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It is commonly believed that the fidelity of quantum teleportation using localized quantum objects with
one party or both accelerated in vacuum would be degraded due to the heat up by the Unruh effect. In this
paper, we point out that the Unruh effect is not the whole story in accounting for all the relativistic effects in
quantum teleportation. First, there could be degradation of fidelity by a common field environment even
when both quantum objects are in inertial motion. Second, relativistic effects entering the description of the
dynamics, such as frame dependence, time dilation, and Doppler shift, already existent in inertial motion,
can compete with or even overwhelm the effect due to uniform acceleration in a quantum field. We show it
is not true that larger acceleration of an object would necessarily lead to a faster degradation of fidelity.
These claims are based on four cases of quantum teleportation we studied using two Unruh–DeWitt
detectors coupled via a common quantum field initially in the Minkowski vacuum. We find the quantum
entanglement evaluated around the light cone, rather than the conventional ones evaluated on the
Minkowski time slices, is the necessary condition for the averaged fidelity of quantum teleportation beating
the classical one. These results are useful as a guide to making judicious choices of states and parameter
ranges and estimation of the efficiency of quantum teleportation in relativistic quantum systems under
environmental influences.
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I. INTRODUCTION

Quantum teleportation (QT) is by now quite well recog-
nized as a feature process in the application of quantum
information [1–3]. A novel and exclusively quantum proc-
ess, QT is also of basic theoretical interest because it
necessitates a proper treatment of quantum measurement
and entanglement dynamics in realistic physical conditions,
such as environmental influences. The advent of a new era of
quantum sciences and engineering demands more precise
understanding and further clarification of such fundamental
issues. This includes quantum information and classical
information, quantum nonlocality and relativistic locality,
and spacelike correlations and causality. The study of these
issues in a relativistic setting now belongs to a new field
called relativistic quantum information [4].
The first scheme of QT was proposed by Bennett et al.

(BBCJPW) [5], in which an unknown state of a qubit C
is teleported from one spatially localized agent Alice to
another agent Bob using an entangled pair of qubits A and
B prepared in one of the Bell states and shared by Alice
and Bob, respectively. Such an idea was then adapted to
the systems with continuous variables such as harmonic

oscillators (HOs) by Vaidman [6], who introduced an ideal
Einstein-Podolsky-Rosen (EPR) state [7] for the shared
entangled pair to teleport an unknown coherent state.
Braunstein and Kimble (BK) [8] generalized Vaidman’s
scheme from the ideal EPR states with exact correlations to
squeezed coherent states. In doing so, the uncertainty of the
measurable quantities has to be considered, which reduces
the degree of entanglement of the AB pair as well as the
fidelity of quantum teleportation (FiQT).
Alsing and Milburn made the first attempt of calculating

the FiQT between two moving cavities in relativistic
motions [9]—one is at rest (Alice), and the other is
uniformly accelerated (Bob, called Rob in [9] with the
initial “R” for “Rindler observer”; we follow this convention
in Sec.V for a similar setup) in theMinkowski frame—to see
how the fidelity is degraded by the Unruh effect (also see
Refs. [10,11]). Later, Landulfo and Matsas considered a
complete BBCJPWQT in a two-level detector qubit model,
where Rob’s detector is uniformly accelerated and interact-
ing with the quantum field only in a finite duration. They
found that the FiQT in the future asymptotic region using the
out state of the entangled pair is indeed reduced by theUnruh
effect experienced by Rob [12]. Along the line of Ref. [9],
Friis et al. [13] studied the role of the dynamical Casimir
effect in the QT between cavities in relativistic motions.
Alternatively, Shiokawa [14] considered QT in the

Unruh–DeWitt (UD) detector theory [15,16] with the agents
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in motions similar to those in Ref. [9] but based on the BK
scheme in the interaction region: An unknown coherent
state of a UD detector with an internal HO is teleported from
Alice to Bob using an entangled pair of similar UD detectors
initially in a two-mode squeezed state and shared by Alice
and Bob. Unfortunately, the FiQT considered in Ref. [14] is
not the physical one.More careful consideration is needed to
get the correct results [17].
Indeed, when considering QT in a fully relativistic

system, particularly in the interaction region of the local-
ized objects and quantum fields, one has to take all the
factors listed below into account consistently.

A. Relativistic effects

Localized objects in a relativistic system may behave
differently when observed in different reference frames:
a. Frame dependence: Since quantum entanglement

between two spatially localized degrees of freedom
is a kind of spacelike correlation in a quantum state,
which depends on reference frames, quantum entan-
glement of two localized objects separated in space is
frame dependent.

b. Time dilation: When two localized objects in uniform
motionhave anonzero relative speed, bothwill perceive
the same time dilation of each other in their rest frame
constructed by the radar times and distances. If one
object undergoes some phase of acceleration but the
other does not, e.g., the worldlines in the twin problem,
then the time dilations perceived by these two objects
will be asymmetric. All these time-dilation effects are
included in the proper time parametrization of the
worldline of an object localized in space.

c. Relativistic Doppler shift: Suppose Alice continuously
sends a clock signal periodic in her proper time to Bob;
then Bob will see Alice’s clock running slower or faster
than theoneat restwhen the received signal is redshifted
or blueshifted, depending on their relative motion.

These three basic properties of relativistic quantum systems
essential for the consideration of QT have not been
properly recognized or explored in detail or depth.

B. Environmental influences

The qubits or detectors in question are unavoidably
coupled with quantum fields, which act as an ubiquitous
environment:
a. Quantum decoherence: Each qubit or HO can be

decohered by virtue of its coupling to a quantum
field. However, mutual influences mediated by the
field between two localized qubits or HOs when
placed in close range can lessen the decoherence
on each.

b. Entanglement dynamics: The entanglement between
two qubits or HOs changes in time as their reduced
state evolves.

c. Unruh effect: A pointlike object such as a UD detector
coupledwith a quantum field anduniformly accelerated
in theMinkowski vacuumof the fieldwould experience
a thermal bath of the field quanta at the Unruh temper-
ature proportional to its proper acceleration [18].

C. New issues in dealing with quantum teleportation

The above factors have been considered earlier in some
detail in our study on entanglement dynamics [19–21], but
there are new issues of foundational value that need be
included in the consideration of QT. Below, we mention
three issues related to relativistic open quantum systems:
a. Measurement in different frames: Quantum states

make sense only in a given frame in which a
Hamiltonian is well defined [22,23]. Two quantum
states of the same system with quantum fields in
different frames are directly comparable only on those
totally overlapping time slices associated with some
moment in each frame. By a measurement local in
space, e.g., on a pointlike UD detector coupled with a
quantum field, quantum states of the combined system
in different frames can be interpreted as if they
collapsed on different time slices passing through
the same measurement event [24]. Nevertheless, the
postmeasurement states will evolve to the same state
up to a coordinate transformation when they are
compared at some time slice in the future, if the
combined system respects relativistic covariance [25].

b. Consistency of entangled pair: As indicated in the
BK scheme, the FiQT could depend on (i) quantum
entanglement of the entangled pair and (ii) the con-
sistency of the quantum state of the entangled pair with
their initial state. Both would be reduced by the
coupling with an environment, and applying an
improved protocol of QT may suppress the deflection
of (ii).

c. Comparing FiQT and entanglement: It is easy to
modify the BBCJPW scheme to see that the FiQT
of qubits in pure states can be either 1 or 0, depending
only on whether the qubit pair is entangled or not. In
contrast to qubits in pure states, the best possible FiQT
in the BK scheme depends on how strong the HO pair
is entangled [26]. To compare the degree of entangle-
ment of the entangled pair and the FiQT applying
them in relativistic systems, Shiokawa considered a
“pseudofidelity” of QT evaluated on the same time
slice for the degree of entanglement by imagining that,
right at the moment Alice has just performed the joint
measurement, Bob gets the information of the out-
come from Alice instantaneously and immediately
performs the proper local operations on his part of the
entangled pair [14,17]. In reality, classical information
needs some time to travel from Alice to Bob, and
during the traveling time, Bob’s part of the entangled
pair keeps evolving, so the physical FiQT will not be
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equal to the pseudofidelity and is thus incommensu-
rate in general with the degree of entanglement of the
entangled pair evaluated on the Minkowski time slice.
This feature has been overlooked in the literature.

D. Organization of this paper

To address all the above issues consistently and thor-
oughly, we start with the action of a fully relativistic
system. We introduce the model in Sec. II, then derive the
formula of the FiQT for our model in Sec. III, where we
discuss the relation between the fidelity and the degree of
quantum entanglement of the detector pair. In Secs. IV to
VII, respectively, we apply our formulation to four repre-
sentative cases with Alice at rest and 1) Bob also at rest
[19], 2) Bob (Rob) uniformly accelerated in a finite period
of time [9,20], 3) Bob being the traveling twin in the twin
problem [27], and 4) Bob undergoing alternating uniform
acceleration [28]. The trajectories and kinematics of
each case can be found in the sample references given
above. Finally, we summarize and discuss our findings in
Sec. VIII. In the Appendix, we show the consistency of the
reduced states of the detectors under the spatially local
projective measurements.

II. MODEL

Consider a model with three identical Unruh–DeWitt
detectors A, B, and C moving in a quantum field ΦðxÞ
in (3þ 1)-dimensional Minkowski space. The internal
degrees of freedom QA, QB, and QC of the pointlike
detectors A, B, and C, respectively, behave like simple
harmonic oscillatorswithmassm ¼ 1 and natural frequency
Ω. The action of the combined system is given by [20]

S ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p 1

2
∂μΦðxÞ∂μΦðxÞ

þ
X

d¼A;B;C

Z
dτd

1

2
½ð∂dQdÞ2 − Ω2

0Q
2
d�

þ
X
d¼A;B

λ0

Z
d4x

Z
dτdQdðτdÞΦðxÞδ4ðxμ − zμdðτdÞÞ;

ð1Þ
where μ ¼ 0, 1, 2, 3; gμρ ¼ diagð−1; 1; 1; 1Þ; ∂d ≡ ∂=∂τd;
τA, τB, and τC are proper times for QA, QB, and QC,
respectively; and the light speed c≡ 1. The scalar field
ΦxðtÞ≡ Φðt;xÞ ¼ ΦðxÞ is assumed to bemassless, and λ0 is
the coupling constant. Detectors A and B are held by Alice
and Bob, respectively, who may be moving in different
ways, while detector C carries the quantum state to be
teleported and goes with the sender.
Suppose the initial state of the combined system defined

on the t ¼ 0 hypersurface in the Minkowski coordinates is

a product state ρ̂Φx
⊗ ρ̂AB ⊗ ρ̂ðα;r0ÞC , where ρ̂Φx

¼ j0M ><
0Mj is the Minkowski vacuum of the field, ρ̂AB is a

two-mode squeezed state of detectors A and B, and

ρ̂ðα;r0ÞC is the squeezed coherent state of detector C with
α ¼ αR þ iαI and r0 the squeezed parameter. In the ðK;ΔÞ
representation [25,29] (the double Fourier-transform of the
usual Wigner function, namely the “Wigner characteristic
function” [30]), we express the last two as,

ρðα;r0ÞC ðKC;ΔCÞ

¼
Z

dΣCe
i
ℏK

CΣC

�
QC

����ρ̂ðα;r0ÞC

����Q0
C

�����
QC;Q0

C¼ΣC∓ðΔC=2Þ

¼ exp

�
−1
2ℏ

ð 1

2Ω
e2r0ðKCÞ2 þΩ

2
e−2r0ðΔCÞ2Þ

þ i
ℏ

� ffiffiffiffiffiffi
2ℏ
Ω

r
αRK

C −
ffiffiffiffiffiffiffiffiffi
2ℏΩ

p
αIΔC

�	
; ð2Þ

and

ρABðKA;KB;ΔA;ΔBÞ

¼ exp−
1

8

�
1

β̄2
ðKA þ KBÞ2 þ β̄2

ℏ2
ðΔA þ ΔBÞ2

þ ᾱ2

ℏ2
ðKA − KBÞ2 þ 1

ᾱ2
ðΔA − ΔBÞ2

	
ð3Þ

with parameters ᾱ and β̄. One may choose ᾱ ¼ e−r1
ffiffiffiffiffiffiffiffiffi
ℏ=Ω

p
and β̄ ¼ e−r1

ffiffiffiffiffiffiffi
ℏΩ

p
, where r1 is the squeezed parameter. As

r1 → ∞, ρAB goes to an ideal EPR state with the corre-
lations hQ̂A − Q̂Bi ¼ hP̂A þ P̂Bi ¼ 0 without uncertainty,
whileQA þQB and PA − PB are totally uncertain. Here, Pd
is the conjugate momentum to Qd.

In general, the factors in ρðα;r0ÞC ðKC;ΔCÞ will vary in
time. To concentrate on the best FiQT that the entangled AB
pair can offer, however, we follow Ref. [14] and assume the

dynamics of ρðα;r0ÞC is frozen or, equivalently, assume ρðα;r0ÞC
is created just before teleportation.
At t ¼ 0 in the Minkowski frame, the detectors A and B

start to couple with the field, while the detector C is isolated
from others. By virtue of the linearity of the combined
system (1), the quantum state of the combined system
started with a Gaussian state will always be Gaussian, and
therefore the reduced state of the three detectors is Gaussian
for all times. In the ðK;ΔÞ representation, the reduced
Wigner function at the coordinate time x0 ¼ T in the
reference frame of some observer has the form

ρABCðK;Δ;TÞ ¼ exp

�
i
ℏ

X
d

ðhQ̂dðTÞiKd− hP̂dðTÞiΔdÞ

−
1

2ℏ2

X
d;d0

ðKdQdd0 ðTÞKd0 þΔdPdd0 ðTÞΔd0

− 2KdRdd0 ðTÞΔd0 Þ
	
; ð4Þ
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where d, d0 ¼ A; B;C, and the factors

Qdd0 ðTÞ ¼
ℏδ
iδKd

ℏδ

iδKd0 ρABC

����
K¼Δ¼0

¼ hδQ̂dðτdðTÞÞ; δQ̂d0 ðτd0 ðTÞÞi; ð5Þ

Pdd0 ðTÞ ¼ iℏδ
δΔd

iℏδ

δΔd0 ρABC

����
K¼Δ¼0

¼ hδP̂dðτdðTÞÞ; δP̂d0 ðτd0 ðTÞÞi; ð6Þ

Rdd0 ðTÞ ¼ ℏδ
iδKd

iℏδ

δΔd0 ρABC

����
K¼Δ¼0

¼ hδQ̂dðτdðTÞÞ; δP̂d0 ðτd0 ðTÞÞi ð7Þ

are actually those symmetric two-point correlators
of the detectors in their covariance matrices (hÔ; Ô0i≡
hÔÔ0 þ Ô0Ôi=2 and δÔ≡ Ô − hÔi), which can be
obtained in the Heisenberg picture by taking the expect-
ation values of the evolving operators with respect to the
initial state defined on the fiducial time slice.

III. FIDELITY OF QUANTUM TELEPORTATION
AND ENTANGLEMENT

For our later use, below we reexpress and generalize the
definitions and calculations for QTof a Gaussian state from
Alice to Bob in Refs. [31,32] in terms of the ðK;ΔÞ
representation. Suppose the reduced state of the three
detectors continuously evolves to ρABCðK;Δ; t1Þ in the
Minkowski frame when Alice’s and Bob’s proper times are
τA1 ≡ τAðt1Þ and τB1 ≡ τBðt1Þ, respectively. At this moment,

Alice preforms a joint Gaussian measurement locally in
space on A and C so that the postmeasurement state right
after t1 in the Minkowski frame becomes ~ρABCðK;Δ; t1Þ ¼
~ρðβÞACðKA;KC;ΔA;ΔCÞ~ρBðKB;ΔBÞ, where we assume the
quantum state of detectors A and C becomes another
two-mode squeezed state,

~ρðβÞACðKA;KC;ΔA;ΔCÞ

¼ exp

�
i
ℏ

� ffiffiffiffiffiffi
2ℏ
Ω

r
βRKC −

ffiffiffiffiffiffiffiffiffi
2ℏΩ

p
βIΔC

�

−
1

2ℏ2
ðKm ~QmnKn þ Δm ~PmnΔn − 2Km ~RmnΔnÞ

	
;

ð8Þ
with m; n ¼ A;C so that Alice gets the outcome β ¼
βR þ iβI . (Here and below, the Einstein notation of summing
over repeated dummy indices is understood, and

P
m;n is

ignored.) Then Eq. (8) yields the reduced state of detector B,

~ρBðKBÞ ¼ NB

Z
d2KC

2πℏ
d2KA

2πℏ
~ρðβÞ�AC ðKA;KCÞ

× ρABCðKA;KB;KC; t1Þ; ð9Þ

right after τB1 , where NB is the normalization constant,
Kd ≡ ðKd;ΔdÞ, and d2Kd ≡ dKddΔd. If we require 1 ¼
TrB ~ρB (¼ ~ρBjKB¼ΔB¼0), then NB will depend on β.
Alternatively, following Ref. [14], we can require NB to be
independent of β, and then TrB ~ρB will be proportional
to the probability PðβÞ of finding detectors A and C in the
state (8). Let TrB ~ρB ¼ PðβÞ; then, the normalization con-

dition reads [~0≡ ð0; 0Þ]

1 ¼
Z

d2βPðβÞ ¼
Z

dβRdβI ~ρBðKB ¼ ~0Þ

¼ NB

Z
dβRdβI

d2KA

2πℏ
d2KC

2πℏ
~ρðβÞ�AC ðKA;KCÞρABCðKA; ~0;KC; t1Þ

¼ NB

Z
d2KA

2πℏ
d2KC

2πℏ
ρABCðKA; ~0;KC; t1Þ2πδ

� ffiffiffiffiffiffiffi
2

ℏΩ

r
KC

�
2πδ

� ffiffiffiffiffiffi
2Ω
ℏ

r
ΔC

�

× exp

�
−

1

2ℏ2
ðKm ~QmnKn þ Δm ~PmnΔn − 2Km ~RmnΔnÞ

	

¼ NB

2ℏ

Z
d2KA exp

−1
2ℏ2

½ðQ½1�
AA þ ~QAAÞðKAÞ2 þ ðP½1�

AA þ ~PAAÞðΔAÞ2 − 2KAðR½1�
AA þ ~RAAÞΔA�;

after inserting Eqs. (4) and (8) into the integrand. Here, S½n�
denotes the value of the factor S ¼ Q;P, or R being taken
at tn − ϵ with ϵ → 0þ. Thus, we have

NB ¼ 1

πℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ½1�

AA þ ~QAAÞðP½1�
AA þ ~PAAÞ − ðR½1�

AA þ ~RAAÞ2
q

:

ð10Þ

Right after the joint measurement on A and C, Alice
sends the outcome β of the measurement to Bob by a
classical signal at the speed of light. Suppose the signal
reaches Bob at his proper time τB ¼ τadv1 ≡ τadvðt1Þ
[here, “adv” stands for “advanced” [33], and τadv is the
advanced time defined by jzμBðτadvðtÞÞ − zμAðtÞj2 ¼ 0 with
z0BðτadvðtÞÞ > z0AðtÞ], when the reduced state of detector B
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has evolved from the postmeasurement state (9) to ~ρ0B.
According to the information received, Bob could choose a
suitable operation on detector B to turn its quantum state to
a copy of the original unknown state carried by detector C.
In the BK scheme [8,14], the operation Bob should perform
is a displacement by β in the phase space of detector B,
namely, ρ̂out ¼ D̂ðβÞ ~̂ρ00B, where ~ρ00B is the reduced state of
detector B keeps evolving from τadv1 to the operation event,
and D̂ðβÞ is the displacement operator, or in the ðK;ΔÞ
representation,

ρoutðKBÞ ¼ ~ρ00BðKBÞ exp i
ℏ

� ffiffiffiffiffiffi
2ℏ
Ω

r
βRKB −

ffiffiffiffiffiffiffiffiffi
2ℏΩ

p
βIΔB

�
:

ð11Þ
The fidelity of quantum teleportation from jα; r0iC to
jα; r0iB is then defined as

FðβÞ≡ Bhα; r0jρ̂outjα; r0iB
TrBρout

: ð12Þ

If we have an ensemble of the distinguishable ABC triplets
of the detectors, the quantity we are interested in will be the
averaged FiQT [34], defined by

Fav ≡
Z

d2βPðβÞFðβÞ

¼
Z

dβRdβI
TrB ~ρB
TrB ~ρ00B

Bhα; r0jρ̂outjα; r0iB; ð13Þ

since TrBρout ¼ ρoutðKB ¼ ~0Þ ¼ ~ρ00BðKB ¼ ~0Þ ¼ TrB ~ρ00B.

A. Direct comparison of FiQT and entanglement

In Ref. [26], Mari and Vitali showed that the optimal
averaged FiQT of a coherent state is bounded above by

Fopt ≤
1

1þ ð2c−=ℏÞ
; ð14Þ

where c− is the lowest symplectic eigenvalue of the
partially transposed covariance matrix in the reduced state
of the entangled AB pair defined on the time slice
right before the joint measurement at t1 [19,35]. c− can
be related to quantum entanglement of the AB pair
by noting that the logarithmic negativity is given by
EN ¼ maxf0;−log2ð2c−=ℏÞg. Nevertheless, the dynamics
of detector B between Alice’s measurement and Bob’s
operation have been ignored in obtaining the above
inequality. In a relativistic open quantum system, inequality
(14) does not make exact sense, since the averaged FiQT
on the left side of inequality (14) is a timelike correlation
connecting the joint measurement event by Alice and the
operation event by Bob, while the quantity on the right side
of inequality (14) is a spacelike correlation extracted from
the covariance matrix of detectors A and B defined on the

hypersurface of simultaneity right before the wave func-
tional collapses.
To compare the averaged FiQT directly with a function

of c− defined on the t1 slice in the Minkowski frame, one
might imagine that Bob receives the outcome β and makes
the proper operation on detector B instantaneously at τB1
when the worldline of B intersects the t1 slice (see Fig. 1)
[14], which is unphysical.
A better way to make a direct comparison is to transform

the combined system to a new reference frame with the
fiducial time slice overlapping with the t ¼ 0 hypersurface
in our original setup but the time slice passing Alice’s
measurement event being very close to the future light cone
of the event (e.g., the gray solid curve in Fig. 1 joining
Alice’s worldline at τA1 and Bob’s worldline at
τ0B1 ¼ τadv1 − ϵ, ϵ → 0þ). Then, the wave functional defined
in this new reference frame is collapsed around the future
light cone of the joint measurement event, right after which
Bob receives the signal from Alice and immediately
performs the operation on detector B (at τadv1 þ ϵ in
Fig. 1), which is still around the same future light cone,
and so ~ρ00B ≈ ~ρ0B ≈ ~ρB. In this way, both sides of inequality
(14) are evaluated around the future light cone of Alice’s
measurement event, or around the past light cone of Bob’s
operation event, and both sides of inequality (14) will be
independent of the reference frame in a relativistic detector-
field system when ϵ → 0. In the Appendix, we show that
the reduced state of detector B collapsed around the light
cone of the joint measurement event onA andC is consistent
with the reduced state initiated with the one collapsed

FIG. 1 (color online). Setup for QT from Alice (thick dashed
worldline) to Bob (thick solid worldline); both are at rest in the
Minskowski vacuum. The gray solid curve represents the t01 slice
in some coordinate system, and the gray dashed horizontal lines
represent the t slices in the Minkowski coordinates. The shaded
region represents the future light cone of the joint measurement
event on A and C by Alice (red cross).
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simultaneously with the measurement event in a conven-
tional reference frame and then evolves to the future light
cone of the event. Actually, the reduced state of detectorB at
the moment that Bob is crossing the future light cone of
Alice’s spatially local measurement event is independent of
the choice of coordinates here.

Denoting by t0 the coordinate time of a new coordinate
system such that τAðt01Þ ¼ τAðt1Þ ¼ τA1 and τBðt01Þ ¼ τadv1 −
ϵ≡ τ0B1 at t0 ¼ t01, and assuming ρ00Bðτadv1 þϵÞ≈ρBðτadv1 −ϵÞ
as ε → 0þ. Then, we can repeat the same approach
described earlier in this section to reduce Eq. (13) to

Fav ¼
Z

dβRdβIBhα; r0jρ̂outjα; r0iB ¼
Z

dβRdβI
d2KB

2πℏ
ρðα;r0Þ�B ðKBÞρoutðKBÞ; ð15Þ

where ρ̂ðα;r0ÞB in the ðK;ΔÞ representation is the same as Eq. (2) except the index C there is replaced by B. From Eqs. (2)
and (11), with the help of Eqs. (9), (4), and (8), and with t1 replaced by t01, we have

Fav ¼ NB

Z
dβRdβI

Q
dd

2Kd

ð2πℏÞ3 ρABCðK;Δ; t01Þ

× exp



i
ℏ

� ffiffiffiffiffiffi
2ℏ
Ω

r
ðαR − βRÞðKC − KBÞ −

ffiffiffiffiffiffiffiffiffi
2ℏΩ

p
ðαI − βIÞðΔC − ΔBÞ

	

−
1

2ℏ2

�
ℏ
2Ω

e2r0ðKBÞ2 þ ℏ
2
Ωe−2r0ðΔBÞ2 þ Km ~QmnKn þ Δm ~PmnΔn − 2Km ~RmnΔn

	�

¼ NB

Z Q
dd

2Kd

ð2πℏÞ3 ρABCðK;Δ; t01Þð2πÞ2δ
� ffiffiffiffiffiffiffi

2

ℏΩ

r
ðKC − KBÞ

�
δ

� ffiffiffiffiffiffi
2Ω
ℏ

r
ðΔC − ΔBÞ

�

× exp



−

1

2ℏ2

�
ℏ
2Ω

e2r0ðKBÞ2 þ ℏ
2
Ω − e2r0ðΔBÞ2 þ Km ~QmnKn þ Δm ~PmnΔn − 2Km ~RmnΔn

	�
: ð16Þ

Thus,

Fav ¼
ℏ2πNBffiffiffiffiffiffiffiffiffiffiffi
det ~V

p ; ð17Þ

where NB is the same as Eq. (10) except t1 is replaced by t01 and

~V ¼

0
BBBBBB@

Q½10�
AA þ ~QAA −R½10�

AA − ~RAA Q½10�
AB þ ~QAC −R½10�

AB − ~RAC

−R½10�
AA − ~RAA P½10�

AA þ ~PAA −R½10�
BA − ~RCA P½10�

AB þ ~PAC

Q½10�
AB þ ~QAC −R½10�

BA − ~RCA Q½10�
BB þ ~QCC þ ℏe2r0Ω−1 −R½10�

BB − ~RCC

−R½10�
AB − ~RAC P½10�

AB þ ~PAC −R½10�
BB − ~RCC P½10�

BB þ ~PCC þ ℏe−2r0Ω

1
CCCCCCA
: ð18Þ

Here, the symmetric two-point correlators of the detectors,

e.g., Q½10�
dd0 ≡Qdd0 ðt01Þ ¼ hδQ̂dðτdðt01ÞÞδQ̂d0 ðτd0 ðt01Þi, are the

expectation values of the operators of detector A at τA1 and
the operators of detector B at τ0B1 ¼ τadv1 − ϵ, with respect
to the initial state of the combined system defined on the
fiducial time slice t0 ¼ t ¼ 0. One can easily write down a
similar formula for the QT from Bob to Alice by switching
their roles and letting detector C go with Bob.
Note that Fav in Eq. (17) is independent of α only if ~ρðβÞAC

is in the form of Eq. (8), where the β terms are independent

of KA or ΔA. The state (8) is chosen so that the analytic
calculation is the simplest while the result is still

interesting. One may choose another state consistent with
the ideal EPR state as the squeeze parameter r2 → ∞
instead; for example, KC and ΔC are replaced by
(KC − KA) and (ΔC þ ΔA), respectively. Then, NB and
the Fav will be more complicated and will depend on α.
In practice, the choice of the state may depend on the
experimental setting.
Below, we consider the cases with the factors in the two-

mode squeezed state (8) of detectors A and C right after
the joint measurement given by ~QAA ¼ ~QCC ¼ ℏ

2Ω cosh 2r2,
~QAC ¼ ℏ

2Ω sinh 2r2,
~PAA ¼ ~PCC ¼ ℏ

2
Ω cosh 2r2, ~PAC ¼

− ℏ
2
Ω sinh 2r2 with squeezed parameter r2, and ~Rmn ¼ 0.
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If the joint measurement on detectors A and C is done
perfectly such that r2 → ∞, then from Eqs. (17), (18), and
(10), we have

FavðτA1 ; τ0B1 Þ → ℏ½ðℏe2r0Ω−1 þ hδQ̂2
−iÞðℏe−2r0Ωþ hδP̂2þiÞ

− ðhδQ̂−; δP̂þiÞ2�−1=2; ð19Þ

where Q̂−≡Q̂AðτA1 Þ−Q̂Bðτ0B1 Þ and P̂þ≡P̂AðτA1 ÞþP̂Bðτ0B1 Þ.
If, in addition, the initial state ρAB of detectors A and B in
Eq. (3) were frozen in time and decoupled from the field,
then one would have

FavðτA1 ; τ0B1 Þ ¼ Favð0;0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðe2r0 þ e−2r1Þðe−2r0 þ e−2r1Þ
p ;

ð20Þ

which implies that Fav → 1 as r1 → ∞ when ρAB is nearly
an ideal EPR state, while Fav → 1=2 for r0 ¼ 0 as r1 → 0
when ρAB is almost the coherent state of free detectors. In
the latter case, Fav ¼ Fcl ≡ 1=2 is known as the best
fidelity of “classical” teleportation of a coherent state
carried by detector C using the coherent state of the AB
pair [8] without considering the environmental influences.
This does not imply that Fav of QT must be greater than
1=2, though. Once the correlations such as hQ−i ¼ 0
needed in the protocol of QT become more uncertain than
the minimum quantum uncertainty, Fav − Fcl will become
negative.
The degrees of quantum entanglement of the AB-pair in

their reduced state defined on the t01 slice, such as the
logarithmic negativity EN , can be evaluated by inserting
the expressions for the two-point correlators of detectors A
and B on that slice into the conventional formula
[19,35,36]. Those correlators measure the correlations
between the operators of detector A at some event (in
Alice’s worldline at τA1 ) and the operators of detector B at
another event almost lightlike but still spacelike separated
with the former (in Bob’s worldline at τ0B1 ). We call the
quantum entanglement evaluated in this way the “entan-
glement around the light cone” (EnLC). While the degrees
of entanglement of two detectors obtained in the

conventional ways depend on the choice of reference
frames [20], those for the EnLC do not. The inequality
(14) implies that the EnLC between A and B (c− < ℏ=2
or EN > 0) is a necessary condition for the averaged
FiQT of coherent states to be better than the classical ones
(Fopt > Fcl).

B. Ultraweak coupling limit

In the ultraweak coupling limit, γ ≡ λ20=8π is so small
that γΛ1 ≪ a;Ω, where Λ1 corresponds to the time reso-
lution or the frequency cutoff of our model [37]. From
Eqs. (28), (29), (32), and (33) and Eqs. (B2) to (B8) in
Ref. [20] with α2 ¼ ðℏ=ΩÞe−2r1 and β2 ¼ ℏΩe−2r1
there (denoted by ᾱ and β̄ in this paper), with
1 ≫ ðγΛ1=ΩÞ ≫ ðγ=ΩÞ ≫ ðγΛ1=ΩÞ2, the elements of the
covariance matrix for the AB pair at t01 with the initial
state (3) can be approximated by

Q½10�
AA ≈

ℏC1

2Ω
e−2γτ

A
1 þ hðδQ̂AðτA1 ÞÞ2iv;

P½10�
AA ≈

ℏ
2
ΩC1e−2γτ

A
1 þ hðδP̂AðτA1 ÞÞ2iv; ð21Þ

Q½10�
BB ≈

ℏC1

2Ω
e−2γτ

0B
1 þ hðδQ̂Bðτ0B1 ÞÞ2iv;

P½10�
BB ≈

ℏ
2
ΩC1e−2γτ

0B
1 þ hðδP̂Bðτ0B1 ÞÞ2iv; ð22Þ

Q½10�
AB ≈

ℏS1
2Ω

e−γðτA1þτ0B
1
Þ cosΩðτA1 þ τ0B1 Þ;

P½10�
AB ≈ −Ω2Q½10�

AB; ð23Þ

R½10�
AB ≈R½10�

BA ≈ −
ℏ
2
S1e−γðτ

A
1
þτ0B

1
Þ sinΩðτA1 þ τ0B1 Þ;

R½10�
AA ≈R½10�

BB ≈ 0; ð24Þ

up to ℏ ·Oðγ=ΩÞ. Here, Cn ≡ cosh 2rn, Sn ≡ sinh 2rn,
hðδP̂jðτjÞÞ2iv ≈ Ω2hðδQ̂jðτjÞÞ2iv þ υ with j ¼ A;B, and
υ≡ 2ℏγΛ1=π. For simplicity, let us consider the cases
with r0 ¼ 0 here. Then, Eq. (18) becomes

~V ¼

0
BBBBB@

ℏ
2ΩAðτA1 Þ 0 ℏ

2ΩXðτA1 ; τ0B1 Þ ℏ
2
YðτA1 ; τ0B1 Þ

0 ℏ
2
ΩAðτA1 Þ þ υ ℏ

2
YðτA1 ; τ0B1 Þ − ℏ

2
ΩXðτA1 ; τ0B1 Þ

ℏ
2ΩXðτA1 ; τ0B1 Þ ℏ

2
YðτA1 ; τ0B1 Þ ℏ

2ΩBðτ0B1 Þ 0

ℏ
2
YðτA1 ; τ0B1 Þ − ℏ

2
ΩXðτA1 ; τ0B1 Þ 0 ℏ

2
ΩBðτ0B1 Þ þ υ

1
CCCCCA

þ ℏ4Oðγ=ΩÞ; ð25Þ

where

AðτA1 Þ≡ C2 þ e−2γτ
A
1C1 þ 2Ωℏ−1hðδQ̂AðτA1 ÞÞ2iv; ð26Þ
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Bðτ0B1 Þ≡ 2þ C2 þ e−2γτ
0B
1 C1 þ 2Ωℏ−1hðδQ̂Bðτ0B1 ÞÞ2iv;

ð27Þ

XðτA1 ; τ0B1 Þ≡ S2 þ e−γðτA1þτ0B
1
Þ cosΩðτA1 þ τ0B1 ÞS1; ð28Þ

YðτA1 ; τ0B1 Þ≡ e−γðτA1þτ0B
1
Þ sinΩðτA1 þ τ0B1 ÞS1: ð29Þ

So the averaged fidelity in the ultraweak coupling limit can
be written in a simple form:

FavðτA1 ; τ0B1 Þ ¼
2A

AB − ðX2 þ Y2Þ þOðγΛ1=ΩÞ: ð30Þ

Usually, hðδQ̂jÞ2ðτÞiv ∼ ð�e−2γτ þ constantÞ evolve
smoothly in this limit, while

X2 þ Y2 ¼ S22 þ S21e
−2γðτA

1
þτ0B

1
Þ

þ 2S1S2e−γðτ
A
1
þτ0B

1
Þ cosΩðτA1 þ τ0B1 Þ ð31Þ

is oscillating in τA1 þ τ0B1 due to the natural squeeze-
antisqueeze oscillation of the two-mode squeezed state
of detectors A and B at frequency Ω [17]. The maximum
(minimum) values of Fav, denoted by Fþ

av (F−
av), occur at

cosΩðτA1 þ τ0B1 Þ ≈ 1 (−1), when Y ¼ 0 and

F�
avðτA1 ; τ0B1 Þ ≈

2A

AB − ½S2 � S1e−γðτ
A
1
þτ0B

1
Þ�2 : ð32Þ

We call Fþ
av the best averaged FiQT from Alice to Bob.

C. Improved protocol

Similar to the function of the local oscillators in the
optical experiments of QT, if we perform a counter-rotation
to ~ρB in the phase space of ðQB; PBÞ to undo the
cosΩðτA1 þ τ0B1 Þ or sinΩðτA1 þ τ0B1 Þ factors before displace-
ment, namely, ρ̂out ¼ D̂ðβÞR̂ðΩðτA1 þ τ0B1 ÞÞ ~̂ρB, we will
obtain the best averaged FiQT Fþ

av in the ultraweak
coupling limit.
Mathematically, this can be done by transforming

ðKB;ΔBÞ to ðCΩKB þ Ω−1SΩΔB; CΩΔB −ΩSΩKBÞ in
Eq. (9) for ~ρB, where CΩ ≡ cosΩðτA1 þ τ0B1 Þ and SΩ ≡
sinΩðτA1 þ τ0B1 Þ [13]. Since the detectors B and C are not
directly correlated in ρABC, the operation of this counter-
rotation on detector B commutes with the joint projective
measurement on A and C.
Physically, this may be realized by having Alice con-

tinuously send classical signals periodic in her proper time
to Bob during the whole history, analogous to the local
oscillators in optics, so that Bob can determine what τA1
was when the joint measurement on A and C was done,
accordingly Bob can counter-rotate detector B for a proper

angle ΩðτA1 þ τ0B1 Þ mod 2π with τ0B1 input from his
own clock.
Our numerical results show that this improved protocol

is almost the optimal according to inequality (14), though
in some cases, we have to introduce a further squeezing to
the coherent state to be teleported in order to optimize the
fidelity [see Fig. 11 (lower-left)].
After introducing the notations and formalism for QT in

relativistic consideration, we will now examine carefully
the special-relativistic effects and the Unruh effect in each
of the following four cases.

IV. CASE 1—ALICE AND BOB BOTH AT REST:
TWO INERTIAL DETECTORS

Let us apply our formulation to the first case, with both
Alice and Bob at rest in the Minkowski space and separated
at a distance d, as the setup in Fig. 1.

A. Late-time behavior

The late-time steady state of detectors A and B is simple,
in the sense that there is no natural oscillation in time. The
late-time two-point correlators on the same Minkowski
time slice for two UD detectors at rest have been given in
Eqs. (48)–(51) of Ref. [19]. In these expressions, the
mutual influences of detectors A and B to all orders (for
more on the mutual influences; see Sec. IV B) are included.
From the discussion above Eq. (58) in Ref. [19], one sees
that, if detectors A and B are close enough (d < dent with
the entanglement distance dent defined in Ref. [19]), at late
times, these two detectors will have

hðδQ̂A − δQ̂BÞ2ihðδP̂A þ δP̂BÞ2i < ℏ2; ð33Þ

with the operators Q̂AðtÞ, P̂AðtÞ, Q̂BðtÞ, and P̂BðtÞ at the
same Minkowski time t [38]. This implies that the AB pair
is in a steady two-mode squeezed state with a phase of π=4
in the QAQB subspace of the phase space, and so we may
be allowed to apply the protocol in Sec. III to obtain an
averaged FiQT of a coherent state from Alice to Bob or
from Bob to Alice,

Fav ≈
1

1þ 2ℏ−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðδQ̂−Þ2ihðδP̂þÞ2i=4

q > Fcl ≡ 1

2
; ð34Þ

in the weak coupling limit according to inequality (14) and
beat the classical fidelity Fcl.
To look at this possibility more closely, one needs the

correlators around the light cone instead of the equal-time
correlators in the Minkowski coordinates given in
Ref. [19]. First, generalize the expressions (52) in
Ref. [19] to
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F c�ðd; TÞ≡ ℏi
4π

Z
ωmax

0

dω
ωc cosωT

ω2 þ 2iγω − Ω2
r � 2γ

d e
iωd

:

ð35Þ

For a given UV cutoff ωmax, the late-time correlators
with detectors A and B at different times, hδQ̂2

AðtÞijγt≫1¼
hδQ̂2

BðtþTÞijγt≫1¼2Re½F 0þðd;0ÞþF 0−ðd;0Þ�, hδQ̂AðtÞ
δQ̂BðtþTÞijγt≫1¼2Re½F 0þðd;TÞ−F 0−ðd;TÞ�, hδP̂2

AðtÞi
jγt≫1 ¼ hδP̂2

Bðtþ TÞijγt≫1 ¼ 2Re½F 2þðd; 0Þ þ F 2−ðd; 0Þ�,
and hδP̂AðtÞδP̂Bðtþ TÞijγt≫1 ¼ 2Re½F 2þðd; TÞ − F 2−
ðd; TÞ�, can be calculated numerically. Using them, one
obtains the logarithmic negativity for the EnLC and the
averaged FiQT between the two detectors by setting t ¼ t1
and T ¼ �ðd − ϵÞ in the above expressions such that
ðτA1 ; τ0B1 Þ ¼ ðt1; t1 þ d − ϵÞ or ðτ0A1 ; τB1 Þ ¼ ðt1; t1 − dþ ϵÞ
and then taking the limit ϵ → 0þ. An example is shown
in Fig. 2. It turns out that the late-time EnLC of the AB pair
is stronger than the entanglement evaluated on the same
Minkowski time slice (τA1 ¼ τB1 ¼ t1). This implies that the
entanglement distance dent for the EnLC is greater than the
one we expected according to our old results of entangle-
ment evaluated on the hypersurfaces of simultaneity in the
Minkowski coordinates (call this EnSM) in Ref. [19]. As
one can see in Fig. 2, for the detectors separated at a
distance d in the range between the entanglement distances
for the EnLC and EnSM [0.153 < d < 0.176 in Fig. 2
(left)], the averaged FiQT can beat the classical fidelity at
late times (Fav − Fcl > 0) while the detectors are disen-
tangled in view of the EnSM (EN ¼ 0 for T ¼ 0). In this
range, the inequality (14) appears to be violated in view of

the EnSM, but it still holds in terms of the EnLC. Together
with the fact that the degree of the EnLC is independent of
the choice of reference frames and invariant under coor-
dinate transformation, we conclude that the EnLC, rather
than the EnSM, is essential in relativistic open systems with
the “system” consisting of spatially localized objects.

B. Early-time behavior

At early times, once Bob enters the future light cone of
the spacetime event where detector A started to couple to
the field, detector B will be affected by the retarded field of
A. We call this mutual influence of the first order. Detector
B will respond to this influence with its backreaction to the
field, which in turn affects detector A, which is called
mutual influence of the second order. The subsequent
backreaction from A propagates and affects B again, which
constitutes a mutual influence of the third order, and so on.
When the detector-field coupling is not weak enough or the
spatial separation between the two detectors is not large
enough, the higher-order mutual influences can get com-
plicated and become very important soon. Fortunately, in
the Alice-Rob problem and the quantum twin problem to
be introduced later, we are working in the weak coupling
limit, and the retarded distance [33] between the two
detectors will be very large in most of the history, so the
mutual influences are not significant there. To compare
with those results, assuming that the separation d is large
enough, the zero-order result without considering any
mutual influences in this case would have already been
a good approximation at early times.
We have obtained the evolution in t1 of the logarithmic

negativity EN of the EnLC and the best averaged FiQT Fþ
av

FIG. 2. (Left) The late-time logarithmic negativity EN (scaled by 3) of two inertial HOs separated at a distance d, with values taken on
the future or past light cones for one of the two HOs at t ¼ t1 ≫ 1=γ (EnLC, gray solid) and on the t1 slice in the Minkowski coordinates
(EnSM, gray dashed), and the averaged fidelity Fav of QT in both teleporting directions subtracted by Fcl (black). Here, ωmax ¼ 100
is the UV cutoff in Eq. (35). (Right) EN of EnLC evaluated using the cross correlators hRAðt1Þ;RBðt1 � TÞi, R ¼ Q;P at fixed
separation d ¼ 1=6 ≈ 0.167, with other parameters the same. (The dotted curve represents those negative symplectic eigenvalues that do
not count in the definition of EN .) While the two detectors have been disentangled according to EN evaluated on the Minkowski time
slices (T ¼ 0, EnSM) at this distance, they are still entangled around the future and past light cones (T=d ¼ þ1 and −1, respectively;
cf. Fig. 1).
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in the weak coupling limit, as shown in Fig. 11 (blue
curves) for later comparison. The evolution curves are
roughly exponential decays with small oscillations on top
of it at a frequency about twice the natural frequency Ω of
detectors in the weak coupling limit.
Note that the separation d is also the retarded distance for

the classical light signals from Alice to Bob or from Bob to
Alice. In Ref. [19], we see the spatial dependence of the
entanglement dynamics: The evolution of quantum entan-
glement between the two inertial detectors, and thus the
disentanglement times, depend on d. It is therefore not
surprising that the evolution of the EnLC and the best
averaged FiQT would show a similar dependence on d in
Fig. 3. The main differences from the EnSM results are the
following. First, for the same initial state of the AB pair, if
the separation d is large enough, one expects that the larger
d is, the smaller the “initial” (when τA1 ¼ t ¼ 0þ ϵ and
τ0B1 ¼ d) EnLC due to the longer time of decoherence of
detector B before entering the future light cone of Alice
emitted at t ¼ ϵ, and thus the shorter the disentanglement
time of the EnLC. Second, the disentanglement rate of the
EnLC is roughly the same for t < d and t > d, while in
Ref. [19], we see that the degradation rate of the EnSM at
early times has nontrivial d dependence when t > d.

V. CASE 2—THE ALICE-ROB PROBLEM:
ONE INERTIAL, ONE UNIFORMLY

ACCELERATED DETECTOR

Our secondexamplehas a setup slightlymodified from the
one in the “Alice-Rob problem” [9,20]. It has been claimed
that the Unruh effect experienced by Rob (Bob) in uniform
accelerationwould degrade the FiQTin this setup [9]. This is
the case in the detector models with the duration of Rob’s
constant linear acceleration and the duration of the detector-
field interaction being the same and finite, while the
teleportation is performed in the future asymptotic region
when the detectors have been decoupled from the environ-
ment [12]. In this section, we will examine how sound this
claim is in our model in which the detectors are never

decoupled from the fields and theQTprocess is performed in
the interaction region. If Rob is uniformly accelerated,
however, there will be an event horizon for him, beyond
which no classical information can reachRob (see Fig. 4). To
guarantee the signals emitted by Alice at all times can reach
Rob to complete a QT from Alice to Rob, we still limit our
considerations to the finite duration of acceleration, thus no
event horizon for Rob, which for all practical purposes is a
physically reasonable assumption, too.
Let us consider the setup with Alice at rest along the

worldline ðt; a−1 − d; 0; 0Þ with the parameters 0 < ða−1 −
dÞ < a−1 and Rob being constantly accelerated in a finite
duration 0 ≤ τ ≤ τ̄2 then switched to inertial motion (see
Fig. 4). In the acceleration phase, Rob is going along the
worldline zμB ¼ ða−1 sinh aτ; a−1 cosh aτ; 0; 0Þ the same as
the one for a uniformly accelerated detector with proper
acceleration a, and after the moment τ ¼ τ̄2, or

FIG. 4 (color online). Setup for QT from Alice (thick dashed
worldline) at rest to Rob (thick solid worldline) accelerated
uniformly from 0 to τ̄2 in his proper time then turning to inertial
motion. The hypersurface t ¼ x1 (blue dot-dashed line) will be
the event horizon of Rob if τ̄2 → ∞.

FIG. 3. Spatial and temporal dependence of the logarithmic negativity of EnLC and the best averaged FiQT between Alice and Bob.
The left plot is for comparison with Fig. 1 in Ref. [19], with the same parameters there. For the middle and the right plots, we set
γ ¼ 0.001, Ω ¼ 2.3, Λ0 ¼ Λ1 ¼ 20, r2 ¼ 1.1, and ðᾱ; β̄Þ ¼ ðe−r1= ffiffiffiffi

Ω
p

; e−r1
ffiffiffiffi
Ω

p Þ with r1 ¼ 1.2.
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t̄2 ¼ a−1 sinh aτ̄2 in the Minkowski time, Rob moves with
constant velocity along the worldline ððτ − τ̄2Þ cosh aτ̄2 þ
a−1 sinh aτ̄2; ðτ − τ̄2Þ sinh aτ̄2 þ a−1 coshaτ̄2; 0; 0Þ in the
Minkowski coordinates. Here, the Minkowski time t and
the parameter τ are the proper times of Alice and Rob,
namely, τA ¼ t and τB ¼ τ.

Suppose detector C is moving with Alice and its
quantum state to be teleported is created right before
t ¼ t1, when Alice performs a joint measurement on
detectors A and C. Then, Alice sends out the outcome
carried by a classical light signal right after t1, and Rob will
receive the signal at his proper time:

τadv1 ≡ τadvðt1Þ ¼


−a−1 ln aða−1 − d − t1Þ if t1 < ð1 − e−aτ̄2Þ=a − d;

ðt1 − a−1 þ dÞeaτ̄2 þ a−1 þ τ̄2 otherwise:
ð36Þ

Accordingly, Rob performs the local operation at τB ¼ τadv1 þ ϵ with ϵ → 0þ.
In the opposite direction, one can also consider the case with detector C moving with Rob, who performs a joint

measurement on B andC at his proper time τB ¼ τ1 and sends the outcome to Alice by classical channel immediately. Then,
Alice will receive the message at her proper time,

tadv1 ≡ tadvðτ1Þ ¼


dþ a−1ðeaτ1 − 1Þ if τ1 < τ̄2;

dþ a−1ðeaτ̄2 − 1Þ þ ðτ1 − τ̄2Þeaτ̄2 otherwise;
ð37Þ

and perform the local operation at τA ¼ tadv1 þ ϵ. Similar to
τadv, here tadv is the advanced time defined by jzμAðtadvðτÞÞ −
zμBðτÞj2 ¼ 0 with z0AðtadvðτÞÞ > z0BðτÞ.

A. Dynamics of correlators

Since Rob stops accelerating at the moment τ̄2, the
acceleration of detectorB is not really uniform.The dynamics
of the correlators (5)–(7) for nonuniformly accelerated
detectors in similar worldlines have been studied in
Refs. [28,33]. In the weak coupling limit with a not-too-short
duration of nearly constant acceleration, the behavior of such
a detector is similar to a harmonic oscillator in contact with a
heat bath at a time-varying “temperature” corresponding to
the proper acceleration of the detector. Analogous to the
results inRef. [33], the dynamics of entanglement herewill be
dominated by the zeroth-order results of the “a-parts” of the
self and cross-correlators [37,39] and the “v-parts” of the

self-correlators of detectorsA andB. The v-parts of the cross-
correlators are negligible. The higher-order corrections by the
mutual influences are also negligible in the weak coupling
limit with large initial entanglement and large spatial sepa-
ration between the detectors.
For larger initial accelerations of detector B, the changes

of the v-parts of its self-correlators during and after the
transition of the proper acceleration of detector B from
a to 0 are more significant. Consider the cases with the
changing rate of the proper acceleration of detector B
from a finite a to 0 is fast enough so that we can
approximate the proper acceleration of detector B as a
step function of time, but not too fast to produce
significant nonadiabatic oscillation on top of the smooth
variation. According to the results in Refs. [33] and [40],
for τ̄2 sufficiently large, the v-part of the self-correlators
of detector B behave like

hðδQ̂BðτÞÞ2iv ≈ hðδQ̂BðτÞÞ2ifagv þ θðτ − τ̄2Þ
�
−

γℏa2e−2γðτ−τ̄2Þ

6πm0ðγ2 þΩ2Þ2þðhðδQ̂Bð∞ÞÞ2if0gv − hðδQ̂Bð∞ÞÞ2ifagv Þð1 − e−2γðτ−τ̄2ÞÞ
	
;

ð38Þ

hðδP̂BðτÞÞ2iv ≈ hðδP̂BðτÞÞ2ifagv þ θðτ − τ̄2Þ × ½ðhðδP̂Bð∞ÞÞ2if0gv − hðδP̂Bð∞ÞÞ2ifagv Þð1 − e−2γðτ−τ̄2ÞÞ�; ð39Þ

where the superscripts fag and f0g denote the self-
correlators of a UD detector with the same parameters
and initial state except that it is uniformly accelerated with

aμaμ ¼ a2 and 0, respectively, and hðδQ̂Bð∞ÞÞ2ifag;f0gv and

hðδP̂Bð∞ÞÞ2ifag;f0gv are those self-correlators in steady state
at late times (see Ref. [39]). These approximated behaviors
have been verified by numerical calculations (see Figs. 3

(right) and 4 (right) in Ref. [40]). Note that the γℏa2 term
in Eq. (38) is actually Oðγ=ΩÞ, so hðδP̂BðτB1 ÞÞ2iv≈
Ω2hðδQ̂BðτB1 ÞÞ2iv þ υ, and Eqs. (21)–(24) are still good
approximations up to Oðγ=ΩÞ, and we can keep using
Eq. (30) here for r0 ¼ 0. Below, we apply these approx-
imations to calculate the averaged FiQT in the ultraweak
coupling limit.
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B. Averaged FiQT in ultraweak coupling limit

Inserting ðt1; τadv1 Þ in Eq. (36) and ðtadv1 ; τ1Þ in Eq. (37)
into ðτA1 ; τ0B1 Þ in Eq. (25) and its counterpart for
the opposite teleporting direction, respectively, with the
v-parts of the self-correlators (38), (39) and other correla-
tors in the approximated form given by Eqs. (21)–(24), we
obtain the EnLC and the best averaged FiQT from Alice to

Rob (EðABÞ
N and FðABÞþ

av , upper row) and from Rob to Alice

(EðBAÞ
N and FðBAÞþ

av , lower row) in the sender’s clock in Fig. 5
and in the receiver’s point of view (observed along the past
light cones) in the left plots of Fig. 6, respectively.
The quantities in each plot of Fig. 5 do degrade faster as

Rob’s proper acceleration a gets larger and the correspond-
ing Unruh temperature gets higher. However, one has to be
cautious at such small accelerations (a ¼ 1=4 to 1 here);
none of these results can be taken as evidence of the Unruh
effect. This is not only because Rob does not accelerate in a
good part of the histories shown in Fig. 5 but because, more
importantly, after the curves in the right plots of Fig. 5 are
translated to the receiver’s point of view, shown in the left
plots in Fig. 6, a larger proper acceleration of Rob turns
out to give slower degradations of the best averaged FiQT
and the EnLC in both teleporting directions even in Rob’s

acceleration phase. In fact, one can remove the Unruh effect
in the calculation by replacing the self-correlators of detector
B with the Unruh temperature by those for a detector at rest
in the Minkowski vacuum, and one will still obtain similar
curves and the same tendency of the degradation rates
against the proper acceleration as those in Fig. 5 and the
corresponding curves in the left plots of Fig. 6.
The behavior of the curves in Fig. 5 can be explained

simply by the go-away setup in the Alice-Rob problem and

the Doppler shift. For FðABÞþ
av and EðABÞ

N from Alice to Rob
with t1 and τ̄2 fixed, the proper time τadv1 in Eq. (36) when
Rob receives Alice’s signal increases rapidly as the value of
a increases, which allows for a much longer duration of
decoherence for detector B before Rob’s operation. This
yields a higher degradation rate in t1 (Alice’s clock) for
larger a in the evolution of the best averaged FiQT from
Alice to Bob. On the other hand, Alice’s signal is more
redshifted, and so Alice’s clock looks slower for a larger a
in Rob’s point of view. When a is not too large, the
apparent slowdown of decoherence for detector A can beat
the increasing rate of decoherence time for detector B such
that the larger a is, the slower is the degradation in τadv1 [see
the black and gray curves in Fig. 6 (upper left)]. Similarly,
for a fixed value of a, Eq. (36) implies that τadv1 for Rob

FIG. 5. Comparison of the best averaged FiQT Fþ
av − Fcl (black curves) and the logarithmic negativities EN (gray) of the EnLC from

Alice to Rob [ðABÞ, upper plots] and from Rob to Alice [ðBAÞ, lower plots], as functions of the moment of the joint measurement t1 by
Alice (τ1 by Rob) with τ̄2 ¼ 2 (left) and 10 (right), in the weak coupling limit. Here, a ¼ 1=4 (dotted curves), 1=2 (dashed), and 1 (long-
dashed gray and solid black). Other parameters are d ¼ 1=4, γ ¼ 0.0001, Ω ¼ 2.3, ℏ ¼ 1, r1 ¼ 1.2, r2 ¼ 1.1,
ðᾱ; β̄Þ ¼ ðe−r1= ffiffiffiffi

Ω
p

; e−r1
ffiffiffiffi
Ω

p Þ, and Λ0 ¼ Λ1 ¼ 20. In the upper-right plot, Rob is in the acceleration phase when receiving Alice’s
signal emitted at t1 ≤ ð1 − e−aτ̄2Þ=a − d ≈ 3.42, 1.74, 0.75 for a ¼ 1=4, 1=2, 1, respectively, from Eq. (36).
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grows rapidly as the duration of Rob’s acceleration phase τ̄2
increases, which causes a much faster degradation of

FðABÞþ
av and EðABÞ

N in t1 also. Indeed, the curves in the
upper-right plot (τ̄2 ¼ 10) of Fig. 5 drop faster than those in
the upper-left plot (τ̄2 ¼ 2) for each value of a. Let tcl be

the moment of t1 when F
ðABÞþ
av drops to the value Fcl for the

classical teleportation. When aτ̄2 is sufficiently large, τadv1

will be so large that tcl ≈ a−1 − d, which is the moment in
Alice’s clock when Alice crosses the event horizon for Rob

as τ̄2 → ∞. For FðBAÞþ
av and EðBAÞ

N in the opposite teleporting
direction, the situations are similar, even though ostensibly
there is no event horizon for Alice.
This is not the whole story, though. If we increase Rob’s

proper acceleration a further, while the EnLC from Rob to

Alice EðBAÞ
N is always an increasing function of a [Fig. 6

(lower-right)], such a tendency will be altered when

a > OðΩÞ in the EnLC from Alice to Rob EðABÞ
N , as shown

in Fig. 6 (upper-right), mainly by the factor cothðπΩ=aÞ in
the self-correlators of detector B, e.g., hðδQ̂BðτÞÞ2ifagv ≈
ðℏ=2ΩÞ cothðπΩ=aÞð1 − e−γτÞ, for Eq. (22) when Bob is
accelerated [20]. Only in this regime, the Unruh effect is
significant and dominates over the apparent slowdown of
Alice’s clock observed in Rob’s acceleration phase, in the
sense that a higher Unruh temperature leads to a higher
degradation rate of the best averaged FiQT and the EnLC.
After Rob’s acceleration phase is over, however, due to the
higher relative speed between Alice and Rob causing a
stronger redshift of Alice’s clock signal with a larger a, the
degradation later in Rob’s point of view can be slower than
those with a smaller a. Indeed, we see that the slopes of the
black and gray dotted curves (a ¼ 1=4) are more negative
than the slopes of the green and light-green curves
(a ¼ 15), respectively, for τadv1 > τ̄2 ¼ 10 in Fig. 6 (left).

FIG. 6 (color online). (Left) The black and gray curves are the same results as those in the right plots of Fig. 5 but now against the
moments τadv1 and tadv1 at which Rob and Alice receive the classical signal, respectively. The green and light-green curves represent Fþ

av

and EN , respectively, for a ¼ 15 and d ¼ ½ð2aÞ4 þ 44�−1=4 ≈ 0.033. In the upper-left plot, when τadv1 gets large enough, the curves for
the same quantity may cross each other (not shown). From Eq. (37), Alice will receive the signal at tadv1 with d < tadv1 < tadvðτ̄2Þ ≈ 44.98,

295.08, 22025.7 for a ¼ 1=4, 1=2, and 1 if Rob emits the classical signal in his acceleration phase. (Right) EðABÞ
N and EðBAÞ

N for the EnLC
at fixed moments τadv1 ¼ 9.9999 and tadv1 ¼ 200 in Rob’s and Alice’s points of view, respectively, as functions of a (black). The gray
dotted curves are the same quantities with the Unruh effect removed from the self-correlators of detector B. Here, d ¼ ½ð2aÞ4 þ 44�−1=4,
and τ̄2 ¼ 10, so that, in the lower-right plot, if a≳ 0.45, Rob will be in the acceleration phase when he performs the joint measurement
as the sender. Other parameters are the same as those in the previous figure.
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Comparing the upper and lower plots in Fig. 5, one sees
that, with the samevalues of the parameters, the behaviors of

FðABÞþ
av and FðBAÞþ

av for teleportation in two different direc-
tions look similar when both are plotted against the sender’s

clock, or both against the receiver’s clock. So are EðABÞ
N and

EðBAÞ
N . One can also see that the moment tcl (or τcl defined

similarly for Rob) when QT fromAlice to Rob (or fromRob
toAlice) loses the advantage over “classical” teleportation is
always earlier than the disentanglement time evaluated
around the future light cone of the joint measurement by
Alice (or Rob) at t1 (or τ1). This confirms that the EnLC of
the AB pair is a necessary condition for the best averaged
FiQT beating the classical one, as indicated in Eq. (14).

C. Beyond ultraweak coupling limit

Beyond the ultraweak coupling limit, both the averaged
fidelity Fav and the logarithmic negativity EN are strongly
affected by the environment. In the cases in which mutual
influences to the first few orders are small compared with
the zeroth order, quantum entanglement of detectors A and
B disappears quickly due to the strong corrosive effects of
the environment. We expect that the best averaged fidelity

FðABÞþ
av and FðBAÞþ

av would drop below Fcl even quicker [17].
Similar results on entanglement were given earlier in
Ref. [20], though the degrees of entanglement in
Ref. [20] are evaluated on the time slices in the
Minkowski coordinates or Rindler frames rather than those
evaluated around the light cones.

VI. CASE 3—QUANTUM TWIN PROBLEM

In the above results, we have seen that the relativistic
effects entering the description of the dynamics of the
detector pair can dominate over the Unruh effect experi-
enced by the accelerated detector in the degradation of the

best averaged FiQT and the EnLC between the pair. The
apparent “slowdown” in the dynamics of the sender in the
viewpoint of the receiver in a QT process can be perceived
by the receiver in the redshift of the clock signal from the
sender. Nevertheless, in the setup of the Alice-Rob prob-
lem, since the retarded distances from Alice to Rob and
from Rob to Alice are always increasing in time, only the
redshift of the clock signal from the other would be
observed, and so both Rob and Alice would conceive that
their partner’s clocks are always slower than their own. One
may wonder what will happen when Alice and Rob (Bob)
undergo more general motions.
To get a more comprehensive picture, a simple but

helpful extension is to consider a setup similar to the
classical twin “paradox” [41], in which we would have a
consistent description of the asymmetric aging, red- and
blueshifts of the clock signals, and the inertial and non-
inertial motions. Indeed, recall that in special relativity the
twin paradox originates from the disparity between Alice
the twin at rest and Bob the traveling twin: Alice seeing
Bob going away is the same as Bob seeing Alice going
away, so each one is supposed to observe the other with the
same time dilation. Why does Bob become younger but not
Alice when they meet again? The resolution is that, for Bob
to return to Alice, he must turn around at some point, thus
undergoing some period of acceleration, and the principles
of special relativity do not apply to noninertial frames.
When coupled to quantum fields, the Unruh effect expe-
rienced by Bob during the periods of acceleration will come
into play. With the theoretical tools developed and knowl-
edge gained in the previous sections, luckily, this quantum
twin problem becomes straightforward.
Suppose Alice is at rest with the worldline

zμA ¼ ðt;−d; 0; 0Þ, d > 0 and the proper time τA ¼ t,
Bob is going along the worldline zμBðτÞ with
z2B ¼ z3B ¼ 0, and

ðz0BðτÞ; z1BðτÞÞ ¼

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ðτ; 0Þ 0 < τ ≤ τ̄1;�
1
a sinh aðτ − τ̄1Þ þ τ̄1;

1
a ½cosh aðτ − τ̄1Þ − 1�

�
τ̄1 < τ ≤ τ̄2;

ðγ2ðτ − τ̄2Þ þ z0Bðτ̄2Þ; γ2v2ðτ − τ̄2Þ þ z1Bðτ̄2ÞÞ τ̄2 < τ ≤ τ̄3;�
1
a ½sinh aðτ − τ̄3pÞ − γ2v2� þ z0Bðτ̄3Þ; −1a ½coshaðτ − τ̄3pÞ − γ2� þ z1Bðτ̄3Þ

�
for τ̄3 < τ ≤ τ̄4;

ðγ2ðτ − τ̄4Þ þ z0Bðτ̄4Þ;−γ2v2ðτ − τ̄4Þ þ z1Bðτ̄4ÞÞ τ̄4 < τ ≤ τ̄5;�
1
a ½sinh aðτ − τ̄5pÞ − γ2v2� þ z0Bðτ̄5Þ; 1a ½cosh aðτ − τ̄5pÞ − γ2� þ z1Bðτ̄5Þ

�
τ̄5 < τ ≤ τ̄6;

ððτ − τ̄6Þ þ z0Bðτ̄6Þ; 0Þ τ > τ̄6;

ð40Þ

where τB ¼ τ is Bob’s proper time, τ̄p ≡ τ̄2 − τ̄1 ¼ ðτ̄4 − τ̄3Þ=2 ¼ τ̄6 − τ̄5, τ̄3p ≡ τ̄3 þ τ̄p, τ̄5p ≡ τ̄5 þ τ̄p, τ̄3 − τ̄2 ¼ τ̄5 − τ̄4,
γ2 ¼ cosh aτ̄p, and γ2v2 ¼ sinh aτ̄p (see Fig. 7). Here, we set the minimal distance between Alice and Bob d to be
sufficiently large to avoid the singular behavior of the retarded fields, and thus the mutual influences, when the detectors are
too close to each other in the final stage (for example, see Ref. [19]).
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A. Evolution of correlators

Below, we consider a case in the ultraweak coupling
limit, with Bob still at his youth ðγτ̄6 ≪ 1Þ at the moment
when he rejoins Alice, who is also in her early age
ðγz0ðτ̄6Þ < 1Þ but much advanced in age than Bob at that
moment (e.g., τ̄6 ¼ 16 for Rob and z0ðτ̄6Þ ¼ 220 for Alice
in Figs. 8 and 9).
As before, suppose the combined system is initially in a

product state ρ̂Φx
⊗ ρ̂AB ⊗ ρ̂ðα;r0ÞC . On top of thewell-studied

self-correlators for a detector at rest in Minkowski vacuum
[39], the subtracted v-parts of the self-correlators of detectorB
[28,33] in our weak coupling limit, δhRBðτÞ;R0

BðτÞiv≡
hRBðτÞ;R0

BðτÞiv − hRBðτÞ;R0
BðτÞivja¼0, R;R0 ¼ δQ; δP

have been obtained numerically. We found that δhR;R0iv
starts to oscillate after the launch of Bob. The oscillations
would be amplified whenever the acceleration suddenly
changes from one stage to the next due to the nonadiabatic
effect [33], while itsmeanvaluegrows due to theUnruh effect
when detector B is undergoing accelerations and decays
during the time intervals in the inertial motion. Anyway,
the amplitude of δhRB;R0

Biv is always as small as OðγÞ
compared with hRB;R0

Biv, while hRB;R0
Biv is small com-

pared with hRB;R0
Bia in such an early stage.

We further obtained the numerical results for the cross-
correlators between A and B, hRAðtÞ;R0

BðτadvðtÞ − ϵÞi, and
hRAðtadvðτÞ − ϵÞ;R0

BðτÞi, around the future light cones of
Alice and Bob at τA ¼ t and τB ¼ τ, respectively. We find
that they oscillate in time about zero during the whole
journey of Bob until he meets Alice again. The oscillations

appear irregular since the motions and the time dilations of
the two detectors are asymmetric. While the amplitudes of
the oscillations of the a-parts of the cross-correlators are
Oð1Þ, the amplitudes of the v-parts are OðγÞ and negligible
in the weak coupling limit. After Bob returns and both
detectors are at rest, the behavior of the a-parts of the cross-
correlators continues in the same way, but the v-parts of
hQA;QBi and hPA; PBi turn into small oscillations on top of
slow growths or decays in time, similar to those in the cases
with two detectors at rest (see Sec. V in Ref. [19]).

Corrections from the mutual influences hRð0Þ
i ;Rð1Þ

j ia;v,
i; j ¼ A;B up to the first order of γ=d have been worked out
to check the consistency of our approximation. There is one
correction to each of both the a-part and v-part of the
correlators hQ2

i i and hP2
i i and two corrections to those for

the other correlators. Thus, we have a total of 32 corrections
of the first order. We find that, during Bob’s journey, the
corrections to the v-part and the a-part of each correlator are
OðγÞ, small compared with the zeroth-order results. After
Bob returns and stays at rest by Alice, these corrections
from the mutual influences start to grow in magnitude. If
the separation d of Bob and Alice is small, these corrections
may overtake the zeroth-order results, and one has to
include higher-order mutual influences [19]. Here, we
simply terminate our simulation at τB ¼ τ̄f ≈ 24 in
Bob’s proper time, which is early enough to justify our
first-order approximation.
Onemayworry that the backreaction fromdetectorB to the

field during τ ∈ ðτ̄4; τ̄6Þ would form a shock wave and hit
detector A in the period when Bob heads back to Earth and
decelerates [t ∈ ðtadvðτ̄4Þ; tadvðτ̄6ÞÞ ≈ ð220.88; 221.43Þ in
the left plots of Figs. 8 and 9], analogous to the shock
electromagnetic wave along the past horizon of a uniformly
accelerated charge in classical electrodynamics [42].
Fortunately, in our results, these mutual influences do not
significantly impact on detectorA since they are off resonant.

B. Entanglement dynamics

With the results of the correlators, we are able to
calculate the dynamics of the EnLC in both teleporting
directions. Our first example is shown in Fig. 8. In the left
plots, one can see similar decays of EðABÞ

N (corresponding to

the QT from Alice to Bob) in Alice’s clock and EðBAÞ
N (from

Bob to Alice) in Alice’s point of view. While in the middle
plots the two curves in Bob’s clock or point of view drop

significantly in different periods, the values of EðABÞ
N and

EðBAÞ
N around the moment when Bob comes back to Alice

are quite the same. Once again, the details of the history
depend on the point of view, but here we further see that
different views on the EnLC tend to agree when Bob rejoins
Alice. The reason is simple. When two detectors are close
enough, the amplitudes of the mode functions in the
operators Q, P of detectors A and B at τA ¼ t and

FIG. 7. QT between Alice (thick dotted worldline) and Rob
(thick solid worldline) in a setup of the twin problem, where the
worldline of the traveling twin Bob is given in Eq. (40).
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τB ¼ τadvðtÞ, respectively, are relatively close to the ones
at τA ¼ tadvðτÞ and τB ¼ τ if d ≪ c=γ. So, these operators
give similar expectation values of the two-point correlators
with respect to the same initial state. In the case Rob never
returns, as in the Alice-Rob problem studied in the

previous section, EðABÞ
N and EðBAÞ

N in different teleporting
directions will never be commensurate after the initial
moment.
In our example, the mutual influences tend to enhance

the entanglement during the space journey of Bob. Denote
the zeroth-order results of the logarithmic negativities
for the EnLC as Eð0Þ

N and the enhancement by the mutual

influences as ΔEN ≡ ðEN − Eð0Þ
N Þ. In the right plots of

Fig. 8, we find both ΔEðABÞ
N and ΔEðBAÞ

N grow from zero to
some value when Bob launches (τ, τadv ≈ τ̄1), and then

during Bob’s journey, ΔEðABÞ
N and ΔEðBAÞ

N roughly remain
constant betweenþ0.0014 toþ0.002, which is of the same
order as γ=d ≈ 10−3. However, when Bob returns to Alice,
the corrections to the logarithmic negativity from the
mutual influences oscillate between positive and negative
values with the amplitudes increasing in time.
Furthermore, in the right plots of Fig. 8, one can see that

ΔEðABÞ
N appears to be slightly “kicked” at about t ∈

ðtadvðτ̄4Þ; tadvðτ̄6ÞÞ ≈ ð220.88; 221.43Þ and ΔEðBAÞ
N at about

τ ≈ 15 ∈ ðτ̄5; τ̄6Þ. This could be due to the shock waves
emitted by detector B during τ ∈ ðτ̄4; τ̄6Þ that all hit

detector A at t ≈ 221. In our results, the impact of the
first-order correction never gets significant compared to the
zero-order correlators.

C. Quantum teleportation

Next, to compare the averaged FiQT, we set
ðᾱ; β̄Þ ¼ ðe−r1 ffiffiffiffiffiffiffiffiffi

ℏ=Ω
p

; e−r1
ffiffiffiffiffiffiffi
ℏΩ

p Þ, r1 ¼ 1.2 for the initial
state of the entangled pair of the detectors as the one in the
previous section. The results are shown in Fig. 9. Again,
one can see that the evolutions of the best averaged FiQT
Fþ
av in either teleporting direction subtracted by Fcl is

similar to the evolution of the logarithmic negativity EN of
the EnLC of detectors A and B.
We keep the curves for the averaged fidelities Fav

without using the improved protocol in the upper row of
Fig. 9 to give the readers a flavor how the sender’s clock is
observed by the receiver [recall Eqs. (30) and (31)]. One
can see that there is no significant enhancement of decay
for Fþ

av or EN due to the Unruh effect when Bob is in any
acceleration phase (gray or pink regions), since we take the
proper acceleration a ¼ 2 for Bob, which is not too large

there. In contrast, significant drops of FðABÞþ
av or EðABÞ

N in
Fig. 9 (left) happen between the second and the third
acceleration phases, when Bob sees a strong blueshift in the
clock signal emitted by Alice, and so Alice’s clock looks
much faster than Bob’s in his viewpoint during this period
[Alice’s signal emitted during ðt̄4; t̄5Þ ¼ ð28.836; 192.63Þ

FIG. 8 (color online). Dynamics of the EnLC in both teleporting directions including first-order correction from the mutual influences,
in the clocks and points of view of Alice (upper-left and lower-left plots) and Bob (lower-middle and upper-middle plots). The gray and
pink regions in these plots represent the three time intervals when Alice’s signal reaches Bob or Bob’s signal is sent to Alice during
Bob’s acceleration phase (the leftmost diagrams). Here, γ ¼ 0.001, Ω ¼ 2.3, and Λ0 ¼ Λ1 ¼ 20, a ¼ 2, ðᾱ; β̄Þ ¼ ð1.4; 0.2Þ, and the
initial or final spatial separation d ¼ 1. For Bob’s worldline, we set ðτ0; τ̄1; τ̄2; τ̄3; τ̄4; τ̄5; τ̄6Þ ¼ ð0; 2; 4; 7; 11; 14; 16Þ. Other parameters

have the same values as those in case 2. (Upper right) ΔEðABÞ
N ≡ EðABÞ

N − EðABÞð0Þ
N is the correction of entanglement strength to the zeroth-

order result EðABÞð0Þ
N from the mutual influences up to the first order. (Lower right) ΔEðBAÞ

N ≡ EðBAÞ
N − EðBAÞð0Þ

N is similar.
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reaches Bob during the period ðτadvðt̄4Þ; τadvðt̄5ÞÞ ¼
ðτ̄4; τ̄5Þ ¼ ð11; 14Þ]. This implies that quantum coherence
of detector A in this period fades much more quickly than
any other period in Bob’s viewpoint so that quantum
entanglement and the best averaged FiQT are degraded
faster in this stage. The significant drops of the EnLC in the

middle plots of Fig. 8 are due to the same reasons. ForFðBAÞþ
av

and EðBAÞ
N in Fig. 9 (right), the drop is much less significant,

though. This is because the period in which Alice receives
similar blueshift clock signal from Bob is much shorter
than the time scales of decoherence (1=γ ¼ 1000) either in
Bob’s clock (τ̄5 − τ̄4 ¼ 3) or in Alice’s point of
view (tadvðτ̄5Þ − tadvðτ̄4Þ ¼ ðτ̄5 − τ̄4Þe−aτ̄p ≈ 0.055).
In the above cases,wehave seen that the relativistic effects

play a dominant role in QT. One can ask when the Unruh
effect will become more significant in the QT from Alice to
Bob. Our results so far show that this happens only in Bob’s

point of view and only when Bob’s proper acceleration a is
large enough (see Fig. 6 (upper row), for example). In other
words, only in a highly accelerated receiver’s point of view
can this happen.One canconstruct setups inwhich theUnruh
effect can be singled out, such as those with both detectors
uniformly accelerated or both in alternating uniform accel-
eration [Fig. 10 (middle and right)], but then the receiver is
also accelerated in these setups after all. Is it possible for a
receiver in QT remaining at rest to see the domination of the
Unruh effect?With this aim,we construct below a setupwith
Alice at rest, while the relativitic effects of time dilation and
varying retarded distance are suppressed and the Unruh-like
effect are significant in QT in both directions.

VII. CASE 4—TRAVELING TWIN IN
ALTERNATING UNIFORM ACCELERATION

To highlight the regimes in which the Unruh effect stands
out in comparison with other relativistic effects, we design

FIG. 10 (color online). (Left) QT from Alice (thick dotted) to Rob (thick solid) in a variation of the twin problem, where the traveling
twin Bob is in alternating uniform acceleration with the worldline (41). One can conjure up settings that single out the Unruh effect, such
as letting both Alice and Bob be uniformly accelerating (middle) or both in alternating uniform acceleration (right), where n is an integer.
Note that in the middle plot the relativistic effects in affecting the description of the dynamics are totally suppressed only in the one-way
QT from Alice to Bob, but not from Bob to Alice.

FIG. 9 (color online). The averaged FiQT of a coherent state of detector C from Alice to Bob (FðABÞ
av ) and from Bob to Alice (FðBAÞ

av )
with (black curves) and without (purple) using the improved protocol in the viewpoints of Bob (left) and Alice (right), respectively. Here,
the entangled pair starts initially with ðᾱ; β̄Þ ¼ ðe−r1= ffiffiffiffi

Ω
p

; e−r1
ffiffiffiffi
Ω

p Þ, r1 ¼ 1.2, and we assume the joint measurements of detectors C and
A by Alice or C and B by Bob collapse the measured detector pair to a squeezed state with squeeze paramater r2 ¼ 1.1. Other parameter
values are the same as in the previous figures. The scaled logarithmic negativities of EnLC with the same parameters are plotted in blue
curves for comparison. One can see that the evolution of EN in time is similar to Fþ

av − Fcl.
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a case in which Bob the traveling twin undergoes an
alternating uniform acceleration (AUA) considered in
Ref. [28] with the period of motion so short that the
maximum speed of Bob is low enough and the retarded

distance between Alice and Bob does not vary too much,
while the proper acceleration can still be very high.
Consider the case with Alice at rest along the worldline
ðt;−d; 0; 0Þ and Bob going along the worldline

zμBðτÞ ¼
�
1

a

�
sinh a

�
τ − n

τ̄p
2

�
þ 2n sinh a

τ̄p
4

	
;
ð−1Þn
a

�
cosh a

�
τ − n

τ̄p
2

�
− cosha

τ̄p
4

	
; 0; 0

�
ð41Þ

with nðτÞ≡ Floorfð2τ=τ̄pÞ þ ð1=2Þg, linearly oscillating in the x1 axis about the spatial origin [see Fig. 10 (Left)], where τ̄p
is the period of Bob’s oscillatory motion in his proper time. In this case, the classical light signal emitted by Alice at t will
reach Bob at

τadvðtÞ ¼ ~n
τ̄p
2
−
ð−1Þ ~n
a

log



cosh a

τ̄p
4
þ ð−1Þ ~n

�
2~n sinh a

τ̄p
4
− aðtþ dÞ

	�
; ð42Þ

where ~nðtÞ≡ Floorfð2t=t̄pÞ þ ð1=2Þg with t̄p≡
4a−1 sinhðaτ̄p=4Þ, while the classical light signal emitted
by Bob at τ will reach Alice at tadvðτÞ ¼ dþ z0BðτÞ þ z1BðτÞ.
To compare with cases 2 and 3 in which the mutual
influences are small, the retarded distance between Alice
and Bob is set to be large enough. Also when the period of
motion is much less than the natural period of the detector

(τ̄p ≪ T ≡ 2π=Ω), the time-averaged subtracted Wightman
function will be a good approximation in calculating the
self-correlators of detector B (see Sec. 5.1 in Ref. [28]).
These assumptions simplify the calculation very much in
the weak coupling limit.
We show some selected results in Fig. 11. For the

logarithmic negativity EðABÞ
N of the EnLC and the best

FIG. 11 (color online). Dynamics of the EnLC and the FiQT between Alice and Bob with Bob at rest (blue curves), in AUA (gray and
black), and as in the twin problem (purple). The mutual influences are ignored, and the initial state of the AB pair has ðᾱ; β̄Þ ¼
ðe−r1= ffiffiffiffi

Ω
p

; e−r1
ffiffiffiffi
Ω

p Þ with r1 ¼ 1.2 (upper row) or (1.4,0.2) (lower). (Left) The scaled EðABÞ
N of the EnLC (lighter) and FðABÞþ

av (darker)
from Alice to Bob subtracted by the classical fidelity Fcl ¼ 1=2, with d ¼ 1 both for Bob in AUA and at rest, in Bob’s point of view. Bob

in AUA has a ¼ 10 and the period of his oscillatory motion τ̄p ¼ T=16, T ≡ 2π=Ω. The squeezed parameter in ρðβÞAC is r2 ¼ 5.1, and
other parameters are the same as before. In the lower-left plot, the teleported state has r0 ¼ log 2. (Middle) Comparison of the EnLC
between Alice at t1 and Bob at τadvðt1Þ in different motions in Alice’s clock. Here, d ¼ 4, a ¼ 2 in the twin problem, and a ¼ 20 in the
AUA case in which τ̄p ¼ T=32 for Bob. (Right) Dynamics of the EnLC between Bob at τ1 and Alice at tadv1 ≡ tadvðτ1Þ in Alice’s point of
view, where Bob is at rest (blue, a ¼ 0) or undergoes AUA (gray, from dark to light a ¼ 2n × 10, n ¼ 0 to 7 with aτ̄p ¼ 10T=16 fixed).
Again, d ¼ 4 with other parameters unchanged.
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averaged FiQT FðABÞþ
av from Alice to Bob in Alice’s clock

or in Bob’s point of view, when a is small and τ̄p is large,
the disentanglement time for the EnLC of the joint
measurement by Alice is still longer than the one in case
1 with the same parameters except a ¼ 0. Here, time
dilation of detector B dominates. As a gets larger, with
the maximum speed fixed (aτ̄p ¼ constant), one starts to

see the evolution curves for EðABÞ
N and FðABÞþ

av drop faster
than the ones with a ¼ 0 in some parameter range of ðᾱ; β̄Þ
for the initial state (3) [Fig. 11 (left) in Bob’s point of view;
the plots in Alice’s clock look similar]. When a is large
enough, the initial states with all values of ðᾱ; β̄Þ will see
faster degradations of the EnLC and the best averaged
FiQT, both in Alice’s clock or in Bob’s point of view than
those in the a ¼ 0 case [Fig. 11 (middle)]. Now, we can say
that the Unruh effect dominates, though the effective
temperature experienced by detector B is lower than the
Unruh temperature with the averaged proper acceleration a
[28]. In the reverse teleporting direction, for the logarithmic

negativity EðBAÞ
N of the EnLC in Alice’s point of view, we

see clearly that the larger a is, the shorter the disentangle-
ment time in Fig. 11 (right), where the Unruh effect has

been dominating the degradation of EðBAÞ
N from a ¼ 10 for

all values of ðᾱ; β̄Þ, while EðABÞ
N with a ¼ 10 still has a

longer disentanglement time than the one with a ¼ 0 in a
corner of the parameter space around ðᾱ; β̄Þ ≈ ð1.4; 0.2Þ, as
shown in the lower-left plot of Fig. 11.
One interesting observation in calculating Fig. 11 (lower

left) is that when a is large enough the averaged FiQT of a
coherent state using the entangled AB pair initially with
ðᾱ; β̄Þ in some finite parameter range will never achieve

FðABÞ
av or FðBAÞ

av ≥ Fcl ¼ 1=2. One has to modify the
quantum state to be teleported from a coherent state to a
squeezed coherent state with the squeezed parameter
r0 > 0 in Eq. (2) and tune the value of r0 to push the
averaged FiQTabove Fcl toward the optimal fidelity Fopt in
Eq. (14), so that the time tcl when Fav − Fcl touches zero is
closer to the disentanglement time tdE of the EnLC. Note
that r0 itself is a-part of the protocol and not among the
quantum information to be teleported.

VIII. SUMMARY AND DISCUSSION

We have considered the quantum teleportation of con-
tinuous variables applied to three Unruh–DeWitt detectors
with internal harmonic oscillators coupled to a common
quantum field. The basic properties of relativistic effects in
dynamical open quantum systems such as the frame
dependence of quantum entanglement, wave functional
collapse, Doppler shift, quantum decoherence, and the
Unruh effect have all been considered consistently and
their linkage manifestly displayed. Below is a summary of
what we have learned from these studies.

A. Entanglement around the light cone

Quantum entanglement of two localized objects at
different positions requires the knowledge of spacelike
correlations, while the averaged FiQT involves timelike
correlations between two causally connected events. In
general, these two quantities are incommensurate. To
compare them, in Sec. III, we introduced the projection
of the wave functional around the future lightcone of the
joint-measurement event by the sender, so that right after
the wave functional collapse, the sender’s classical signal of
the outcome reaches the receiver, according to which the
receiver performs the local operation immediately. The
averaged FiQT obtained in this way can be directly
compared with the degree of quantum entanglement in
the entangled detector pair evaluated right before the wave
functional collapse, namely, the EnLC, which can be easily
calculated in the Heisenberg picture.
We have observed that the best averaged FiQT always

drops below the fidelity of classical teleportation earlier
than the disentanglement time for the EnLC in each of our
numerical results. This confirms the inequality (14), which
implies that entanglement of the detector pair is a necessary
condition for the averaged FiQT beating the classical fidelity.
In Sec. IVA, we further showed that the inequality (14) may
appear to beviolated by the degrees of quantum entanglement
evaluated on a time slice in conventional coordinate systems.
This proves that the EnLC, rather than the conventional ones,
is essential in QT in a relativistic open quantum system.

B. Multiple clocks and points of view

For a relativistic system including both the local and
nonlocal objects such as a detector-field interacting system,
the Hamiltonian, quantum states, and quantum entangle-
ment extracted from the states all depend on the choice of
the reference frame [20]. Part of the coordinate dependence
can be suppressed by evaluating the physical quantities
around the future or past light cones of a local observer.
However, this does not give a unique description on a
physical process, since each local object has a clock reading
its own proper time, which is invariant under coordinate
transformations. In particular, a QT process involves two
different physical clocks for the sender and the receiver
localized in space, and the degradation of the EnLC and
the averaged FiQT in the same process can appear very
differently in the sender’s clock and in the receiver’s point
of view along his/her past light cone. When describing
nonlocal physical processes with local objects in a rela-
tivistic open quantum system, one has to first specify which
clock or which point of view being used; otherwise, there
will be ambiguity in the statements.

C. Time dilation, Doppler shift, and acceleration

It is easy to understand that the FiQT between localized
quantum objects in a field vacuum with one party or both

QUANTUM TELEPORTATION BETWEEN MOVING DETECTORS PHYSICAL REVIEW D 91, 084063 (2015)

084063-19



accelerated would be degraded by the Unruh effect because
of the thermality appearing in these accelerated objects [9].
However, the more ubiquitous relativistic effects in inertial
frames such as time dilation and Doppler shift (related to
the relative speed) that are mixed in with effects due to
acceleration have not been understood fully in the context
of QT. These effects and their interplay are the focus of this
study. What we found that may be surprising is that the
relativistic effects in affecting the description of the
dynamics can overwhelm the Unruh effect. For example,
there is degradation of fidelity when both parties are
inertial, as shown in our case 1, and a larger acceleration
does not always lead to a faster degradation, as shown in
our cases 2 and 3.
The averaged FiQT in cases 2, 3, and 4 do depend on the

proper acceleration a in Bob’s acceleration phase signifi-
cantly. In case 2, we find that the larger a is, the higher the
degradation rate will be in the sender’s clock for the best
averaged fidelities Fþ

av of QT both from Alice to Rob and
from Rob to Alice. Nevertheless, the increasing redshift as
the retarded distance between Alice and Rob increasing
indefinitely in time is the key factor for the a dependence
here. In the receiver’s point of view, that the degradation
rate increases as a increases is true only for a receiver
accelerated with proper acceleration large enough, when
the Unruh effect fully dominates. In case 3 a larger a turns
out to give a longer disentanglement time of the EnLC in
the clock of the sender Alice at rest. The key factor there is
that detector B with the traveling twin Bob ages much
slower than detector A with Alice at rest when they
compare their clocks at the same place after Bob rejoins
Alice. The acceleration of Bob leads to this asymmetry of
time flows as in the well-known twin paradox, and Bob’s
slower clock helps to keep the freshness of quantum
coherence in the AB pair longer from the view of
Alice’s clock, while the retarded distance between Alice
and Bob is bounded from above.
To suppress the relativistic effects in what is observed by

Alice, who is always at rest, we considered case 4 in which
Bob is undergoing an alternating uniform acceleration with
a small speed and a constant averaged retarded distance.
The results indeed show that the larger the a, the shorter the
disentanglement time for EnLC, even in Alice’s point of
view when a is large enough, although the Unruh temper-
ature is not well defined in this setup for the lack of a
sufficiently long duration of uniform acceleration.

ACKNOWLEDGMENTS

We thank Kazutomu Shiokawa for very helpful input in
the early stage and for his collaboration in the earlier
version of this work [17]. S. Y. L. thanks Tim Ralph for
useful discussions. Part of this work was done while
B. L. H. visited the National Center for Theoretical
Sciences (South) and the Department of Physics of
National Cheng Kung University, Taiwan; the Center for

Quantum Information and Security at Macquarie University;
the Center for Quantum Information and Technology at the
University of Queensland, Australia, in January–March,
2011; and the National Changhua University of Education,
Taiwan, in January 2012. He wishes to thank the hosts of
these institutions for their warm hospitality. This work is
supported by the Ministry of Science and Technology of
Taiwan under Grants No. MOST 102-2112-M-018-005-
MY3 and No. MOST 103-2918-I-018-004 and in part by
the National Center for Theoretical Sciences, Taiwan, and by
USA NSF PHY-0801368 to the University of Maryland.

APPENDIX: REDUCED STATE OF A DETECTOR
WITH ITS ENTANGLED PARTNER

BEING MEASURED

In our linear system, the operators of the dynamical
variables at some coordinate time x0 ¼ T of an observer’s
frame after the initial moment T0 are linear combinations of
the operators defined at the initial moment [37],

Q̂dðτdðTÞÞ ¼
X
d0

½ϕd0
d ðτdÞQ̂½0�

d0 þ fd
0

d ðτdÞP̂½0�
d0 �

þ
Z

d3y½ϕy
dðτdÞΦ̂½0�

y þ fydðτdÞΠ̂½0�
y �; ðA1Þ

Φ̂xðTÞ ¼
X
d0

½ϕd0
x ðTÞQ̂½0�

d0 þ fd
0

x ðTÞP̂½0�
d0 �

þ
Z

d3y½ϕy
xðTÞΦ̂½0�

y þ fyxðTÞΠ̂½0�
y �; ðA2Þ

from which the conjugate momenta P̂dðTÞ and Π̂xðTÞ to
Q̂dðTÞ and Φ̂xðTÞ, respectively, can be derived according to
the action (1). Here, we denote Ô½n�

ζ ≡ ÔζðTnÞ (e.g., Φ̂½n�
y ≡

Φ̂ðTn; yÞ and Π̂½n�
y ≡ Π̂ðTn; yÞ), and all the “mode func-

tions” ϕζ
ξðTÞ and fζξðTÞ are real functions of time

(ζ; ξ; ν ∈ fA;B;Cg∪fxg, x ∈ R3 in (3þ 1)-dimensional
Minkowski space), which can be related to those in k space
in Ref. [37]. Then from Eqs. (A1) and (A2), those
correlators in Eqs. (4)–(7) can be expressed as combina-
tions of the mode functions and the initial data, e.g.,

hQ̂2
AðτAÞi ¼ ϕA

AðτAÞϕA
AðτAÞhðQ̂½0�

A Þ2i0
þ
Z

d3xd3yϕx
AðτAÞϕy

AðτAÞhΦ̂½0�
x ; Φ̂½0�

y i0 þ � � � ;

ðA3Þ
where h� � �in denotes that the expectation values are taken
from the quantum state right after x0 ¼ Tn.
Comparing the expansions (A1) and (A2) of two

equivalent continuous evolutions, one from x0 ¼ T0 to
x0 ¼ T1 then from x0 ¼ T1 to x0 ¼ T2 and the other from
x0 ¼ T0 all the way to x0 ¼ T2, one can see that the mode
functions have the identities,
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ϕζ½20�
ξ ¼

X
d0

�
ϕd0½21�
ξ ϕζ½10�

d0 þ fd
0½21�

ξ πζ½10�d0

	

þ
Z

d3x0
�
ϕx0½21�
ξ ϕζ½10�

x0 þ fx
0½21�

ξ πζ½10�x0

	

≡ ϕν½21�
ξ ϕζ½10�

ν þ fν½21�ξ πζ½10�ν ; ðA4Þ

fζ½20�ξ ¼ ϕν½21�
ξ fζ½10�ν þ fν½21�ξ pζ½10�

ν ; ðA5Þ

where the DeWitt–Einstein notation with ν ∈
fA; B;Cg∪fxg is understood, F½mn� ≡ FðTm − TnÞ, and
πζdðτdðTÞÞ≡ ∂dϕ

ζ
dðτdðTÞÞ, πζxðTÞ≡∂0ϕ

ζ
xðTÞ, pζ

dðτdðTÞÞ≡
∂df

ζ
dðτdðTÞÞ, and pζ

xðTÞ≡ ∂0f
ζ
xðTÞ in the momentum

operators. Similar identities for πζξ and pζ
ξ can be

derived straightforwardly from Eqs. (A4) and (A5). Such
identities can be interpreted as embodying the Huygens
principle of the mode functions and can be verified by
inserting particular solutions of the mode functions into the
identities.

In Ref. [25], one of us has explicitly shown that in a
Raine–Sciama–Grove detector-field system in (1þ 1)-
dimensional Minkowski space, quantum states in different
frames, starting with the same initial state defined on the
same fiducial time slice and then collapsed by the same
spatially local measurement on the detector at some
moment, evolve to the same quantum state on the same
final time slice (up to a coordinate transformation), no
matter which frame is used by the observer or which time
slice is the wave functional collapsed on between the initial
and the final time slices. This implies that the reduced state
of detector B at the final time is coordinate independent
even in the presence of spatially local projective measure-
ments. For the Unruh–DeWitt detector theory in (3þ 1)-
dimenional Minkowski space considered here, the
argument is similar, as follows.
Right after the local measurement on detectors A and C

at T1 (for a simpler case with the local measurement
only on detector A, see Ref. [43]), the quantum state at T1

collapses to ~ρAC ⊗ ~ρBΦx
on the T1 slice of the observer’s

frame. Similar to Eq. (9), here ~ρBΦx
for detector B and the

field Φx in the postmeasurement state is obtained by

~ρBΦx
ðKσ̄;Δσ̄Þ ¼ N

Z
d2KA

2πℏ
d2KC

2πℏ
~ρ�ACðKA;KCÞρðKd;Kx;T1Þ; ðA6Þ

where ρ is the quantum state of the combined system evolved from T0 to T1 and σ̄ ∈ fBg∪fxg. Since ~ρAC is Gaussian, a
straightforward calculation shows that ~ρBΦx

has the form

~ρBΦx
ðKσ̄;Δσ̄Þ ¼ exp

�
i
ℏ
ðJ ð0Þ

ζ̄
Kζ̄ −Mð0Þ

ζ̄
Δζ̄Þ − 1

2ℏ2
ðKζ̄Qζ̄ ξ̄K

ξ̄ þ Δζ̄P ζ̄ ξ̄Δξ̄ − 2Kζ̄Rζ̄ ξ̄Δξ̄Þ

þ 1

2ℏ2

X4
n¼1

1

WðnÞ ðKζ̄J ðnÞ
ζ̄

− Δζ̄MðnÞ
ζ̄
ÞðJ ðnÞ

ξ̄
Kξ̄ −MðnÞ

ξ̄
Δξ̄Þ

	
: ðA7Þ

Again, we use the DeWitt–Einstein notation for ζ̄; ξ̄ ∈ fBg∪fxg, which runs over the degrees of freedom of detector B and
the field defined at x on the whole time slice. n running from 1 to 4 corresponds to the four-dimensional Gaussian integrals
in Eq. (A6). WðnÞ depends only on the two-point correlators of detectors A and C at the moment of measurement, while

J ðnÞ
ζ̄
ðΦ̂ζ̄Þ and MðnÞ

ζ̄
ðΠ̂ζ̄Þ are linear combinations of the terms with a cross-correlator between detector A or C and the

operators Φ̂ζ̄ or Π̂ζ̄ (Φ̂B ≡ Q̂B and Π̂B ≡ P̂B), respectively, multiplied by a few correlators of A and/orC, all of which are the
correlators of the operators evolved from T0 to T1 with respect to the initial state given at T0. This implies that the two-point
correlators right after the wave functional collapse become

�
δΦ̂½1�

ζ̄
; δΦ̂½1�

ξ̄

�
1

¼
�
δΦ̂½10�

ζ̄
; δΦ̂½10�

ξ̄

�
0

−
X4
n¼1

J ðnÞ
ζ̄
ðΦ̂½10�

ζ̄
ÞJ ðnÞ

ξ̄
ðΦ̂½10�

ξ̄
Þ

WðnÞ ; ðA8Þ

�
δΠ̂½1�

ζ̄
; δΠ̂½1�

ξ̄

�
1

¼
�
δΠ̂½10�

ζ̄
; δΠ̂½10�

ξ̄

�
0

−
X4
n¼1

MðnÞ
ζ̄
ðΠ̂½10�

ζ̄
ÞMðnÞ

ξ̄
ðΠ̂½10�

ξ̄
Þ

WðnÞ ; ðA9Þ

�
δΦ̂½1�

ζ̄
; δΠ̂½1�

ξ̄

�
1

¼
�
δΦ̂½10�

ζ̄
; δΠ̂½10�

ξ̄

�
0

−
X4
n¼1

J ðnÞ
ζ̄
ðΦ̂½10�

ζ̄
ÞMðnÞ

ξ̄
ðΠ̂½10�

ξ̄
Þ

WðnÞ : ðA10Þ
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For example, hðδQ̂½1�
B Þ2i1¼QBBðT1Þ−

P
4
n¼1½J ðnÞ

B ðQ̂½10�
B Þ

J ðnÞ
B ðQ̂½10�

B Þ=WðnÞ� where QBBðT1Þ ¼ hðδQ̂½10�
B Þ2i0. Here,

Ô½1�
B refers to the operator ÔB defined at T1, and Ô½10�

B

refers to the operator ÔBðT1 − T0Þ in the Heisenberg
picture.
Suppose the future and past light cones of the measure-

ment event by Alice at x0 ¼ T1 crosses the worldline of
Bob at his proper times τadv1 and τret1 , respectively. At some

moment in the coordinate time x0 ¼ TM of the observer’s
frame before detector B enters the future lightcone of the
measurement event on detector A, namely, when Bob’s
proper time τB ¼ τðTMÞ ∈ ðτret1 ; τadv1 Þ, the two-point corre-
lators of detector B are either in the original, uncollapsed
form, e.g., hðδQ̂BÞ2ðTM − T0Þi0, if the wave functional
collapse does not happen yet in some observers’ frames, or
in the collapsed form evolved from the postmeasurement
state, e.g.,

hðδQ̂BÞ2ðTMÞi ¼ −ðhQ̂½M1�
B i1Þ2 þ

��X
d

ðϕd½M1�
B Q̂½1�

d þ fd½M1�
B P̂½1�

d Þ þ
Z

dxðϕx½M1�
B Φ̂½1�

x þ fx½M1�
B Π̂½1�

x Þ
	
2
�

1

¼ hðΥ̂½M0�
B Þ2i0 −

X4
n¼1

I ðnÞ½Υ̂½M0�
B ; Υ̂½M0�

B �
WðnÞ ; ðA11Þ

in other observers’ frames. Here, we have used the Huygens principles (A4) and (A5) and defined

Υ̂½M0�
B ≡ Φ̂½0�

ζ ½ϕζ½M0�
B − ϕA½M1�

B ϕζ½10�
A − fA½M1�

B πζ½10�A � þ Π̂½0�
ζ ½fζ½M0�

B − ϕA½M1�
B fζ½10�A − fA½M1�

B pζ½10�
A �; ðA12Þ

with Φ̂A;C ≡ Q̂A;C and Π̂A;C ≡ P̂A;C, while I ðnÞ is derived
from those J ðnÞ

ζ̄
and J ðnÞ

ξ̄
pairs in Eqs. (A8)–(A10). Note

that before detector B enters the light cone one has

ϕA½M1�
B ¼ fA½M1�

B ¼ 0, such that ϒ̂½M0�
B reduces to Q̂½M0�

B .
So at the moment TM, the correlators of detector B do
not depend on the data on the T1 slice except those right at
the local measurement event on detectors A and C. This
means that, once we discover the reduced state of detector
B has been collapsed, the form of the reduced state of Bwill
be independent of the moment when the collapse occurs in
the history of detector B (e.g., τB ¼ τB1 or τ0B1 in Fig. 1),
namely, the moment at which the worldline of detector
B intersects the time slice that the wave functional
collapsed on.
No matter in which frame the system is observed, the

correlators in the reduced state of detector B must have
become the collapsed ones like Eq. (A11) exactly when
detector B was entering the future light cone of the
measurement event by Alice, namely, τB ¼ τadv1 , after
which the reduced states of detector B observed in different
frames became consistent. Also after this moment, the

retarded mutual influences reached B such that ϕA½M1�
B and

fA½M1�
B would become nonzero and get involved in the

correlators of B. In fact, some information of measurement
had entered the correlators of B via the correlators of A and
C at t1 at the position of Alice in J ðnÞ, MðnÞ, and WðnÞ

much earlier. Nevertheless, just like what we learned in
QT, that information was protected by the randomness of
measurement outcome and could not be recognized by Bob
before he had causal contact with Alice.
Thus, we are allowed to choose a coordinate system with

the TM in Eq. (A11) giving τBðTMÞ ¼ τadv1 − ϵ, ϵ → 0þ
and to collapse or project the wave functional right before
TM, namely, collapse on a time slice almost overlapping the
future light cone of the measurement event by Alice. It is
guaranteed that there exists some coordinate system having
such a spacelike hypersurface that intersects the worldline
of Alice at τAðT1Þ and the worldline of Bob at τB ¼ τadv1 − ϵ
in a relativistic system.
If we further assume that the mutual influences are

nonsingular and Bob performs the local operation right
after the classical information from Alice is received,
namely, at τB ¼ τadv1 þ ϵ with ϵ → 0þ, then the continuous
evolution of the reduced state of detector B from τBðTMÞ ¼
τadv1 − ϵ to τadv1 þ ϵ is negligible. In this case, we can
calculate the best averaged FiQT using Eq. (17).
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