
Classical versus quantum evolution for a universe with a positive
cosmological constant

David Brizuela*

Fisika Teorikoa eta Zientziaren Historia Saila, UPV/EHU, 644 P.K., 48080 Bilbao, Spain
and Institut für Theoretische Physik, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany

(Received 23 January 2015; published 3 April 2015)

A homogeneous and isotropic cosmological model with a positive cosmological constant is considered.
The matter sector is given by a massless scalar field, which can be used as an internal time to deparametrize
the theory. The idea is to study and compare the evolutions of a quantum and a classical probability
distribution by performing a decomposition of both distributions in their corresponding moments. For the
numerical analysis an initial peaked Gaussian state in the volume will be chosen. Furthermore, in order to
check the robustness of certain results, as initial state both a slightly deformed Gaussian, as well as another
completely different state, will also be studied. Differences and similarities between classical and quantum
moments are pointed out. In particular, for a subset of moments classical and quantum evolutions are quite
similar, but certain variables show remarkable differences.
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I. INTRODUCTION

During the last years an intensive effort is being made to
construct effective theories (understood as a systematic
framework that provides the classical equations of motion
plus certain quantum corrections) for quantum cosmology
[1]. The main motivation is to obtain testable results in
scenarios where the complete knowledge of the underlying
fundamental quantum gravity theory is not necessary, in
such a way that quantum cosmology becomes an empirical
science. In this respect, there are already several proposals
and approaches in order to find quantum-gravity correc-
tions to the anisotropy spectrum of the cosmic microwave
background (see for instance [2–8]).
In the particular case of loop quantum cosmology [9],

there are three key ingredients that one should consider in
order to construct such an effective theory: holonomy
corrections, inverse-triad corrections, and quantum-
dynamical corrections. The origin of the first two correc-
tions lies in the variables that are used in this specific
theory: holonomies of connections and fluxes of spatial
triads. Holonomy corrections appear in a process of
regularization, and they take the form of higher powers
of the connection that amend the classical Hamiltonian
[10]. On the other hand, the inverse-triad corrections are
produced because, in order to avoid infinities, the inverse of
a given triad is replaced by the Poisson bracket between the
corresponding triad and certain holonomy, which consti-
tutes a classical identity [11]. This procedure prevents, at
the quantum level, the operator associated with the inverse
of the triad from diverging, even when the triad itself tends
to zero. The latter (quantum-dynamical) corrections are not
specific to a loop quantization and arise due to the

distributional character of quantum mechanics and the
noncommutativity of the basic operators. In the present
paper we will focus on these corrections, so let us analyze
their origin in more detail.
In the procedure of quantization each classical degree of

freedom is replaced by an infinite set of quantum degrees of
freedom, usually described by a probability distribution
(wave function). Another way to parametrize these degrees
of freedom is by decomposing the wave function in its
infinite set of moments. These moments then appear in the
classical Hamilton equations as quantum corrections.
Nonetheless, this distributional character is not specific
of the quantum theory. In fact, only ideally, classical
mechanics is nondistributional. When the initial conditions
are not known with infinite precision, this uncertainty can
be described by an initial probability distribution, and it is
then necessary to consider the evolution of such a dis-
tribution on the classical phase space. As explicitly shown
in [12,13], the evolution of a classical distribution can also
be described in terms of its moments. And, interestingly, it
turns out that the equations of motion for these classical
moments can be obtained from the equations of motion for
the quantum moments just by imposing a vanishing value
of the Planck constant. This is a neat classical limit of a
quantum theory, which implements the idea presented in
[14] that the limit of a quantum theory is not a unique orbit
on phase space, but an ensemble of classical orbits. Note
that the mentioned classical and quantum probability
distributions are defined on different spaces. Thus, their
decomposition in moments allows us to compare their
evolution. In addition, moments represent observable
quantities that could be, in principle, experimentally
measured.
Therefore, one can distinguish two different origins of

quantum-dynamical corrections. On the one hand, the fact*david.brizuela@ehu.eus
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that an extensive (as opposed to a Dirac delta) distribution
needs to be considered makes the presence of moments in
the equations of motion unavoidable. Nonetheless, these
kind of terms are also present in the evolution of a classical
distribution and thus they are not genuinely quantum. For
instance, as in the quantum case, they generically prevent
the centroid of a classical distribution (the expectation value
of the position and momentum) from following a classical
trajectory on the phase space. On the other hand, the purely
quantum or noncommutativity terms arise due to the non-
commutativity of the basic operators. In the equations of
motion they appear as a power series in ℏ2. Following the
terminology of [13], the first ones will be named distri-
butional effects, whereas the latter ones purely quantum
effects. It is important to stress that, if quantum cosmology
is to become a testable theory, one needs to discriminate
between purely quantum effects and effects that might
appear just due to different technical or measurement
errors, which would imply a classical probability
distribution.
Let us briefly mention that this formalism based on a

decomposition of the wave function in terms of its moments
was first presented in [12] for the case of a particle on a
potential. A similar formalism was derived in [15,16] for
generic Hamiltonians and on a canonical framework, but
making use of a different ordering of the basic variables.
Furthermore, this formalism has been adapted to the case
when the dynamics is ruled by a Hamiltonian constraint, as
opposed to a Hamiltonian function [17]. This is of
particular importance in the context of general relativity,
where the Hamiltonian is a linear combination of con-
straints. It has also been extensively applied to different
models of quantum cosmology: isotropic models with a
cosmological constant have been studied in [18,19]
whereas, in the context of a loop quantization, bounce
scenarios have been analyzed in [20]. The problem of time
has also been analyzed in [21,22] within this framework.
Finally the classical counterpart of the formalism developed
in [15,16], for the analysis of the evolution of a classical
distribution in terms of its moments, was presented in [13]
and applied to the case of a particle on a potential in [23].
In this paper we will revisit, from the perspective of a

classical probability distribution, the model studied in
Ref. [19] for the evolution of quantum moments on a
homogeneous and isotropic universe with a positive cos-
mological constant. The numerical analysis of the present
model in terms of a wave function is presented in [24], both
for a geometrodynamical and a loop quantization. Here
moments will be defined in terms of geometrodynamical
variables.
Our goal is to find differences and similarities between

the quantum and classical (distributional) evolution of this
cosmological model, given the same initial data for both
cases, in order to study whether any moment has some
distinctive or characteristic behavior under either the

quantum or classical evolutions. As already commented
above, the great advantage of the present formalism is that
it considers the evolution of moments, which are observ-
ables, and no mention of an abstract mathematical object,
as the wave function, has to be made. Therefore, choosing
the same initial data for both classical and quantum sectors
is straightforward. This kind of question is very difficult to
be posed in terms of a wave function, since one needs to
somehow define its classical probability distribution analog
and choose the same initial data. (This can be done via, for
instance, the Wigner transform but in general it is not
positive definite and thus cannot be strictly understood as a
probability distribution.) Finally note that the present
analysis is different from trying to define a classicalization
of a given quantum system. This latter is usually addressed
by appealing to the WKB limit or different decoherence
processes that annihilate the quantum interference (see,
e.g., [25–27]).
The rest of the paper is organized as follows. In Sec. II

the formalism for the evolution of classical and quantum
probability distributions in terms of their corresponding
moments is briefly summarized. Section III presents the
specific cosmological model under consideration. In
Sec. IV the results obtained with different numerical
implementations are described. Finally, Sec. V discusses
the main conclusions.

II. GENERAL FORMALISM

Let us assume a quantum mechanical system parame-
trized by the conjugate variables ðq̂; p̂Þ. The quantum
moments associated to this system are given by

Ga;b ≔ hðp̂ − pÞaðq̂ − qÞbiWeyl; ð1Þ

where p ≔ hp̂i, q ≔ hq̂i and the subscript Weyl stands for
totally symmetric ordering. The order of a moment Ga;b is
defined as the sum between its two indices ðaþ bÞ. Note
that through this decomposition the wave function that
describes the quantum state of the system gets replaced by
its infinite set of momentsGa;b, which only depend on time.
Moments that correspond to a valid wave function must
fulfill certain relations due to the Schwarz inequalities; see
[13] for a systematic derivation of such relations. The
simplest, and probably most important, example is the
Heisenberg uncertainty principle that, with this notation,
takes the following form:

ðG1;1Þ2 ≤ G2;0G0;2 −
ℏ2

4
: ð2Þ

The dynamical information of these moments is encoded
on an effective Hamiltonian HQ, which is obtained by
performing a Taylor expansion of the expectation value of
the Hamiltonian operator around the centroid:
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HQðq; p;Ga;bÞ ≔ hĤðq̂; p̂ÞiWeyl

¼ hĤðq̂ − qþ q; p̂ − pþ pÞiWeyl

¼
X∞
a¼0

X∞
b¼0

1

a!b!
∂aþbH
∂pa∂qb G

a;b

¼ Hðq; pÞ þ
X
aþb≥2

1

a!b!
∂aþbH
∂pa∂qb G

a;b: ð3Þ

In order to obtain the evolution equations for the moments
Ga;b, as well as for the expectation values (q, p), it is
enough to compute the Poisson brackets between each of
these variables and the above Hamiltonian HQ. In this
way one obtains the following infinite set of ordinary
differential equations:

dq
dt

¼ ∂Hðq; pÞ
∂p þ

X
aþb≥2

1

a!b!
∂aþbþ1Hðq; pÞ
∂paþ1∂qb Ga;b; ð4Þ

dp
dt

¼ −
∂Hðq; pÞ

∂q −
X
aþb≥2

1

a!b!
∂aþbþ1Hðq; pÞ
∂pa∂qbþ1

Ga;b;

ð5Þ

dGa;b

dt
¼ fGa;b; HQg ¼

X
cþd≥2

1

c!d!
∂cþdH
∂pc∂qd fG

a;b; Gc;dg;

ð6Þ

which is completely equivalent to the flow of states
generated by the Schrödinger equation. Note that the first
two equations are the usual Hamilton equations plus certain
correction terms that depend on the moments. If all
moments were vanishing, these terms would completely
disappear. One of the consequences of these terms is that
the centroid of a quantum distribution ðq; pÞ does not
follow a classical point orbit (the orbit obtained with an
initial Dirac delta distribution, for which all moments
vanish). Even so, this effect is not genuinely quantum
since, as will be shown below, it also happens for classical
probability distributions. A closed formula for the Poisson
brackets between any two moments, which has been left
indicated in Eq. (6), can be found in Refs. [16,19]. For
practical purposes, generically one needs to truncate the
infinite system by introducing a cutoff by hand in order to
be able to solve it.
On the other hand, let us assume an ensemble on the

classical phase space coordinatized by the conjugate
variables ð ~q; ~pÞ. Such an ensemble will be described by
a probability distribution function ρð ~q; ~p; tÞ, which will
obey the Liouville equation. This distribution function
defines a natural expectation value operation on the
classical phase space for any function fð ~q; ~pÞ in the
following way:

hfð ~q; ~pÞic ≔
Z

d ~qd ~pfð ~q; ~pÞρð ~q; ~p; tÞ; ð7Þ

where the integration should be taken along the domain of
the probability distribution.
Following the same procedure as in the quantum case,

the classical moments are then defined as

Ca;b ≔ hð ~p − pÞað ~q − qÞbic; ð8Þ

where ðq; pÞ are the coordinates of the centroid of the
distribution: q ≔ h ~qic and p ≔ h ~pic. [For notational sim-
plicity, and for the moment being, the same notation ðq; pÞ
will be used for the centroid of both classical and quantum
distributions. Nonetheless, in Sec. III B specific notations
will be introduced for each of them, to be used when the
meaning is not clear from the context.] On the contrary to
the quantum case, here all variables commute and, there-
fore, the ordering inside the expectation value is irrelevant.
The Hamiltonian that describes the evolution of these
classical variables is obtained, as in the quantum case,
by expanding the expectation value of the Hamiltonian
around the position of the centroid:

HCðq; p; Ca;bÞ ≔ hHð ~q; ~pÞic
¼ Hðq; pÞ þ

X
aþb≥2

1

a!b!
∂aþbHðq; pÞ
∂pa∂qb Ca;b:

ð9Þ

In order to get the evolution equations for the classical
expectation values ðq; pÞ and moments Ca;b one just needs
to compute the Poisson brackets of different variables with
this Hamiltonian. The flow generated by the Liouville
equation for the probability distribution ρð ~q; ~p; tÞ is then
equivalent to the infinite set of equations obtained by this
procedure.
It turns out that the difference between the quantum and

classical equations are just terms that appear in the former
equations multiplied by even powers of Planck constant ℏ
and are missing in the classical equations. Such ℏ factors
are present in the quantum system due to the noncommu-
tativity of the basic operators q̂ and p̂. In fact, the classical
equations of motion for the moments and expectation
values can be obtained from their quantum counterparts
by imposing a vanishing value of the Planck constant. Thus
the classical limit of a quantum system, understood as
ℏ → 0, turns out to be very neat in this formalism. In
particular, as can be seen, such a limit does not give a
unique trajectory on the classical phase space but an
ensemble of them.
Because of the properties of the equations mentioned

above, it is possible to classify the quantum effects
depending on its origin. On the one hand, distributional
effects arise because, due to the Heisenberg uncertainty
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relation, all quantum moments cannot be vanishing. These
effects are also present in the classical setting when
considering the evolution of a spread probability distribu-
tion, for instance in the usual situation where the initial data
are not known with infinite precision. On the other hand,
the noncommutativity or purely quantum effects appear in
the quantum equations as explicit ℏ terms. As commented
above, the origin of such terms lies in the noncommuta-
tivity of the basic operators. On the contrary to distribu-
tional effects, these are not present in the classical setting
and are, thus, genuinely quantum.
There are two classes of Hamiltonians that have very

special properties regarding the classical and quantum
evolution they generate [13]. On the one hand, the quantum
equations derived from any harmonic Hamiltonian, which
are at most quadratic on the basic variables, do not contain
any ℏ term. Therefore, the evolution that is generated by
such a Hamiltonian both in the classical and quantum
settings is exactly the same. On the other hand, the
Hamiltonians that are linear in one of the basic variables,
e.g., in q, generate the same evolution for the infinite set of
variables ðq; p;Gn;0; Gn;1Þ as for their classical counter-
parts ðq; p; Cn;0; Cn;1Þ for all integer n. In particular, the
cosmological model that will be considered on this paper is
described by a Hamiltonian linear in q. In addition, when
the cosmological constant is vanishing this Hamiltonian
will turn out to be linear in both q and p. Thus, for that case,
the Hamiltonian will be harmonic and the quantum and
classical (distributional) evolutions it generates will be
completely indistinguishable.
Finally, let us comment that the stationary states can

also be considered within the present formalism. The
stationary states correspond to fixed points of the
dynamical system under consideration and thus its
corresponding moments can be obtained by solving the
algebraic system of equations obtained by dropping all
time derivatives from the equations of motion for
ðq; p;Ga;bÞ. In particular, following this procedure, the
moments of the classical and quantum stationary states of
the harmonic and the quartic oscillators were studied
in [23].

III. APPLICATION TO A
COSMOLOGICAL MODEL

A. The classical cosmological model with a
positive cosmological constant

Let us assume a cosmological model of a homogeneous,
isotropic and spatially flat universe with a massless scalar
field ϕ as matter content and positive cosmological con-
stant Λ. As usual in general relativity, this system is
described by a Hamiltonian constraint, as opposed to a
physical Hamiltonian. Nonetheless, it is possible to depar-
ametrize the system and use the conjugate momentum of
the scalar field pϕ, which is a constant of motion, as a

physical Hamiltonian. The Friedmann equation corre-
sponding to this system reads

�
a0

a

�
2

¼ 4πG
3

p2
ϕ

a6
þ Λ; ð10Þ

where a is the scale factor and the prime stands for
derivative with respect to the cosmic time. By choosing
the Newton constant as 4πG

3
¼ 1 for convenience, it is

straightforward to solve this equation for pϕ and define our
physical Hamiltonian as

H ≔ pϕ ¼ a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ja02 − Λa2j

q
; ð11Þ

where the absolute value has been taken to extend this
Hamiltonian to the region a02 < Λa2. In this way, the scalar
field ϕ will play the role of time. Nevertheless, this
Hamiltonian must still be written in terms of the canonical
variables. Such variables are directly related to the scale
factor of the universe as q ¼ ð1 − xÞa2−2x and p ¼ −a2xa0.
Then, the physical Hamiltonian takes the following form:

H ¼ ð1 − xÞq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp2 − Λ½ð1 − xÞq�ð1þ2xÞ=ð1−xÞj

q
: ð12Þ

The parameter x characterizes different possible cases of
lattice refinement of an underlying discrete state, character-
istic of a loop quantization [28,29]. A value around x ¼
−1=2 seems to be favored by several independent phe-
nomenological and stability analyses in the context of
loop quantum cosmology [30–34]. Nevertheless, in the
(geometrodynamical) quantization studied here, with the
usual canonical commutation relation, in principle this
parameter does not play any role. Thus, as was done in
Ref. [19], x ¼ −1=2 will be chosen since it turns out to be
very convenient because it leaves the Hamiltonian as a
linear function of the position:

H ¼ 3

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp2 − Λj

q
: ð13Þ

The Hamilton equations take then the following form:

_q ¼ 3

2
qp

sgðp2 − ΛÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp2 − Λj

p ; ð14Þ

_p ¼ −
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp2 − Λj

q
; ð15Þ

where sg is the sign function and the dot stands for
derivative with respect to ϕ. The solution to these equations
can be found analytically [19] but here, in order to
complement the discussion of that reference and to show
in a more intuitive way the dynamics of this system in terms
of the chosen variables, the corresponding phase space
diagram is shown in Fig. 1. With the chosen value of the
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parameter x, q is proportional to the volume of the universe
a3, and one would then naturally define it as positive
definite. Nonetheless, for illustrational purposes, both
negative and positive values of the position q have been
plotted. In fact, as can be seen in the diagram, the phase
space is symmetric under a change of sign in q (as the
whole system is symmetric under a change of sign of a).
For positive q (as well as for negative q), the phase space
contains three disjoint regions separated by the lines
p ¼ � ffiffiffiffi

Λ
p

. The upper and lower sectors correspond to
p2 > Λ, whereas in the middle sector p2 < Λ. This latter
region is the one that in principle is not allowed by the
Friedmann equation (10) (the momentum of the scalar field
would need to be imaginary) but has been constructed
extending the Hamiltonian by taking the absolute value
inside the square root (11).
The explicit equation for the orbits can be obtained

analytically:

ðp2 − ΛÞq2 ¼ k; ð16Þ

with k an integration constant. Note that positive values of
the constant k correspond to the upper and lower sectors,
whereas negative values stand for orbits in the middle

region. Between those solutions, there is also the degen-
erate solution q ¼ 0, that corresponds to a universe with
zero volume.
In the upper region all orbits begin at the positive infinite

of p and vanishing q, with a value ϕ → −∞ of the affine
parameter, and reach the asymptote p ¼ ffiffiffiffi

Λ
p

at an infinite
value of q but at a finite value of the affine parameter
ϕ ¼ ϕdiv. We will be interested in this region that corre-
sponds to an expansion of the universe. The lower region is
the time reversed of this latter one. There the system begins
with an infinite volume and collapses. In fact, every orbit of
this region is the analytic extension of the orbit with the
same integration constant k of the upper region for values
ϕ ∈ ðϕdiv;∞Þ of the affine parameter [24]. On the other
hand, the middle region is nonphysical and corresponds to
bouncing solutions that begin with infinite volume, col-
lapse until a minimum value of q ¼ ffiffiffiffiffiffiffiffiffiffiffijkj=Λp

with p ¼ 0
and then expand again. Since we will be working just in the
upper sector, from here on, the absolute values that appear
in the Hamiltonian, as well as in the equations of motion,
will be removed without loss of generality.

B. Evolution equations for classical and
quantum moments

Following the procedure described in Sec. II, one can
construct the effective Hamiltonian HQ for this system
as [19]

HQ ¼ 3

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − Λ

q
þ 3

2

ffiffiffiffi
Λ

p X∞
n¼2

Λ−n=2

n!

× ½qTnðp=
ffiffiffiffi
Λ

p
ÞGn;0 þ n

ffiffiffiffi
Λ

p
Tn−1ðp=

ffiffiffiffi
Λ

p
ÞGn−1;1�;

ð17Þ

where the function

TnðxÞ ≔
dn

dxn
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
ð18Þ

has been defined. Making use of this Hamiltonian it is
straightforward to obtain the infinite system of equations
that rules the evolution of the expectation values ðq; pÞ and
quantum moments Ga;b:

_q ¼ 3

2
q

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − Λ

p þ 3

2

X∞
n¼2

Λ−n=2

n!

× ½qTnþ1ðp=
ffiffiffiffi
Λ

p
ÞGn;0 þ n

ffiffiffiffi
Λ

p
Tnðp=

ffiffiffiffi
Λ

p
ÞGn−1;1�;

ð19Þ

_p ¼ −
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − Λ

q
−
3

2

ffiffiffiffi
Λ

p X∞
n¼2

Λ−n=2

n!
Tnðp=

ffiffiffiffi
Λ

p
ÞGn;0;

ð20Þ

FIG. 1. In this plot the phase space corresponding to the
cosmological model under consideration is shown for the
value Λ ¼ 10. The dotted lines stand for the curves p ¼ � ffiffiffiffi

Λ
p

,
which cannot be crossed by any orbit. These lines divide
the phase space in three different regions. The upper region
corresponds to expanding solutions. The lower region is the time
reversed of the latter one and thus describes collapsing
orbits. Finally, the intermediate region corresponds to bouncing
solutions.
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_Ga;b ¼ 3

2

ffiffiffiffi
Λ

p X∞
n¼2

Λ−n=2

n!

× ½qTnðp=
ffiffiffiffi
Λ

p
ÞfGa;b; Gn;0g

þ n
ffiffiffiffi
Λ

p
Tn−1ðp=

ffiffiffiffi
Λ

p
ÞfGa;b; Gn−1;1g�; ð21Þ

where the Poisson brackets between moments have been
left indicated. (For explicit expressions of these brackets
the reader is referred to [13,19].) The evolution equations
for classical moments and expectation values ðq; p; Ca;bÞ
are obtained from these previous ones just by imposing
ℏ ¼ 0. Such ℏ terms appear when computing the Poisson
brackets between moments.
Sometimes the meaning is not clear from the context and

thus, following the notation of [23], the solution of the
quantum system (19)–(21) will be denoted as qqðϕÞ. On the
other hand, the solution of the classical distributional
system [that is, the one obtained from (19)–(21) by
replacing all Ga;b by it corresponding Ca;b and imposing
ℏ ¼ 0] will be denoted by qcðϕÞ. Finally, the classical point
trajectory [the solution to Eqs. (19) and (20) dropping all
moments] will be referred as qclassðϕÞ. The same notation is
used for the variable p.
The system we are dealing with has a very particular

Hamiltonian since it is linear on the position variable q.
That is why only moments of the formGn;0 andGn;1 appear
in the effective Hamiltonian (17), and in the second entry of
the Poisson brackets of Eq. (21), as well as in the equations
for the expectation values (19) and (20). It can be shown
that, for such a system, the infinite set of variables (qq, pq,
Gn;0, Gn;1) for all integer n obeys a close system of
equations, decoupled from the rest of the moments, which
does not contain any ℏ term [13]. Therefore, given the same
initial data, the expectation values qq, pq, as well as all
moments of the formGn;0 andGn;1, follow exactly the same
evolution as their classical distributional counterparts (qc,
pc, Cn;0, Cn;1). This is completely generic for any initial
data. Therefore, for this kind of Hamiltonians qcðϕÞ ¼
qqðϕÞ and pcðϕÞ ¼ pqðϕÞ for all times. However, this does
not mean that they follow the classical point trajectory
qclassðϕÞ ≠ qcðϕÞ, since moment terms appear in Eqs. (19)
and (20). In the following subsections different initial data
will be considered in order to compare the classical and
quantum evolution of this cosmological model. And, thus,
in order to find any difference, moments not contained in
that subset will have to be checked.
Finally, note that Λ ¼ 0 is a harmonic case since the

Hamiltonian is linear in both position and momentum
variables. This harmonic case has very special properties.
In particular, all orders are decoupled, and there is no ℏ in
any of the evolution equations of the moments. Thus
classical and quantum moments obey exactly the same
set of equations. In fact, it is easy to find the analytic
solution for all variables:

qðϕÞ ¼ q0 exp

�
3

2
ðϕ − ϕ0Þ

�
; ð22Þ

pðϕÞ ¼ p0 exp

�
−
3

2
ðϕ − ϕ0Þ

�
; ð23Þ

Ga;bðϕÞ ¼ Ga;b
0 exp

�
3

2
ðb − aÞðϕ − ϕ0Þ

�
; ð24Þ

ðq0; p0; G
a;b
0 Þ being the value of each function at ϕ ¼ ϕ0.

IV. NUMERICAL IMPLEMENTATION

A. Initial data

In order to extract physical information from the infinite
set of equations for quantum moments (19)–(21), as well as
for its corresponding classical counterpart system, it is
necessary to resort to numerical methods. In addition, for
practical purposes, one needs to consider a cutoff, that is, a
maximum number N for which all moments of an order
greater than N are dropped. This fact shows that this
method of moments is well suited for peaked states, when
high-order moments are negligible. Nonetheless, the usual
tendency of the dynamics is to spread out the state so that,
from a certain point on, this method will not give trustable
results. There are several control methods to know when
this happens. On the one hand, one should study the
convergence of the solution with the cutoff. This is done by
solving the system of equations with different cutoffs and
checking that the difference between solutions with con-
secutive cutoffs tends to zero. On the other hand, the
conservation of constants of motion should also be taken
into account. In the present model the HamiltonianHQ (and
HC for the classical system) is conserved. Finally, the high-
order inequalities obtained in [13] should also be fulfilled
during the whole evolution. All these control methods have
been used to test the numerical implementations that will be
presented below.
The goal of the present paper is to compare the evolution

of the quantum and classical (distributional) systems within
the context of the formalism of moments described above.
With that purpose, similar numerical evolutions to those
that were performed in Ref. [19] will be performed but in
this case not only for quantum moments, but also for their
classical counterparts. In that reference a Gaussian state
was chosen as the initial state. The moments corresponding
to such a state read

Ga;b ¼
�
2−ðaþbÞℏaσb−a a!b!

ða
2
Þ!ðb

2
Þ! if a and b are even;

0 otherwise;
ð25Þ

σ being the width of the Gaussian. As can be seen, this state
is of a very special kind, as many of its moments vanish. In
fact, in order to check whether the results obtained depend
on the fact that these moments are vanishing, apart from the
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Gaussian initial state, here another two initial states will
also be considered. In other words, three evolutions will be
performed, the first one with a Gaussian state for both
classical and quantum moments, whereas the initial state
for the second evolution will be given by evolving the
Gaussian state with the quantum equations during a short
period of time (0.1ϕdiv). At this point all moments will have
been excited and the resulting state will be a slightly
deformed Gaussian, which will be used as the initial state
for both classical and quantum systems. Obviously, both
evolutions will give the same result for the quantum
moments but not for the classical ones. Finally, the initial
data for the third evolution will be given by all classical and
quantum moments taking the nonvanishing value

Ga;b ¼ a!b!ℏ
aþb
2 ; ð26Þ

which is allowed by all high-order uncertainty relations
obtained in [13]. This is a distribution quite different from
the Gaussian (25), which will be used to check the
generality of the results obtained in the previous two cases.
Regarding more technical issues, the numerical evolu-

tions have been performed for all cutoffs from N ¼ 2 to
N ¼ 10 in order to verify the convergence of the
method with the cutoff order. Furthermore, different values
of the cosmological constant have been considered: small
(Λ ¼ 1), intermedium (Λ ¼ 104), and large (Λ ¼ 9 × 107).
The initial conditions for the position and the momentum
have been chosen as pð0Þ ¼ 105, qð0Þ ¼ 1 to ensure that
the state is on the upper region of the phase space shown in
Fig. 1 and corresponds to an expanding solution. In
addition, the Gaussian width has been taken as σ ¼ ffiffiffi

ℏ
p

so that the expression for a moment Ga;b is completely
symmetric on its indices a and b. In this way, initially
Ga;b ¼ Gb;a and the fluctuation (as well as higher-order
moments) of the position are equal to those of the
momentum. Finally, the numerical value of the Planck
constant has been chosen as ℏ ¼ 10−2.
In summary, the main difference with respect to the

Gaussian state used in Ref. [19] is that its width was chosen
as σ ¼ 10−2, that is, smaller than in our present case with
σ ¼ 10−1. In addition, in that reference, ℏ was chosen to be
equal to one in order to make the backreaction effects more
clearly visible. However, qualitatively the results do not
change with such modifications. Here, in order to analyze
the purely quantum effects, which appear in the quantum
equations of motion as a power series in ℏ2, it is necessary
to consider a smaller Planck constant; otherwise, all terms
of the form ℏ2n would be of the same order.
In the next subsection we will comment, mainly quali-

tatively, on the behavior of different variables throughout
evolution for the Gaussian initial state (25) for both
classical and quantum moments, whereas in Sec. IV C
the differences between classical and quantum moments
will be analyzed quantitatively in detail.

B. Description of the evolution

Regarding the expectation values, as has already been
commented in the preceding section, due to the linearity of
the Hamiltonian they have exactly the same evolution both
for the classical (distributional) case as for the quantum
case, that is, qq ¼ qc and pq ¼ pc at all times. Nonetheless,
the backreaction on the classical orbits is not vanishing due
to the presence of moments in Eqs. (19) and (20). In other
words, the centroid of a (classical or quantum) distribution
will not follow a classical point trajectory on phase space.
This backreaction can be measured by defining the
differences δq ≔ qq − qclass and δp ≔ pq − pclass. [Note
that in principle qqðtÞ should be the solution of Eq. (19) by
considering the infinite set of equations. We obtain an
approximate version of this solution by imposing the cutoff
N ¼ 10.] Regarding this backreaction on the classical
orbits, though less severe due to the smaller numerical
value of ℏ, we obtain similar results as in Ref. [19]. In
particular the deviation from the classical orbit is greater as
we move to larger values of the cosmological constant.
More precisely, measured at 0.8ϕdiv, the relative change in
volume is δq=q ≈ 10−7 for the large cosmological constant
case. In the other two cases, due to its smallness, this effect
is mixed with numerical error and it turns out to be difficult
to measure but, in any case, we have that δq=q⪅10−10

throughout evolution. In all cases there is enhancement of
the divergence in the sense that the position qq (or qc)
corresponding to the centroid of a probability distribution
approaches the divergence faster than the classical point
orbit qclass. On the other hand, the deviation (in absolute
value) of the momentum p is not that pronounced and for
all cases, during the whole evolution until the mentioned
time, δp=p⪅10−10. Thus, in this sense, the case with larger
cosmological constant Λ ¼ 9 × 107 is the one where the
backreaction effects are more relevant. The evolution of
the volume q is represented in Fig. 2 for different values of
the cosmological constant.
Regarding the evolution of different moments, as already

commented above, due to the linearity of the Hamiltonian,
pure fluctuations of the momentum Gn;0 and moments of
the form Gn;1 coincide with their classical counterparts:
Gn;0 ¼ Cn;0 andGn;1 ¼ Cn;1 for all times. For the rest of the
moments it can be asserted that the behavior of classical
moments Ca;b is qualitatively similar to their quantum
counterparts Ga;b except for those of the form G0;2nþ1. In
the next subsection we will analyze in more detail the
differences between both classical and quantum moments,
and particularly those corresponding to these pure-odd
fluctuations of the position G0;2nþ1. For the rest of this
subsection, and unless explicitly stated, all that is said about
the classical moments Ca;b applies equally to the quantum
ones Ga;b. In summary, the generic behavior of the
moments that will be commented below can be seen in
Fig. 3 for the particular case of two moments: C0;2 and C1;3.
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For a Gaussian state all moments with an odd index are
vanishing. These moments get excited as soon as the
evolution begins because their time derivative is nonzero.
After that excitation generally moments jCa;bðϕÞj with
a > b, including those that have been excited from an
initial vanishing value, behave as an (approximately expo-
nentially) decreasing function, whereas moments with
a ≤ b increase in absolute value. This behavior is inherited
from the solution (24) for the harmonic case Λ ¼ 0.
[Nevertheless, even if it is very convenient to have such
a picture, several moments break this rule (usually

moments that are supposed to be decreasing turning out
to be increasing with time), especially as the value of the
cosmological constant is larger.] In fact, this general
tendency can be intuitively expected by looking at the
phase space of the system shown in Fig. 1. Let us assume
that initially we have a homogeneous and compact prob-
ability distribution with the shape of a circle centered at
small q0 and large p0. When the evolution begins, each
point of that circle follows its corresponding orbit and the
circle will get deformed. In particular, as these points
approach the divergence at p ¼ ffiffiffiffi

Λ
p

, the initial circle will
be enlarged in the horizontal (q) direction whereas it will be
contracted in the vertical (p) direction. Thus, the state will
be more spread in the q direction but more peaked in the p
direction. This is exactly what we have described in terms
of moments: moments Ca;b with more weight in the p
direction (a > b) will be decreasing, and the others
increasing, in absolute value.
On the other hand, regarding the sign of the moments,

during the initial stages of the evolution we observe that

Ceven;even > 0; Ceven;odd > 0; ð27Þ

Codd;even < 0; Codd;odd < 0: ð28Þ

The only exception to these rules are the pure-odd
fluctuations of the momentum Codd;0, which are positive.
The same applies to quantum moments, except for those of
the formG0;odd that, as will be explained below, are initially
excited to a negative value and then change sign during the
evolution. Note that the first of the inequalities, which
states that moments with both even indices must be
positive, is implied by the very definition of the moments
and must be obeyed at all times for any system [13].
Even if the commented qualitative features for the

moments are independent of the value of the cosmological
constant, there is indeed some dependence. In particular,
the larger Λ, the lower the slope, in terms of ϕ=ϕdiv,
of a given moment is. [Note, however, that ϕdiv also
depends on the cosmological constant since ϕdiv ≔
ϕ0 þ 2=3tanh−1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 − Λ

p
=p0Þ.] In addition, the excitation

value of the initially vanishing moments increases, in
absolute value, as we consider larger values of the cosmo-
logical constant. However, since the slope of the moments
is larger for small Λ, at the end stages of the evolution an
increasing (decreasing) moment jCa;bj has usually a larger
(smaller) value for smaller values of Λ, as can be seen in the
example of Fig. 3. Even so, the relative fluctuations
Ca;b=ðqapbÞ are generally larger the larger the value of
the cosmological constant.

C. Quantitative comparison between classical and
quantum moments

Following the notation of [23], we introduce the follow-
ing operators, δ1 and δ2, to quantitatively measure the

FIG. 3 (color online). In this plot the evolution of the moments
C0;2 and C1;3 is shown in a logarithmic scale for three different
values of the cosmological constant and for an initial Gaussian
state. Continuous lines correspond to C1;3, which is an initially
vanishing moment, whereas dashed lines stand for C0;2. The color
(thickness) of the lines represents different values of Λ: green
(thickest) for Λ ¼ 1, blue (intermedium) for Λ ¼ 104, and black
(thinnest) for Λ ¼ 9 × 107. Note that the larger the value of Λ, the
larger the slope of the moment in terms of ϕ=ϕdiv.

FIG. 2 (color online). In this figure the evolution of the volume
q is plotted for three different values of the cosmological constant
on a logarithmic scale. The green (continuous) line stands for
Λ ¼ 1, and the blue (dot-dashed) line corresponds to Λ ¼ 104,
whereas the black (dotted) line represents the solution with
Λ ¼ 9 × 107. Note that for the same value of ϕ=ϕdiv, qðϕ=ϕdivÞ is
larger, the smaller the value of the cosmological constant.
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difference between the classical and quantum evolution of
the present system:

δ1qðϕÞ ≔ qcðϕÞ − qclassðϕÞ; ð29Þ

δ2qðϕÞ ≔ qqðϕÞ − qcðϕÞ: ð30Þ

Note that the action of δ1 on a given moment Ga;b, δ1Ga;b,
is not defined since there are no moments in the classical
point orbit, whereas δ2Ga;b ≔ Ga;b − Ca;b. The first oper-
ator δ1 can be understood as a measure of distributional
effects, whereas the second one δ1 measures the strength of
purely quantum effects.
Because of the properties of linear Hamiltonians, in this

case δ2q and δ2p are vanishing. Therefore, the departure
ðδ1q; δ1pÞ of the centroid from the classical (point)
trajectory on the phase space is uniquely due to distribu-
tional effects, which are indeed exactly reproduced by a
similar distribution evolving on the classical phase space.
Furthermore, δ2Gn;0 and δ2Gn;1 are also vanishing for any
integer n given any initial data. Therefore, in order to check
the relevance of the purely quantum effects of this system, it
is necessary to consider other kinds of moments.
In order to check the robustness of certain results that will

be commented below, three different sets of initial data have
been considered: a Gaussian state with moments given by
(25), a slightly deformed Gaussian (by evolving the pre-
vious Gaussian with the quantum equations during 0.1ϕdiv),
and a state with all nonvanishing moments of the form (26).
As one would expect, for the deformed Gaussian case, the
classical moments tend to show less divergence from their
quantum counterparts as in the Gaussian case.
The analysis of the results of such numerical imple-

mentations has shown several interesting features, which
are listed below from (i) to (iv). Note that, in order to
remove possible spurious effect of the cutoff (N ¼ 10),
only moments up to order 7 will be considered for the
present discussion since higher-order moments are the most
sensitive ones to the effect of the cutoff. Unless otherwise
explicitly stated, the following results correspond to the
Gaussian initial state. In particular, we will refer to the
implementations of the other two initial data at the final part
of item (iii).
(i) One of the important results is that all moments Ga;b,

except those of the form G0;odd, even if quantitatively
different, have the same qualitative behavior as their
classical counterparts Ca;b. Thus purely quantum effects
act, as one would expect, as small perturbations by slightly
deforming the numerical values of different variables but
not, in general, its qualitative behavior.
(ii) In absolute terms, jδ2Ga;bj is largest for moments of

the form G0;n and G1;2n. This absolute difference tends to
increase with time and depends on the value of the
cosmological constant. More precisely, for the case with
Λ ¼ 1 at a time ϕ ¼ 0.75ϕdiv, the highest difference

corresponds to the moment G0;6 with δ2G0;6 ≈ 6 × 104.
Such a large difference is only measured for this moment,
which is also the largest of all considered ones
[G0;6ð0.75ϕdivÞ ≈ 4 × 1013]; the next highest value being
δ2G0;5 ≈ −7, whereas the rest of the moments have an
upper bound jδ2Ga;bj < 0.1. On the other hand, for the
intermediate value of the cosmological constant Λ ¼ 104 at
the mentioned time ϕ ¼ 0.75ϕdiv, all absolute differences
are jδ2Ga;bj ≤ 6 × 10−4, whereas for large cosmological
constant value Λ ¼ 9 × 107 this upper bound is much
lower: jδ2Ga;bj ≤ 2 × 10−7.
(iii) In order to measure the strength of purely quantum

effects in relative terms, we define the relative difference
δa;b ≔ δ2Ga;b=Ga;b and the ratio ra;b ≔ Ga;b=Ca;b, which is
probably more intuitive to understand. These two objects
are obviously related as ra;b ¼ 1 − δa;b.
For the Gaussian initial state, in relative terms, we find

that moments Ga;b with aþ b an odd number, that is, with
an even and an odd index, suffer the largest departure
from their classical counterparts Ca;b. [This statement, of
course, excludes those of the form Gn;0 and Gn;1.] For
the remaining moments, even if generically increasing (in
absolute value) with time, so that the largest values are
measured at the end of the evolution, their relative changes
are bounded as jδa;bj < 4 × 10−10 for the cases Λ ¼ 1; 104,
whereas for the case of a large cosmological constant
Λ ¼ 9 × 107, jδa;bj < 2 × 10−6.
Let us then focus on these moments with largest

departure, that is, momentsGa;b with aþ b an odd number.
The evolution of their ratios ra;b is plotted in Fig. 4 for
different values of the cosmological constant and for both
the Gaussian (left column) and the deformed Gaussian
(right column) initial states. For the Gaussian initial state
their behavior can be separated in the following three
different kinds:
(1) Moments of the form G0;odd.—As already com-

mented above, a given moment of the form
C0;2nþ1 in general does not follow, even qualita-
tively, the same evolution as its quantum counterpart
G0;2nþ1. We will come back to these latter in
point (iv).

(2) Moments of the form Godd;even.—Remarkably, as can
be seen in Fig. 4, the relative changes of these
moments are constants of motion regardless of the
value of the cosmological constant. The exception to
this rule is G5;2 which, for all values of the
cosmological constant, is initially excited to a value
much higher than its classical counterpart C5;2. Thus
their ratio r5;2 is very small but increases slowly with
time. The ratios ra;b for the rest of the moments of
this type take approximately the following values:

r1;2 ≈ r1;4 ≈ r1;6 ≈ 2=3; ð31Þ

r3;2 ≈ 1=2; ð32Þ
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r3;4 ≈ 2=5: ð33Þ

All these moments are negative and increasing (in
absolute value) throughout evolution.

(3) Moments of the form Geven;odd.—These moments,
which, up to seventh order, are just three (G2;3, G2;5,

and G4;3), are positive and increasing (in absolute
value) during evolution. They are initially excited to
a higher value than their classical counterparts, and
thus ra;b > 1. Remarkably, this initial value of the
ratio is independent of the value of the cosmological
constant. Nonetheless, and contrary to the previous
case, the relative difference between classical and

0 0.2 0.4 0.6 0.8
div
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0 0.2 0.4 0.6 0.8
div
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1.0
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2.5
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0 0.2 0.4 0.6 0.8
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a,b

FIG. 4 (color online). In these plots the evolution of the ratios ra;b ¼ Ga;b=Ca;b corresponding to quantum moments with highest
deviation from their classical analogs, excluding those of the form G0;odd, is shown. The left column corresponds to the initial Gaussian
state, whereas the right column stands for the initial deformed Gaussian case. The upper plots correspond to Λ ¼ 1, the medium ones to
Λ ¼ 104, and the lower ones toΛ ¼ 9 × 107. The (continuous) black line represents the three ratios r1;2, r1;4, and r1;6. All of them appear
superposed since they follow very similar trajectories. The ratios r3;2 and r3;4 correspond to the red (dotted) and green (long-dashed)
lines, respectively. Finally, r2;3 appears represented by the gray (continuous) line, r2;5 by the black (dashed) line, and r4;3 by the orange
(dot-dashed) line. Note that the late-time behavior is the same for both initial states.
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quantum moments does depend on time. More
specifically, ratios ra;b tend to decrease with time,
which means that the classical moments increase
faster than the quantum ones. Furthermore, this
decrease is faster the larger the value of the cosmo-
logical constant. Interestingly, r2;5 and r2;3 seem to
tend to the same asymptote, as is more clearly visible
in the last plot of the left column of Fig. 4. For the
case with the largest cosmological constant
(Λ ¼ 9 × 107), the final values of all these ratios
are lower than one; thus, the corresponding quantum
moments Ga;b end up being smaller than their
classical counterparts. On the other hand, for the
other two cases (Λ ¼ 1 and Λ ¼ 104), the final
values of these ratios are still larger than one.

Note that all moments which have been analyzed in the last
three points were initially vanishing. Hence, we can divide
the analysis in two stages: the initial excitation and
subsequent evolution. All these moments are excited to
different values than their classical counterparts. Therefore,
there is a clear purely quantum effect acting on this
excitation mechanism (that is, no other than the ℏ terms
present in the equations of motion). Nevertheless, once this
mechanism acts we observe different behaviors. On the one
hand, those moments that have been initially excited to a
smaller value than their classical counterpart (ra;b < 1)
keep their relative difference constant throughout evolu-
tion; that is, they evolve in a very similar way as their
classical counterparts. This means that, for this kind of
moments, purely quantum effects act continuously during
the whole evolution such thatGa;b is always proportional to
Ca;b, with a constant proportionality coefficient. On the
other hand, the evolution of the quantum moments that
have been initially excited to a larger value than their
classical counterparts (ra;b > 1) is slowed down by purely
quantum effects, in such a way that the corresponding
classical moments increase faster (in absolute value).
Therefore, the net effect of the purely quantum terms is
contrary in the initial excitation of the quantum moment,
when its value is raised with respect to its classical
counterpart, and during the subsequent evolution, when
it is slowed down.
These results are quite unexpected, especially the constant

behavior of the ratio between certain moments. In fact, this
was the main motivation to consider other sets of initial data.
Regarding the initial deformed Gaussian, the results
obtained are shown in the right-hand column of Fig. 4. It
is clearly seen that initially the ratios ra;b behave in a
different way as in the previous case; in particular, none of
them is kept constant. Nonetheless, after a period of time, the
classical moments follow the same tendency they had for the
Gaussian case and the final part of the evolution regarding
the different ratios has exactly the same shape as before.
In addition, just to test that this behavior is not

completely generic, as would be expected, for this

particular issue another third set of initial data has been
considered, given by Eq. (26). In this case, the behavior
described above for the ratios ra;b of moments of the form
Godd;even and Geven;odd disappears and the same tendency as
the remaining moments is shown; that is, all ratios are close
to one initially and they depart from one as the evolution
advances. Nevertheless, this departure is small and all
relative differences are bounded as jδa;bj < 5 × 10−8 for
Λ ¼ 1, jδa;bj < 4 × 10−7 for Λ ¼ 104, whereas for the large
cosmological constant Λ ¼ 9 × 107 case jδa;bj < 5 × 10−5.
Thus, we conclude that the behavior found for the

Gaussian case is robust under a small deformation of the
initial data, but not completely generic. This situation,
nonetheless, might be important if we know that the initial
state is an approximately semiclassical Gaussian state.
In any case, finding an analytical explanation of this

surprising behavior is very difficult since the system under
consideration is a nonlinear and highly coupled set of
differential equations. As an example, in the Appendix the
purely quantum terms that appear in the equations of
motion for the moments G2;2 and G3;2 are shown. Even
if the terms are quite similar, in the sense that the same
moments (except one) appear in both equations, the
behavior of their corresponding ratios r2;2 and r3;2, which
somehow quantifies the effect of the presence of these
terms, is completely different.
(iv) Finally, let us analyze the behavior of moments of

the form G0;odd. As has been commented above, these are
the only moments that follow qualitatively different tra-
jectories in the classical and quantum settings. Let us be
more specific. For the Gaussian initial state in the classical
case all moments C0;odd, which are initially vanishing, are
excited to a certain positive value and increase through
evolution. On the contrary, their quantum counterparts
G0;odd are initially excited to a negative value (much
smaller in absolute value than their classical counterparts)
and their evolution is decreasing (that is, increasing in
module), which makes their corresponding ratio ra;b
negative but close to zero. This decreasing behavior follows

FIG. 5 (color online). The initial stages of the evolution of the
momentsG0;3 (red dot-dashed line) andG0;5 (red continuous line)
and their classical counterparts C0;3 (black dot-dashed line) and
C0;5 (black continuous line) for the particular case with
Λ ¼ 9 × 107.
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during the whole evolution for the cases of small and
intermedium cosmological constant cases, which means
that quantum moments increase faster (in absolute value)
than their classical counterparts. Nonetheless, for the large
cosmological constant case Λ ¼ 9 × 107, at a certain point
these moments get a minimum and increase afterwards.
Remarkably at the same time, around ϕ ¼ 0.346ϕdiv, all
moments G0;odd cross zero and follow their growing
behavior (see Fig. 5). Finally, each quantum moment
G0;2nþ1 tends asymptotically to its classical counterpart
C0;2nþ1, as can be seen in Fig. 6, which represents the
evolution of the ratio r0;3 as an example of moments of this
kind. For the deformed Gaussian moments are initially
negative. Nevertheless all classical moments cross zero and
tend to the above described evolution for the initial
Gaussian case.

V. CONCLUSIONS

In this paper the formalism presented in [13] to study the
evolution of classical and quantum probability distribu-
tions, by performing a decomposition on its corresponding
moments, has been applied to a particular cosmological
model. The goal was to study similarities and differences
between the dynamics of classical and quantum moments,
in order to find physical consequences of purely quantum
terms, which are present in the equations of motion for
quantum moments.
The cosmological model under consideration is a homo-

geneous and isotropic universe with a massless scalar field
and a positive cosmological constant. The evolution of such
a model is ruled by a Hamiltonian constraint, which can be
deparametrized by using the scalar field as internal time
and, thus, its conjugate momentum as the physical

Hamiltonian. After introducing an appropriate pair of
conjugate variables, that represent the volume and the
Hubble factor of the universe, this physical Hamiltonian
turns out to be linear in the volume q.
In fact, it can be shown that for any linear Hamiltonian in

q the evolution of the expectation values ðq; pÞ, as well as
of the moments of the form ðGn;0; Gn;1Þ for any integer n,
coincides both in the quantum and classical settings. In
other words, given the same initial conditions, the centroid
and the mentioned moments of a classical distribution
evolve in exactly the same way as the corresponding
variables of a quantum distribution. Therefore, in order
to find physical consequences of the purely quantum
effects, the dynamics of moments not contained in that
subset needs to be analyzed.
Nonetheless, for such a purpose, it is necessary to resort

to numerical methods due to the complexity of the
equations of motion. In particular, three different initial
states have been considered for both classical and quantum
settings. First a Gaussian in the volume has been chosen.
Second a slightly deformed Gaussian state has been
constructed by evolving the previous Gaussian state during
a short period of time with the quantum evolution equa-
tions. The obtained state has then been used as the initial
condition for both classical and quantum moments. Finally,
the third set of initial data is given by Eq. (26) and
represents a state which is not close to a Gaussian. This
state has been mainly used to check that the behavior of the
ratios shown in Fig. 4 is not completely generic.
The main result is that, in relative terms, moments of the

formGa;b with aþ b an odd number are the ones that show
most divergence from their classical analogs. For the initial
Gaussian state, all these moments are vanishing. Since their
time derivative is nonzero they are immediately excited as
soon as the evolution begins. This excitation value turns out
to be quite different for a given classical moment and its
quantum counterpart. After this excitation, two different
behaviors have been observed. Quantum moments that
have been excited to a smaller value than their classical
counterparts (ra;b < 1) evolve in a very similar way as their
classical analog, keeping the ratio ra;b constant. On the
other hand, evolution of the quantum moments that have
been initially excited to a larger value than their classical
counterparts (ra;b > 1) is slowed down by purely quantum
effects. In this way, their corresponding classical moments
grow faster in absolute value. In summary, the effect of the
purely quantum terms is contrary initially and during
evolution. While initially the value of the quantum moment
is raised with respect to its classical analog, during the
subsequent evolution its growth is slowed down.
In addition, for the initial deformed Gaussian state, even

if initially different, the ratios ra;b tend to the same behavior
as explained above for the Gaussian case. On the contrary,
the third set of initial data (26) does not follow this
tendency. In this latter case, all ratios depart only slightly

0.2 0.4 0.6 0.8
div

2

1

1
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r0,3

FIG. 6 (color online). The ratio r0;3 is shown for different values
of the cosmological constant. The blue (thickest) line corresponds
to Λ ¼ 9 × 107, the brown to Λ ¼ 104, and the red (thinnest) line
to Λ ¼ 1. The dotted black line just represents the asymptote
r0;3 ¼ 1. Note that, for small and intermedium values of the
cosmological constant, r0;3 is negative throughout evolution due
to the fact that G0;3 is negative, whereas C0;3 is positive. On the
contrary, in the case Λ ¼ 9 × 107,G0;3 flips sign, which produces
the vertical line around ϕ ¼ 0.346ϕdiv, and the ratio r0;3 tends to
one asymptotically.
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from one. Therefore, we conclude that this behavior of the
different ratios is robust under small deformations of the
initial Gaussian state but, certainly, not completely generic.
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APPENDIX: AN EXAMPLE OF PURELY
QUANTUM TERMS

In this Appendix, the purely quantum terms for the
equations of the moments G2;2 and G3;2 are shown. These
are the terms with an explicit ℏ factor that appear in the
right-hand side of their corresponding equations of motion:

_G2;2¼ 3ℏ2Λ

64ðp2−ΛÞ17=2f48pðp
2−ΛÞ6G2;0−24ðΛþ4p2Þðp2−ΛÞ5G3;0þ40pð3Λþ4p2Þðp2−ΛÞ4G4;0

−30ðΛ2þ8p4þ12Λp2Þðp2−ΛÞ3G5;0þ42pð5Λ2þ8p4þ20Λp2Þðp2−ΛÞ2G6;0

−7ð5Λ3þ64p6þ240Λp4þ120Λ2p2Þðp2−ΛÞG7;0þ9pð35Λ3þ64p6þ336Λp4þ280Λ2p2ÞG8;0gþ��� ;
_G3;2¼ 9ℏ2Λ

128ðp2−ΛÞ17=2f−16ðp
2−ΛÞ7G2;0þ48pðp2−ΛÞ6G3;0−24ðΛþ4p2Þðp2−ΛÞ5G4;0

þ40pð3Λþ4p2Þðp2−ΛÞ4G5;0−30ðΛ2þ8p4þ12Λp2Þðp2−ΛÞ3G6;0þ42pð5Λ2þ8p4þ20Λp2Þðp2−ΛÞ2G7;0

−7ð5Λ3þ64p6þ240Λp4þ120Λ2p2Þðp2−ΛÞG8;0þ9pð35Λ3þ64p6þ336Λp4þ280Λ2p2ÞG9;0gþ��� ;

where dots stand for terms with no ℏ factors. As can be
appreciated, the purely quantum terms that appear in these
two equations are pretty similar, in the sense that the same
moments appear (except one) with similar polynomial
coefficients depending on the expectation values q and
p, as well as on the cosmological constant. Nonetheless, the
effects of such terms are very different on each case. On the
one hand, G2;2 is quite similar as C2;2 during the whole

evolution, keeping r2;2 around one but increasing with time.
On the other hand, for an initial Gaussian state, r3;2 takes a
constant value around 1=2, independently of the value of
the cosmological constant. The behavior of the latter ratio
r3;2 can also be seen in Fig. 4 for the evolved Gaussian
initial state. In that case, it begins with a value of one, since
both quantum and classical moments are initially equal, and
decreases until reaching again the constant value of 1=2.
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