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Two different solutions to the problem of the zero-mode localization of the Elko spinor are presented.
The first solution is given by the introduction of a mass term and by coupling the spinor with the brane
through a delta function. The second solution is reached by a Yukawa geometrical coupling with the Ricci
scalar. These two models consistently change the boundary condition at infinity and at the origin. For the
case of the geometrical coupling, we are able to show that the zero mode is localized for any smooth version
of the Randall-Sundrum model.
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I. INTRODUCTION

The idea that space-time has more than four dimensions
garnered much attention following the theory of Kaluza and
Klein regarding compact extra dimensions. The main idea
is that the extra dimensions are so tiny that they cannot be
observed, and the “escape” of the fields to the extra
dimensions becomes a small correction [1]. Depending
on the compactification and the number of dimensions,
different kinds of fields in the lower-dimensional theory can
be obtained [2]. In fact, these models provide us with a
plethora of massive states, the zero-mode being just one
particular case.
Models considering the Universe as a brane in a higher-

dimensional space-time regained attention in the late 1990s
[3]. A scenario considering our world as a shell was
proposed in Ref. [4] and further developed in Refs. [5–7].
Probably inspired by Ref. [4], Randall and Sundrum
(RS) proposed another scenario with four-dimensional
branes in a five-dimensional (5D) anti–de Sitter bulk. In
this scenario two different models were considered. In the
first model (RSI), two branes in a compact space with Z2

symmetry were used to solve the hierarchy problem [8].
Because the model has a compact dimension, the dimen-
sional reduction works in a very similar way to the Kaluza
and Klein model. In the second model (RSII), just one brane
embedded in a large extra-dimensional space is considered.
The extra dimension is curved by a warp factor such that the
model has been considered as an alternative to compacti-
fication [9]. As it is a model with large extra dimensions, the
issue of the zero-mode localization of fields is non-trivial. In
fact, in the last ten years the zero-mode localization of gauge
fields has become a drawback in these models. Localization
is necessary since in four-dimensional space-time no fields

propagating into the bulk are observed. Moreover, it has
been found that the zero modes of gravity and scalar fields
are localized [9,10] in a positive-tension brane. However,
due to its conformal invariance the vector field is not
localized, which is a serious problem for a realistic model.
Many solutions to the above-mentioned problem have

been found. For example, some authors introduced a
dilaton coupling to solve the problem [11], while others
suggested that a strongly coupled gauge theory in five
dimensions can generate a massless photon in the brane,
like in Ref. [12]. Generalizations considering antisymmet-
ric fields can also be found in the literature [13–20]. Most
of these models introduced other fields or nonlinearities in
the gauge field [21]. However, there are two models that do
not introduce new fields or nonlinearities. One introduces a
mass term and a delta interaction with the brane [22]. This
kind of model has been generalized to consider smooth
branes and to p-forms by the present authors in Ref. [23].
The other one has a gauge field coupled to the Ricci scalar,
which is called a geometrical coupling [24,25]. Similar
ideas have been used before, but using a coupling with the
field strength [26]. Another interesting approach to solve
the problem is related to models where membranes are
smoothed out by topological defects [27–30]. The advan-
tage of these models is that the δ-function singularities—
which are generated by the brane in the RS scenario—are
eliminated. This kind of generalization also provides
methods for finding analytical solutions [31,32].
Studies of localization and the resonances of matter

fields with half spin have also been considered for cases
with and without an interaction term in Refs. [33–43].
Another kind of field that can be considered is the Elko
spinor. This field has spin 1=2 and mass dimension one,
and it can be considered as a first-principle candidate for
dark matter [44–48]. (For a more detailed study, see, for
example, Ref. [49].) In the framework of a brane-world
scenario, the localization of Elko spinors on branes was
considered in Ref. [50]. However, the present authors have
shown in Ref. [51] that their conclusion stating that the zero
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mode of this field is localized is not correct. This con-
clusion reopened the problem of the localization of the Elko
spinor.
Here we show that the previous proposals of the present

authors to solve the problem of p-form field localization in
Refs. [23,24] can also be applied to this problem. We also
show that for specific values of the coupling constant there
can be localized zero modes for the Elko spinor. This raises
the same interesting question about the origin of this kind
of coupling.
This paper is organized as follows. Section II gives a

review of how to obtain the mass equation for the Elko
spinors. Section III is devoted to finding the solution to the
problem by using a mass term and a quadratic interaction
with a delta function. In Sec. IV we use the geometrical
coupling as another solution to the localization of the zero
mode. Finally, in Sec. V we discuss the conclusions and
perspectives.

II. REVIEW OF THE LOCALIZATION OF 5D
ELKO SPINORS WITH A COUPLING TERM

ON A MINKOWSKI BRANE

In this section we present a review of the localization of
the 5D Elko spinor, based on Ref. [50]. The action used in
the cited article for the Elko spinor is

S ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
−
1

4
ðDMλDM λ̄þDM λ̄DMλÞ − ηFðzÞλ̄λ

�
;

ð1Þ

where η in a coupling constant, FðzÞ is a scalar function of
the conformal extra dimension z, and DM is the covariant
derivative defined as

DMλ ¼ ∂Mλþ ΩMλ: ð2Þ

As shown in Ref. [50], the nonvanishing components of the
spin connection are

Ωμ ¼
1

2
A0ðzÞγμγ5; ð3Þ

where the prime denotes a derivative with respect to the
argument, AðzÞ is the conformal warp factor
gMN ¼ e2AðzÞηMN , and ηMN ¼ Diagð−1; 1; 1; 1; 1Þ. Taking
the variation of the action with respect to λ̄, we obtain the
equation of motion,

DM½
ffiffiffiffiffiffi
−g

p
DMλ� − 2η

ffiffiffiffiffiffi
−g

p
FðzÞλ ¼ 0: ð4Þ

Using the metric and the nonvanishing components of the
spin connection, we can write the above equation in the
form

ημν∂μ∂νλ − A0ðzÞγ5ημνγμ∂νλ − A02λþ e−3Aðe3Aλ0Þ0
− 2ηe2AFðzÞλ ¼ 0: ð5Þ

Due to the term A0ðzÞγ5ημνγμ∂νλ the authors of Ref. [50]
proposed a decomposition of the Elko field as λ ¼ λþ þ λ−,
with

λ�¼e−3A=2
X
n

αnðzÞ~λn�ðxÞ¼e−3A=2
X
n

αnðzÞ½ςn�ðxÞþτn�ðxÞ�;

ð6Þ

where ςn�ðxÞ and τn�ðxÞ are two independent four-
dimensional (4D) Elko fields satisfying the Klein-
Gordon equations □τn�ðxÞ ¼ m2

nτ
n
�ðxÞ, □ςn�ðxÞ ¼

m2
nς

n
�ðxÞ and the relations γ5τ� ¼ ∓ς�, γ5ς� ¼ �τ�.

The decomposition in Eq. (5) leads to

α00nðzÞ−
�
13A02

4
þ3A00

2
−m2

nþ imnA0ðzÞþ2ηe2AFðzÞ
�
αnðzÞ

¼0; ð7Þ

with the normalization conditionZ
α�nαmdz ¼ δmn: ð8Þ

Equation (7) is the general equation of the localization
coefficients αn. In the following sections the coefficients for
some FðzÞ will be derived.

III. LOCALIZATION OF 5D ELKO SPINORS
WITH 4D AND 5D MASS TERMS

In this section we explicitly calculate the solution of
Eq. (7), where FðzÞ is a 5D mass term plus a 4D one, i.e.,

ηFðzÞ ¼ 1

2
ðM2 þ cδðzÞÞ: ð9Þ

These kinds of couplings have used for p-form fields and
provided an efficient mechanism to trap the zero modes
[23]. In this case, the equation of αn can be written as

α00nðzÞ −
��

19k2

4
þM2

�
½kjzj þ 1�−2 þ ðc − 3kÞδðzÞ

−m2
n − imnksgnðzÞ½kjzj þ 1�−1

�
αnðzÞ ¼ 0; ð10Þ

where we used the conformal Randall-Sundrum warp
factor

AðzÞ ¼ − ln½kjzj þ 1�: ð11Þ

For the zero mode m0 ¼ 0, Eq. (10) provides the solution
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a0 ¼ Cþðkjzj þ 1Þ1=2þν þ C−ðkjzj þ 1Þ1=2−ν; ð12Þ
where Cþ and C− are constants and ν is given by

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þM2=k2

q
: ð13Þ

The boundary condition at the origin imposes a relation
between the constants,

ð2kð2þ νÞ − cÞCþ þ ð2kð2 − νÞ − cÞC− ¼ 0: ð14Þ
To obtain a convergent solution we must fix

c ¼ 2kð2 − νÞ: ð15Þ

This procedure leads to the normalized convergent
solution

a0 ¼
ðkjzj þ 1Þ1=2−νffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðν − 1Þp : ð16Þ

As we can see from Eqs. (13) and (15), it is not possible to
get rid of M and c at the same time and keep the solution
convergent. In this regard the result of Ref. [50] is
incomplete, because its does not satisfy the boundary
condition at z ¼ 0.
For massive modes, the field (10) can be written in

the form

a00nðzÞ −
��

19k2

4
þM2

�
½kjzj þ 1�−2 þ ðc − 3kÞδðzÞ −m2

n − imnksgnðzÞ½kjzj þ 1�−1
�
anðzÞ ¼ 0: ð17Þ

The above equation has the solution

anðzÞ ¼ C1θðzÞM1=2;νði2mn=kðkjzj þ 1ÞÞ þ C2θð−zÞM−1=2;νði2mn=kðkjzj þ 1ÞÞ
þ C3θðzÞW1=2;νði2mn=kðkjzj þ 1ÞÞ þ C4θð−zÞW−1=2;νði2mn=kðkjzj þ 1ÞÞ; ð18Þ

where C1, C2, C3, and C2 are constants satisfying the following boundary conditions:

C1M1=2;νð2imn=kÞ − C2M−1=2;νð2imn=kÞ þ C3W1=2;νð2imn=kÞ − C4W−1=2;νð2imn=kÞ ¼ 0; ð19Þ

4imn½C1M0
1=2;νðuÞ þ C2M0

−1=2;νðuÞ� − ðc − 3kÞðC1M1=2;νðimn=kÞ þ C2M−1=2;νðimn=kÞÞ
þ 4imn½C3W0

1=2;νðuÞ þ C4W0
−1=2;νðuÞ� − ðc − 3kÞðC3W1=2;νðimn=kÞ þ C4W−1=2;νðimn=kÞÞ ¼ 0: ð20Þ

At this point, it is interesting to try to localize a specific
massive mode, in order to model the dark matter as the Elko
spinor without the Higgs mechanism. Because the argu-
ment of the Whittaker function is complex, it is not possible
to find a coupling constant c that localizes any massive
mode. Thus, the Higgs mechanism is still necessary in
order to keep the Elko spinor as a candidate for dark matter.

IV. ELKO SPINOR WITH GEOMETRICAL
COUPLING

In this section a geometrical coupling based on a Yukawa
interaction with the Ricci scalar is introduced. This kind of
coupling has been used for p-forms and provides a second
efficient method to localize the zero modes [24,25]. In the
RS brane it provides a natural source for the coupling term
used in the previous section. The action is given by

S ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
−
1

4
ðDMλDM λ̄þDM λ̄DMλÞ − ηRλλ̄

�
;

ð21Þ

i.e., it is equivalent to making FðzÞ ¼ R in Eq. (1). In
conformal coordinates the Ricci scalar is given by

R ¼ −4ð2A00 þ 3A02Þe−2A; ð22Þ

and the field equation (7) can be written as

a00nðzÞ −
��

13

4
− 24η

�
A02 þ

�
3

2
− 16η

�
A00

−m2
n þ imnA0ðzÞ

�
anðzÞ ¼ 0: ð23Þ

As in Refs. [24,25], we propose a solution for the zero
mode in the form

a0 ∝ eγA; ð24Þ

so that the field equation provides the condition for this
kind of solution,
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�
γ2 −

13

4
þ 24η

�
A02 þ

�
γ −

3

2
þ 16η

�
A00 ¼ 0: ð25Þ

As we can see from Eq. (24), one needs γ > 0 in order to
obtain a convergent solution. Using this restriction, Eq. (25)
provides the solution γ ¼ 2 and η ¼ −1=32. Therefore, in
this model the localization of the zero mode is guaranteed
for any smooth version of the RS model. This solves the
problem of the zero-mode localization of Elko spinors. To
obtain explicit solutions, as well as the massive modes, we
must use specific scenarios, i.e., explicit warp factors. This
is what we will compute in the following subsections.

A. Randall-Sundrum brane

First, we will compute the explicit solution for the
Randall-Sundrum brane scenario. In this case, the warp
factor in conformal coordinates is given by

AðzÞ ¼ − ln½kjzj þ 1�: ð26Þ

Inserting this warp factor into Eq. (24), we obtain the
normalized convergent solution for the zero mode,

a0 ¼
ffiffiffiffiffi
2

3k

r
ðkjzj þ 1Þ−2: ð27Þ

Comparing this with the solution obtained in Sec. III, we
conclude that the geometrical coupling is equivalent to
making M2=k2 ¼ 5=4, and from Eq. (15), c ¼ −k. This
correspondence occurs due to the fact that the geometrical
coupling in a Randall-Sundrum case reduces to

ηRλλ̄ ¼ 1

2

�
5

4
k2 − kδðzÞ

�
λλ̄; ð28Þ

i.e., it is equivalent to the term used in Sec. III. Due to this
equivalence, the massive modes are given by

anðzÞ ¼ θðzÞ½A1M1=2;5=2ði2mn=kðkjzj þ 1ÞÞ þ B1W1=2;5=2ði2mn=kðkjzj þ 1ÞÞ�
þ θð−zÞ½A2M−1=2;5=2ði2mn=kðkjzj þ 1ÞÞ þ B2W−1=2;5=2ði2mn=kðkjzj þ 1ÞÞ�; ð29Þ

where A1, A2, B1, and B2 are constants satisfying the following conditions:

A1M1=2;5=2ðu0Þ − A2M−1=2;5=2ðu0Þ þ B1W1=2;5=2ðu0Þ − B2W−1=2;5=2ðu0Þ ¼ 0; ð30Þ

u0½A1M0
1=2;5=2ðuÞ þ A2M0

−1=2;5=2ðuÞ�ju¼u0 þ 2½A1M1=2;5=2ðu0Þ þ A2M−1=2;5=2ðu0Þ�
þ u0½B1W0

1=2;5=2ðuÞ þ B2W0
−1=2;5=2ðuÞ�ju¼u0 þ 2½B1W1=2;5=2ðu0Þ þ B2W−1=2;5=2ðu0Þ� ¼ 0; ð31Þ

where u0 ¼ 2imn=k. Due the asymptotic behavior of the
Whittaker functions with complex arguments, is not pos-
sible to find a convergent solution, i.e., the massive modes
are nonlocalized.

B. Smooth brane

Here we use the smooth warp factor [52,53]

AðzÞ ¼ −
1

2n
ln ½ðkzÞ2n þ 1�; ð32Þ

which recovers the Randall-Sundrum metric at large z for
integer n. Inserting this warp factor into Eq. (24), we find
the normalized convergent solution for the zero mode,

a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
2

Γð2=nÞ
Γð3=2nÞΓð1þ 1=2nÞ

s
½ðkzÞ2n þ 1�−1=n: ð33Þ

For massive modes the field equation can be written as

a00nðzÞ −
�
6
ðkzÞ2n−2k2
½ðkzÞ2n þ 1� − 4ðnþ 1Þ ðkzÞ2n−2k2

½ðkzÞ2n þ 1�2

−m2
n − imn

ðkzÞ2n−1k
½ðkzÞ2n þ 1�

�
anðzÞ ¼ 0: ð34Þ

The solution of the massive modes cannot be determined
analytically. Since the asymptotic behavior is the same as in
the Randall- Sundrum case, it is not possible to find a
convergent solution. A conclusive result needs a numerical
analysis, and this will be the subject of a future work.
Due to the imaginary massive term it is not possible to use
the transference matrix method to study the unstable
massive modes.

V. CONCLUSION

In this paper we have used two different methods to
localize the zero mode of the Elko spinor. This problemwas
reopened in Ref. [50], which showed that the conclusions
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about localization in Ref. [51] were incorrect. The first
method discussed here was the inclusion of 4D and 5D
mass terms. We found the relation between these two mass
terms that localizes the zeromode. This result shows that it is
not possible to get rid of booth contributions for a localized
solution, in disagreement with the results obtained in
Ref. [50]. This disagreement occurs because the authors
of the cited article found a convergent solution, but they do
not take into account the boundary condition at the origin.
We also showed that the massivemodes are nonlocalized for
this new model. The reason for this is that the solution is
given by the Whittaker function with a complex argument,
so it is not possible to find a coupling constant c that
localizes a specific massive mode in order to model the dark
matter as Elko spinors without the Higgs mechanism.
The other method used to localize the zero mode of

the Elko spinor uses a geometrical coupling. In this
model we computed the coupling constant that localizes
the zero mode for all warp factors with Randall-Sundrum

asymptotic behavior. We computed the explicit solution for
the Randall-Sundrum case and for a specific smooth brane
scenario. For the first one we conclude that the massive
modes are nonlocalized, and for the smooth scenario the
asymptotic behavior indicates that these modes are non-
localized. A numerical analyses is needed to provide a final
answer for the nonlocalization of massive modes in the
smooth scenario, and this is the subject of future work. Due
to the complex term in the potential, the present authors
have not been able to compute resonances, and this is left to
a future work.

ACKNOWLEDGMENTS

We acknowledge the financial support provided by
Fundação Cearense de Apoio ao Desenvolvimento
Científico e Tecnológico (FUNCAP), the Conselho
Nacional de Desenvolvimento Científico e Tecnológico
(CNPq) and FUNCAP/CNPq/PRONEX.

[1] D. Bailin and A. Love, Kaluza-Klein theories, Rep. Prog.
Phys. 50, 1087 (1987).

[2] A. Salam and J. A. Strathdee, On Kaluza-Klein theory, Ann.
Phys. (N.Y.) 141, 316 (1982).

[3] J. Polchinski, Dirichlet branes and Ramond-Ramond
charges, Phys. Rev. Lett. 75, 4724 (1995).

[4] M. Gogberashvili, Our world as an expanding shell,
Europhys. Lett. 49, 396 (2000).

[5] I. C. Jardim, R. R. Landim, G. Alencar, and R. N. Costa
Filho, The construction of multiple spherical branes
cosmological scenario, Phys. Rev. D 84, 064019 (2011).

[6] I. C. Jardim, R. R. Landim, G. Alencar, and R. N. Costa
Filho, Cosmologies of multiple spherical brane-universe
model, Phys. Rev. D 88, 024004 (2013).

[7] K. Akama, T. Hattori, and H. Mukaida, General solution for
the static, spherical and asymptotically flat braneworld,
arXiv:1109.0840.

[8] L. Randall and R. Sundrum, A Large Mass Hierarchy From
a Small Extra Dimension, Phys. Rev. Lett. 83, 3370 (1999).

[9] L. Randall and R. Sundrum, An Alternative to Compacti-
fication, Phys. Rev. Lett. 83, 4690 (1999).

[10] B. Bajc and G. Gabadadze, Localization of matter and
cosmological constant on a brane in anti–de sitter space,
Phys. Lett. B 474, 282 (2000).

[11] A. Kehagias and K. Tamvakis, Localized gravitons, gauge
bosons and chiral fermions in smooth spaces generated by a
bounce, Phys. Lett. B 504, 38 (2001).

[12] G. R. Dvali and M. A. Shifman, Domain walls in strongly
coupled theories, Phys. Lett. B 396, 64 (1997); 407, 452(E)
(1997).

[13] N. Kaloper, E. Silverstein, and L. Susskind, Gauge
symmetry and localized gravity in M theory, J. High Energy
Phys. 05 (2001) 031.

[14] M. J. Duff and P. van Nieuwenhuizen, Quantum inequiva-
lence of different field representations, Phys. Lett. B 94, 179
(1980).

[15] M. J. Duff and J. T. Liu, Hodge duality on the brane, Phys.
Lett. B 508, 381 (2001).

[16] G. Alencar, M. O. Tahim, R. R. Landim, C. R. Muniz, and
R. N. Costa Filho, Bulk antisymmetric tensor fields coupled
to a dilaton in a Randall-Sundrum model, Phys. Rev. D 82,
104053 (2010).

[17] G. Alencar, R. R. Landim, M. O. Tahim, C. R. Muniz, and
R. N. Costa Filho, Antisymmetric tensor fields in
randall sundrum thick branes, Phys. Lett. B 693, 503
(2010).

[18] G. Alencar, R. R. Landim, M. O. Tahim, K. C. Mendes,
and R. N. C. Filho, Antisymmetric tensor fields in codi-
mension two brane-world, Europhys. Lett. 93, 10003
(2011).

[19] R. R. Landim, G. Alencar, M. O. Tahim, M. A. M. Gomes,
and R. N. Costa Filho, On resonances of q-forms in thick
p-branes, Europhys. Lett. 97, 20003 (2012).

[20] C. E. Fu, Y. X. Liu, K. Yang, and S. W. Wei, q-form fields
on p-branes, J. High Energy Phys. 10 (2012) 060.

[21] A. E. R. Chumbes, J. M. Hoff da Silva, and M. B. Hott,
A model to localize gauge and tensor fields on thick branes,
Phys. Rev. D 85, 085003 (2012).

[22] K. Ghoroku and A. Nakamura, Massive vector trapping as a
gauge boson on a brane, Phys. Rev. D 65, 084017 (2002).

[23] I. C. Jardim, G. Alencar, R. R. Landim, and R. N. C. Filho,
Massive p-form trapping as a p-form on a brane, arXiv:
1410.6756.

[24] G. Alencar, R. R. Landim, M. O. Tahim, and R. N. C. Filho,
Gauge field localization on the brane through geometrical
coupling, Phys. Lett. B 739, 125 (2014).

SOLUTIONS TO THE PROBLEM OF ELKO SPINOR … PHYSICAL REVIEW D 91, 085008 (2015)

085008-5

http://dx.doi.org/10.1088/0034-4885/50/9/001
http://dx.doi.org/10.1088/0034-4885/50/9/001
http://dx.doi.org/10.1016/0003-4916(82)90291-3
http://dx.doi.org/10.1016/0003-4916(82)90291-3
http://dx.doi.org/10.1103/PhysRevLett.75.4724
http://dx.doi.org/10.1209/epl/i2000-00162-1
http://dx.doi.org/10.1103/PhysRevD.84.064019
http://dx.doi.org/10.1103/PhysRevD.88.024004
http://arXiv.org/abs/1109.0840
http://dx.doi.org/10.1103/PhysRevLett.83.3370
http://dx.doi.org/10.1103/PhysRevLett.83.4690
http://dx.doi.org/10.1016/S0370-2693(00)00055-1
http://dx.doi.org/10.1016/S0370-2693(01)00274-X
http://dx.doi.org/10.1016/S0370-2693(97)00131-7
http://dx.doi.org/10.1016/S0370-2693(97)00808-3
http://dx.doi.org/10.1016/S0370-2693(97)00808-3
http://dx.doi.org/10.1088/1126-6708/2001/05/031
http://dx.doi.org/10.1088/1126-6708/2001/05/031
http://dx.doi.org/10.1016/0370-2693(80)90852-7
http://dx.doi.org/10.1016/0370-2693(80)90852-7
http://dx.doi.org/10.1016/S0370-2693(01)00520-2
http://dx.doi.org/10.1016/S0370-2693(01)00520-2
http://dx.doi.org/10.1103/PhysRevD.82.104053
http://dx.doi.org/10.1103/PhysRevD.82.104053
http://dx.doi.org/10.1016/j.physletb.2010.09.005
http://dx.doi.org/10.1016/j.physletb.2010.09.005
http://dx.doi.org/10.1209/0295-5075/93/10003
http://dx.doi.org/10.1209/0295-5075/93/10003
http://dx.doi.org/10.1209/0295-5075/97/20003
http://dx.doi.org/10.1007/JHEP10(2012)060
http://dx.doi.org/10.1103/PhysRevD.85.085003
http://dx.doi.org/10.1103/PhysRevD.65.084017
http://arXiv.org/abs/1410.6756
http://arXiv.org/abs/1410.6756
http://dx.doi.org/10.1016/j.physletb.2014.10.040


[25] G. Alencar, R. R. Landim, M. O. Tahim, and R. N. C. Filho,
Gauge field emergence from Kalb-Ramond localization,
Phys. Lett. B 742, 256 (2015).

[26] C. Germani, Spontaneous localization on a brane via a
gravitational mechanism, Phys. Rev. D 85, 055025 (2012).

[27] D. Bazeia and L. Losano, Deformed defects with applica-
tions to braneworlds, Phys. Rev. D 73, 025016 (2006).

[28] R. R. Landim, G. Alencar, M. O. Tahim, and R. N. Costa
Filho, A transfer matrix method for resonances in
Randall-Sundrum models, J. High Energy Phys. 08
(2011) 071.

[29] R. R. Landim, G. Alencar, M. O. Tahim, and R. N. Costa
Filho, A transfer matrix method for resonances in randall-
sundrummodels II: the deformed case, J. High Energy Phys.
02 (2012) 073.

[30] G. Alencar, R. R. Landim, M. O. Tahim, and R. N. C. Filho,
A transfer matrix method for resonances in randall-sundrum
models III: an analytical comparison, J. High Energy Phys.
01 (2013) 050.

[31] M. Cvetic and M. Robnik, Gravity trapping on a finite
thickness domain wall: an analytic study, Phys. Rev. D 77,
124003 (2008).

[32] R. R. Landim, G. Alencar, M. O. Tahim, and R. N. Costa
Filho, New analytical solutions for bosonic field trapping in
thick branes, Phys. Lett. B 731, 131 (2014).

[33] Y. X. Liu, J. Yang, Z. H. Zhao, Chun-E. Fu, and Y. S. Duan,
Fermion localization and resonances on a de sitter thick
brane, Phys. Rev. D 80, 065019 (2009).

[34] Z. H. Zhao, Y. X. Liu, and H. T. Li, Fermion localization on
asymmetric two-field thick branes, Classical Quantum
Gravity 27, 185001 (2010).

[35] J. Liang and Y. S. Duan, Localization of matter and fermion
resonances on double walls, Phys. Lett. B 681, 172 (2009).

[36] Z. H. Zhao, Y. X. Liu, H. T. Li, and Y. Q. Wang, Effects of
the variation of mass on fermion localization and resonances
on thick branes, Phys. Rev. D 82, 084030 (2010).

[37] Z. H. Zhao, Y. X. Liu, Y. Q. Wang, and H. T. Li,
Effects of temperature on thick branes and the fermion
(quasi-)localization, J. High Energy Phys. 06 (2011) 045.

[38] H. T. Li, Y. X. Liu, Z. H. Zhao, and H. Guo, Fermion
resonances on a thick brane with a piecewise warp factor,
Phys. Rev. D 83, 045006 (2011).

[39] L. B. Castro, Fermion localization on two-field thick branes,
Phys. Rev. D 83, 045002 (2011).

[40] R. A. C. Correa, A. de Souza Dutra, and M. B. Hott,
Fermion localization on degenerate and critical branes,
Classical Quantum Gravity 28, 155012 (2011).

[41] L. B. Castro and L. A. Meza, Fermion localization on branes
with generalized dynamics, Europhys. Lett. 102, 21001
(2013).

[42] A. E. R. Chumbes, A. E. O. Vasquez, and M. B. Hott,
Fermion localization on a split brane, Phys. Rev. D 83,
105010 (2011).

[43] L. B. Castro and L. A. Meza, Effect of the variation of mass
on fermion localization on thick branes, arXiv:1104.5402.

[44] D. V. Ahluwalia-Khalilova and D. Grumille, Dark matter: a
spin one half fermion field with mass dimension one?, Phys.
Rev. D 72, 067701 (2005).

[45] D. V. Ahluwalia-Khalilova and D. Grumiller, Spin half
fermions with mass dimension one: Theory, phenomenol-
ogy, and dark matter J. Cosmol. Astropart. Phys. 07 (2005)
012.

[46] A. B. Gillard and B. M. S. Martin, Quantum fields, dark
matter and non-standard Wigner classes, in Proceedings of
7th international Heidelberg Conference on Dark 2009,
Christchurch, New Zealand, 18–24 January, 2009 (to be
published), arXiv:0904.2063.

[47] D. V. Ahluwalia and S. P. Horvath, Very special relativity as
relativity of dark matter: the elko connection, J. High
Energy Phys. 11 (2010) 078.

[48] D. V. Ahluwalia-Khalilova, C.-Y. Lee, D. Schritt, and T. F.
Watson, Elko as self-interacting fermionic dark matter with
axis of locality, Phys. Lett. B 687, 248 (2010).

[49] R. da Rocha, A. E. Bernardini, and J. M. Hoff da Silva,
Exotic dark spinor fields, J. High Energy Phys. 04 (2011)
110.

[50] Y. X. Liu, X. N. Zhou, K. Yang, and F.W. Chen,
Localization of 5D elko spinors on minkowski branes,
Phys. Rev. D 86, 064012 (2012).

[51] I. C. Jardim, G. Alencar, R. R. Landim, and R. N. C. Filho,
Comment on “Localization of 5D elko spinors on minkow-
ski branes”, Phys. Rev. D 91, 048501 (2015).

[52] Y. Z. Du, L. Zhao, Y. Zhong, Chun-E. Fu, and H. Guo,
Resonances of Kalb-Ramond field on symmetric and
asymmetric thick branes, Phys. Rev. D 88, 024009 (2013).

[53] A. Melfo, N. Pantoja, and A. Skirzewski, Thick domain wall
space-times with and without reflection symmetry, Phys.
Rev. D 67, 105003 (2003).

JARDIM et al. PHYSICAL REVIEW D 91, 085008 (2015)

085008-6

http://dx.doi.org/10.1016/j.physletb.2015.01.041
http://dx.doi.org/10.1103/PhysRevD.85.055025
http://dx.doi.org/10.1103/PhysRevD.73.025016
http://dx.doi.org/10.1007/JHEP08(2011)071
http://dx.doi.org/10.1007/JHEP08(2011)071
http://dx.doi.org/10.1007/JHEP02(2012)073
http://dx.doi.org/10.1007/JHEP02(2012)073
http://dx.doi.org/10.1007/JHEP01(2013)050
http://dx.doi.org/10.1007/JHEP01(2013)050
http://dx.doi.org/10.1103/PhysRevD.77.124003
http://dx.doi.org/10.1103/PhysRevD.77.124003
http://dx.doi.org/10.1016/j.physletb.2014.02.004
http://dx.doi.org/10.1103/PhysRevD.80.065019
http://dx.doi.org/10.1088/0264-9381/27/18/185001
http://dx.doi.org/10.1088/0264-9381/27/18/185001
http://dx.doi.org/10.1016/j.physletb.2009.10.012
http://dx.doi.org/10.1103/PhysRevD.82.084030
http://dx.doi.org/10.1007/JHEP06(2011)045
http://dx.doi.org/10.1103/PhysRevD.83.045006
http://dx.doi.org/10.1103/PhysRevD.83.045002
http://dx.doi.org/10.1088/0264-9381/28/15/155012
http://dx.doi.org/10.1209/0295-5075/102/21001
http://dx.doi.org/10.1209/0295-5075/102/21001
http://dx.doi.org/10.1103/PhysRevD.83.105010
http://dx.doi.org/10.1103/PhysRevD.83.105010
http://arXiv.org/abs/1104.5402
http://dx.doi.org/10.1103/PhysRevD.72.067701
http://dx.doi.org/10.1103/PhysRevD.72.067701
http://dx.doi.org/10.1088/1475-7516/2005/07/012
http://dx.doi.org/10.1088/1475-7516/2005/07/012
http://arXiv.org/abs/0904.2063
http://dx.doi.org/10.1007/JHEP11(2010)078
http://dx.doi.org/10.1007/JHEP11(2010)078
http://dx.doi.org/10.1016/j.physletb.2010.03.010
http://dx.doi.org/10.1007/JHEP04(2011)110
http://dx.doi.org/10.1007/JHEP04(2011)110
http://dx.doi.org/10.1103/PhysRevD.86.064012
http://dx.doi.org/10.1103/PhysRevD.91.048501
http://dx.doi.org/10.1103/PhysRevD.88.024009
http://dx.doi.org/10.1103/PhysRevD.67.105003
http://dx.doi.org/10.1103/PhysRevD.67.105003

