taking its inverse
Laplace transform to get at MðEÞ.
We will present the computation for a general case when

the potential contains both ∶ϕ2∶ and ∶ϕ4∶ terms:

V ¼ g2V2 þ g4V4: ð3:16Þ

Our Hamiltonian (2.21) has g2 ¼ 0, g4 ¼ g. Turning on
g2 ≠ 0 corresponds to an extra contribution to the mass.
Having this coupling will be useful for a check of the
formalism in Sec. III D below.

We have

CðτÞ ¼
X

gngm

Z
L

0

dx
Z

L=2

−L=2
dz∶ϕðxþ z; τ=2Þn∶

× ∶ϕðx;−τ=2Þm∶; ð3:17Þ

where we used periodicity and invariance under spatial
translations. The nonanalyticity of CðτÞ for τ → 0 comes
from the integration region where the product of two local
operators is singular, i.e. when they are inserted at near-
coinciding points. Let us focus on one term in the sum, and
rewrite it using Wick’s theorem as

gngm

Z
L

0

dx
Z

L=2

−L=2
dz

X
0≤k≤minðn;mÞ

fnm;nþm−2kGLðz; τÞk

× ∶ϕðxþ z; τ=2Þn−kϕðx;−τ=2Þm−k∶: ð3:18Þ

Here GLðz; τÞ is the two-point function of ϕ in the free
theory on the circle of length L. The fs are integer
combinatorial factors (operator product expansion coeffi-
cients):

fnm;nþm−2k ¼
�
n
k

��
m
k

�
k!: ð3:19Þ

In (3.18), the leading nonanalytic behavior as τ → 0 will
come from the propagator powersGLðz; τÞk. The remaining
normal-ordered operators can be Taylor expanded in z, τ:

gngm

Z
L

0

dx
Z

L=2

−L=2
dz

X
0≤k≤minðn;mÞ

fnm;nþm−2kGLðz; τÞk

× ½∶ϕðxÞnþm−2k∶þOðτ2; z2Þ�: ð3:20Þ

The terms OðzÞ are not shown because they will vanish
upon integration. The terms Oðτ2; z2Þ will produce a
subleading singularity as τ → 0. The corresponding con-
tributions to MðEÞ will be suppressed by m2=E2

max com-
pared to the leading ones. In this work these subleading
contributions will be neglected, but it will be interesting
and important to include them in the future.5

Equation (3.20) means that at leading order the correc-
tion Hamiltonian ΔH will contain terms of the form (3.11)
withN ¼ nþm − 2k. To find the couplings κN , we need to
evaluate the nonanalytic part of the following quantities:

IkðτÞ≡
Z

L=2

−L=2
dzGLðz; τÞk; k ¼ 0; 1; 2; 3; 4: ð3:21Þ

5The subleading contributions will give rise to new, derivative,
operators in the Hamiltonian. Since our regulator breaks Lorentz
invariance, the derivatives in τ and z are not going to enter
symmetrically in these subleading terms.
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As we will see below, for k ¼ 0; 1 the τ → 0 behavior will
be analytic (for k ¼ 0 this is a triviality). This implies that
only N ¼ 0; 2; 4 terms will be generated in (3.11).
To evaluate (3.21), we need a few well-known facts

about GLðz; τÞ. In the infinite-volume limit L → ∞ the
rotation invariance is restored, and the two-point function is
a modified Bessel function of the second kind, depending
on the distance ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ τ2

p
:

GðρÞ ¼ 1

2π
K0ðmρÞ ðL ¼ ∞Þ: ð3:22Þ

It has a logarithmic short-distance behavior and decays
exponentially at long distances6:

GðρÞ ≈
�− 1

2π log ðe
γ

2
mρÞ½1þOðm2ρ2Þ�; ρ ≪ 1=m;

expð−mρÞ=ð2 ffiffiffiffiffiffiffiffiffiffiffiffi
2πmρ

p Þ; ρ ≫ 1=m:

ð3:23Þ

For a finite L, the two-point function is obtained from the
L ¼ ∞ case via periodization:

GLðz; τÞ ¼
X
n∈Z

Gð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzþ nLÞ2 þ τ2

q
Þ: ð3:24Þ

The periodization corrections are exponentially small for
Lm ≫ 1. In our work, this condition will be always
satisfied, and so we useG in place ofGL.

7 This is consistent
with having neglected the exponentially suppressed E0ðLÞ
and zðLÞ terms when passing from (2.19) to (2.21).
So we replace GL by GðρÞ in (3.21). The nonanalytic

behavior of the integral comes from the small z region,
where the short-distance logarithmic asymptotic (3.23) is
applicable. To regulate spurious IR divergences, it is
convenient to calculate the first derivative with respect to τ:

I0kðτÞ ¼ k
Z

∞

−∞
dzðdG=dρÞGðρÞk−1 τ

ρ

→ k

�
−

1

2π

�
k
Z

∞

−∞
dz

�
log

�
eγ

2
mρ

��
k−1 τ

ρ2
; ð3:25Þ

where we also replacedG by its short-distance asymptotics.
The resulting integrals are convergent and readily
evaluated8:

I01ðτÞ ¼ const;

I02ðτÞ ¼
1

2π
logmτ þ const;

I03ðτÞ ¼ −
3

8π2
ðlogmτÞ2 − 3γ

4π2
logmτ þ const;

I04ðτÞ ¼
1

4π3
ðlogmτÞ3 þ 3γ

4π3
ðlogmτÞ2 þ 12γ2 þ π2

16π3
logmτ

þ const; ð3:26Þ

modulo errors induced by using the short-distance asymp-
totics of G. These errors are suppressed by Oðm2τ2Þ. The
corresponding corrections to MðEÞ are suppressed by
m2=E2, and will be omitted. Also, as mentioned above,
we see that I10ðτÞ is analytic.
We now have to pass from the small-τ behavior to the

large-E asymptotics. Differentiating Eq. (3.14) we have

C0ðτÞ ¼
Z

∞

0

dEe−Eijτ½−EijMðEÞ�; ð3:27Þ

where we defined

Eij ≡ E − ðEi þ EjÞ=2: ð3:28Þ

Thus from the inverse Laplace transforms of I0kðτÞ we
should be able to determine the asymptotics of −EijMðEÞ.
These inverse Laplace transforms are found from the
following table of direct transforms:

Z
∞

ϵ
dEe−Eτ

1

E
¼ − logmτþ analytic;

Z
∞

ϵ
dEe−Eτ

logE=m
E

¼ 1

2
ðlogmτÞ2 þ γ logmτ

þ analytic;Z
∞

ϵ
dEe−Eτ

ðlogE=mÞ2
E

¼ −
1

3
ðlogmτÞ3 − γðlogmτÞ2

− ðπ2=6þ γ2Þ logmτþ analytic:

ð3:29Þ

Since we are only interested in the large-E asymptotics, the
IR cutoff ϵ is not important—its value only influences the
analytic parts.
Gathering everything, we obtain the following formula

for the leading asymptotic behavior of MðEÞ:

MðEÞ ∼ ½g24μ440 þ g22μ220�V0 þ ½g24μ442 þ g2g4μ422�V2

þ g24μ444V4jE→Eij
; ð3:30Þ

where

6γ is Euler’s constant.
7The induced error can be estimated by approximating

GLðz; τÞ ≈GðρÞ þ 2GðLÞ for small ρ. This implies a shift
ΔIkðτÞ ≈ αIk−1ðτÞ, α ¼ 2kGðLÞ. For k ¼ 4 and L ¼ 4=m
(L ¼ 6=m) the coefficient α ¼ 0.01ð0.002Þ.

8Mathematica’s Integrate function sometimes gives wrong
results for integrals of this type, so be careful.
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μ440ðEÞ ¼
1

E2

�
18

π3
ðlogE=mÞ2 − 3

2π

�
; μ220ðEÞ ¼

1

πE2
;

μ442ðEÞ ¼
72 logE=m

π2E2
; μ422 ¼

12

πE2
; μ444ðEÞ ¼

36

πE2
:

ð3:31Þ

As the notation suggests, the μ-functions in (3.30) are
evaluated at E ¼ Eij. This equation is the main result of this
section. We subjected it to several tests, which we describe
below.
Before proceeding, let us comment on the evaluation

of the next-to-leading term (3.9) in the renormalization
procedure, which will be important in future developments
of the method. From this term we extract the Oðg3=E4

maxÞ
contribution to the coefficients κN . This correction term is
the most interesting of all 1=E4

max corrections, since it
dominates in the limit g ≫ m2. Technically, we should
generalize CðτÞ andMðEÞ in Eq. (3.14) to functions of two
variables (τ1;2 and E1;2) and extract the leading nonanalytic
pieces for τ1;2 → 0. This calculation will involve Wick
contractions among the operators in Cðτ1; τ2Þ, the cyclic
ones being the only nontrivial part.
We now move on to the tests of Eq. (3.31).
Test 1
Let us plug (3.30) into (3.12), and do the integral

neglecting the dependence on E� and ðEi þ EjÞ=2.9 This
gives ΔH of the form (3.11), i.e. as a sum of local
counterterms with coefficients which are functions of
Emax. For example, the g24 part is given by
(Log≡ logEmax=m):

ΔH ≈ −
g24

E2
max

��
9

π3
ðLog2 þ LogÞ þ 3ð6 − π2Þ

4π3

�
V0

þ
�
36

π2
Logþ 18

π

�
V2 þ

18

π
V4

�
: ð3:32Þ

This expression was checked as follows. Working in
infinite volume, we computed the order g2 perturbative
corrections to the vacuum energy, particle mass, and 2 → 2
scattering amplitude, imposing the cutoff E ≤ Emax on
the intermediate state energy (thus working in the “old-
fashioned” Hamiltonian perturbation theory formalism,
rather than in terms of Feynman diagrams). We then
checked that the leading Emax dependence of these results
is precisely the one implied by (3.32). This way of arriving
at (3.32) is more laborious than the one given above, and
we do not report the details.
Test 2
A direct check of the asymptotics (3.30) can be done by

comparing it with the actual value ofMðEÞ computed from

its definition (3.13). One example is given in Fig. 1, where
we consider the diagonal matrix elements hijMðEÞjii, jii
the state of i particles at rest, i ¼ 0; 1; 2. We choosem ¼ 1,
L ¼ 6, g2 ¼ 0, and g4 ¼ 1. The green smooth curves are
the theoretical asymptotics from (3.30). The blue irregular
curves represent the moving average of hijMðEÞjii over the
interval ½E − ΔE;Eþ ΔEÞ with ΔE ¼ 1. To facilitate the
comparison, both are plotted multiplied by E2

ii. We see that
the two curves agree quite well on average.
A third test, involving the g2 coupling, is described in

Sec. III D.

C. Renormalization procedures

By renormalization, in a broad sense, we mean adding to
the truncated Hamiltonian Htrunc extra terms designed to
compensate for the truncation effects and reduce the Emax
dependence of the results. In this section we describe in
detail the three renormalization prescriptions used in our
numerical work.
Consider thus the Hamiltonian

H ¼ H0 þ V; V ¼ g2V2 þ g4V4: ð3:33Þ

In the main numerical studies in Sec. IV we set g2 ¼ 0.
The opposite case g4 ¼ 0, g2 ≠ 0 will be considered in the
check in Sec. III D.
We are interested in the spectrum of H on a circle of

length L. Three approximations to this spectrum, in order
of increasing accuracy, can be obtained as follows.
(1) Raw truncation (marked “raw” in plots)

In this simplest approach, we are not performing
any renormalization. The truncated Hamiltonian
Htrunc is constructed by restricting H to the subspace
Hl of the full Hilbert space, spanned by the states of
energy E ≤ Emax. The spectrum of Htrunc will be
called the “raw spectrum.” According to Eqs. (3.30)
and (3.32), we expect that the raw spectrum ap-
proximates the exact spectrum with an error which
scales as 1=E2

max (up to logarithms).
(2) Local renormalization (marked “ren.” in plots)

In this approach, we construct a correction Ham-
iltonian ΔH by the formula (3.12). We use the
asymptotics (3.30) for MðEÞ, in which we neglect
ðEi þ EjÞ=2 with respect to Emax. This gives a local
ΔH of the form (3.11) with

κ0 ¼ −
Z

∞

Emax

dE
E − E�

½g24μ440ðEÞ þ g22μ220ðEÞ�;

κ2 ¼ −
Z

∞

Emax

dE
E − E�

½g24μ442ðEÞ þ g2g4μ422ðEÞ�;

κ4 ¼ −
Z

∞

Emax

dE
E − E�

g24μ444ðEÞ: ð3:34Þ9We stress that in numerical computations it will be important
to retain these subleading corrections.
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The choice of the reference energy E� will be
discussed shortly. We then construct the renormal-
ized Hamiltonian

Hren ¼ Htrunc þ ΔHloc;

ΔHloc ≡ κ0V0 þ κ2V2 þ κ4V4: ð3:35Þ

Thus κ2;4 correct the g2;4 couplings, while κ0 shifts
the ground state energy density. Notice that the κs
scale as 1=E2

max (up to logarithmic terms).
The renormalized Hamiltonian acts in the same

truncated Hilbert space Hl as the truncated Hamil-
tonian Htrunc. Its energy levels will be called the “
renormalized spectrum.” This construction imple-
ments the first nontrivial approximation to the exact
equation (3.6). The local coupling renormalization
accounts for the leading 1=E2

max error affecting the raw
spectrum. Further corrections, discussed below, are
suppressed by one more power of Emax. So we expect
that the renormalized spectrum approximates the exact
spectrum with an error which scales as 1=E3

max.
Let usnowdiscuss the reference energyE� in (3.34).

Recall that E� was introduced as a placeholder for the
eigenstate energy E in the definition (3.6) ofΔH. Now
it is important to realize that the eigenstate energies do
not remainOð1Þ in the limit of largeL. The excitations
above theground state,EI − E0,

10 do stayOð1Þ, but the
ground state energy itself grows linearly:

E0 ∼ ΛL; L → ∞: ð3:36Þ

Here Λ is the interacting vacuum energy density (the
cosmological constant), which is finite and observable
in our theory.11

We therefore use the following recipe. We choose
E� close to, although not necessarily equal to, the
ground state energy of the theory. The precise choice
will be specified when we present the numerical
results. With this choice we compute the coupling
renormalizations (3.34) and the renormalized spec-
trum. The differences EI − E� will now be Oð1Þ, and
the error induced by this mismatch will truly be
1=Emax suppressed. Moreover, even this error can
be further corrected, as we discuss below.
We briefly mention here an alternative approach.

One can insist that E� be adjusted, e.g. iteratively, until
it exactly equals the eigenvalue EI which comes out
from diagonalizing Hren. This has to be done sepa-
rately for each eigenstate, and so is rather expensive.
We tried this method and found that it gives results in
close agreement with those obtained from our simpler
recipe for E�, combined with the correction procedure
described below.

(3) Local renormalization with a subleading correction
(marked “subl.” in plots)
We now describe the third approach which im-

proves on the previous one by taking into account
not only the renormalization of the local couplings,

FIG. 1 (color online). A test of the MðEÞ asymptotics; see the text.

10We use small roman letters i; j;… to number states in the
Fock space, which are eigenstates of H0, and large letters I; J;…
to number the eigenstates of the interacting Hamiltonian.

11Recall that the free vacuum energy density was set to zero by
normal ordering the free scalar Hamiltonian.
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but also the first subleading corrections due to the
eigenstate energy and ðEi þ EjÞ=2. As explained
above, these corrections can be considered smaller
than the local ones by a further Oð1=EmaxÞ factor.
They will take care of the mismatch between (3.12)
and the local coupling renormalization. The corre-
sponding correction Hamiltonian has the following
matrix elements between the truncated Hilbert space
states:

½ΔHsublðEÞ�ij ¼ ðλ0ÞijðV0Þij þ ðλ2ÞijðV2Þij
þ ðλ4ÞijðV4Þij ð3:37Þ

(no summation over the repeated indices). The
ðλNÞij are the differences between the renormaliza-
tion coefficients fully dependent on ðEi þ EjÞ=2 and
E and the local ones κN defined in (3.34):

ðλ0Þij ¼ −
Z

∞

Emax

dE
E − E

½g24μ440ðEijÞ þ g22μ220ðEijÞ�

− κ0;

ðλ2Þij ¼ −
Z

∞

Emax

dE
E − E

½g24μ442ðEijÞ þ g2g4μ422ðEijÞ�

− κ2;

ðλ4Þij ¼ −
Z

∞

Emax

dE
E − E

g24μ444ðEijÞ − κ4: ð3:38Þ

There is a small technical subtlety in using the
given expressions. For ðEi þ EjÞ=2 close to Emax,
the argument Eij of the μ-functions is small in the
part of the integration region close to Emax. In this
region it makes little sense to use (3.31), valid for
large E. From Fig. 1 we see that the asymptotics sets
in roughly at E ∼ 5m. We therefore use the follow-
ing prescription in evaluating (3.38): we use (3.31)
for Eij ≥ 5m, while we set μs to zero below this
threshold.
The full procedure is then as follows. We compute

the local renormalized Hamiltonian (3.35) with the
reference value E� fixed around the ground state
energy. We diagonalize Hren, determining the
renormalized spectrum (in practice only a few lowest
eigenvalues) and the corresponding eigenstates:

HrenjcIi ¼ Eren;IjcIi: ð3:39Þ

Every eigenvalue is then corrected by adding (3.37)
at first order in perturbation theory:

Esubl;I ¼ Eren;I þ ΔEI;

ΔEI ¼ hcIjΔHsublðEren;IÞjcIi: ð3:40Þ

From the computational point of view the evaluation
of this correction can be considered inexpensive,
since it scales as the square of the basis dimension,
whereas the matrix diagonalization typically scales
as its cube. The energy levels Esubl;I will be called
“renormalized subleading” or simply “subleading.”
Second-order corrections can also be considered:

ΔEð2Þ
I ¼

X
J≠I

jhcIjΔHsublðEren;IÞjcJij2
Eren;I − Eren;J

: ð3:41Þ

These turn out to be negligible, except when there
are two almost-degenerate eigenvalues.

D. A test for the ϕ2 perturbation

We now perform a test of our method in a controlled
situation when the exact answers are known.12 Consider the
theory described by the action [cf. (2.1)]

S ¼ S0 þ g2

Z
d2x∶ϕ2∶: ð3:42Þ

The finite-volume Hamiltonian corresponding to this
problem has the form

H ¼H0 þ g2V2 þC; C¼ E0ðLÞ þ g2LzðLÞ: ð3:43Þ

Just as in Sec. II A, the extra constant term C appears
because of the difference in the normal-ordering counter-
terms in the infinite space and on the circle. These terms are
exponentially suppressed for Lm ≫ 1, but for the time
being it will be instructive to keep them.
In full form, we have

H ¼ Cþ
X
k

ωka
†
kak þ

g2
2ωk

ðaka−k þ a†ka
†
−k þ 2a†kakÞ;

ωk ¼ ωkðmÞ: ð3:44Þ

We expect, of course, that this Hamiltonian corresponds to
a free scalar of a mass

μ2 ¼ m2 þ 2g2: ð3:45Þ

We now use a Bogoliubov transformation to show this
explicitly. The derivation is standard and is given here only
for completeness. The transformation has the form

bk ¼ ðcosh ηkÞak þ ðsinh ηkÞa†−k ð3:46Þ

with ηk assumed to be real and depending only on jkj. The
bs then satisfy the same oscillator commutation relations as
the as. We want to map (3.44) onto

12This test is analogous to the one in [12], Sec. VI.
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X
k

Ωkb
†
kbk þ E0; Ωk ¼ ωkðμÞ: ð3:47Þ

The conditions that the two Hamiltonians match take the
form

Ωk coshð2ηkÞ ¼ ωk þ g2=ωk; Ωk sinhð2ηkÞ ¼ g2=ωk:

ð3:48Þ

This is indeed satisfied provided that

Ω2
k ¼ ω2

k þ 2g2; ð3:49Þ

which proves the expression (3.45) for the new mass. The
same derivation gives the value of the vacuum energy:

E0 ¼ C−
X

ΩkðsinhηkÞ2 ¼ Cþ 1

2

X
ðΩk −ωk − g2=ωkÞ:

ð3:50Þ

Up to the constant C, the last expression can be intuitively
understood [12] by starting from the zero-point energy
1
2

P
Ωk and subtracting the terms zeroth and first order

in g2.
The series in (3.50) is convergent and can be summed

using the Abel-Plana formula. We find that the constant C
is canceled, and the final result is given by

E0 ¼ E0ðL;μÞ þΛL; Λ¼ 1

8π
½μ2ð1− logμ2=m2Þ−m2�;

ð3:51Þ

where E0ðL; μÞ is the Casimir energy of the free scalar field
of mass μ, given by (2.10) with m → μ.
The physical interpretation of (3.51) is clear. Apart

from the usual Casimir energy term, we have an induced
extensive vacuum energy, corresponding to a finite vacuum
energy density Λ. Usually, when one studies the Casimir
energy, the vacuum energy density in the infinite space
limit is assumed to vanish. However, our situation here is
different. We already fine-tuned to zero the vacuum energy
density of the original, unperturbed, theory, i.e. the one

described by the action S0. Once this is done, the vacuum
energy density of the perturbed theory becomes finite and
observable.
We now compare the above exact results with the

numerical results obtained by using the Hamiltonian
truncation. We consider the case Lm ≫ 1, which means
that we will not be sensitive to the exponentially suppressed
constant term C in the initial Hamiltonian. We thus start
directly from the Hamiltonian of the form (3.33) with
g4 ¼ 0, g2 ≠ 0. We calculate its spectrum using the three
procedures from Sec. III C. In the shown plots we chose
m ¼ 1, L ¼ 10, and varied g2 from −0.4 to 0.8.13 For
illustrative purposes numerics were done with a rather low
cutoff Emax ¼ 12, for which the truncated Hilbert space
contains about 300 states. Figure 2 compares the ground
state energy. In the left plot, the agreement between the raw
and the exact result is already pretty good. The right plot
shows the difference between the numerics and the exact
value. We see that the renormalization greatly reduces the
discrepancy over the raw procedure, and the results are
made slightly better by including the subleading correction.
In Fig. 3 we do the same comparison for the spectrum of

excitations above the vacuum, EI − E0. In the left plot we
pick the first two Z2-odd states (one and three particles at
rest), and the first two Z2-even states (two particles at rest,
and with one unit of momentum in the opposite directions).
Already the raw spectrum agrees well with the exact values.
In the right plot we present the differences, focusing on the
first two excited levels only (one even and one odd). Notice
that for g4 ¼ 0 the difference between Hren and Htrunc is
only in the vacuum energy coefficient κ0, which shifts all
eigenvalues in the sameway. The first nontrivial corrections
for the spectrum of excitations are therefore the subleading
ones. The improvement over the raw results is significant.

E. Comparison to Ref. [12]

The reader will have noticed that our treatment of the
UV cutoff dependence and renormalization is similar to
Ref. [12], Secs. V and VII C. There is however a difference
of principle that we now explain.

FIG. 2. Exact and numerical ground state energy for the ϕ2 perturbation; see the text.

13The reference energy E� in (3.34) was set to the value of the
ground state energy given by the raw truncation procedure.
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Both in this work and in Ref. [12] the starting point for
the renormalization is Eq. (3.6). While Ref. [12] also
presents this equation, it then takes an alternative route,
justifying the renormalization procedure on the basis of the
Hamiltonian perturbation theory; see [12], Eq. (5.8). This
equation is then further subjected to an RG improvement
procedure in Sec. VC of [12], leading ultimately to a result
which differs from our Eq. (3.6) only by some subleading
corrections.
Although the RG improvement introduced in [12] might

be useful for understanding the physical picture, it appears
to be a detour that is not strictly necessary for doing
the computations. Equation (3.6) appears to provide the
best starting point for the discussion of renormalization
corrections.
A discussion on earlier approaches to analytic renorm-

alization, in the context of TCSA, can be found in Sec. VD
of [12].

IV. STUDY OF THE ϕ4 THEORY

In the previous sections we developed the method and
tested it in the simple setting of the ϕ2 perturbation.
We now move on to the main task of this paper—to study
the spectrum of the ϕ4 theory described by the
Hamiltonian (2.21).
The main physical parameter varied in our study will be

the quartic coupling g. The physics depends on the
dimensionless ratio ḡ ¼ g=m2, and we work in the units
where the mass term m ¼ 1.
The second parameter will be the size of the spatial circle

L. This plays the role of the IR cutoff, to render the
spectrum discrete. In practice one is usually interested in
the infinite-volume limit L → ∞, and we try to approach
this limit. However, even a finite L is physical, in the sense
that the energy levels on the circle are well-defined physical
observables.
The third parameter we vary is the cutoff on the size of

the Hilbert space Emax (the maximal energy of the free
scalar Fock states included in the truncated Hilbert space).
This parameter plays the role of the UV cutoff. It is
unphysical. The continuum limit is recovered for
Emax → ∞.

We typically present the results derived using the
renormalization procedures both without (marked ren. in
the plots) and with (marked subl.) subleading corrections
(see Sec. III C). These procedures are expected to converge
to the exact spectrum at the rate which goes as 1=E3

max

and 1=E4
max (modulo logarithms). We take the difference

between them as a rough idea of the current error of the
method.

A. Varying g

In Fig. 4 we present the ground state energy and the low-
energy spectrum of excitations for g ≤ 5. This extends well
beyond the range g≲ 0.5–1 where perturbation theory is
accurate (see Appendix B). In this plot we use a fixed value
L ¼ 10, and choose the UV cutoff Emax ¼ 20.14 We use the
two renormalization procedures explained in Sec. III C.
The left plot shows the dependence of the ground state

(≡vacuum) energy on g. The vacuum is simply the state of
the lowest energy, and it resides in the Z2-even sector.
There is not much structure in this plot, except for the fact
that the vacuum energy is negative and grows in absolute
value as g is increased, becoming of the same order of
magnitude as Emax for the largest g considered here. This
has a consequence for the renormalization procedure used
in our study. Recall that in the local renormalization (the
one marked ren.) the couplings are renormalized using
Eqs. (3.34) which involve the reference energy E�.
Everywhere in this section we set E� to the value of the
vacuum energy computed using raw truncation. We already
mentioned in Sec. III C that since the vacuum energy may
become large, the integrals in (3.34) have to be evaluated
without expanding in E�. We are fortunate here that the
vacuum energy becomes large and negative, and so the
renormalization corrections become smaller if nonzero E�
is taken into account. A large and positive vacuum energy
would be a big problem for the performance of our
method.15

FIG. 3 (color online). Exact and numerical spectra of excitations for the ϕ2 perturbation; see the text.

14This corresponds to keeping 12870 (12801) states in the even
(odd) sector of the Hilbert space.

15That the vacuum energy becomes negative both here and in
Sec. III D is probably more than just a coincidence. See the
discussion in [12], note 21.
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The right plot shows the five lowest excitations above
the vacuum, with the Z2 ¼ � excitations colored in blue
(respectively red). As we can see the first odd level
becomes almost degenerate with the vacuum for g≳ 3.
This is a signal of the spontaneous Z2-symmetry breaking.
We therefore expect a second-order phase transition to
occur at a critical point g ¼ gc ≈ 3. For g ¼ gc, the theory
should flow at large distances to a conformal field theory
(CFT). Since the ϕ4 theory is in the same universality class
as the Ising model, we expect this IR CFT to be the minimal
modelM4;3. We analyze the region around g ¼ gc in more
detail below. For g > gc we are in the Z2-broken phase. In
this phase, the higher excitations should also be doubly
degenerate in infinite volume. For a finite L the exact
degeneracy is lifted and becomes approximate. This
degeneracy is not observed clearly in Fig. 4, probably
because L ¼ 10 is not large enough.16

In the region of small g, it is possible to validate the
numerical results by comparing them to perturbation
theory. In Appendix B, we do this comparison for the
ground state energy and the mass of the lowest excitation.

For small g, we find good agreement with the perturbative
predictions computed through Oðg3Þ.
It is interesting to understand the sensitivity of the

spectrum plot in Fig. 4 to the chosen value of L ¼ 10.
We therefore show in Fig. 5 similar plots for L equal to 6, 8,
10, and Emax respectively equal to 34, 26, and 20.17 To
avoid clutter, only the results for the subleading renorm-
alization (the third, most precise method in Sec. III C) are
presented.
In the left plot we show the vacuum energy density

Λ ¼ E0=L. For a sufficiently large L this is supposed to
become independent of L. We see that this constancy is
verified with an excellent accuracy for g≲ 2. In this region
we are in the massive phase, and the finite L corrections are
expected to be exponentially small (see Sec. IV C below).
The dependence on L becomes more pronounced around
g ¼ gc, which is as it should be because the mass gap
goes to zero here. However, in the Z2-broken phase the
corrections remain significant, while theoretically they
should become again exponentially suppressed.
Therefore, for g≳ 3, we are forced to interpret the variation

FIG. 4 (color online). Numerical spectra as a function of g for m ¼ 1, L ¼ 10; see the text.

FIG. 5 (color online). The vacuum energy (left) and the first odd excitation (right) determined numerically for L ¼ 6; 8; 10. The blue
dashed line in the right plot is the fit to determine the critical coupling; see Sec. IV B.

16The discussed phase diagram is the same as for the ϕ4 model
in d ¼ 2.5 dimensions studied in [12] using the TCSA. In that
case it was possible to observe approximate degeneracy for the
first and second excited states.

17Emax is adjusted to have roughly the same size of the Hilbert
space in all three cases. Smaller L give larger energy spacings for
the one-particle momentum excitations, and allow us to go to
larger Emax.
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with L not as a physical effect but as being due to finite
Emax truncation effects. This is consistent with the signifi-
cant difference between the results obtained with the two
renormalization procedures in Fig. 4.
In the right plot of Fig. 5 we show the physical particle

mass mph ¼ E1 − E0. Once again, in the Z2-unbroken
massive phase there is hardly any dependence on L, while
around g ¼ gc there appears variation, which will be
studied quantitatively in Sec. IV B below. This plot will
also be used below to extract an estimate of gc.
Overall, the truncation effects seem to be too large for

g≳ 3 to allow precise quantitative claims about this range
of couplings (apart from the fact that the Z2 symmetry
appears broken). Head-on treatment of that range would
require a refinement of the method, by improving the
renormalization procedure. An alternative way to access
this region is to use the strong/weak coupling duality due
to Chang [17]. In a companion work [18] we will both test
this duality, and use it to study the Z2-broken phase of
the model.

B. The critical point

We will now try to determine with some precision the
critical coupling gc, and study the lowest operator dimen-
sions of the CFT at the phase transition. According to the
standard renormalization group theory, for g close to gc the
physical mass mph should behave as

mph ∼ Cjg − gcjν; ð4:1Þ

where C is a theory-dependent constant,18 and ν is a critical
exponent, common for all theories in the Ising model
universality class, and expressible via the dimension of the
most relevant Z2-even scalar operator, ϵ, of the CFT:

ν ¼ ð2 − ΔϵÞ−1: ð4:2Þ

We used our numerical results obtained for L ¼ 10,
Emax ¼ 20 renormalized with subleading corrections (see
Fig. 5) to perform the fit of mph ≡ E1 − E0 to the formula
(4.1), replacing ∼ by ¼. Admittedly, our procedure is
careless, since we do not take into account the corrections
to scaling. We view the results which we now present as
preliminary; they should be validated by future studies as
our method progresses. Another uncertainty concerns the
range of g chosen to do the fit. On the one hand, g should be
close to gc; on the other hand close to gc the spectrum is
modified by finite size corrections. Looking at the right plot
in Fig. 5, we subjectively picked the g-interval [1.4,2.4],
which by the eye seems to give a nice power law close to a
straight line. To introduce some way to estimate the
systematic error, we selected a few subintervals contained

in the basic interval, and fitted the parameters Δϵ, gc for
each such subinterval.19 We obtained gc ¼ 3.04ð15Þ and
Δϵ ¼ 1.06ð13Þ. This value of Δϵ is compatible with the
two-dimensional Ising model value Δϵ ¼ 1, giving us
confidence that the procedure is sensible. To improve
the estimate of gc, we fix Δϵ to this theoretically known
value and redo the fit. We then get ḡc ¼ 2.97ð3Þ.
The above error estimate may be too optimistic, because

we completely ignored the error in mph induced by
truncation effects. We have also performed the fit taking
the L ¼ 10, Emax ¼ 20 renormalized subleading results as
central values, and the difference σ between these central
values and the renormalized results without subleading
correction as the error (we consider the two-sided error
�σ). Following this procedure and doing the fit in the
[1.4,2.4] interval we obtained ḡc ¼ 2.97ð14Þ. This is our
final, conservative, estimate.
We now perform another comparison with the theoreti-

cally known CFT operator dimensions. Namely, for g ¼ gc
the excitations EI − E0 should go as

EI − E0 ∼
2π

L
ΔI; ð4:3Þ

whereΔI are the CFT dimensions. This asymptotics should
be valid for L ≫ 1 where the theory has flown sufficiently
close to the IR fixed point. To check this, in Fig. 6 we plot
the three lowest excitation energies multiplied by L=ð2πÞ.
In this figure, we consider L ¼ 5…12 and vary the

quartic coupling within our optimistic uncertainty range
around the fixed point, g ¼ 2.94…3.0. We have to vary the
UV cutoff Emax as a function of L in order to have a
manageable number of basis elements in the low-energy
truncated Hilbert space Hl. So Emax decreases from 33 at
L ¼ 5 to 18 at L ¼ 12, while the truncated Hilbert space
dimension stays for each L around 10000–15000 per Z2

sector. To avoid clutter, we show only the renormalized

FIG. 6 (color online). Comparison with the CFT spectrum; see
the text.

18Which also depends on which direction one approaches the
fixed point.

19In the future, the fit procedure could be refined by taking into
account the value of E2 − E0 at g ¼ gc.

SLAVA RYCHKOV AND LORENZO G. VITALE PHYSICAL REVIEW D 91, 085011 (2015)

085011-14



subleading results (but see Fig. 8 below, where the results
without subleading corrections are also shown).
As Fig. 6 demonstrates, (4.3) is approximately obeyed at

large L, provided that we use the two-dimensional Ising
operator dimensions Δσ ¼ 1=8, Δϵ ¼ 1, Δ∂2σ ¼ 2þ 1=8,
where this latter operator is a scalar descendant of σ.

C. L dependence

We now present several plots which show explicitly how
the spectrum of the theory varies for increasing L while
keeping g fixed. These plots are analogous to Fig. 5, but the
information is presented somewhat differently.
Z2-unbroken phase
Let us look first at the Z2-unbroken phase. We fix g ¼ 1,

which is at the outer border or the perturbativity range
(see Appendix B). Figure 7 shows then the vacuum energy
density E0=L and the spectrum, for L ¼ 5…12.
In the left plot we see that the vacuum energy density

tends to a constant value. We do not worry too much about
the fluctuations around the limit which happen for some
values of L, like an upward fluctuation for L ¼ 8.5 or a
downward fluctuation for L ¼ 11.5. These fluctuations are
due to the fact that in our renormalization procedure we
neglected the discreteness of the distributionMðEÞ, replac-
ing it by a continuous approximation. As Fig. 1 shows, this
approximation is meant to work only on average. The
sharpness of the cutoff E ≤ Emax disrupts the validity of the
approximation, and must be behind the above fluctuations.
In the future it will be important to find a way to work
around these fluctuations. One way would be to consider a
cutoff which is not totally sharp.20

Ignoring for the time being the fluctuations, let us
discuss the approach of the vacuum energy density to its
infinite-volume limit. As is well known, in a massive
phase the rate of this approach is exponentially fast and is
given by

E0ðLÞ=L ¼ Λ −
mph

πL
K1ðmphLÞ þOðe−2mphLÞ

≈ Λ −
�

mph

2πL3

�
1=2

e−mphLðL ≫ 1=mphÞ: ð4:4Þ

This formula can be derived by considering the partition
function of the theory on a torus S1L × S1L0 where L and L0
are the lengths of the circles. The E0ðLÞ is extracted by
considering the limit L0 ≫ L, and so it is natural to treat L0
as space and L as the inverse temperature. The condition
L ≫ 1=mph means that we are interested in low temper-
atures. The deviation of the free energy can then be
described in terms of thermodynamics of a gas of particles
of mass mph. This type of argument is standard in the
thermodynamic Bethe ansatz calculations in integrable
theories, in which case also the subleading terms in
(4.4) can be determined; see e.g. [19], Eq. (3.13).
However, the leading term that we show is more general.
It does not require integrability or knowing anything about
how the particles interact—we can treat them as free in this
computation. In fact (4.4) can be also determined by taking
the large L limit of the free scalar Casimir energy (2.10)
with m → mph.
The blue curve in the left plot is the fit of our numerical

data by Eq. (4.4) with mph fixed to the value determined
from the numerical spectrum (see below). We see that the
rate of the approach to the infinite L limit is reasonably well
described by the theoretically predicted dependence.21

The accompanying right plot shows the spectrum of
excitations above the vacuum. Observe the remarkably
small difference between the two renormalization proce-
dures (we use this difference as an idea about the error of
the method). The first excited state in the odd sector
should for large L approach the infinite-volume physical
mass mph. It shows hardly any variation with L in the

FIG. 7 (color online). The vacuum energy density and the excitation spectrum for g ¼ 1, as a function of L.

20Reference [12], Sec. VID and Appendix D, describes a
method which for conformal bases used in that work allowed it to
perform renormalization taking into account the discreteness of
the sequence MðEÞ. It is not clear if that method extends to the
massive Fock-space bases used here.

21Since mph < m, the effect we are observing here is formally
dominant with respect to the exponentially suppressed E0ðLÞ and
zðLÞ corrections, which were omitted in Sec. II A. Still, the
hierarchym=mph is not very large, and a more careful comparison
may be warranted in the future, taking also those corrections into
account.
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shown range, which is consistent with the rate of approach
being exponentially fast in mphL [20]. We extract
mph ¼ 0.751ð1Þ.
The second excited state, which belongs to the even

sector, for large L asymptotes to 1.47(4) which within error
bars coincides with 2mph. This state corresponds to having
two particles at rest. Notice that we do not observe any
states in the energy range between mph and 2mph. Such
states would be interpreted as two-particle bound states. As
is well known, the ϕ4 interaction is perturbatively repulsive,
so we do not expect bound states at weak coupling.
Moreover it is known rigorously that two-particle bound
states are absent everywhere below the phase transition; see
[21], Sec. XVIIB. What we observe here is consistent with
these results.
Notice that the two-particles at rest state approaching

2mph, as well as the three-particles at rest state going to
3mph, show a much larger variation with L compared to the
one-particle state. That this variation is not exponentially
suppressed is a consequence of particle-particle inter-
actions. Since the interactions are short ranged, their effect
is expected to go like the inverse volume, 1=L [22]. It
should be possible to use this effect to extract information
about the two-particle S matrix.22

For small g, it is easy to calculate these corrections
explicitly using the first-order perturbation theory for the
Hamiltonian (2.21). For the two-particle and three-particle
states at rest we get23

E2 ¼ 2mþ 3g
Lm2

þOðg2Þ; E3 ¼ 3mþ 9g
Lm2

þOðg2Þ:
ð4:5Þ

The positiveness of the OðgÞ corrections explains the
“bumps” at small coupling in the corresponding curves
in Fig. 4 (the first Z2-even and the second Z2-odd
states).
The even state just above the one asymptoting to 2mph

should be identified as corresponding to two particles
moving in the opposite directions on the circle with one
unit of momentum each. Using the one-particle dispersion
relation, the energy of this state should be roughly
2 × ðm2

ph þ ð2π=LÞ2Þ1=2 plus the corrections due to the
particle interactions in finite volume. Because of the 2π
prefactor, the dispersion relation corrections are significant
even at the maximal values of L that we are considering;
they seem to explain most of the difference between the
first two even states. At larger L, we expect the particle
interaction corrections to take over, since their strength
decreases only as 1=L.
Our final comment about the g ¼ 1 spectrum plot

concerns the pattern of level crossings. In a nonintegrable
quantum field theory, we do not expect energy levels of the
same symmetry to cross when varying the volume. In fact,
the absence or presence of level crossings can be used as an
empirical check of integrability (see [24] for a related recent
discussion). Since the ϕ4 theory is, for all we know,
nonintegrable, levels with the same Z2 quantum number
should not cross. Most levels in Fig. 7 do not cross trivially
because they never come close to each other. However,
there is one interesting “avoided” crossing: the third and
fourth Z2 ¼ þ levels head for a collision around L ¼ 7 but
then repel. Many more such avoidances are present in the
higher energy spectrum (not shown in Fig. 7).
The critical point
In Fig. 8 we show analogous plots for the neighborhood

of the critical point. We fix g ¼ 2.97, i.e. the central value
for our gc estimate. One drastic change compared to Fig. 7
is that the energy differences EI − E0 (plotted on the left) no
longer tend to constants but scale as 1=L, as expected for a
CFT. This is the same plot as in Fig. 6, except that here we
do not multiply by L=2π, and we show results for both
renormalization methods, to get an idea of possible error
bars. Evidently, even if g is not exactly equal to the critical

FIG. 8 (color online). Same as in Fig. 7, but for g ¼ 2.97.

22Such analyses are standard in the TCSA approach to d ¼ 2
RG flows; see [14,23] for the first and a recent example.

23These formulas are valid for a fixed finite L and g ≪ π2m=L.
In this limit the splittings between different states with the same
number of particles are sufficiently large so that we can neglect
their mixing. In the opposite limit one should apply quaside-
generate perturbation theory.
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coupling, the mass gap is sufficiently small so that it is not
visible for the values of L shown in this plot.
On the right we show the vacuum energy density, which,

as expected, seems to approach a constant. However, the
uncertainty, measured by whether or not we include the
subleading corrections, remains significant. Theoretically,
the asymptotics of approach to the limit should be
−πc=ð6L2Þ, where c ¼ 1=2 is the central charge of the
critical point. Instead, we see something like a 1=L
approach. Clearly, one should work to reduce the truncation
errors before the agreement is achieved.
It should be remarked that the vacuum energy is always

subject to larger errors than the spectrum of excitations.
This is related to the fact that the unit operator, whose
coefficient shifts the vacuum energy, is the most relevant
operator of the theory, and gets the largest renormaliza-
tion when the states above Emax are integrated out.
However, whichever uncertainty in the coefficient of
the unit operator cancels when we compute the spectrum
of excitations.

D. Emax dependence

To get a better feel for the convergence of our method,
and to demonstrate the difference between the three
procedures explained in Sec. III C, we present here plots
of the spectrum and vacuum energy as a function of Emax,
while keeping the other parameters fixed.
So, Fig. 9 shows the results for g ¼ 1, L ¼ 10, with Emax

varying from 10 to 20. On the left we see that the
renormalization dramatically improves the convergence
of the vacuum energy with respect to the raw results,
while the subsequent subleading correction is very small.
The plot on the right refers to the first excited level (i ¼ 1).
In this case we see that the further improvement due to the
subleading correction is non-negligible. There are small
oscillations due to discretization effects, as already dis-
cussed in Sec. IV C. The higher excitations, not shown in
the plot, show a similar pattern of convergence.
Figure 10 shows the same plots for g ¼ 3. Once again the

improvements due to renormalization are evident. For a

change, here we show more states in the spectrum of
excitations.

E. Comparison to the TCSA methods

As already mentioned, Ref. [12] recently studied the ϕ4

theory in d ¼ 2.5 dimensions using the TCSA method.
The results of that study, and in particular the phase
diagram of the theory, turned out to be quite similar to the
one we found here; see [12], Sec. VII. The TCSA uses the
basis of conformal operators of the free massless scalar
field theory, which via the state-operator correspondence
is the same as the basis of states of this theory put on the
sphere Sd−1. In the TCSA, both the ϕ2 and ϕ4 perturba-
tions are included in the V part of the Hamiltonian. This
should be contrasted with our current method, where ϕ2 is
included in H0. We mention here just one advantage and
one complication of working with the conformal basis
and treating all potential terms as a perturbation. The
advantage is that the Hamiltonian matrix Hij for a general
sphere radius R is related to the R ¼ 1matrix via a simple
rescaling. The complication is that the conformal basis is
not orthonormal, requiring introduction of a Gram matrix
or dealing with an eigenvalue problem which is not
symmetric.
There were several reasons why [12] considered d ¼ 2.5.

First of all, the main point of that paper was to show that
the TCSA works in d > 2. Second, there were technical
reasons to postpone the physically more interesting case
d ¼ 3 to the future. The final reason is that, at least naively,
conformal basis does not work in d ¼ 2, because the scalar
field dimension becomes zero, rendering the spectrum
dense and numerical treatment impossible.
In spite of this basic difficulty, a recent paper [3]

proposed a way to use the conformal basis in d ¼ 2
dimensions. The idea of this work is to compactify the
free scalar boson on a circle of a finite length 2π=β.
Compactification renders the CFT spectrum discrete, and
one hopes that for a sufficiently small β compactification
effects will be negligible. It is important to realize that
the procedure of [3] modifies the quantum mechanical

FIG. 9 (color online). Variation with Emax and the effect of renormalization corrections for g ¼ 1.
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dynamics only for the zero mode, while all higher oscillator
modes do not feel it.24

On the conceptual level, the difference between our
paper and [3] lies in the choice of the trial wave function
basis for the oscillator modes. They choose periodic plane
waves on a circle of radius 2π=β for the zero mode, and
harmonic oscillator wave functions of frequency 2πjnj=L
for the modes with jnj > 0. We instead choose harmonic
oscillator wave functions of frequency

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ð2πn=LÞ2

p
for all modes. Of course the technique for evaluating the
matrix elements is also different, since we use prosaic
ladder operators, while they are able to use the Kac-Moody
algebra acting in the free scalar boson CFT.
Apart from β which we will not discuss further, the basic

parameters used in [3] to parametrize the phase diagram are
the length of the spatial circle R, which is the same as our L,
and the quadratic and quartic couplings G2;4.

25 The latter
translate to our parameters as follows26:

g ¼ 2πG4; ð4:6Þ

m2 ¼m2
0þ12G4

��X∞
n¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2þðm0R=2πÞ2

p −
1

n

�
þ π

m0R

�
;

m0 ¼
ffiffiffiffiffiffi
G2

p
: ð4:7Þ

In the Z2-preserving phase, their strongest coupled point
had G2 ¼ 0.01 and G4 ¼ 8 × 10−5, which gives ḡ ¼
g=m2 ≈ 0.06. From our perspective, this is an extremely
weakly coupled case, where even ordinary perturbation
theory would be largely adequate.
It appears that in the Z2-preserving phase our trial wave

function basis for the zero mode is more efficient than that
of [3], since it consists of wave functions peaked at ϕ0 ¼ 0,
as opposed to being evenly spread over a long interval. We
hasten to add however that the main goal of [3] was to study
the Z2-broken phase in the regime of negative m2, some-
thing that we have not even attempted in this paper. In our
forthcoming work [18], dedicated to the Z2-broken phase,
careful choice of the wave function basis for the zero mode
will also play an important role.

V. COMPARISON WITH PRIOR WORK

The ϕ4 theory in two dimensions has been previously
studied, in the strongly coupled region, with a variety of

techniques. Table I summarizes the predictions for the
critical coupling. Here we only mention the methods which,
at least in principle, allow for a systematic improvement of
the results, leaving out simple-minded variational studies.
Many of these papers normalize the quartic coupling as
λ=4!; we translate all results to our normalization.
The clear trend in the table is that the critical coupling

estimate seems to increase with time. The first two studies
are rather old and do not assign an uncertainty to their
results. The next result [density matrix renormalization
group (DMRG)] has the smallest claimed error, but as we
will see below there are strong reasons to believe that it is
grossly underestimated. The stated uncertainty of the two
remaining predictions is also significantly smaller than
ours. Their central values are below our result, although
consistent with it at a 2σ level if we use the conservative
error estimate. As we discuss in Sec. V D, this slight
discrepancy may be due to a subtlety in implementing the
matching to a continuum limit in their procedures.
We now review the methods in Table I, following the

chronological order.

A. DLCQ

In [25,29], the ϕ4 theory was studied using the DLCQ.
This is a Hamiltonian truncation method in which the theory
is quantized in the light cone coordinates x� ¼ t� x, using
x− as space and xþ as time. The Hilbert space consists of
states of several particles all moving in the xþ direction, and
having a fixed total momentum Pþ. This method was much
touted in the past because of the apparent reduction in the
number of states (since only particles moving in one
direction are needed), and the simplicity of the vacuum
structure, which in perturbation theory coincides with the
free theory vacuum. In practical computations, one discre-
tizes (hence discretized light cone quantization) the momen-
tum fraction of constituent particles with a step 1=K. This is
sometimes presented as a result of compactifying the x−

direction on a circle of length 2πK.
References [25,29] used DLCQ to compute the physical

particle mass as a function of g, observing that it goes to
zero for a certain critical value of gc. They find ḡc ≈ 1.83
for K ¼ 16 [29], and later report an even smaller value
ḡc ≈ 1.38 based on extrapolating the K ≤ 20 results to
K ¼ ∞ [25]. These results are in a stark disagreement with

TABLE I. Estimates of ḡc from various techniques.

Method ḡc Year, Ref.

DLCQ 1.38 1988 [25]
QSE diagonalization 2.5 2000 [4]
DMRG 2.4954(4) 2004 [26]
Lattice Monte Carlo 2.70þ0.025

−0.013 2009 [27]
Uniform matrix product states 2.766(5) 2013 [28]
Renormalized Hamiltonian truncation 2.97(14) This work

24For example, it would be wrong to think of their procedure as
considering the scalar boson in a quartic potential cut off at the
boundaries of the interval ½−π=β; π=β� and periodically extended
to the whole real line. Such a periodized potential would not even
give a UV-complete theory, because of the spikes at the cutoff
points.

25These are denoted g2;4 in [3], but we capitalize to avoid the
confusion with our notation in Sec. III.

26The factor 2π in the quartic arises from the difference of the ϕ
normalization. The extra term inm2 appears from the difference in
implementing the normal ordering prescription; see their Eq. (65).
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the more recent calculations by other techniques in Table I.
A careful repetition of these old studies is called for. It is
known that DLCQ calculations are subject to severe 1=K
truncation effects [30], which may be the source of the
discrepancy.
We mention here a recent proposal to avoid the Pþ

discretization altogether, and instead truncate the light cone
Hilbert space by using a carefully constructed orthonormal
basis of multiparticle wave functions. This alternative
approach may be the future of the light cone quantization.
It already proved very promising in the study of two-
dimensional gauge theories [9,10], but has not yet been
applied to the ϕ4 theory (see [11] for the preparatory work).
As a final comment on the light cone quantization, we

note that the method is bound to become more complicated
in the Z2-broken phase, possibly requiring a scan of the
zero mode hϕi to find the true vacuum.

B. QSE diagonalization

Reference [4] (see also [5–7]) studied the ϕ4 theory using
the Hamiltonian truncation in the same basic setup as ours,
calling it “modal field theory.” However, the implementa-
tion details are quite different. They use a quasisparse
eigenvector (QSE) method, which reduces the Hilbert space
dimension by throwing out the Fock states whose con-
tributions to the physical eigenstate one is studying are
small. In a later work [5] they developed a stochastic error
correction (SEC) method, which corrects for the resulting
truncation. While the idea is similar to our renormalization,
there are some differences. One difference is that their
method is perturbative, unlike our basic equation (3.6)
which is all order in ΔH. Another difference is that SEC
computes infinite sums involved in the definition of ΔH
via Monte Carlo sampling, while we found an analytic
approximation for this correction term.
In Fig. 11 we show their results for the finite-volume

spectrum [4]. These results are based on a QSE with 250
states (no SEC). Using this plot, Ref. [4] estimated the
critical coupling as ḡc ≈ 2.5. On the same plot we overlay
our results for the lowest Z2-odd state from Fig. 4. Our
predictions for the physical mass are in disagreement with

[4] in the range ḡ≲ 2, where the truncation errors due to
finite Emax are small. Notice that even though our results
refer to a smaller value of L than [4], this cannot explain the
differences, since the finite-volume effects for the one-
particle state are negligible in this range of ḡ (see Fig. 7).
One possible explanation is that the momentum cutoff
kmax ¼ 4m used in [4] is not sufficiently high to describe
the continuum limit. In any case, it is this disagreement
which is ultimately responsible for the difference in our
estimates of ḡc.
The QSE method of [5] looks somewhat similar in spirit

to the numerical RG (NRG) method recently employed in
the context of TCSA [24,31]. At the same time, the latter
method seems to us more flexible and systematic. It would

FIG. 10 (color online). Same as in Fig. 9 but for g ¼ 3.
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FIG. 11 (color online). Finite-volume spectrum of the ϕ4 theory
on a circle of length L ¼ 10πm−1 (plot taken from [4]). In our
notation λ=4! ¼ g, μ ¼ m. Black solid lines with error bars—the
results of QSE with 250 states. Black dashed line—the results of
a lattice Monte Carlo simulation. On their plot we overlay our
results for the lowest Z2-odd state on a circle of a smaller length
L ¼ 10m−1 (red band). The central value and the width of the red
band are the same as in the conservative method of determining
ḡc in Sec. IV B.
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be interesting to apply the NRG method to the ϕ4 theory
and see if it can help resolve the above discrepancy.

C. DMRG

Reference [26] studied the ϕ4 theory using the DMRG
[32]. As a starting point of this approach, the x-direction is
discretized with a spacing a, while time is kept continuous.
The Hamiltonian describing such a discretized theory is

H ¼
X
x

1

2a
π2x þ

1

2a
ðϕx − ϕxþaÞ2 þ

m2a
2

ϕ2
x þ gaϕ4

x;

ð5:1Þ

where ϕx are the field variables on each lattice site and πx
are the corresponding canonical momenta. The Hilbert
space on each site is infinite, unlike in the more standard
DMRG applications. Reference [26] truncates this Hilbert
space to N ¼ 10 first harmonic oscillator states. The finite-
system version of the DMRG algorithm [32] is used,
truncating to M ¼ 10 most dominant density matrix
eigenstates. This corresponds to the superblock
Hamiltonian dimension M2N ¼ 1000.
The critical value of the coupling is obtained approach-

ing the critical point from inside of the Z2-broken region,
and studying how the vacuum expectation value hϕi
approaches zero in this limit. The quoted value has an
extremely small uncertainty: ḡc ¼ 2.4954ð4Þ. However,
careful reading of the paper leaves us unconvinced that
all sources of systematic error were properly taken into
account. First, no attempt is made at extrapolating to
M ¼ ∞, while Fig. 4 of [26] shows clearly that conver-
gence inM is slow and the results forM ¼ 10 have not yet
stabilized. Second, the value of ḡc is determined in Fig. 7 of
[26] by fitting a straight line through two points.
Finally, we believe that the matching to the continuum

limit should have been done more carefully. In the units
m2 ¼ 1, the smallest physical lattice spacing in [26] is
a ≈ 0.1.27 This is a factor 3 larger than the spacing used in
the lattice Monte Carlo study [27] discussed in Sec. V D
below. Since Ref. [26] used the simplest nearest-neighbor
discretization of the x-derivative, the matching procedure
will likely be plagued by the same basic problem as the one
we explain in Sec. V D.

D. Lattice Monte Carlo

In [27] (see [33] for earlier work) the critical coupling of
the ϕ4 theory was determined by MC simulations on the
two-dimensional square lattice. They find ḡc ¼ 2.7þ0.025

−0.01 ,
somewhat below our prediction. This 2σ discrepancy is not
necessarily a reason to worry, as it may go away with
further development of our method. In addition, it appears

that the MC computation is subject to a subtle systematic
error which was not discussed in [27]. This error is
particularly troubling because similar errors likely affect,
to varying degrees, all techniques involving the discretiza-
tion of space, including also the DMRG and matrix product
state (MPS) methods discussed in Secs. V C and V E.
Below we review the lattice computation and explain this
potential error.
Reference [27] simulated the lattice action (the subscript

# stands for lattice)

S# ¼ a2
X
x

1

2

X
μ¼1;2

a−2ðϕxþaeμ − ϕxÞ2 þ
1

2
m2

#ϕ
2
x þ g#∶ϕ4

x∶:

ð5:2Þ

Here a is the lattice spacing. The normal ordering on the
lattice is defined by subtracting a loop of the lattice
propagator (BZ ¼ the Brillouin zone jpμj ≤ π=a):

∶ϕ4
x∶ ¼ ϕ4

x − 6ϕ2
x

Z
BZ

dp
ð2πÞ2G#ðpÞ; ð5:3Þ

G#ðpÞ ¼ f4a−2½sin2ðp1a=2Þ þ sin2ðp2a=2Þ� þm2
#g−1:

ð5:4Þ

So, operationally, (5.3) is plugged into (5.2) and the
resulting action is MC simulated.
In the normalization in whichm# ¼ 1, Ref. [27] explored

the range of lattice spacings a ¼ 0.3–0.03.28 Their lattices
had up to 1024 × 1024 sites, which correspond to a
sufficiently large physical volume varying from L ≈ 300
for a ¼ 0.3 to L ≈ 30 for a ¼ 0.03. Depending on a, the
critical quartic coupling was found to vary from g# ≈ 2.55
to 2.7. Their final answer for gc was obtained by fitting and
extrapolating to a ¼ 0.
The systematic error that we have in mind concerns the

matching between the lattice and the continuum. Naively,
the lattice theory (5.2) seems to go to the continuum limit
theory as a → 0, with m# and g# turning into m and g.
However, let us try to establish this correspondence more
carefully.
In Fig. 12 we show, schematically, two RG flows: the

lattice flow specified by the couplings m#; g# and the
continuum flow specified by m; g. The latter couplings
have to be found so that the flows become the same at large
distances. We can check if this is the case computing some
observables at intermediate distances, when the flows are
still perturbative.29 If a sufficient number of observables

27This is found from ḡca2 ¼ ~λ=4! where their smallest ~λ ¼ 0.6.

28See their Table II. The value of a is computed from
μ̂2c ¼ m2

#a
2.

29We are focusing on the case when the coupling g is strong,
which is relevant for the critical point. The case of small g is
simpler, as the matching can be performed at p ≲m.
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agree at intermediate distances, the two flows have con-
verged and will stay the same also at larger distances. In the
language of effective field theory, this would be an example
of perturbative matching (see e.g. [34]).30

At what distance scale should we do the matching? First
of all, to match the continuum theory, the lattice theory
should at the very least become approximately rotationally
invariant. The leading deviation from rotation invariance
comes from the lattice propagator (5.4), which at small
momenta behaves as

G−1
# ðpÞ ¼ p2 þm2

# −
1

12
ðp4

1 þ p4
2Þa2 þ… ð5:5Þ

To ensure that this is approximately rotationally invariant,
we must have p2 ≪ a−2.
On the other hand, the matching momentum cannot be

too small since the theory is then strongly coupled. The
smallest allowed matching momentum can be computed by
considering the diagrams which give a correction to the
quartic coupling. For momenta p ≫ m these diagrams are,
omitting logarithmic factors,

ð5:6Þ

which becomes comparable to the coupling g itself for
p2 ¼ OðgÞ. Putting the two constraints together, we con-
clude that the matching must be done at momenta p such
that

g ≪ p2 ≪ a−2: ð5:7Þ

Now, to match the mass, we have to consider the correction
to the propagator, which in the considered region of
momenta behaves like

ð5:8Þ

where the terms dependent on a2 indicate the schematic
dependence of the correction on the lattice spacing. This
suggests that

m2 ¼ m2
# þOðg2a2Þ: ð5:9Þ

However, such a conclusion would be on shaky grounds.
The problem is that at the lowest allowed momenta p2 ∼ g
the correction to the propagator due to the rotation
invariance breaking has the same parametric order of
magnitude, g2a2, as the putative mass matching correction.
The above discussion suggests that the chosen form of

the lattice discretization prevents performing a controlled
matching between the lattice and the continuum theory,
because the matching corrections from loop diagrams
cannot be cleanly disentangled from the rotation invariance
breaking effects in the propagator. This may seem unusual
to a lattice practitioner. However, the theory we are
considering is a bit unusual, having a coupling constant
dimension of exactly 2.
We consider it possible that this problem contributes to

the mismatch between the lattice determination of gc and
our results. Our discussion also suggests the recipe to
remedy the problem: one should redo the lattice simulation
using improved actions, in which the leading Oðp2a2Þ
effect of rotation symmetry breaking is absent due to
judiciously chosen next-to-nearest interaction terms [35].
In such a setup the matching can be done, and the
correspondence betweenm#; g# andm; g can be established
rigorously.

E. Uniform matrix product states

This method was applied to the ϕ4 theory in [28].
The starting point of this approach is the discretized
Hamiltonian (5.1). The lowest energy states are searched
for in a finite variational subspace of the full Hilbert space,
consisting of the so-called MPS, whose precise definition
can be found in [28]. The MPS are parametrized by a 3-
tensor of size d ×D ×D. Here, d represents the size of the
truncated Hilbert space per lattice site, while D is a
parameter which bounds the degree of entanglement of
the ground state across different lattice sites. The variational
states are found by minimizing the energy through an
imaginary-time evolution algorithm. The physical predic-
tions are recovered in the limit d;D → ∞, a → 0.
As is well known, the MPS methods are essentially

equivalent to DMRG (see e.g. [36]). Comparing with the
DMRG study in Sec. V E, d and D should be identified
with N and M. Reference [28] uses d ¼ 16 and D up to
128, commenting that N ¼ M ¼ 10 used in [26] are not
sufficient. They observe that an insufficiently largeD shifts

FIG. 12 (color online). The lattice and the continuum RG flows
should agree in the IR. See the text.

30In this discussion we ignore another complication arising
from the fact that the two-dimensional ϕ4 theory has infinitely
many additional relevant couplings beyond m2 and g, since all
powers of ϕ are relevant. Strictly speaking establishing corre-
spondence between the lattice and the continuum may require
turning on these extra couplings.
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the critical point to lower ḡc, and provide a physical
explanation for this effect. They do two measurements
of ḡc, both approaching the critical point from above, one
using hϕi and the other from the lowest excitation energy.
Since their two measurements differ at a 3σ level, the value
cited in Table I was obtained by expanding the error bars to
include both of them.
In the units m2 ¼ 1, the minimal value of the lattice

spacing in [28] is a ≈ 0.04, about the same as in [27]. This
study is thus subject to the sameworries about the matching
to the continuum limit as the ones brought up in Sec. V D.

VI. DISCUSSION

In this work we revisited one of the simplest realizations
of the “exact diagonalization” methods, as opposed to
standard lattice Monte Carlo methods, and have shown that
it can be used effectively as a numerical tool to extract
nonperturbative predictions about a quantum field theory.
The numerical setup is relatively simple, and the error
coming from the UV regulator can be reduced by adding
analytically computed correction terms to the Hamiltonian.
Our choiceof themodel to studyhere—the two-dimensional

ϕ4 theory—was dictated by several considerations:
(i) the model is neither supersymmetric nor integrable,

and is hence not amenable to analytical methods,
apart from perturbation theory at small coupling;

(ii) the model has been studied in the past by a variety of
numerical techniques, allowing for a fair comparison
of the results and of the implementation difficulties;

(iii) the model is literally the textbook example of a
quantum field theory. In fact we hope that our
exercise also has a considerable pedagogical value,
helping to bridge the conceptual gap between
perturbative and nonperturbative QFT questions.

However we stress that the idea of the paper is completely
general, and it should be possible to apply similar techniques
to any quantum field theory.
In this exploratory work we did not push particularly

hard on the numerical side of the calculations—it takes a
few single-core days on a desktop to reproduce all the plots
in this paper. Our analytical calculations of the renormal-
ization coefficients can and will be advanced, further
improving the accuracy. The current state of the method
allowed us to compute the low-energy spectrum in the
Z2-invariant phase with a reasonable accuracy, and to
observe qualitatively the change to the Z2-broken phase
at strong coupling. Our estimate for the critical coupling is
in slight disagreement with the existing results. As dis-
cussed in Sec. V D, this may be partly due to a technical
subtlety in the lattice regularization. It would be interesting
to resolve this tension in future work.
Comparisons with other Hamiltonian truncation tech-

niques, such as TCSA or light cone quantization, are
scattered throughout the paper (see Secs. III E, IV E, and
VA). At this point in history we do not want to be religious

about which one of these methods is most promising—all
have to be explored without prejudice to see which one
gives more accurate predictions, depending perhaps on the
problem under consideration. One of the main challenges
for all these techniques is their application to higher
dimension, where the truncated Hilbert space for a given
UV cutoff is larger, while the interesting interaction terms
are less relevant, resulting in more significant truncation
errors. In the TCSA context, these issues recently started
being addressed in [12]. Another challenge is the applica-
tion to gauge theories. Here the light cone quantization
seems to have gained an upper hand, at least in d ¼ 2,
thanks to the extremely efficient conformal bases recently
proposed in [9,10].
The grand question at stake is the following: Shall we

live to see the computation of the proton mass becoming
accessible to every theorist, or will it forever remain in the
realm of dedicated collaborations wielding supercom-
puters? Currently computations of the low-energy QCD
spectrum with 2þ 1 dynamical quark flavors with a few
percent accuracy take about one supercomputer year,
roughly equivalent to a 100,000 single-core years.
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APPENDIX A: SPEEDING UP THE
HAMILTONIAN MATRIX COMPUTER

In our computations, most time is spent in matrix
diagonalization. Still, matrix evaluation should also be
organized efficiently. Here we list some tricks useful to
speed it up. These tricks are realized in our PYTHON code,
included with the arXiv submission.
Diagonal/off-diagonal decomposition
Let us split H into three parts:

H ¼ Hdiag þHoffdiag þH†
offdiag ðA1Þ

where Hdiag=offdiag have only diagonal/off-diagonal matrix
elements. Hdiag includes H0 and the terms in V of the
form31

31Here and below fx1; x2;…g denotes an unordered set.
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a†k1a
†
k2
ak3ak4 ; fk1; k2g ¼ fk3; k4g: ðA2Þ

The rest of the terms in V get assigned to Hoffdiag and
H†

offdiag. Only the matrix elements of Hoffdiag need to be

evaluated, while those of H†
offdiag are obtained by trans-

position. We include in Hoffdiag the a†a†a†a†, a†a†a†a
terms in V, as well as the operators

a†k1a
†
k2
ak3ak4 ; fk1; k2g ≠ fk3; k4g; ðA3Þ

satisfying the following lexicographic ordering condition:32

sortðjk1j; jk2jÞ ≺ sortðjk3j; jk4jÞ: ðA4Þ

Notice that this condition depends only on the absolute
values of momenta; hence it is P invariant. This ensures
that all three terms in the decomposition (A1) are separately
P invariant. This will be important below, when we
describe our method to evaluate the matrix elements.
Keeping track of the energy
Each elementary operator O ∈ V, a product of ladder

operators, increases/decreases energy of any basis vector it

acts upon by a fixed amount ΔEO. Since we will be
working in the space of low-energy states Hl of energies
0 ≤ E ≤ Emax, we can drop from V all operators for which

jΔEOj > Emax: ðA5Þ

Moreover, when acting on a basis state jψi the result is
guaranteed to be zero in Hl unless

0 ≤ EðψÞ þ ΔEO ≤ Emax: ðA6Þ

Combinatorial factors for oscillator ordering
To reduce the number of elementary operators in V, it is

worth ordering them. We have

X
k1;k2;k3;k4

ak1ak2ak3ak4

¼
X

k1≤k2≤k3≤k4

f4ðk1; k2; k3; k4Þak1ak2ak3ak4 ðA7Þ

where the symmetry factor

f4ða ≤ b ≤ c ≤ dÞ ¼

8>>>>>><
>>>>>>:

24 a < b < c < d;

12 a ¼ b < c < d or a < b ¼ c < d or a < b < c ¼ d;

6 a ¼ b < c ¼ d;

4 a ¼ b ¼ c < d or a < b ¼ c ¼ d;

1 a ¼ b ¼ c ¼ d:

ðA8Þ

P conservation
In this paper we work in the Hilbert space of P ¼ 0 states

of energies E ≤ Emax. Internally we represent a state jψi,
see (2.8), as a sequence of occupation numbers Zn for each
momentum mode:

jψi↔½Zn∶ − nmax ≤ n ≤ nmax�; ðA9Þ

where nmax is the maximal possible mode number for the
given L and Emax.
The matrix Hij is then computed as follows. The

diagonal part from H0 is trivial so we do not discuss it.
For the rest, we take a particular state jψ ji and act on it with
elementary operators O ∈ V, one by one. Each operator
gives one particular state jψ ii times a numerical coefficient.
We accumulate this coefficient in the matrix element Hij.
Thus the matrix is generated column by column. As

discussed above, we can do this computation for Hoffdiag

and get H†
offdiag by transposition. We generate the matrix

separately in each of the Z2 ¼ � sectors.
The computation we just discussed produces the matrix

H in the full Hilbert space of P ¼ 0, E ≤ Emax states.
However, in this paper we are interested in the P ¼ þ1
subspace of this space. The basis of this subspace consists
of symmetrized linear combinations (2.24) of the basic
P ¼ 0 Fock states. In principle, the matrix in the P ¼ þ1
subspace could be obtained once the full matrix is com-
puted, but this is wasteful. We now describe a method
which generates the matrix in the P ¼ þ1 subspace
directly.
When we store the symmetrized state jψ symi internally,

we only store jψi. If jψi ≠ Pjψi, then we keep only one of
these two vectors (no matter which one), since they give
rise to the same jψ symi.
We have to compute the matrix with respect to the

symmetrized basis, which we call Sij:

Hjψ sym
j i ¼ Sijjψ sym

i i: ðA10Þ

32It is not hard to see that sortðjk1j; jk2jÞ ¼ sortðjk3j; jk4jÞ is
impossible given fk1; k2g ≠ fk3; k4g and k1 þ k2 ¼ k3 þ k4. So
any operator (A3) gets assigned either to Hoffdiag or to H†

offdiag.

HAMILTONIAN TRUNCATION STUDY OF THE φ4 … PHYSICAL REVIEW D 91, 085011 (2015)

085011-23



Consider also the matrix Hij with respect to the Fock basis,
whose computation was discussed above. Let us split it into
three pieces:

Hjψ ii ¼ Ha
jijψ ji þHb

kijψki þHc
kiPjψki; ðA11Þ

where the index j runs over P-invariant jψ ji, and the rest of
the Fock basis is split into jψkis and Pjψkis. Since
½P; H� ¼ 0, we have

HPjψ ii ¼ PðHjψ iiÞ ¼ Ha
jijψ ji þHb

kiPjψki þHc
kijψki;

ðA12Þ

and finally

Hjψ sym
i i ¼ βðψ iÞðHjψ ii þHPjψ iiÞ

¼ βðψ iÞ½2Ha
jijψ ji þ ðHb

ki þHc
kiÞðjψki þ PjψkiÞ�

¼ βðψ iÞ½2Ha
jijψ sym

j i þ
ffiffiffi
2

p
ðHb

ki þHc
kiÞjψ sym

k i�:
ðA13Þ

From here we obtain a recipe for an economic way to
compute Sji. Namely, we compute Hjψ ii and accumulate
the coefficients 2Ha

ji and
ffiffiffi
2

p ðHb
ki þHc

kiÞ, and then multiply
by βðψ iÞ.
Notice that we used the P invariance of the Hamiltonian

in the first step of (A12). When this method is combined
with splitting H into the diagonal/off-diagonal parts, it is
important that every part be P invariant by itself. As
mentioned above, condition (A4) ensures this.

APPENDIX B: PERTURBATION
THEORY CHECKS

We computed the first two perturbative corrections to
the ground state energy density Λ and the physical particle
mass for the ϕ4 theory defined by the action (2.1):

Λ=m2 ¼ −
21ζð3Þ
16π3

ḡ2 þ 0.0416485ḡ3 þ…;

Δm2=m2 ≡ ðm2
ph −m2Þ=m2

¼ −
3

2
ḡ2 þ 2.86460ð20Þḡ3 þ… ðB1Þ

(ḡ≡ g=m2). Recall that Λ at g ¼ 0 is set to zero. Because
the interaction is normal ordered theOðḡÞ contributions are
absent. The Oðḡ3Þ coefficients are numerical with a shown
number of significant digits and an error estimate if
needed.33 The size of the coefficients suggests that the
series are perturbative for ḡ≲ 1.

The coefficients were obtained by numerical integration
of Feynman diagrams. It is much easier to perform this
integration in the coordinate space, since the propagator
(3.22) is exponentially decreasing at large distances, and
also because parallel lines in multiloop diagrams corre-
spond in the x-space to trivially raising the propagator to a
power. For example, the Oðg3Þ correction to Δm2 comes
from the diagram

ðB2Þ

evaluated at the (Euclidean) external momentum
p2 ¼ −m2. In the x-space this gives the integral (we omit
the combinatorial factors)

Z
d2x

Z
d2yeip:xGðjx − yjÞ2GðjyjÞ2GðjxjÞ: ðB3Þ

We pick p ¼ ðim; 0Þ, introduce the polar coordinates, and
evaluate the integral via Monte Carlo.
In Fig. 13 we compare the above perturbative results

with the numerical spectra obtained with our method for
m ¼ 1, L ¼ 10. Perturbative computations refer to the
infinite volume, but L ¼ 10 is sufficiently large so that
the expected exponentially small corrections should not
disturb the comparison. We use the cutoff Emax ¼ 20.
Notice that mph is extracted as E1 − E0, where E1 is
the lowest Z2-odd eigenstate, while Λ is extracted as E0=L.
To facilitate the comparison, we plot Λ and Δm2 divided

by g2. The reasonably good match in the region of small
g≲ 0.1 shows that our numerical method agrees with both
Oðḡ2Þ andOðḡ3Þ coefficients of the perturbative expansion.
At the same time, higher order corrections are clearly non-
negligible—they would become comparable to the Oðḡ3Þ
correction at ḡ ∼ 0.5.
It should be noticed that it has been rigorously shown in

the constructive field theory literature that perturbation
theory in the two-dimensional ϕ4 theory is Borel summable
for small ḡ; see [37] and the discussion in [21],
Sec. XXIIIB. Using Lipatov-type arguments [38,39], the
asymptotic behavior of the perturbative series coefficients
is predicted to be34

ð−1ÞkkkAk; A¼min
Z

d2x

�
1

2
ð∂ψÞ2þ1

2
ψ2−λψ4

�
− logλ;

ðB4Þ

where one has to look for a saddle point in ψ and λ which
gives the minimal A. Given this asymptotics, one could
hope that the Borel transform is regular for all positive ḡ,

33It is likely that exact expressions for these coefficients can be
found, but since this is not the focus of our work, we have not
invested the effort.

34The order of magnitude of coefficients (but not the alter-
nating signs) was justified rigorously in [40].
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with a leading singularity at the negative coupling
ḡ ¼ −A. It is not obvious to us how this analytic structure
would be compatible with the phase transition at a finite
ḡ ≈ 3.
As a side remark, we notice that the two-dimensional ϕ4

theory in theZ2-symmetric phase seems sufficiently simple
so that the perturbation theory can be worked out, by a

numerical integration of Feynman integrals, to a very high
order. The asymptotic behavior of the coefficients can be
also worked out with many subleading terms. Given that,
we challenge the resurgence/Borel transform community
(see e.g. [41]) to reproduce the dependence mphðḡÞ with a

precision matching that of our method.
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