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It is known that any nondegenerate Lagrangian containing time derivative terms higher than first order
suffers from the Ostrogradsky instability, pathological excitation of positive and negative energy degrees
of freedom. We show that, within the framework of analytical mechanics of point particles, any Lagrangian
for third order equations of motion, which evades the nondegeneracy condition, still leads to the
Ostrogradsky instability. Extension to the case of higher odd order equations of motion is also considered.
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I. INTRODUCTION

Nature prefers to describe the laws of physics by the
second-order differential equations. Newton’s equation of
motion (EOM), Maxwell equations and Einstein equations,
etc. are all the second-order differential equations for
positions of particles or fields. Why the laws of physics
are like this is a fundamental question of physics.
It is known that any nondegenerate Lagrangian contain-

ing time derivative terms higher than the first order yields a
Hamiltonian which is not bounded from below [1]. This
means that the energy of the system can take an arbitrarily
negative value. While such a system for free theory is
not pathological, when it is coupled to a normal system
with positive energy, the total system will quickly develop
into excitation of positive and negative energy degrees of
freedom.1 This instability, recently called the Ostrogradsky
instability,2 is quite general and discussed in detail in [1].
Here we briefly explain the main point of the Ostrogradsky
instability by following [1]. In order to have the essence, we
focus on a Lagrangian of N variables given by Lðx; _x; ẍÞ,
where x ¼ ðx1; x2;…; xNÞ. The Euler-Lagrange equations
are given by

d2

dt2
∂L
∂ẍ −

d
dt

∂L
∂ _x þ ∂L

∂x ¼ 0: ð1Þ

We require nondegeneracy, i.e., det ð∂2L=∂ẍi∂ẍjÞ ≠ 0.
Then the equations of motion are the fourth-order differ-
ential equations and the number of the degrees of freedom
as the number of independent initial conditions is 4N.3

In order to move to the canonical formalism, we need to
define 4N canonical coordinates. They are given by [3,5],

Q1¼x; Q2¼ _x; P1¼
∂L
∂ _x−

d
dt
∂L
∂ẍ ; P2¼

∂L
∂ẍ : ð2Þ

With the assumption of nondegeneracy, we can solve the
above equations for fx; _x; ẍ; xð3Þg. Then the Hamiltonian is
defined in the standard manner,

H ¼ P1 · _Q1 þ P2 · _Q2 − L: ð3Þ

We can confirm that the Hamilton’s equations are equiv-
alent to the Euler-Lagrange equation. Thus the Hamiltonian
represents the generator of the time evolution and can be
interpreted as the energy of the system. It is immediate to
understand that ẍ is written in terms of fQ1;Q2;P2g. This
means that P1 appears only in the first term and the
Hamiltonian depends on P1 linearly. Since there is no
constraint among each element of P1, they can independ-
ently take any value. Thus, the Hamiltonian can take an
arbitrarily positive value or negative value, leading to the
Ostrogradsky instability.
As the above argument shows, the Ostrogradsky insta-

bility is a quite generic feature of higher derivative theories
and answers why nature is described by the second-
order EOMs. Due to its simplicity and generality, the

1For a possible loophole, see [2].
2Although it has been commonly referred to as “Ostrogradsky

instability” recently and we will follow the convention in the
present paper, it is not clear if Ostrogradsky himself made this
statement in his original paper [3]. Furthermore, we are also
not sure if the unboundedness of the Hamiltonian for higher
derivative Lagrangians, although it is referred to as “theorem of
Ostrogradsky” in [1], was shown by Ostrogradsky in Ref. [3].
As far as we know, Ref. [4] by Pais and Uhlenbeck is one of
the oldest work in which unboundedness of the Hamiltonian
for a special type of higher derivative Lagrangian was shown
explicitly.

3There are literatures where the number of the degrees of
freedom denotes the half of the number of the initial conditions,
but this notation assumes the second-order EOM. Here, we
denote that the number of the degrees of freedom as the number
of the initial conditions.
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Ostrogradsky instability has also played a powerful role in
constructing a sensible scalar-tensor theory (for instance,
[6–9]), mainly for the purpose of modifying gravity at
infrared to explain the accelerated expansion of the
Universe.
Now, it is intriguing to ask if the Ostrogradsky instability

still persists when the EOMs (1) are third-order differential
equations. Since the nondegenerate Lagrangian always
yields the fourth-order EOMs, the third-order EOMs must
be obtained from the degenerate Lagrangian. More gen-
erally, any nondegenerate Lagrangian yields the even order
equations while the odd order EOMs are obtained from a
degenerate Lagrangian. Clearly, the existence of the
Ostrogradsky instability in the latter case is not covered
by the argument provided above. As far as we know, it
has not been discussed in the literature whether the third-
order EOMs (and higher odd order EOMs) are inevitably
associated with the Ostrogradsky instability or not. The aim
of this paper is to answer this question.
Finally, it is important to make a distinction between

the degeneracy of Lagrangian and the third-order EOMs.
Third-order EOMs are always derived from a degenerate
Lagrangian but the opposite statement is not necessarily true
(see also [10] for relevant discussion). For instance, although
a Lagrangian of a single variable (N ¼ 1) given by L ¼
ẍfð_x; xÞ is degenerate, its EOM is the second-order differ-
ential equation and the Ostrogradsky instability does not
appear. Thus, a statement that any degenerate Lagrangian
suffers from the Ostrogradsky instability is incorrect. But a
statement that any degenerate Lagrangian giving third-order
EOMs suffers from theOstrogradsky instability is correct, as
we shall show below.
This paper is organized as follows. In Sec. II, we

construct the most general Lagrangian for the third-order
EOMs in analytical mechanics of point particles. In Sec. III,
we show that the Ostrogradsky instability always appears
for the theory by performing the Hamiltonian analysis.
Extension to the case of higher odd order EOMs is also
considered in the end of Sec. III, and Sec. IV is devoted to
conclusion. Extension to the field theory is beyond the
scope of this paper, although it has interesting applications,
for instance, like the Chern-Simons gravity [11] for which
the gravitational field equations are third-order differential
equations.

II. LAGRANGIAN FOR THIRD-ORDER EOMS

Let us try to construct the most general Lagrangian that
yields the third-order EOMs. We will address general odd
order EOMs after completing an analysis for third-order
EOMs. We again consider a Lagrangian which depends on
N variables x ¼ ðx1;…; xNÞ, and contains up to nth time
derivative:

L ¼ Lðx; _x; xð2Þ;…; xðnÞÞ: ð4Þ
At this moment, n ≥ 2 is an arbitrary positive integer.

We determine n as well as the form of the Lagrangian
by requiring that L yields the third-order EOMs for x.
Since our primary concern is the Ostrogradsky instability of
variables having the third-order EOMs, we require that all
the variables obey the third-order EOMs independently.
We do not consider their couplings to variables obeying
at most the second-order EOMs. Such coupling does not
affect the existence of the Ostrogradsky instability. The
Euler-Lagrange equation for (4) is given by

dn

dtn
∂L
∂xðnÞ −

dn−1

dtn−1
∂L

∂xðn−1Þ þ
dn−2

dtn−2
∂L

∂xðn−2Þ − � � � ¼ 0: ð5Þ

For a generic Lagrangian, the highest order derivative is
xð2nÞ, that comes only from the first term of Eq. (5). For
EOMs (5) not to have xð2nÞ, we require that

∂2L

∂xðnÞi ∂xðnÞj

¼ 0; ð6Þ

for any i; j ¼ 1;…; N. Thus the Lagrangian should be
written as

L ¼
XN
j¼1

xðnÞj fjðx;…; xðn−1ÞÞ þ gðx;…; xðn−1ÞÞ; ð7Þ

with arbitrary functions fj and g. The Euler-Lagrange
equation then reads

XN
j¼1

xð2n−1Þj

� ∂fi
∂xðn−1Þj

−
∂fj

∂xðn−1Þi

�
þ ðlower deriv:Þ ¼ 0:

ð8Þ
To obtain the third-order EOMs, we impose that the
coefficient for xð2n−1Þj vanishes:

∂fi
∂xðn−1Þj

¼ ∂fj
∂xðn−1Þi

: ð9Þ

By using the Green’s theorem, there exists F that satisfies

fi ¼
∂

∂xðn−1Þi

Fðx;…; xðn−1ÞÞ: ð10Þ

Therefore we can rewrite the Lagrangian as

L ¼ −
XN
j¼1

Xn−1
k¼1

xðkÞj
∂F

∂xðk−1Þj

þ g; ð11Þ

up to a difference of a total derivative dF=dt. This means
that, without a loss of generality, we could have started
from a Lagrangian containing at most xðn−1Þ in Eq. (4). By
repeating the same procedure, we can reduce the original
Lagrangian (4) to the one that contains at most ẍ. From the
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absence of fourth-order derivative in the EOMs, the
Lagrangian should be written as

L ¼
XN
j¼1

ẍjfjðx; _xÞ þ gðx; _xÞ: ð12Þ

The EOM is then given by

XN
j¼1

Mð_xÞ
ij x

⃛
j þ ðlower derivatives:Þ ¼ 0; ð13Þ

where we have defined

MðXÞ
ij ≡ ∂fi

∂Xj
−
∂fj
∂Xi

: ð14Þ

Since Mð_xÞ is an N × N antisymmetric matrix, we can
block-diagonalize it to arrive at

Λ¼

0
BB@
Λ1 0 � � �
0 Λ2 � � �
..
. ..

. . .
.

1
CCA with Λa ¼

�
0 λa

−λa 0

�
: ð15Þ

If N is a odd number, N ¼ 2I − 1 with I ≥ 1, we have
detΛ ¼ 0 due to the Jacobi’s theorem. Thus, there exists a
J such that, 1 ≤ J ≤ I − 1 and ð2J − 1Þ lows and columns
of Λ are occupied by zero. Hence, not all the variables
obey the third-order differential equations independently.
In other words, the degrees of freedom as the number of
independent initial conditions is smaller than 3N and
we can introduce a new set of 2ðI − JÞ variables obeying
the third-order EOMs independently and a new set of 2J
variables obeying at most the second-order EOMs. As we
stated before, couplings to variables obeying the second-
order EOMs are not essential for the existence of the
Ostrogradsky instability. Therefore, we only need to con-
sider the even N case. For even N, ifMð_xÞ has vanishing λa,
we can further reduce the number of variables and make
all the λa are nonvanishing. Therefore, without loss of
generality, we can set N to be even in (12) and all the λa are
nonvanishing, i.e., detMð_xÞ ≠ 0.
In conclusion, the most general Lagrangian that yields

independent third-order EOMs for all the variables is the
Lagrangian (12) for even number variables:

L ¼
X2N
j¼1

ẍjfjðx; _xÞ þ gðx; _xÞ; ð16Þ

with detMð_xÞ
ij ≠ 0. Here, we have changed the notation of

the number of variables from N to 2N. Thus, N is still an
arbitrary positive integer. With this setup, we need 6N
initial conditions for xi, _xi, ẍi for i ¼ 1;…; 2N at given
initial time t ¼ tini to determine the time evolution of the
system.

III. HAMILTONIAN ANALYSIS

We proceed to the Hamiltonian analysis of the most
general Lagrangian for the third-order EOMs (16). Among
several different approaches for constructing the canonical
formalism for higher derivative theories [12–17], we
adopt the one used in [12,16], which reduces the higher
derivative Lagrangian to the standard one with constraints
by introducing the Lagrange multipliers. The advantage
of this method is that we can use the standard Dirac’s
formalism for the canonical formalism with constraints.
With the Lagrange multiplier λi, the Lagrangian (16) can be
rewritten as

L ¼
X2N
j¼1

½_yjfjðx; yÞ þ λjð_xj − yjÞ� þ gðx; yÞ: ð17Þ

Variation with respect to λi yields _xi ¼ yi, with which (17)
reproduces the original Lagrangian (16).
Now the Lagrangian (17) is written up to the first-order

derivatives of xi, yi, λi. This implies that its EOMs are the
second-order differential equations and we need 12N initial
conditions in total. We will see that 6N initial conditions
out of 12N initial conditions are fixed by second-class
constraints and we are finally left with 6N initial con-
ditions, which matches the number of initial conditions
needed for the original Lagrangian (16).
The canonical momentum for xi, yi, λi is given by

pxi ≡ ∂L
∂ _xi ¼ λi; ð18Þ

pyi ≡ ∂L
∂ _yi ¼ fiðx; yÞ; ð19Þ

pλi ≡ ∂L
∂ _λi

¼ 0: ð20Þ

Since all the momenta do not contain _x, _y, _λ, we cannot
solve them in terms of momenta. This implies that we have
6N primary constraints:

ϕxi ≡ pxi − λi ¼ 0; ð21Þ

ϕyi ≡ pyi − fiðx; yÞ ¼ 0; ð22Þ

ϕλi ≡ pλi ¼ 0: ð23Þ

Following the Hamiltonian formalism for constrained
systems [18–20], we incorporate these constraints by
adding them into the Lagrangian with Lagrange multipliers.
Thus we consider the variation of the action

S ¼
Z

t2

t1

dt

�X2N
j¼1

X
q¼x;y;λ

ðpqj _qj − μqjϕqjÞ −H

�
; ð24Þ
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where the Hamiltonian H is given by

Hðp; qÞ ¼
X2N
j¼1

X
q¼x;y;λ

pqj _qj − L;

¼
X2N
j¼1

λjyj − gðx; yÞ; ð25Þ

and μxi, μyi, μλi are the Lagrange multipliers for the primary
constraints. The variation of (24) yields the canonical
equation

_qi ¼
∂H
∂pqi

þ
X2N
j¼1

X
q¼x;y;λ

μqj
∂ϕqj

∂pqi
; ð26Þ

_pqi ¼ −
∂H
∂qi −

X2N
j¼1

X
q¼x;y;λ

μqj
∂ϕqj

∂qi : ð27Þ

Therefore, the time evolution of any function ξðp; qÞ is
governed by

dξ
dt

¼
X2N
j¼1

X
q¼x;y;λ

� ∂ξ
∂qj _qj þ

∂ξ
∂pqj

_pqj

�
;

¼ fξ; Hg þ
X2N
j¼1

X
q¼x;y;λ

μqjfξ;ϕqjg;

≈ fξ; HTg; ð28Þ
where the total Hamiltonian HT is given by

HT ¼ H þ
X2N
j¼1

X
q¼x;y;λ

μqjϕqj; ð29Þ

and fg denotes the Poisson bracket

fξ; ηg ¼
X2N
j¼1

X
q¼x;y;λ

� ∂ξ
∂qj

∂η
∂pqj

−
∂ξ
∂pqj

∂η
∂qj

�
: ð30Þ

The weak equality ≈ expresses an equality that holds after
performing the Poisson bracket and then imposing that
all the constraints vanishes.
To make the constraints satisfied through the time

evolution, we impose a consistency condition

dϕqi

dt
¼ fϕqi; Hg þ

X2N
j¼1

X
q¼x;y;λ

μqifϕqi;ϕqjg ≈ 0: ð31Þ

For q ¼ x; y; λ, this reads

dϕxi

dt
¼

X2N
j¼1

μyi
∂fj
∂xi − μλi þ

∂g
∂xi ; ð32Þ

dϕyi

dt
¼ −λi −

X2N
j¼1

�
μxj

∂fi
∂xj þ μyjM

ðyÞ
ij

�
−

∂g
∂yi ; ð33Þ

dϕλi

dt
¼ −yi þ μxi: ð34Þ

Since detMðyÞ ≠ 0 by definition, there exists an inverse
matrix M−1

ðyÞ. Thus we can solve the consistency condition
to determine all the Lagrangian multipliers

μxi ¼ yi; ð35Þ

μyi ¼ −
X2N
j¼1

ðM−1
ðyÞÞij

�
λj þ

∂g
∂yj þ

X2N
k¼1

yk
∂fj
∂xk

�
; ð36Þ

μλi ¼ −
X2N
j¼1

X2N
k¼1

ðM−1
ðyÞÞjk

�
λk þ

∂g
∂yk þ

X2N
l¼1

yl
∂fk
∂xl

� ∂fj
∂xi

þ ∂g
∂yi ; ð37Þ

which means that we have exhausted all the constraints and
there is no additional (secondary) constraint.
Since all the Lagrange multipliers are determined,

(31) should be invertible, i.e., detΔ ≠ 0 where Δqiq0j ≡
fϕqi;ϕq0jg. Indeed, the Poisson brackets between
constraints are

fϕyi;ϕyjg ¼ MðyÞ
ji ; ð38Þ

fϕxi;ϕyjg ¼ ∂fj
∂xi ; ð39Þ

fϕλi;ϕxjg ¼ δij; ð40Þ

and all the other combinations vanish. Thus
detΔ ¼ detMðyÞ ≠ 0, which is exactly the condition that
allows us to solve for the Lagrange multipliers. Therefore,
all 6N constraints are second class, and removes 6N initial
conditions. Consequently, we are left with 12N − 6N ¼ 6N
initial conditions, as expected.
With these Lagrange multipliers, we obtain the self-

consistent total Hamiltonian HT by (29), with which all the
constraints are satisfied all the time if they are satisfied
initially. Considering (29) on the constraint surface, we
note that HT ≈H and (25) suggests that its first term is
linear in pxi, which is not restricted by any primary
constraints and can take an arbitrary value dynamically.
Therefore, the Hamiltonian can vary from −∞ to þ∞ and
the system suffers from the Ostrogradsky instability.
We finally mention that the Hamiltonian coincides

with the Noether’s conserved quantity corresponding to
the invariance of the action under the time translation when
ðp; qÞ satisfies the canonical equations and constraints.
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Hitherto we have focused on the Lagrangian for the
third-order EOM. Our analysis also applies to systems with
general odd order EOM. We can prove that the Lagrangian
for ð2d − 1Þth order EOM is given by

L ¼
X2N
j¼1

xðdÞj fjðx;…; xðd−1ÞÞ þ gðx;…; xðd−1ÞÞ; ð41Þ

with detMðxðd−1ÞÞ ≠ 0. We can remove ẍ;…; xðd−1Þ from
the Lagrangian (41) by invoking Lagrange multipliers as
we have done in the third-order case, and proceed to the
Hamiltonian formalism with constraints. We can then
confirm that all the constraints are second class and the
Hamiltonian is unbounded.

IV. CONCLUSION

We considered the Lagrangian that yields odd order
EOMs in analytical mechanics. We explicitly demonstrated
how to construct the most general Lagrangian for odd order
EOMs. Using the Hamiltonian formalism for constrained
systems, we proved that for this class of theories the
Hamiltonian is unbounded. Thus, the Ostrogradsky insta-
bility persists even in this case.
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