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Using holography, we study the low-lying mesonic spectrum of a range of asymptotically free gauge
theories. First, we revisit a simple top-down holographic model of QCD-like dynamics with predictions in
the Mρ-Mπ plane. The meson masses in this model are in very good agreement with lattice gauge theory
calculations in the quenched approximation. We show that the key ingredient for the meson mass
predictions is the running of the anomalous dimension of the quark condensate γ. This provides an
explanation for the agreement of holographic and quenched lattice gauge theory calculations. We then
study the “dynamic AdS/QCD model,” in which the gauge theory dynamics is included by a choice for the
running of γ. We use the naive two-loop perturbative running of the gauge coupling extrapolated to the
nonperturbative regime to estimate the running of γ across a number of theories. We consider models with
quarks in the fundamental, adjoint, two-index symmetric and two-index antisymmetric representations. We
display predictions for Mρ, Mπ , Mσ and the lightest glueball mass. Many of these theories, where the
contribution to the running of γ is dominated by the gluons, give very similar spectra, which also match
with lattice expectations for QCD. On the other hand, a significant difference between spectra in different
holographic models is seen for theories where the quark content changes the gradient of the running of γ
around the scale at which chiral symmetry breaking is triggered at γ ≃ 1. For these walking theories, we see
an enhancement of the ρ mass and a suppression of the σ mass. Both phenomena are characteristic for
walking behavior in the physical meson masses.
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I. INTRODUCTION

Asymptotically free gauge theories are notoriously
difficult to study, since they run to strong coupling in
the infrared. Computing the bound state spectrum of
theories such as QCD is therefore very hard. First-principle
lattice calculations are possible but very numerically
expensive. They are typically guided by the answers
observed in nature. It is hard to explore the range of
behavior across the full space of asymptotically free
theories. The holographic description of large Nc N ¼ 4
gauge theory [1] has raised the prospect of a dual
gravitational picture for these theories in which the spec-
trum might be computed in a purely classical theory. Top-
down attempts [2–4] to rigorously find a gravity dual
originating from ten-dimensional string theory are compli-
cated by the need to find a brane construction that
decouples all unwanted superpartners, and also by the
challenge of finding the appropriate gravitational back-
ground for embedding those branes. In any case, when the
gauge theory is weakly coupled, such as in the ultraviolet,
the gravitational theory will itself become strongly coupled.

Bottom-up holographic modeling [5] has taken broad-
brushstroke lessons from the AdS/CFT correspondence
and attempted to model the mesonic and glueball degrees of
freedom. Basic AdS/QCD models appear to work reason-
ably well, even at the quantitative 10% level or better, but
are not systematically improvable. This is due to the fact
that in principle, very many operators and higher-dimen-
sional couplings can be important for the vacuum and
bound state structure. Both top-down and bottom-up
models have therefore struggled to encode the particular
dynamics of a specific theory with, for example, a definite
value of Nc or the number of quark flavors Nf.
Recently there have been new attempts to construct holo-

graphic models [6–8] that address these issues and provide
insight into why some top-down models give good descrip-
tions of the QCD spectrum [9]. Here we will push these
insights further with two goals: First, we provide further
support for the success of an existing top-down model.
Second, we present bottom-up models for a large range of
different gauge theories.Onekeyobservationwashighlighted
already in Ref. [7], where it was noted in particular that the
quark condensate that characterizes the vacuum in all such
models is describedholographicallybya scalar in anAdS-like
space. The scalar becomes unstable to acquiring a vacuum
expectation value, corresponding to a quark condensate,
when its mass violates the Breitenlohner-Freedman (BF)
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bound [10]. This mass bound is given bym2 ¼ −4 in AdS5,
for instance. The AdSmass of the scalar in turn is mapped by
the AdS/CFT dictionary [1] to the dimension of the gauge
theory operator, m2 ¼ ΔðΔ − 4Þ. This implies that in a dual
to a QCD-like theory, the operator q̄q operator has dimension
three in the UVand is described by a scalar withm2 ¼ −3. To
reach the BF bound, beyond which there is an instability
leading to condensation to a new ground state and chiral
symmetry breaking, the dimension of q̄q must have become
Δ ¼ 2, which corresponds to an anomalous dimension of
γ ¼ 1. Top-down holographic models of QCD-like theories
that use probe branes display the importance of these ideas: as
described in Ref. [9], the running of the coupling or factors
deviating from AdS in the background metric enter into the
Dirac-Born-Infeld (DBI) action of the probe that describes the
quark and meson physics. If the DBI action is linearized, it
leads to an action for a scalar in AdS, dual to the operator
describing q̄q, with a running mass squared. This effective
running mass is generated by the metric and forms of the
background geometrywhich enter theDBI action. In fact, the
dual geometry and running of the coupling enter into
the effective AdS/QCD model only through the running of
the anomalous dimension γ, i.e. of the mass squared of the
AdS scalar.
Models that describe QCD reasonably have γ ¼ 0 in the

UV (as occurs naturally in a theory that is supersymmetric
in the UV), a long range over which γ is small, and a sudden
rise to γ greater than 1. This running is broadly similar to
that in QCD, where the logarithmic running keeps γ small
except around ΛQCD, where it blows up rapidly. We will
illustrate this here in the top-down Constable-Myers model
[4,11], which has been highlighted in Ref. [3] as providing
a surprisingly good description relative to lattice data of the
light spectrum.
These ideas were simplified in Ref. [8], where the

“dynamic AdS/QCD” model was proposed. The model is
just the linearizedDBI action of the D3/probe-D7 system, but
with an arbitrary running for γ. To describe any particular
gauge theory, then, requires a guess as to the form of that
running. A naive but still sensible guess is provided by the
perturbative running of the QCD coupling to two loops. For
Nf just below 11Nc=2, where asymptotic freedom is gained,
the two-loop running displays a Banks-Zaks fixed point [12].
AsNf is decreased, thevalue of the coupling at the fixed point
increases and the anomalousdimension γ increases.At a point
close to Nf ≃ 4Nc for fundamental quarks, the BF bound is
tripped and chiral symmetry breaking sets in. Above that
value of Nf, the model is in the regime referred to as the
“conformal window” [13]. Using the standard AdS relations,
the running can be translated into a radially dependent mass
squared for the scalar describing the condensate. The model
then makes predictions for the spectrum of the theory. Here
we will concentrate on the ρ meson, the pions, the σ meson
(i.e. the singlet q̄q bound state with vanishing quantum
numbers, also identifiedwith thef0), and the lightest glueball.

For the glueball, only qualitative statements are possible,
since the dynamic AdS/QCD model concentrates on the
quark sector. We will present our results in the style of
“Edinburgh” plots [14] used by lattice gauge theorists. These
plots display only physical observables, such as the mass of
the ρ as function of the pionmass, in order to remove scheme-
dependent quantities such as the quark mass.
In our Sec. II, we will revisit the Constable-Myers model

of chiral symmetry breaking [4,11] and extract, by linear-
izing the DBI action of a D7 brane in the geometry, the
running anomalous dimension. We will show that in the
critical range of radial coordinate, where γ ≃ 1, the running
of the model is similar to quenched QCD. We compare the
Mρ against Mπ behavior with that of quenched lattice
computations [15] and reemphasize the surprising success
of the model. In the subsequent sections, we then turn to the
dynamic AdS/QCD model [8], which allows us to explore
the space of gauge theories as a function of Nc, Nf and the
dependence on the representation of the quarks. Again we
find the holographic models give good agreement with
lattice data where it exists. In fact, we find a relatively weak
dependence onNc and the quark representation. Significant
deviations from QCD-like behavior are seen for so-called
“walking” gauge theories [16]. These are theories whose
running is governed by an IR fixed point, although this
point is never reached due to chiral symmetry breaking.
Moreover, these theories approach fixed points with γ close
to but above 1 since they exist for Nf just below Nf ≃ 4Nc.
For these theories, the gradient of γ as function of the
running coupling is small when γ ¼ 1. They are expected to
have a quark condensate which is enhanced in the UV,
which in turn tends to enhance the ρ mass, enhance the π
mass to a lesser degree, and suppress the σ mass [17,18].
The effective potential becomes very flat as the UV
condensate is pushed out to high scales, leaving a pseudo-
flat radial direction in the potential. We observe all of these
phenomena in our model.
These models remain only models though, since they

cannot be brought closer to the true dynamics systemati-
cally, and they depend on the naive guess for the running of
γ. Indeed, in gauge theory beyond two loops, the running
parameters are gauge dependent, but we hope working at
lower order does correctly capture the dynamics of the
gauge theory running. Nevertheless, the success in repro-
ducing the lattice data, where such data exist, gives hope
that the approach presented provides information about
universal behavior in these theories. In particular, we hope
that the trends we see as the edge of the conformal window
is reached will provide guidance to lattice simulations of
those theories [19].

II. A TOP-DOWN MODEL

An early holographic description of QCD [4] was
provided by placing D7-brane probes in the dilaton flow
geometry of Constable and Myers [11]. D3-D7 strings
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introduce quenched quark degrees of freedom. The
Constable-Myers deformation of AdS5 × S5 is a very
simple description of a gauge theory with a running
coupling that breaks the N ¼ 4 supersymmetry com-
pletely. The nontrivial dilaton profile is dual to that running
coupling and has an IR pole which is ill understood. In
practice, the geometry describes a gravity dual of a soft
wall, since the singularity is repulsive to probe branes. The
D7 probes bend away from the singularity, and asymp-
totically the embedding describes a dynamically generated
quark condensate at zero quark mass. In Ref. [3], the light
meson spectrum was computed. Moreover, the Mρ versus
M2

π plot was compared to quenched lattice data [15]. We
update these computations in Fig. 1. The fit is remarkably
good. At the time, this seemed very surprising, since the
gauge theory apparently lies close to infinitely strongly
coupled N ¼ 4 gauge theory with all the associated
superpartners and has no asymptotic freedom. In this
section, we return to this model and analyze it in the spirit
of Ref. [9] to shed some light on the success at describing
the QCD spectrum.
The gravity background of Constable and Myers [11] in

an Einstein frame has the geometry

ds2 ¼ H−1=2
�
w4 þ b4

w4 − b4

�
δ=4 X3

j¼0

dx2j

þH1=2

�
w4 þ b4

w4 − b4

�ð2−δÞ=4 w4 − b4

w4

X6
i¼1

dw2
i ; ð1Þ

where b is the scale of the geometry that determines the size
of the deformation [δ ¼ R4=ð2b4Þ with R the AdS radius],
and

H ¼
�
w4 þ b4

w4 − b4

�
δ

− 1; w2 ¼
X6
i¼1

wi
2: ð2Þ

In this coordinate system, the dilaton and four-form are,
with Δ2 þ δ2 ¼ 10,

e2Φ ¼ e2Φ0

�
w4 þ b4

w4 − b4

�Δ
;

Cð4Þ ¼ −
1

4
H−1dt ∧ dx ∧ dy ∧ dz:

ð3Þ

This geometry returns to AdS5 × S5 in the UV, as may be
seen by explicitly expanding at large radial coordinate w.
To add quarks [4], we will use an embedded probe D7-

brane. The D7-brane will be embedded with world-volume
coordinates identified with x0;1;2;3 and w1;2;3;4. Transverse
fluctuations will be parametrized by w5 and w6 (or L and
ϕ in polar coordinates)—it is convenient to define a
coordinate ρ such that

P
4
i¼1 dw

2
i ¼ dρ2 þ ρ2dΩ2

3 and

the radial coordinate is given by w2 ¼ ρ2 þ w5
2 þ w6

2 ¼
ρ2 þ L2.
The Dirac-Born-Infeld action of the D7-brane probe in

the Constable-Myers background takes the form

SD7 ¼ −T7R4

Z
d8ξϵ3eϕGðρ; LÞð1þ gabgLL∂aL∂bL

þ gabgϕϕ∂aϕ∂bϕþ 2πα0FabÞ1=2; ð4Þ

where

G ¼ ρ3
ððρ2 þ L2Þ2 þ b4Þððρ2 þ L2Þ2 − b4Þ

ðρ2 þ L2Þ4 :

Here we have rescaled w and b in units of R, so that factors
of R only occur as an overall factor on the embedding
Lagrangian.
From these equations we derive the corresponding

equation of motion. We look for classical solutions of
the form LðρÞ;ϕ ¼ 0. Numerically, we shoot from a regular
boundary condition in the IR (L0 ¼ 0) and find solutions
with the asymptotic behavior L ∼mþ c=ρ2. These coef-
ficients are then identified with the quark mass and
condensate hψ̄ψi, respectively (formally c is only the
unique contribution to the condensate in the zero-mass
limit [20]), in agreement with the usual AdS/CFT dic-
tionary obtained from the asymptotic boundary behavior.
Mesonic states are identified by looking at linearized

fluctuations about the background embedding. Fluctuations
in ϕ correspond to the pion, and fluctuations in the world
volume gauge field correspond to the ρmeson. In each case
one seeks solutions of the form fðρÞeik:x; k2 ¼ −M2, with
the mass states being picked out by the condition that fðρÞ
is regular.
Figure 1 shows the first example of the plots we will be

producing in this paper—it shows the ρ-meson mass as a
function of the pion mass squared. Note that in any given
theory we must fix the strong coupling scale Λ. Here and
throughout this paper, we choose to do this by setting the ρ
mass atMπ ¼ 0 (i.e. when the quark mass is zero) to be the
same in all theories, and we express all physical quantities
in units of that fixed mass. The figure shows the results
from the Constable-Myers model. We also display
quenched lattice results for the plot in theories with gauge
group SU(3), SU(5) and SU(7)—data taken from Ref. [15].
Note that in order to place the lattice data on the plot, we
have taken the two data points at lowest Mπ and linearly
extrapolated to find Mρ at Mπ ¼ 0. This is naive, and we
will argue later that this may put the points a little high in
the plane. Conservatively, we will use the spread of the
lattice data across the different SUðNcÞ theories as reflec-
tive of the systematic errors in the lattice simulations.
The remarkable thing is the lack of dependence onNc in the
lattice data and the match of the holographic model to the
lattice data. The aim of this section is to identify why there
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is such a close match given the large deviations in the
holographic dual that includes different adjoint particle
content and UV behavior.
Following Ref. [9], wewill argue that the key element for

the quark physics in the top-down model is the running of
the anomalous dimension γ with the renormalization scale.
We will show that this running is very similar to that in
QCD, especially in the regime where γ ≃ 1 and where the
BF bound-violating instability sets in that causes chiral
symmetry breaking. To study this instability we will look at
when the chirally symmetric L ¼ 0 embedding becomes
unstable. We simply take our DBI action, which up to a
multiplicative constant we may write as

SD7 ¼
Z

dρλðρ; LÞρ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂ρLÞ2

q
; ð5Þ

where λðρ; LÞ ¼ ρ−3eϕGðρ; LÞ and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ L2

p
, and

expand around L ¼ L0 ¼ 0 to quadratic order:

SD7 ¼
Z

dρρ3
�
λjL¼0 þ

∂λ
∂L2

����
L¼0

L2

��
1þ 1

2
ð∂ρLÞ2

�
;

¼
Z

dρρ3
�
1

2
λjL¼0ð∂ρLÞ2 þ ∂L2λjL¼0L

2

�
: ð6Þ

In order to ensure that the kinetic term in our Lagrangian
is canonical, we perform a coordinate transformation on ρ,

λðρÞρ3 ∂
∂ρ≡ ~ρ3

∂
∂ ~ρ ; ð7Þ

that is,

~ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

1R
∞
ρ

1
λρ3

dρ

s
: ð8Þ

We may rewrite our action in terms of the ~ρ variable.
Along with writing LðρÞ ¼ ~ρϕð~ρÞ, we obtain

SD7 ¼
Z

d~ρ
1

2
~ρ3
�
~ρ2ð∂ ~ρϕÞ2þ 3ϕ2þ λ

∂λ
∂ρ

����
L¼0

ρ5

~ρ4
ϕ2

�
: ð9Þ

The first two terms in the action describe a canonical
m2 ¼ −3 scalar in AdS5, whereas the remaining term gives
a ρ-dependent mass to the scalar field in AdS5. We find an
overall mass squared

m2 ¼ −3 − δm2; δm2 ≡ −λ
∂λ
∂ρ

����
L¼0

ρ5

~ρ4
: ð10Þ

Using the standard scalar mass/operator dimension relation
of the AdS/CFT dictionary, m2 ¼ ΔðΔ − 4Þ, but now
assuming the mass dimension of the qq̄ operator to be
3 − γ, where γ is the running anomalous dimension of the
gauge theory quark mass, we obtain the relation

m2 ¼ −3 − 2γ þ γ2: ð11Þ
Thus we associate δm2 ¼ −2γ þ γ2, and are thus able to
extract a running anomalous dimension in the Constable-
Myers background.
The key point to note is that the only way that the

background geometry and running dilaton enters into the
equation for the embedding is through the running of γ.
The background D7 embedding is then the key ingredient
for the computation of linearized fluctuations that deter-
mine the mesonic masses. Effectively, the origin of the
running of γ is lost—so questions about whether the
background has too many superpartners of the gauge fields,
or whether the running coupling is correctly that of QCD in
the UV, and so forth, become subsumed into simply asking
whether γ is close to that in QCD.
In Fig. 2, we plot the RG scale dependence of the

anomalous dimension γ extracted from the Constable-
Myers model and the one-loop running of large-Nc
quenched QCD theory. We have matched the strong
coupling scale of the two theories by assuming that they
each take the value γ ¼ 1 at the same scale. Setting the AdS

FIG. 1 (color online). Plots ofMρ againstM2
π : In each case, the points are normalized byMρ atMπ ¼ 0 to set the nonperturbative scale

Λ. As shown in the key, the plot shows the data for quenched lattice computations taken from Ref. [15] (and linearly fitted to findMρ at
Mπ ¼ 0), the Constable-Myers top-down model, and the dynamic AdS/QCD predictions.
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radius R to 1, we identify the RG scale and the radial
coordinate by μ ¼ ln ρ (i.e., we are choosing to set this
relation by matching to the physical RG scale). This is the
scale where chiral symmetry breaking is triggered, in
the holographic model by the BF bound violation. From
the figure it is immediately obvious that the scale depend-
ence of the anomalous dimension γ is similar in both cases,
and the gradient of γ is almost the same near γ ¼ 1.
Deviations in the UV are present but are mild. They occur
in the regime where the BF bound is not violated in the
holographic model.
This close matching of the scale dependence of the

anomalous dimension is, we believe, the reason for the
success of the holographic model. It is worth pointing out
that the reason that the holographic description and QCD
match in the UV is somewhat artificial. The UV of the
Constable-Myers theory is infinitely strongly coupled
N ¼ 4 super Yang-Mills theory, yet the theory’s large
amount of supersymmetry preserves the perturbative
dimension of the quark operator, i.e. γ ¼ 0. In QCD, the
UV result γ ¼ 0 simply follows from weak coupling. This
coincidence has long been behind the successes of AdS/
QCD models.
Given that the key ingredient to describe the mesonic

spectrum is simply the running of γ, it seems an obvious step
to do away with the background construction of a geometry
that mimics QCD, since there is no top-down holographic
construction of real QCD, and to simply use the assumed
form of γ as an input in the DBI action. This is essentially the
starting point for the bottom-up model that we call “dynamic
AdS/QCD” [8], which we will now move to studying.

III. DYNAMIC AdS/QCD

Dynamic AdS/QCD was introduced in detail in Ref. [8].
The model maps onto the action of a probe D7 brane in an

AdS geometry expanded to quadratic order [9]. The
anomalous dimension of the quark mass/condensate is
encoded through a mass term that depends on the radial
AdS coordinate ρ.
The five-dimensional action of our effective holographic

theory is

S ¼
Z

d4xdρTrρ3
�

1

ρ2 þ jXj2 jDXj2 þ Δm2

ρ2
jXj2 þ 1

2
F2
V

�
:

ð12Þ

The field X (the equivalent of the embedding coordinates
L;ϕ of the D7 brane in the top-down model) describes the
quark condensate degree of freedom. Fluctuations in jXj
around its vacuum configurations describe the scalar
meson. The π fields are the phase of X,

X ¼ LðρÞe2iπaTa
: ð13Þ

FV are vector fields that will describe the vector (V)
mesons.
We work with the five-dimensional metric

ds2 ¼ dρ2

ðρ2 þ jXj2Þ þ ðρ2 þ jXj2Þdx2; ð14Þ

which will be used for contractions of the space-time
indices. ρ is the holographic coordinate, and jXj ¼ L enters
into the effective radial coordinate in the space, i.e. there is
an effective r2 ¼ ρ2 þ jXj2. This is how the quark con-
densate generates a soft IR wall for the linearized fluctua-
tions that describe the mesonic states: when L is nonzero
the theory will exclude the deep IR at r ¼ 0.
The normalizations of X and FV are determined by

matching to the gauge theory in the UV. External currents
are associated with the non-normalizable modes of the
fields in AdS. In the UV we expect jXj ∼ 0, and we can
solve the equations of motion for the scalar L ¼ KSðρÞeiq:x
and vector Vμ ¼ ϵμKVðρÞeiq:x fields. Each satisfies the
same equation,

∂ρ½ρ2∂ρK� − q2

ρ
K ¼ 0: ð15Þ

The UV solution is

Ki ¼ Ni

�
1þ q2

4ρ2
lnðq2=ρ2Þ

�
; ði ¼ S; VÞ; ð16Þ

where Ni are normalization constants that are not fixed by
the linearized equation of motion. Substituting these
solutions back into the action gives the scalar correlator
ΠSS and the vector correlator ΠVV. Performing the usual
matching to the UV gauge theory requires us to set

FIG. 2 (color online). A plot of the anomalous dimension γ in
the top-down Constable-Myers model. It is compared to QCD by
using the one-loop perturbative result for the running coupling in
large-Nc Yang-Mills theory (μdα=dμ ¼ −11Ncα

2=6π) as input
for calculating the anomalous dimension γ [γ ¼ 3NcαðμÞ=4π].
We set the scale at which γ ¼ 1 to be equal in each case.
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N2
S ¼ N2

V ¼ NcNf

24π2
: ð17Þ

The vacuum structure of the theory can be determined by
setting all fields except jXj ¼ L to zero. We assume that L
will have no dependence on the x coordinates. The action
for L is given by

S ¼
Z

d4xdρρ3
�
ð∂ρLÞ2 þ Δm2

L2

ρ2

�
: ð18Þ

If Δm2 ¼ 0, then the scalar, L, describes a dimension-3
operator and dimension-1 source as is required for it to
represent q̄q and the quark mass m. That is, in the UV the
solution for the L equation of motion is L ¼ mþ q̄q=ρ2. A
nonzero Δm2 allows us to introduce an anomalous dimen-
sion for this operator. If the mass squared of the scalar
violates the BF bound of −4 (Δm2 ¼ −1, γ ¼ 1), then the
scalar field L becomes unstable and the theory enters a
chiral-symmetry-breaking phase.
We will fix the form of Δm2 using the two-loop running

of the gauge coupling in QCDwithNf flavors transforming
under a representation R. This takes the form

μ
dα
dμ

¼ −b0α2 − b1α3; ð19Þ

where

b0 ¼
1

6π

�
11C2ðGÞ − 4NfC2ðRÞ

dimðRÞ
dimðGÞ

�
; ð20Þ

and

b1 ¼
1

8π2

�
34

3
½C2ðGÞ�2 −

�
20

3
C2ðGÞC2ðRÞ þ 4½C2ðRÞ�2

�

× Nf
dimðRÞ
dimðGÞ

�
: ð21Þ

Above, we denote the adjoint representation as G and its
respective Casimir by C2ðGÞ ¼ Nc. Table I shows all the
distinguishing quantities associated with each of the
representations we consider: the dimension of the repre-
sentation, C2ðRÞ, and the minimum number of flavors
required for loss of asymptotic freedom, Nmax

f .
The one-loop result for the anomalous dimension of the

quark mass is

γ1ðμ;RÞ ¼
3C2ðRÞ
2π

αðμ;RÞ: ð22Þ

We will identify the RG scale μ with the AdS radial
parameter r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ L2

p
in our model. Note that it is

important that L enter here. If it did not and the scalar mass
were only a function of ρ, then were the mass to violate the

BF bound at some ρ, it would leave the theory unstable
however large L grew. Including L means that the creation
of a nonzero but finite L can remove the BF bound
violation, leading to a stable solution. This is analogous
to what happens in the top-down model.
Working perturbatively from the AdS result m2 ¼

ΔðΔ − 4Þ, we have

Δm2 ¼ −2γ1ðμ;RÞ ¼ −
3C2ðRÞ

π
αðμ;RÞ: ð23Þ

This will then fix the r dependence of the scalar mass
through Δm2 as a function of Nc and Nf for each R. Note
that if one were to attempt such a matching beyond two-
loop order, the perturbative result would become gauge
dependent. We hope that the lower-order gauge-indepen-
dent results provide sensible insight into the running in the
theory.
It is important to stress that using the perturbative result

outside the perturbative regime is in no sense rigorous, but
simply a phenomenological parametrization of the running
as a function of μ; Nc; Nf that shows fixed-point behavior.
We expect broad trends in the behavior of the theories with
varying Nf; Nc to be sensibly described with this ansatz.
Similarly, the relation (23) between Δm2 and γ1 is a guess
outside of the perturbative regime. Note that the holo-
graphic fixed point value for the anomalous dimension is
given by solving ΔðΔ − 4Þ ¼ Δm2, and the resultant γ will
not be the same as the fixed point in γ1 away from the
perturbative regime.
The vacuum structure for a given choice of representa-

tion, Nf and Nc, must be identified first. The Euler-
Lagrange equation for the vacuum embedding Lv is given
at fixed Δm2 by the solution of

∂
∂ρ ðρ

3∂ρLvÞ − ρΔm2Lv ¼ 0: ð24Þ

Note that if Δm2 depends on L at the level of the
Lagrangian, then there would be an additional term
−ρL2

v∂Δm2=∂Lv. We neglect this term and instead impose
the running of Δm2 at the level of the equation of motion.
The reason is that the extra term introduces an effective

TABLE I. Distinguishing quantities of representations of
SUðNcÞ gauge theories with asymptotic freedom valid for any
Nc ≥ 2.

R dimðRÞ C2ðRÞ Nmax
f

Fundamental Nc N2
c−1
2Nc

11
2
Nc

Adjoint (G) N2
c − 1 Nc 2 3

4

2IS NcðNcþ1Þ
2

ðNc−1ÞðNcþ2Þ
Nc

11
2

Nc
Ncþ2

2IA NcðNc−1Þ
2

ðNcþ1ÞðNc−2Þ
Nc

11
2

Nc
Nc−2
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contribution to the running of γ that depends on the gradient
of the running coupling. Such a term is not present in
perturbation theory in our QCD-like theories—we wish to
keep the running of γ in the holographic theory as close to
the perturbative guidance from the gauge theory as
possible.
In order to find LvðρÞ, we solve the equation of motion

numerically with shooting techniques with an input IR
initial condition. A sensible first guess for the IR boundary
condition is

Lvðρ ¼ L0Þ ¼ L0; L0
vðρ ¼ L0Þ ¼ 0: ð25Þ

This IR condition is similar to that from top-down models
[2] but imposed at the RG scale, where the flow becomes
“on mass shell.” Here we are treating LvðρÞ as a constituent
quark mass at each scale ρ. Were we to continue the flow
below this quark mass scale, we would need to address the
complicated issue of the decoupling of the quarks from the
running function γ.

A. Meson spectra

We now turn to computing the physical parameters, the
masses of the ðρ; σ; πÞ-mesons and the scalar glueball, for
each viable representation. These parameters are true
predictions of the model which, just as in the gauge
theories, depend only on the choice of the quark mass,
Nc, Nf and the scale Λ.

B. Linearized fluctuations

The isoscalar q̄q (σ) mesons are described by linearized
fluctuations of L about its vacuum configuration, Lv.
We look for space-time-dependent excitations, i.e. jXj ¼
Lv þ δðρÞeiq:x, q2 ¼ −M2

σ . The equation of motion for δ is,
linearizing (24),

∂ρðρ3δ0Þ − Δm2ρδ − ρLvδ
∂Δm2

∂L
����
Lv

þM2
σR4

ρ3

ðL2
v þ ρ2Þ2 δ ¼ 0: ð26Þ

We seek solutions with, in the UV, asymptotics of δ ¼ ρ−2

and with ∂ρδjL0
¼ 0 in the IR, giving a discrete meson

spectrum.
The isovector (ρ) meson spectrum is determined from the

normalizable solution of the equation of motion for the
spatial pieces of the vector gauge field Vμ⊥ ¼ ϵμVðρÞeiq:x
with q2 ¼ −M2. The appropriate equation is

∂ρ½ρ3∂ρV� þ
ρ3M2

ðL2
v þ ρ2Þ2 V ¼ 0: ð27Þ

We again impose ∂ρVjL0
¼ 0 in the IR and require in the

UV that V ∼ c=ρ2.
The pion mass spectrum is identified by assuming

a space-time-dependent phase πaðxÞ of the AdS scalar
X describing the q̄q degree of freedom, i.e. X ¼
LðρÞ expð2iπaðxÞTaÞ. The equation of motion of the pion
field is then

∂ρðρ3L2
v∂ρπ

aÞ þM2
π

ρ3L2
v

ðρ2 þ L2
vÞ2

πa ¼ 0: ð28Þ

Again, we impose at the IR boundary that ∂ρπ
ajL0

¼ 0.

C. Results

We can now move to displaying the outcomes of the
dynamic AdS/QCD theory. We will fix the strong coupling
scale Λ by fixing the ρ mass at Mπ ¼ 0 for each choice of
representation, Nf and Nc, and express all quantities in
units of that scale. For our plots, then, the only input
parameters are the quark mass, Nf and Nc. We will explore
a range of gauge theories with different quark matter.

1. Quenched fundamental representation

To test the model, we first compute Mρ and Mπ in the
model with quenched fundamental quarks. This means that
we do not include the quark contribution in the running of
the gauge coupling. We compute the meson masses as
functions of Nc to compare with the previously discussed
quenched lattice data of Fig. 1. We display the data also in
Fig 1. We note that all choices of SUðNcÞ give essentially
the same curve in this plot. This curve lies below, but within
5% of the prediction of the Constable-Myers top-down
model. The result for the dynamic AdS/QCD model in this
plot displays some curvature over the range of the lattice
data, suggesting that the linear extrapolation used to place
the lattice data on the plot may be incorrect. This suggests
that the results for the lattice data in our linear fit are
slightly too large, by as much as 5%. Indeed, in Ref. [15],
evidence is presented for a nonlinear fit already in the
lattice data. Given the expectation of some systematic error
on the lattice data (see Ref. [15]), the match between all
these models is remarkable and lends considerable support
to further predictions of the dynamic AdS/QCD model.
To emphasize how well the results match, we also plot

the same dynamic AdS/QCD and lattice data on a Log-Log
plot in Fig. 3. The figure also displays the line Mρ ¼ Mπ ,
which would be the one appropriate to a very weakly
coupled theory where both mesons’ masses are just twice
the quark mass. This line is expected to be approached at
large Mπ , i.e. in the limit of large quark mass. Clearly, the
very different computations for these theories agree rather
well. While both the holographic models’ curves are
compatible with the lattice data at the level of the errors
due to the coarse lattice spacing taken in Ref. [15], the
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top-down Constable-Myers model does fit the data mildly
better (the Mρ points are raised by up to 2% or so),
including in the large-Mπ limit. If this is indeed the case,
then it is likely due to γ in that model falling to zero more
quickly than in QCD as a function of the RG scale—the
holographic description of the UV is probably closer to
perturbative QCD with γ ¼ 0.

2. Fundamental representation

The quenched results display very little dependence on
Nc. The reason is that the running of γ at the point γ ¼ 1 is
very fast in all these cases, so the dynamics comes out very
similar. To see some Nc dependence, we should unquench
the theory and include a sufficient number of quarks to
affect the running. For example, in Fig. 4 we show the Nc

variation in theMρ-M2
π plane of a theory with Nf ¼ 8. The

dependence on Nc is again not huge, but for low Nc there is
a clear distinction from larger Nc theories that are effec-
tively more quenched. This further emphasizes the success
of the holographic model in lying so close to the quenched
lattice data—it is not that the curves seen in the previous
subsection are the only outcome.
We can now turn to studying the question of whether

there are choices of Nf and Nc that provide spectra very
different from QCD-like theories. As is well known, the
theories that are most unlike QCD are those on the edge of
the conformal window. For example, for an SU(3) gauge
theory at Nf > 12, the running of γ flows to an IR fixed
point below γ ¼ 1. In the holographic model, the BF bound
is not violated and chiral symmetry breaking does not
occur. For theories that do break chiral symmetry at slightly
lower values of Nf, the theory runs close to an IR fixed
point that just violates the BF bound. Crucially, at the point
where γ ¼ 1, the gradient of the running of γ is much
smaller than in QCD-like theories. To demonstrate the
impact of this on the spectrum, we plot the Nf dependence

of the SU(3) theory in the Mρ-M2
π plane in Fig. 5. The ρ

mass is substantially enhanced relative to the π mass at
larger Nf.
Theories with slow running at the scale where chiral

symmetry breaking is triggered are called walking gauge
theories [16]. For these theories, the chiral condensate has
dimension approximately 2 at the IR scale of conformal
symmetry breaking. The dimension-3 UV condensate is
roughly the product of that dimension-2 IR condensate and
the scale of the one-loop β function of the theory that
determines where the anomalous dimension changes from

FIG. 4 (color online). Mρ versus M2
π in SUðNcÞ theory with

NF ¼ 8 fundamental quarks: The lower plot shows the same in
Log-Log format. The solid line corresponds to Mρ ¼ Mπ .

FIG. 3 (color online). A Log-Log plot of Mρ versus M2
π: The plot displays the quenched lattice data from Ref. [15], the top-down

Constable-Myers model of Sec. II and the quenched results for varying Nc in dynamic AdS/QCD from Sec. III. The solid line
corresponds to Mρ ¼ Mπ .
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γ ¼ 0 to γ ¼ 1. This scale will be much larger than the IR
scale and the UV condensate enhanced. The usual expect-
ation is that the ρ mass will be proportional to hq̄qi1=3,
while the π mass will scale as m1=2

q hq̄qi1=6. An enhance-
ment of the condensate would therefore raise Mρ at any
fixed Mπ , as is seen in Fig. 5. Generically, for different Nc
we observe the same behavior as Nf=Nc → 4.
This is a good point at which to compare our dynamic

AdS/QCD theory to unquenched lattice data [21–23]. We
have seen that the effect of including more quarks in our
model is that the value of Mρ rises at fixed Mπ . This
suggests that the effect of quark loops is to raise Mρ. We
display lattice data in the top plot of Fig. 5—we show both
the quenched results previously discussed for SU(3) gauge
theory, but now also unquenched data for the same theory
with Nf ¼ 3, taken from Refs. [21–23]. The three sets of
lattice data show some spread in the low-Mπ region, but we
indeed observe a shift upwards inMρ by 20% or so. In fact,
the fit to the dynamic AdS/QCD model for Nf ¼ 3 is a
little poorer than to the quenched lattice data—the lattice
points are more similar to the Nf ¼ 5 version of dynamic

AdS/QCD (although there is clearly some uncertainty
in the lattice results as shown by the spread). This is
most plausibly explained as a failure of the very naive
perturbative-based running ansatz we have used as an input
into the model. The key measure is the gradient of γ with
RG scale at the scale where γ ¼ 1. For Nf ¼ 3, γ0 ¼ −4.25;
while at Nf ¼ 5, γ0 ¼ −3.70. This implies that the shift in
spectrum is caused by a 15% shift in this gradient. Clearly
the perturbative ansatz cannot be trusted at this level of
accuracy. It is not surprising that the precise features of the
spectrum are dependent on the choice of assumed running
for γ. It is encouraging that the holographic model gets
gross features correct, such as the rise in Mρ in theories
with more quark loops. This gives us confidence that the
holographic model can be useful in understanding broad
trends in the spectrum as the quark content of the theory is
changed.
An additional expectation in a walking theory is that the

σ-mode q̄q bound state should become light as one
approaches the edge of the conformal window from below.
The reason is that since the quark condensate is enhanced,
the effective potential for the condensate becomes flatter, as

FIG. 5 (color online). SU(3) gauge theory with Nf fundamental quarks showing the approach to the conformal window at Nf ¼ 12.
The lower plot is a Log-Log version of the top plot. The solid line corresponds to Mρ ¼ Mπ . The plots also show lattice data for the
quenched theory [15] and unquenched Nf ¼ 3 theory [21–23].
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discussed in Ref. [17]. To observe this, let us now turn to
computing the σ-meson mass. We will again pick Nc ¼ 3
as an example and show the Nf dependence of Mσ against
M2

π in Fig. 6. The Nf ¼ 7 curve is perhaps what one would
have predicted for QCD—at large quark mass, the σ and π
masses become degenerate. At low quark mass, as the π
mass tends to zero, the σ mass saturates at a value below the
ρ mass. One might then identify this state with the f0ð500Þ
state observed in experiment. However, for Nf ¼ 3, the
holographic model predicts that the lightest σ is heavier
than the ρ, and it looks more sensible to match it to the
f0ð980Þ, which it matches at the 10% level. An explanation
of the origin of the lighter f0 would then be needed. In fact,
though, the literature has considerable speculation about
this state, which might be a molecule or some other exotic
state (see for example Ref. [24]). We cannot resolve this
issue here. However, the main use of our model is to look at
significant trends in the behavior of the spectra as we adjust
the running of γ. Here our plot very strongly supports the
speculation that this σ mode becomes light as one
approaches the walking regime and the edge of the
conformal window at Nf ¼ 12.

3. Other representations

As we have stressed above, dynamic AdS/QCD can
accommodate a description of any arbitrary quark repre-
sentation. The flavor representation enters through the

running of the anomalous dimension γ (for which we
continue to use the two-loop perturbative result). In this
section, we provide some plots showing some exploration
of the larger space of theories.
As a first example, in Fig. 7 we show results for Nc ¼ 3.

The top plot shows the results in the Mρ versus M2
π plane

for the theory with a single quark in the fundamental
representation (here the same as the 2-index antisymmetric
representation), the adjoint representation, and the 2-index
symmetric representation. Increasing the size of the repre-
sentation makes a bigger impact on the running of the
coupling and moves the curve away from QCD-like

FIG. 6 (color online). Mσ versus M2
π in SU(3) gauge theory

with varyingNf fundamental quarks. The lower plot is a Log-Log
version of the top plot. The solid line corresponds to Mσ ¼ Mπ .

FIG. 7 (color online). A Log-Log plot in the Mρ-M2
π plane for

SU(3) gauge theory. The top plot shows the results in models with
Nf ¼ 1 but with the fermions in the fundamental, adjoint and 2-
index symmetric representations. The middle figure shows theNf

dependence in the case with adjoint fermions, and the bottom plot
shows the same for the 2-index symmetric representation. The
solid line corresponds to Mσ ¼ Mπ .
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towards the walking regime. In the lower two plots, we
show the Nf dependence for the adjoint and 2-index
symmetric representation (here we allow Nf ¼ 1.5, since
by Nf ¼ 2 chiral symmetry breaking is lost). Adding
flavors makes the theory more walking in behavior.
We can also explore the Nc dependence of these theories

at fixed Nf. For example, in Fig. 8 we vary Nc with two 2-
index symmetric representation quarks. Increasing Nc
moves the theory closer to the quenched limit and a more
QCD-like spectrum. Within this space of theories we are
not finding any additional structure beyond the dependence
on the rate of running at the point γ ¼ 1.
One final interesting case is that of 2-index antisym-

metric representation quarks. As one moves to higher Nc at
fixed Nf, the two-loop IR fixed point value of the coupling
actually decreases. For these theories, increasing Nc moves
one towards the walking regime. We show this in Fig. 9.
The walking regimes of these theories also display a light

σ meson. We show this trend for a variety of sequences of
theories moving towards the walking regime in Fig. 10. The
trends in the spectrum as one approaches the walking
regime across a wide range of theories are very similar.

D. The scalar glueball

Another state that one might be interested in studying as
part of the lightest spectra of these theories is the lightest
glueball state (see Ref. [18] for some discussions in
preliminary lattice simulations). AdS/QCD is not suited
to study this state, since it is fundamentally a description
of the quark sector. The glueball could be included as a
separate scalar in AdS, but one would then need to correctly
encode its dynamics for the gauge theory’s vacuum TrF2

condensate and make a guess as to how it couples in the
scalar potential to the quark condensate field X. There are a
lot of unknown parameters that describe the mixing of the σ
and glueball state. Rather than attempt this here, we will

FIG. 8 (color online). A Log-Log plot in the Mρ-M2
π plane for

SUðNcÞ gauge theory with Nf ¼ 2 2-index symmetric represen-
tation quarks. The solid line corresponds to Mσ ¼ Mπ .

FIG. 9 (color online). A Log-Log plot in the Mρ-M2
π plane for

SUðNcÞ gauge theory with Nf ¼ 3 2-index antisymmetric
representation quarks. The solid line corresponds to Mσ ¼ Mπ .

FIG. 10 (color online). Log-Log plots in theMσ-M2
π plane. The

top plot shows the results in SU(3) gauge theory with adjoint
quarks. The middle plot is for SUðNcÞ gauge theory with Nf ¼ 2

2-index symmetric representation quarks. The bottom plot is for
SUðNcÞ gauge theory with Nf ¼ 3 2-index antisymmetric
representation quarks. The solid line corresponds to Mσ ¼ Mπ .
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instead make a back-of-the-envelope computation for the
glueball state.
In pure Yang-Mills, the glueball is expected to be

between 5 and 10 times the one-loop strong coupling
scale. In the dynamic AdS/QCD model, we have assumed
the two-loop running for the gauge coupling and γ and then
computed the IR quark mass gap, the value of L at the on-
mass-shell condition. A simple thing to do then is to
decouple the quarks at that scale Lon-mass and use the one-
loop pure Yang-Mills coupling into the IR. We compute the
position of the IR pole and multiply by 8 to estimate the
glueball mass. This will at least give a ballpark behavior,
although mixing is explicitly not addressed.
In Fig. 11, we display the spectra of theNc ¼ 3 theory for

Nf ¼ 3 (QCD-like) andNf ¼ 11 (close to walking) includ-
ing the glueball. Both theories display a Goldstone pion. As
we have seen before, the σ becomes light and interchanges
orderingwith the ρ as one approaches thewalking regime. In
both cases, the glueball is the lightest state at large quark
mass—here the quarks decouple at their mass scale, where
the glue is still weakly coupled, and the pure glue theory
then runs logarithmically to strong coupling at a much lower
scale to set the glueball mass. For very small quark mass,
the glueball becomes the heaviest state in both cases. The
gauge coupling is sufficiently strong above the quark-mass
scale that the BF bound is violated and the quarks acquire a
dynamical mass. The pure glue running between that

scale and the IR pole is very fast, since we are already at
strong coupling when the quarks decouple—the glueball
mass is set by essentially the quark decoupling scale. The
interesting difference between the two cases with different
Nf is in the intermediate regime. The crossover between
these two cases is fast for theNf ¼ 3 theory butmuch slower
for the walkingNf ¼ 11 theory. In this intermediate plateau
region thewalking gauge theory's coupling has run to strong
coupling (although still below the value needed for chiral
symmetry breaking) so the glueball mass lies close to the
quark mass scale. Since it is walking, this regime, in which
the quark decoupling and IR pole values are reasonably
close, is enlarged in the walking theory—the crossover
occurs over a wider range of quark mass. This is a signal in
the spectra of walking behavior. Such a signal is important,
because it does not depend on gauge-dependent objects such
as the coupling itself.

IV. SUMMARY

In this paper we have studied the lowest-lying meson
spectra (ρ; π; σ and the lightest glueball) in asymptotically
free gauge theory using some simple holographic models.
In Sec. II, we studied an old top-down model [4] that had
been previously shown [3] to reproduce quenched lattice
results in theMρ-Mπ plane (see Fig. 1). The model includes
strongly coupled gauge fields but returns to N ¼ 4 super-
Yang-Mills in the UV. We argued, following Ref. [9], that
the mesonic sector of the holographic model is described by
a DBI action and that the only input of the background
geometry is the running anomalous dimension of the quark
bilinear operator, γ. We have shown that function is a good
approximation to quenched QCD in Fig. 2, and this
explains the success of the model in the mesonic sector.
Motivated by this observation (and the inability to find a

true gravity dual of the theories under analysis), we turned
to the phenomenological dynamic AdS/QCD model [8].
The model is basically the DBI action of a probe brane with
the gauge dynamics input through a running scalar mass
dual to γ. Once the running of γ is input, the spectrum is
then predicted. Of course, we do not know the non-
perturbative running of γ, but the perturbative two-loop
running for the gauge coupling α combined with the one-
loop expression for γ provide a well-explored proposal—
these theories lose asymptotic freedom for large quark
numbers and have a conformal window with a fixed point
for γ at lower Nf, which rises as Nf shrinks. In the
holographic setting, the condition γ ¼ 1 corresponds to a
violation of the BF bound in AdS, and the quark condensate
switches on at lower values of Nf. The model then allows
us to study any asymptotically free gauge theory with
quarks in arbitrary representation and for any Nc and Nf—
these quantities simply enter through the running of γ.
We first explored theories close to QCD—theories with a

small number of quark flavors that do not impact the

FIG. 11 (color online). The spectra of the Nc ¼ 3 gauge theory
with fundamental quarks: The top figure shows Nf ¼ 3, the
bottom Nf ¼ 11.
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running of the gauge coupling too much. These theories are
characterized by a scale where γ ¼ 1 and chiral symmetry
breaking is triggered and a fast running of γ at that scale.
They all predict a very similar mesonic spectrum (see
Fig. 1, for example) that match quenched lattice predictions
[15] and the top-down model previously studied, at the
level of errors in the lattice computations. A variant
spectrum can be seen if Nf is increased at fixed Nc, so
that the theory approaches the edge of the conformal
window and the running of γ is slow when γ ¼ 1 [see,
for example, the behavior in SU(3) gauge theory in Fig. 5].
The deviations are those expected given that the UV quark
condensate is enhanced in these walking theories. Thus the
holographic duals of walking models lead to significant
deviations in the “Edinburgh” meson plots, depending on
the slope of the anomalous dimension in the IR near γ ¼ 1.
However, in the QCD-like theories discussed above, these
deviations are much smaller. This is due to the fact that the
QCD-like models are close to the quenched limit, in which
the derivative of γ has less Nf dependence at the chiral-
symmetry-breaking point. The result that the deviations are
much smaller in the QCD-like models as compared to the
walking models adds further weight to the success of the
QCD-like models in matching lattice data.
The deviation in the spectrum due to walking is the only

gross feature we have found across a range of gauge
theories studied. For those theories, we see the ρ mass

enhanced, the π mass enhanced to a lesser degree at a fixed
bare quark mass and the σ mass falling as it acts as a
Goldstone of the shift symmetry in the flattening effective
potential for q̄q. We show this behavior in Fig. 6 for SU(3)
gauge theory. We explored theories with quarks in the
adjoint, and two index symmetric and antisymmetric
representations also, and found similar behaviors.
Finally, we estimated the lightest glueball mass in the

theories, although our model does not include mixing
effects with the mesonic states. At large bare quark mass,
the quarks decouple at scales exponentially separated from
the scale where the glue becomes strongly coupled and the
glueball is light relative to the mesons. At zero quark mass,
guided by QCD, the glueballs are expected to be heavier
than the lightest mesons. We sketch the crossover behavior
with the quark mass for SU(3) gauge theory with Nf ¼
3; 11 in Fig. 11—the effect of walking dynamics in the
physical spectra is to enlarge the energy range over which
this crossover occurs. This is a potentially useful statement
of a signal for walking dynamics that is not couched in
terms of a gauge-dependent object such as the running
coupling.
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