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We compute the off-shell spectrum of supergravity on AdS2 × S2 by explicit diagonalization of the
equations of motion for an effective AdS2 theory where all fields are dualized to scalars and spin-1

2

fermions. We classify all bulk modes as physical, gauge violating, and pure gauge then compute the
physical spectrum by explicit cancellation of unphysical modes. We identify boundary modes as physical
fields on S2 that are formally pure gauge but with gauge function that is non-normalizable on AdS2. As an
application we compute the leading quantum correction to AdS2 × S2 as a sum over physical fields
including boundary states. The result agrees with a previous computation by Sen [1] where unphysical
modes were canceled by ghosts.
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I. INTRODUCTION

Quantum corrections to solutions of general relativity are
computed by Gaussian integrals over the quadratic fluctua-
tions around the gravitational background. Regularization
and renormalization of the resulting functional determinants
were carried out explicitly a long time ago for many general
settings using heat kernel methods, zeta-function techniques
and others. However, modern applications of the AdS/CFT
correspondence usually embed solutions into supergravity
and these settings typically activate many fields with non-
minimal couplings. This situation presents new conceptual
challenges and it also focuses attention on unresolved
difficulties in the literature.
Supergravity couplings organize physical states efficiently

according to quantum numbers such as conformal dimen-
sion. However, unphysical modes are often unwieldy since
auxiliary fields and ghosts involved in the off-shell theory
also couple nonminimally. These complications seem exces-
sive for determinants of quadratic fluctuations so it may be
advantageous to work in the small Hilbert space that focuses
entirely on the physical modes. The resulting on-shell
strategy is simpler but it must address global aspects that
remain after gauge fixing of local symmetries. Specifically,
there will be boundary modes in AdS.
In this paper we develop the on-shell method in the

context of supergravity on AdS2 × S2. Our results for
quantum corrections are not new as they were previously
reported in [1–3] but we present explicit details that
develop concepts and resolve issues in the literature.

An important motivation for developing quantum cor-
rections in AdS2 and specifically the role of boundary
modes is that they play a central role also in other settings.
Some recent discussions are

(i) Boundary states are standard in AdS3 partition
functions [4,5] and they presumably play a similar
role in higher dimensional AdS spaces [6,7].

(ii) Quantum corrections in AdS2 geometry appear for
Wilson loops in AdS5 [8]. Subtleties remain in this
context [9–12].

(iii) AdS2 × S2 is conformally equivalent to Minkowski
space so these modes may also be related to the
physical boundary modes that play a role in scatter-
ing amplitudes [13–15] and to those that appear in
the context of holography in Minkowski space [16].

(iv) Our setup is an explicit realization of AdS2=CFT1

holography. Many open questions remain in this
context [17–20].

In our computation we organize the field content on
AdS2 into towers of partial waves due to the reduction on
the S2. We analyze this 2D spectrum with gauge fixing
terms included in the equations of motion but not imposed
as constraints. In our presentation we explicitly identify
some towers as unphysical (they violate the gauge con-
dition) and others as pure gauge (the action of diff × gauge
on the background), with the remaining fields constituting
the physical bulk spectrum. Equivalently, we match both
the unphysical and gauge towers with ghosts and deter-
mine the “small” departure from perfect cancellation. In
either construction, the bulk spectrum is thus augmented by
physical modes that are formally pure gauge albeit with
non-normalizable gauge function. These are the boun-
dary modes.
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In our construction each local symmetry in 4D gives rise
to a tower of boundary modes in AdS2. We interpret such a
tower as a single field on S2. There is exactly one such
boundary field on S2 for each symmetry. It may appear that
we have lost a dimension: the boundary of AdS2 × S2 has
one dimension, in addition to the S2 dimensions. Indeed, at
an intermediate stage there is one mode for each boundary
momentum on AdS2 but we reinterpret the resulting sum as
the volume of AdS2. It is in this sense that we find exactly
one mode on S2 for each 4D symmetry.
We express quantum corrections to the geometry as heat

kernel sums over the spectrum. In the “large” Hilbert space
these are traces over the full spectrumwith unphysical modes
canceled by ghosts with “wrong” statistics. These sums can
be reorganized as traces over the physical spectrum in the
“small”Hilbert spacewhere boundary states are included and
all modes appear with a positive sign. The boundary fields
include components that are zero-modes on AdS2 × S2 and
such modes require special treatment [21]. The complete
partition function thus comprises modes in 4D (bulk), 2D
(boundary), and 0D (zero-modes).
Themain idea of our computation can be illustrated clearly

by considering a standard (minimally coupled) vector fieldAI
in AdS2 × S2. The partial wave expansion on S2 gives four
towers of 2D fields: two physical (spatially transverse), one
unphysical (violating the gauge condition), and one longi-
tudinal (pure gauge). In the old-fashioned Gupta-Bleuler
formalism the unphysical and the longitudinal towers 'cancel'
(due to a Ward identity) and in Becchi-Rouet-Stora-Tyutin
(BRST) formalism both towers are canceled by ghosts. Either
way, foreachpartialwave themodethat is formallypuregauge
can be arranged to require a non-normalizable gauge function
on AdS2 and this gives rise to a single physical longitudinal
mode that survives as an AdS2 boundary mode.
Standard AdS/CFT lore sometimes suggests that physi-

cal boundary states are at the “end” of the physical towers
but we find this rule to be misleading. Indeed, since
boundary states arise formally as states that are pure gauge
it may be more appropriate to interpret them as the “end” of
the unphysical towers. However, ultimately it turns out that
couplings between boundary modes render such shortcuts
unreliable. One aspect of this is that modes generated by
symmetries generally do not continue smoothly from
general partial wave component l to the “small” values
l ¼ 0; 1.
As we have indicated, boundary states can be interpreted

as modes that are formally “pure gauge.” An alternative
perspective ties them to harmonic modes on AdS2 which
play a special role when fields of higher spin are dualized to
scalars. We find that the dual of gravity includes an
interesting harmonic scalar satisfying a higher order equa-
tion of motion with solutions for both m2 ¼ 0 and m2 ¼ 2.
It is the latter that gives rise to physical boundary modes for
gravity. This twist on the harmonic condition may be
significant in other settings.

The detailed considerations are instructive but they are
unfortunately somewhat cumbersome even in the simple
example of AdS2 × S2. That is a byproduct of analyzing
N ¼ 2 supergravity off-shell without introducing a full-
fledged off-shell formalism. Several asymmetries give rise
to a non-Hermitian action for off-shell fields which
manifests itself by awkward degenerate eigenvectors. For
example, diffeomorphisms act on gauge fields but gauge
transformations do not act on the metric. The payoff for
addressing these practical complications is considerable
conceptual clarity.
This article is organized as follows. In Sec. II we present

the details of a minimally coupled vector field on
AdS2 × S2. We reduce from 4D to 2D, diagonalize the
off-shell 2D equations in Lorentz gauge, and discuss the
physical spectrum. We specify the boundary modes as pure
gauge modes with non-normalizable gauge function and
also as harmonic modes. In Sec. III we compute the heat
kernel of the vector field as a sum over all physical states in
bulk and on the boundary. We compare with the standard
off-shell computation. In Sec. IV we discuss the analogous
aspects of the bosonic fields in the N ¼ 2 supergravity
multiplet. We also address additional features: degenerate
eigenvalues and modes, the harmonic condition on the
scalar dual to a tensor field, residual 2D diffeomorphism
invariance, and the role of (Conformal) Killing Vectors. In
Sec. V, we discuss the heat kernels of the bosonic fields
with special emphasis on the cancellation of off-shell
modes and the contribution of physical boundary states.
In Sec. VI we turn to the gravitinos in the N ¼ 2 super-
gravity multiplet. We again diagonalize the equations of
motion entirely without any gauge condition imposed and
only then discuss supersymmetry and the constraints
inherent in the Rarita-Schwinger equation. Finally, in
Sec. VII we compute the heat kernel for the gravitini an
assemble the full result for supergravity on AdS2 × S2.

II. VECTOR FIELDS IN AdS2 × S2

In this section we analyze a vector field in AdS2 × S2

from the AdS2 point of view. We determine the full set of
modes in 4D Lorentz gauge and identify the physical subset
with special attention paid to the boundary modes.

A. The 2D effective theory

Our starting point is a 4D vector field aI on AdS2 × S2

with standard Maxwell action

LMaxwell ¼ −
1

4
FIJFIJ: ð2:1Þ

In order to extract the physical content of the theory we
impose Lorentz gauge

∇IaI ¼ 0: ð2:2Þ
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In the quantum theory this is implemented by modifying
the Maxwell action (2.1) to

LLorentz ¼ −
1

4
FIJFIJ −

1

2ξ
ð∇IaIÞ2: ð2:3Þ

In the following we take Feynman gauge ξ ¼ 1 and freely
integrate by parts without keeping boundary terms. The
action then simplifies to

LFeynman ¼
1

2
aJ∇Ið∇IaJ −∇JaIÞ þ

1

2
aJ∇J∇IaI

¼ 1

2
aIðgIJ∇2 − RIJÞaJ: ð2:4Þ

We want to represent this theory as an effective theory in
2D by reduction on S2. In so doing the capital latin indices
I; J;… in the 4D total space divide into the indices μ; ν;…
on AdS2 and the indices α; β;… that refer to S2. The
reduction to 2D on S2 is realized by a partial wave
expansion in spherical harmonics:

aμ ¼ bðlmÞ
μ ðxÞYlmðyÞ;

aα ¼ bðlmÞðxÞϵαβ∇βYlmðyÞ þ ~bðlmÞðxÞ∇αYlmðyÞ: ð2:5Þ

A sum over angular momentum quantum numbers l; m is
implied. The allowed angular momenta for the 2D gauge

fields bðlmÞ
μ are l ¼ 0; 1;… but the 2D scalar fields

bðlmÞðxÞ; ~bðlmÞðxÞ are defined only for l ¼ 1; 2;… since
these fields multiply spherical harmonics with derivatives
acting on them.
Inserting the expansions (2.5) into the 4D Lagrangian

(2.4) we find the 2D effective action on AdS2

L2D ¼ 1

2
lðlþ 1ÞbðlmÞ½∇2

A − lðlþ 1Þ�bðlmÞ

þ 1

2
lðlþ 1Þ ~bðlmÞ½∇2

A − lðlþ 1Þ� ~bðlmÞ

þ 1

2
bðlmÞμ½∇2

A þ 1 − lðlþ 1Þ�bðlmÞ
μ : ð2:6Þ

The 2D Laplacian on AdS2 is denoted∇2
A ¼ ∇μ∇μ. We still

imply a sum over fields l ¼ 0; 1;…. This rule correctly
takes into account that the l ¼ 0 mode is missing for bðlmÞ

and ~bðlmÞ but it is not missing for bðlmÞ
μ . Curvature terms

from commutation of derivatives were evaluated using the
block diagonal Ricci tensor with Rμν ¼ −gμν and Rαβ ¼
þgαβ of AdS2 × S2 with unit radii.
The gauge variation of the Lorentz gauge condition

(2.2) is

∇IδAI ¼ ∇I∇IΛ ¼ ð∇2
A − lðlþ 1ÞÞΛ: ð2:7Þ

We will variously interpret this as the equation of motion
for the pure gauge mode or as the ghost action

Lghost ¼ ~cðlmÞð∇2
A − lðlþ 1ÞÞcðlmÞ: ð2:8Þ

The ghost spectrum m2 ¼ lðlþ 1Þ with l ¼ 0; 1;… is
identical to two scalar fields except for anticommuting
statistics.

B. Dualizing 2D vectors

The Hodge decomposition of a 1-form into an exact
form, a co-exact form, and a harmonic form can be
presented in components as

bðlmÞ
μ ¼ bðlmÞ

μ⊥ þ bðlmÞ
μ∥ þ bðlmÞ

μ0 ; ð2:9Þ
where bðlmÞ

μ⊥ is transverse

∇μbðlmÞ
μ⊥ ¼ 0; ð2:10Þ

and bðlmÞ
μ∥ is longitudinal

ϵμν∇νb
ðlmÞ
μ∥ ¼ 0; ð2:11Þ

while bðlmÞ
μ0 satisfies both of the above. In order to avoid

overcounting of modes we insist that

∇μbðlmÞ
μ∥ ≠ 0; ϵμν∇νb

ðlmÞ
μ⊥ ≠ 0: ð2:12Þ

This is because the modes satisfying both of (2.10) and

(2.11) are the harmonic modes denoted bðlmÞ
μ0 . The harmonic

component of the vector field satisfies

ð∇2
A þ 1ÞbðlmÞ

μ0 ¼ 0: ð2:13Þ

We dualize the irreducible components of the 2D vector

bðlmÞ
μ to scalars as bðlmÞ

μ⊥ ¼ ϵμν∇νbðlmÞ
⊥ and bðlmÞ

μ∥ ¼ ∇μb
ðlmÞ
∥ .

This gives the expansion

bðlmÞ
μ ¼ ϵμν∇νbðlmÞ

⊥ þ∇μb
ðlmÞ
∥ þ∇μb

ðlmÞ
0 ; ð2:14Þ

For definiteness the harmonic mode was presented as a

longitudinal mode bðlmÞ
μ0 ¼ ∇μb

ðlmÞ
0 with bðlmÞ

0 harmonic

∇2
Ab

ðlmÞ
0 ¼ 0; ð2:15Þ

but we might as well have dualized it to a transverse mode.

In our convention the scalar components bðlmÞ
∥ and bðlmÞ

⊥
cannot be harmonic on AdS2.

C. The spectrum

The complete field content of the 4D vector field from a
2D point of view is

(i) Modes on S2: ~bðlmÞ; bðlmÞ with l ¼ 1; 2;…

(ii) Modes on AdS2: bðlmÞ
μ⊥ ¼ ϵμν∇νbðlmÞ

⊥ and bðlmÞ
μ∥ ¼

∇μb
ðlmÞ
∥ with l ¼ 0; 1;…
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(iii) Ghosts: ~cðlmÞ; cðlmÞ with l ¼ 0; 1;…
(iv) Harmonic modes: bðlmÞ

μ0 ¼ ∇μb
ðlmÞ
0 with l ¼ 0; 1;…

In the fully dualized theory there is almost symmetry
between AdS2 and S2 after appropriate interpretations.
One departure from perfect symmetry is the “subtraction”
of the leading l ¼ 0 entry from the scalars bðlmÞ; ~bðlmÞ

which represent the vector on S2 that only has range

l ¼ 1; 2;…. This contrasts with the scalars bðlmÞ
∥ ; bðlmÞ

⊥
from the AdS2 vector. These have the full range l ¼
0; 1;… and also “add” the harmonic fields bðlmÞ

0 .
Each 2D field is a scalar field on AdS2 with mass given

by m2 ¼ lðlþ 1Þ. At the level of counting, the modes on
AdS2 cancel exactly with the ghosts. The net physical
spectrum is therefore essentially just the modes on S2

forming two towers with l ¼ 1; 2;…. These correspond to
the partial wave expansions of two physical modes with
helicity λ ¼ �1 that we expect from a 4D vector field.
It is instructive to go beyond counting and construct

physical modes explicitly. We first assume l ≥ 1 and
consider the gauge condition (2.2). It amounts to

∇μbðlmÞ
μ∥ − lðlþ 1Þ ~bðlmÞ ¼ ∇2

Ab
ðlmÞ
∥ − lðlþ 1Þ ~bðlmÞ ¼ 0;

ð2:16Þ

in terms of 2D modes. Only one linear combination of the

modes bðlmÞ
∥ , ~bðlmÞ satisfies the gauge condition. On-shell

the equations of motion impose ∇2
Ab

ðlmÞ
∥ ¼ lðlþ 1ÞbðlmÞ

∥ so

the physical modes are those that satisfy ~bðlmÞ ¼ bðlmÞ
∥ .

We next consider the 4D gauge symmetry aI →
aI þ∇IΛ. Expanding the gauge function Λ in spherical
harmonics

Λ ¼ λðlmÞðxÞYlmðyÞ; ð2:17Þ

this amounts to the 2D transformations

~bðlmÞ → ~bðlmÞ þ λðlmÞ;

bðlmÞ
μ∥ → bðlmÞ

μ∥ þ∇μλ
ðlmÞ: ð2:18Þ

The field configurations identified after (2.16) as satisfying

the gauge condition on-shell have ~bðlmÞ ¼ bðlmÞ
∥ with

bðlmÞ
μ∥ ¼ ∇μb

ðlmÞ
∥ . Therefore these are precisely those that

are gauge equivalent to the vacuum. Such pure gauge
configurations decouple from processes involving states
that do satisfy the gauge condition.

The modes bðlmÞ and bðlmÞ
μ⊥ ¼ ϵμν∇νbðlmÞ

⊥ do not enter the
gauge conditions (2.16) at all, nor are they acted on by the
gauge transformations (2.18). These therefore form two
towers of physical modes. Since we assumed l ≥ 1 from the
outset the range of these towers is l ¼ 1; 2; � � � as expected.

The lowest spherical harmonic l ¼ 0 requires special
consideration. Indeed, the scalar fields bð00Þ; ~bð00Þ from the
S2 components of the vector field are nonexistent because
partial waves on S2 have l ≥ 1. Further, for l ¼ 0 the on-

shell condition on the scalars bð00Þ∥ ; bð00Þ⊥ due to the AdS2
components of the vector field reduces to the harmonic
condition on AdS2 and in (2.12) we specifically exempt
harmonic modes. Thus there are no modes at l ¼ 0 before
even considering the gauge condition and the possibility of
pure gauge modes.
In summary, the more detailed discussion identifies the

physical modes as the towers bðlmÞ, bðlmÞ
⊥ with l ¼ 1; 2;….

Importantly, these are not simply the modes bðlmÞ, ~bðlmÞ that
were defined with range l ¼ 1; 2;… from the outset.

Indeed, the mode bðlmÞ
⊥ was defined for l ¼ 0; 1;… but

the harmonic condition removed the l ¼ 0 entry.

D. Boundary modes

The discussion of the spectrum so far deferred consid-

eration of the harmonic modes bðlmÞ
0 introduced in (2.14).

These give rise to boundary modes. Several comments are
in order:

(i) There is exactly one harmonic mode for each partial

wave ðlmÞ: the AdS2 vector bðlmÞ
μ is dualized to two

scalar components bðlmÞ
⊥ and bðlmÞ

∥ but the harmonic

mode bðlmÞ
0 is “shared” between these fields as it is

both longitudinal and transverse.
(ii) The tower of harmonic modes begins at l ¼ 0 just

like all other components of the AdS2 vector.
(iii) The harmonic condition implies that these modes are

zero-modes on AdS2. The tower of harmonic modes
—one for each ðlmÞ—identifies the configuration
space of harmonic modes as a field on S2. The
equation of motion of this field identifies the leading
l ¼ 0 mode as physical.

(iv) The scalar Laplacian ð−∇2
AÞ in Euclidean AdS2 has

eigenvalues c2 ¼ 1
4
þ s2 with s real for fields in the

principal continuous representations of SLð2Þ.
These representations are AdS2 analogues of plane
waves in flat space. The harmonic mode has c2 ¼ 0
and belongs to a principal discrete representation
with no flat space analogue.

(v) The harmonic modes are formally pure gauge since
they are longitudinal. However, they are physical
because the gauge function that generates them is
non-normalizable. For us the term harmonic mode is
synonymous with the term boundary mode because
AdS/CFT lore posits that pure gauge degrees of
freedom localize on the boundary.

The harmonic modes were constructed explicitly some time
ago [22]. In our discussion we write the Euclidean AdS2
black hole metric in complex form as
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ds22 ¼ a2ðdη2 þ sinh2ηdθ2Þ ¼ a2
4

ð1 − jzj2Þ2 dzdz̄;

ð2:19Þ

where θ has period 2π and z ¼ tanh η
2
eiθ. The conformal

factor in the second expression diverges as the AdS2
boundary jzj ¼ 1 is approached but this does not affect
the harmonic condition which is conformally invariant. We
can therefore choose a standard complete set of harmonic
modes such as1

un ¼
1ffiffiffiffiffiffiffiffi
2πn

p zn; n ¼ 1; 2…; ð2:20Þ

and their complex conjugates. These modes cannot appear
as components of a scalar field on AdS2 since the
normalization condition

Z ffiffiffi
g

p
d2zjunj2 ¼

Z
2a2d2z

ð1 − jzj2Þ2 junj
2 → ∞; ð2:21Þ

diverges at the boundary due to the conformal factor.
However, derivatives of the modes (2.20) are subject to
a conformally invariant normalization condition so they are
legitimate components of a vector field. The modes (2.20)
are normalized soZ ffiffiffi

g
p

d2zj∇zunj2 ¼ 1; ð2:22Þ

in standard conventions where d2z ¼ 2dxdy. Vector fields
formed from gradients of harmonic modes are therefore
physical even though they are formally pure gauge. We
interpret them as boundary modes.

E. BRST quantization

Our old-fashioned discussion of physical modes extends
immediately to the more streamlined BRST quantization.
For completeness we briefly outline this generalization.

The physical fields bðlmÞ
⊥ ; bðlmÞ are BRST invariant. Other

BRST invariant field configurations are those that have no

antighosts ~cðlmÞ ¼ 0 and also satisfy ~bðlmÞ ¼ bðlmÞ
∥ .

The ghost states cðlmÞ are BRST exact since they are
BRST transforms of pure gauge fields. The gauge fields

with ~bðlmÞ ¼ bðlmÞ
∥ are also BRST exact since they are

BRST transforms of antighosts ~cðlmÞ.
This accounting leaves just the physical fields bðlmÞ

⊥ ; bðlmÞ
with l ¼ 1; 2;….
The spherically symmetric fields l ¼ 0 must be consid-

ered separately. The antighost fails to be BRST invariant

and the ghost is the BRST transform of a pure gauge

function. The remaining two fields bð00Þ⊥ ; bð00Þ∥ are not
independent on-shell and can be formally presented as
the BRST transform of the antighost ~cð00Þ, albeit with a
non-normalizable field configuration.
In summary, the BRST cohomology agrees with the

physical states discussed above in a more elementary
formalism. As before, it can be parametrized in terms of

the physical fields bðlmÞ
⊥ ; bðlmÞ with l ¼ 1; 2;… and the

harmonic fields bðlmÞ
0 with l ¼ 0.

III. LOGARITHMIC QUANTUM CORRECTIONS:
THE VECTOR FIELD

In this section we compute functional determinants with
the heat kernel method [6,23,24]. We first review the
elementary heat kernels that we need, including the basic
contribution from boundary modes. We then compare the
on-shell and off-shell computations of the heat kernel for a
vector field.

A. Elementary heat kernels

The basic heat kernel for a massless scalar on the sphere
S2 is

Ks
S ¼

1

4πa2
X∞
k¼0

e−kðkþ1Þsð2kþ 1Þ

¼ 1

4πa2s

�
1þ 1

3
sþ 1

15
s2 þ � � �

�
: ð3:1Þ

Each component of a vector field on S2 has the same
spectrum as a scalar field on S2 but the k ¼ 0 mode is
absent from the partial wave expansion. Therefore the heat
kernel for a vector on S2 is

Kv
S ¼

1

4πa2
X∞
k¼1

e−kðkþ1Þsð2kþ 1Þ ¼ Ks
S −

1

4πa2

¼ 1

4πa2s

�
1 −

2

3
sþ 1

15
s2 þ � � �

�
: ð3:2Þ

We also need the scalar heat kernel on AdS2. The
representation of a heat kernel as an expansion in around
flat space shows that the local terms are determined from
Ks

S by flipping the sign of terms that are odd in the
curvature so:

Ks
A ¼ 1

4πa2s

�
1 −

1

3
sþ 1

15
s2 þ � � �

�
: ð3:3Þ

Although this rule of thumb applies for local terms, there is
no similar continuation of eigenvalues and eigenfunctions
[22,25,26]. The heat kernels above refer to 2D fields on
AdS2 and S2. We assemble these 2D heat kernels into heat

1We omit the constant on AdS2 (corresponding to n ¼ 0) since
only derivatives of the basis parametrize vector fields.
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kernels for 4D fields on AdS2 × S2 by summing over
towers of the form

Ks
4 ¼ Ks

A ·
1

4πa2
X
j

e−m
2
j sð2jþ 1Þ; ð3:4Þ

where each value of angular momentum j on S2 has a
specific value of the effective AdS2 mass m2

j ¼ hjðhj − 1Þ.
For example, dimensional reduction of a massless 4D scalar
field on S2 gives a tower of 2D fields with the AdS2 Casimir
hjðhj − 1Þ identical to the S2 Casimir jðjþ 1Þ. In this case
the spectrum is ðh; jÞ ¼ ðkþ 1; kÞ with k ¼ 0;… so hj ¼
jþ 1 and the sum in (3.4) reduces to the sum in (3.1). We
therefore find

Ks
4 ¼ Ks

AK
s
S ¼

1

16π2a4s2

�
1þ 1

45
s2 þ � � �

�
: ð3:5Þ

The physical components arising from reduction
of a 4D vector field is restricted to helicities �1 but
otherwise identical to two 4D scalar fields. The conformal
weights for a single tower of this type is therefore
again ðh; jÞ ¼ ðkþ 1; kÞ but with k ¼ 1;… because the
angular momentum j ¼ 0 on the S2 is prohibited. The
sum over S2 quantum numbers reduces to (3.2) and so
we find

K0
4 ¼

1

16π2a4s2

�
1 −

1

3
sþ 1

15
s2 þ � � �

�

×

�
1 −

2

3
sþ 1

15
s2 þ � � �

�

¼ 1

16π2a4s2

�
1 − sþ 16

45
s2 þ � � �

�
; ð3:6Þ

for a 4D scalar with partial wave j ¼ 0 missing.

B. Counting boundary modes

The harmonic modes are zero-modes from the AdS2
point of view. Their heat kernel is given by a sum over a
complete set of modes that takes the schematic form

Kðx; x0; sÞ ¼
X
i

fiðxÞf�i ðx0Þ: ð3:7Þ

We presented all harmonic modes in (2.20). At equal points
the sum over all harmonic modes for the vector field in the
geometry (2.19) gives

Kðx; x; sÞ ¼
X∞
n¼1

ðj∇unj2 þ c:c:Þ ¼ 2
X∞
n¼1

gzz̄∂zun∂ z̄u�n

¼
X∞
n¼1

ð1 − r2Þ2
a2

1

2πn
n2r2ðn−1Þ ¼ 1

2πa2
: ð3:8Þ

The expression is independent of the position r, as expected
in a homogeneous space.
Homogeneity of AdS2 allows us to write alternatively

Kðx; x; sÞ ¼ 1

Vol

Z ffiffiffi
g

p
d2z
X
i

jfiðxÞj2 ¼
1

Volc
Nc; ð3:9Þ

where Volc is the regulated AdS2 volume and Nc is the
regulated number of harmonic modes. Thus the equal point
heat kernel can be interpreted as the density of harmonic
modes in AdS2.
We interpret the finite density (3.8) as the contribution to

the heat kernel from a single massless boundary mode
rather than a field on the 1D boundary of AdS2.

C. Heat kernel for a 4D vector field:
The off-shell method

We can arrive at the heat kernel for a 4D vector field
by adding contributions from all four components of the
vector field and then cancel two unphysical components
by introducing ghosts. This is the strategy that is most
commonly used.
In this off-shell method the two towers originating from

vector components along S2 are treated identically. They

were denoted bðlmÞ; ~bðlmÞ in the explicit mode expansion
(2.5). From the AdS2 point these are towers of scalars fields
with the leading partial wave j ¼ 0 missing so their heat
kernel is given by (3.6).
In the off-shell method the two towers of scalars

originating from vector components along AdS2 are also

treated identically. They were denoted bðlmÞ
∥ ; bðlmÞ

⊥ in the
explicit mode expansion. The direct computation of the
heat kernel on AdS2 requires consideration of a complete
set of vector modes on AdS2 and subsequent summation
over the S2 tower. The appropriate modes were identified
in [22]. For the present purpose recall that heat kernels
can be represented as a local expansion. We can therefore
take a shortcut and simply invert the sign of the linear
term in (3.6), corresponding to the interchange A↔S.
This gives

2 ~K0
4 ¼

1

8π2a4s2

�
1þ sþ 16

45
s2 þ � � �

�
: ð3:10Þ

The final contribution to the off-shell computation are
the two ghosts (2.8) which are standard scalars with heat
kernel given in (3.5) except for an overall sign due to
statistics. The net result for the 4D vector field then
becomes

Kv
4 ¼ 2K0

4 þ 2 ~K0
4 − 2Ks

4 ¼
1

8π2a4s2

�
1þ 31

45
s2 þ � � �

�
:

ð3:11Þ
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D. Heat kernel for a 4D vector field:
The on-shell method

The on-shell computation focuses on the physical
components of the 4D vector field. These are two towers
of scalar fields on AdS2 with angular momentum on the S2

l ¼ 1; 2;…. In our explicit mode expansions these two

towers of physical modes are bðlmÞ; bðlmÞ
⊥ with l ¼ 1; 2;….

They each contribute to the heat kernel with K0
4 given

in (3.6).
In the on-shell computation the only additional contri-

bution is a single tower of boundary modes on AdS2 with
partial wave expansion l ¼ 0; 1;…. There is one such

mode for each of the AdS2 pairs b
ðlmÞ
⊥ ; bðlmÞ

∥ l ¼ 0; 1;… or,

equivalently, one for each gauge function λðlmÞ l ¼ 0; 1;….
For each entry in the tower the AdS2 part contributes with a
factor of the regulated AdS2 volume with normalization
(3.8). The sum (3.4) over the S2 tower of boundary modes
thus contributes a simple scalar field on S2 (3.1).
In the on-shell computation the heat kernel for the 4D

vector field becomes

Kv
4 ¼ 2K0

4 þ
1

2πa2
Ks

S

¼ 1

8π2a4s2

�
1 − sþ 16

45
s2
�
þ 1

8π2a4

�
1

s
þ 1

3

�

¼ 1

8π2a4s2

�
1þ 31

45
s2
�
: ð3:12Þ

This agrees with the off-shell result (3.11).
The off-shell and the on-shell computations are related

by a simple rearrangement.

Kv
4 ¼ 2K0

4 þ 2 ~K0
4 − 2Ks

4

¼ 2K0
4 þ 2

�
Ks

A þ 1

4πa2

�
Ks

S − 2Ks
AK

s
S

¼ 2K0
4 þ

1

2πa2
Ks

S: ð3:13Þ

The key is that the subtraction of the l ¼ 0 mode for a
vector on S2 included in (3.6) amounts to an addition of
the boundary mode in AdS2 that is implicitly included
in (3.10).
Some mild virtual aspects remain in on-shell method.

The heat kernel (3.3) of a bulk field in AdS2 implicitly
sums over the continuum of off-shell modes of plane-
wave type. Similarly, the boundary mode has fixed wave
function on AdS2 but the sum over the tower of S2 partial
waves probes the configuration space off-shell. The
simplification of the on-shell computation is that we
do not need to determine the explicit spectrum of the
gauge violating modes, longitudinal modes, and the
corresponding ghosts. It is known from the outset that

these contributions must cancel so we may as well not
compute them in the first place. Instead, we include just
the boundary modes which appear with positive sign, as
expected from physical modes.

IV. SUPERGRAVITY IN
ADS2 × S2 - BOSONIC SECTOR

In this section we analyze the bosonic sector of N ¼ 2
supergravity in AdS2 × S2. The matter content is a tensor
field hIJ coupled to a vector field aI . We derive the
linearized equations of motion from the AdS2 point of
view, then diagonalize them explicitly and find the full
spectrum and all eigenvectors. Finally, we write the modes
in a basis where their gauge transformations are manifest.
This classifies the modes as gauge violating, pure gauge, or
physical.

A. 4D theory

The 4D action for the gravity-graviphoton system is just
standard Einstein-Maxwell

LEM ¼ 1

2

�
R −

1

4
FIJFIJ

�
: ð4:1Þ

The physical content of the theory can be extracted by
imposing Lorentz gauge

∇IhIJ −
1

2
∇JhII ¼ 0;

∇IaI ¼ 0; ð4:2Þ

on the perturbations δgIJ ¼ hIJ, δAI ¼ aI . We once again
implement this in the quantum theory by adding gauge
fixing terms to the action and taking Feynman gauge ξ ¼ 1.
The gauge fixed action is

LFeynman ¼
1

2

�
R −

1

4
F2 −

1

2

�
∇IhIJ −

1

2
∇JhII

�
2

−
1

2
ð∇IaIÞ2

�
: ð4:3Þ

We consider the magnetic AdS2 × S2 background. This
solution is real also in Euclidean signature. In our units the
background reads

Fαβ ¼ 2aϵαβ; Rμν¼−a−2gμν; Rαβ ¼ a−2gαβ: ð4:4Þ

We take the scale a ¼ 1 in this section but restore it later.
When analyzing the spectator vector field in AdS2 × S2

we diagonalized the 4D action before reducing it on S2. In
the present context it is simpler to take the linearized
equations of motion in 4D, reduce them on S2, and only
then diagonalize. We therefore first consider the gauge
fixed Maxwell’s equations in 4D:
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∇IFIJ þ∇J∇IaI ¼ 0: ð4:5Þ

Perturbing around the background (4.4) and keeping only
linear terms yields

−2∇αhμβϵαβ þ ð∇2
A þ∇2

S þ 1Þaμ ¼ 0: ð4:6Þ

−2∇μhμαϵαβ þ∇αðhμμ − hγγÞϵαβ þ ð∇2
A þ∇2

S − 1Þaα ¼ 0:

ð4:7Þ

An analogous computation for Einstein’s equations yields

−
1

2
ð∇2 − 2Þhαβ þ

1

4
gαβ½ð∇2 þ 2Þhγγ þ ð∇2 − 2Þhρρ�

¼ gαβϵγδ∇γaδ; ð4:8Þ

−
1

2
ð∇2 þ 2Þhμν þ

1

4
gμν½ð∇2 − 2Þhγγ þ ð∇2 þ 2Þhρρ�

¼ −gμνϵαβ∇αaβ; ð4:9Þ

1

2
ð∇2 − 2Þhμα ¼ ϵαβð∇μaβ −∇βaμÞ: ð4:10Þ

The graviphoton equations of motion (4.56)–(4.7) are
more complicated than those for a spectator vector field
because here we allow the metric to fluctuate as well.
Similarly, the vector field terms in (4.59)–(4.10) constitute
nontrivial kinetic mixing.

B. 2D effective theory

We want to represent the 4D equations of motion
(4.56)–(4.10) as towers of 2D equations. The physics of
the 2D theory is determined by Kaluza-Klein reduction in
homogeneous spaces [27]. As in (2.5) we expand the 4D
fields in partial waves:

hfμνgðx; yÞ ¼ HðlmÞ
fμνgðxÞYðlmÞðyÞ;

hρρðx; yÞ ¼ Hlm
ρ
ρðxÞYðlmÞðyÞ;

hμαðx; yÞ ¼ ~BðlmÞ
μ ðxÞ∇αYðlmÞðyÞ þ BðlmÞ

μ ðxÞϵαβ∇βYðlmÞðyÞ;
hfαβgðx; yÞ ¼ ϕðlmÞðxÞ∇fα∇βgYðlmÞðyÞ

þ ~ϕðlmÞðxÞ∇fαϵβgγ∇γYðlmÞðyÞ;
hααðx; yÞ ¼ πðlmÞðxÞYðlmÞðyÞ;
aμðx; yÞ ¼ bðlmÞ

μ ðxÞYðlmÞðyÞ;
aαðx; yÞ ¼ ~bðlmÞðxÞ∇αYðlmÞðyÞ þ bðlmÞðxÞϵαβ∇βYðlmÞðyÞ:

ð4:11Þ
Sum over angular momentum quantum numbers ðlmÞ is
implied. Curly brackets around indices indicate that we
remove the 2D trace: hfαβg ¼ hαβ − 1

2
gαβhγγ , and analo-

gously for hfμνg, [28]. We also expand the generators of

diffeomorphisms and gauge transformations in spherical
harmonics,

ξμðx; yÞ ¼ ξðlmÞ
μ ðxÞYðlmÞðyÞ;

ξαðx; yÞ ¼ ζðlmÞðxÞ∇αYðlmÞðyÞ þ ξðlmÞðxÞϵαβ∇βYðlmÞðyÞ;
Λðx; yÞ ¼ λðlmÞðxÞYðlmÞðyÞ: ð4:12Þ
The allowed range for the angular momentum quantum
number of each mode can be read off from the expressions
(4.11) and (4.12). Themodes with a single (double) derivative
acting on the spherical harmonic functions aremissing the first
(the first two)modes. The table below summarizes the allowed
range of l for all 2D modes defined in (4.11) and (4.12).

2D Field; Gauge Parameter Range

HðlmÞ
fμνg, H

ðlmÞρ
ρ , πðlmÞ, bðlmÞ

μ ; ξðlmÞ
μ , λðlmÞ l ¼ 0; 1…

~BðlmÞ
μ , BðlmÞ

μ , ~bðlmÞ, bðlmÞ ; ζðlmÞ, ξðlmÞ l ¼ 1; 2…

ϕðlmÞ, ~ϕðlmÞ l ¼ 2; 3…

Inserting the partial wave expansion (4.11) into the
Maxwell equations (4.56)–(4.7) we find

ðð∇2
A − lðlþ 1Þ þ 1ÞbðlmÞ

μ ðxÞ − 2lðlþ 1ÞBðlmÞ
μ ðxÞÞYðlmÞðyÞ

¼ 0; ð4:13Þ

ðð∇2
A − lðlþ 1ÞÞ ~bðlmÞðxÞ − 2∇μBðlmÞ

μ ðxÞÞ∇αYðlmÞðyÞ
þ ðð∇2

A − lðlþ 1ÞÞbðlmÞðxÞ þ 2∇μ ~BðlmÞ
μ ðxÞ

þ πðlmÞðxÞ −HðlmÞ
ρ
ρðxÞÞϵαβ∇βYðlmÞðyÞ ¼ 0: ð4:14Þ

The dependence on the S2 coordinates can be integrated out
by contracting (4.71) and (4.14) with the appropriate
spherical harmonic functions and using their orthonormal-
ity conditions. The result is one equation that is a vector
from the AdS2 point of view and two equations that are
scalars.
Dimensional reduction of the Einstein equations (4.59)–

(4.10) proceeds similarly. For brevity we just present a
summary of all 2D effective equations of motion.
2D Equations of Motion - Summary The equations

defined for l ¼ 0; 1… are

ð∇2
A − lðlþ 1Þ þ 1ÞbðlmÞ

μ − 2lðlþ 1ÞBðlmÞ
μ ¼ 0; ð4:15Þ

−
1

2
ð∇2

A − lðlþ 1Þ − 2ÞπðlmÞ − 2lðlþ 1ÞbðlmÞ ¼ 0; ð4:16Þ

−
1

2
ð∇2

A − lðlþ 1Þ þ 2ÞHðlmÞ
fμνg ¼ 0; ð4:17Þ

−
1

2
ð∇2

A − lðlþ 1Þ − 2ÞHðlmÞ
ρ
ρ − 2πðlmÞ

þ 2lðlþ 1ÞbðlmÞ ¼ 0: ð4:18Þ
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The equations defined for l ¼ 1; 2… are

ð∇2
A − lðlþ 1ÞÞ ~bðlmÞ − 2∇μBðlmÞ

μ ¼ 0; ð4:19Þ

ð∇2
A − lðlþ 1ÞÞbðlmÞ þ 2∇μ ~BðlmÞ

μ þ πðlmÞ −HðlmÞ
ρ
ρ ¼ 0;

ð4:20Þ

−
1

2
ð∇2

A − lðlþ 1Þ − 1Þ ~BðlmÞ
μ þ∇μbðlmÞ ¼ 0; ð4:21Þ

−
1

2
ð∇2

A− lðlþ1Þ−1ÞBðlmÞ
μ −∇μ

~bðlmÞ þbðlmÞ
μ ¼ 0: ð4:22Þ

The equations defined for l ¼ 2; 3… are

−
1

2
ð∇2

A − lðlþ 1Þ þ 2ÞϕðlmÞ ¼ 0; ð4:23Þ

−
1

2
ð∇2

A − lðlþ 1Þ þ 2Þ ~ϕðlmÞ ¼ 0: ð4:24Þ

The complete set of equations has 10þ 4 ¼ 14 compo-
nents as expected for gravity coupled to a gauge field. They
are organized into 6 scalar equations, 3 vector equations
(with two components each), and one equation that is a
symmetric traceless tensor (with two components).

C. Spectrum

To compute the 2D spectrum we must diagonalize the
system of 2D equations of motion presented above. To
disentangle the equations we dualize each of the 2D vectors

BðlmÞ
μ ; ~BðlmÞ

μ ; bðlmÞ
μ into two scalars and one harmonic mode,

as in (2.14). A new feature is that we also need to dualize

the symmetric traceless tensor HðlmÞ
fμνg to scalars [29]. We

write

HðlmÞ
fμνg ¼ ∇fμ∇νgH

ðlmÞ
þ þ∇fμϵνgρ∇ρHðlmÞ

× þ∇fμ∇νgH
ðlmÞ
0 :

ð4:25Þ

The configuration space of scalars HðlmÞ
þ ; HðlmÞ

× could

generate all possible HðlmÞ
fμνg. Indeed, to avoid that some

HðlmÞ
fμνg are counted twice we require:

∇2
Að∇2

A − 2ÞHðlmÞ
þ ≠ 0;

∇2
Að∇2

A − 2ÞHðlmÞ
× ≠ 0: ð4:26Þ

For those configurations that could have been represented
in either Hþ or H× form we introduced the harmonic mode

HðlmÞ
0 , written to be definite in its Hþ form. The harmonic

mode satisfies

∇2
Að∇2

A − 2ÞHðlmÞ
0 ¼ 0: ð4:27Þ

To verify these claims it is useful to first compute

∇μHðlmÞ
fμνg ¼

1

2
∇νð∇2

A − 2ÞðHðlmÞ
þ þHðlmÞ

0 Þ

þ ϵνμ∇μð∇2
A − 2ÞHðlmÞ

× ; ð4:28Þ

in AdS2 and then use this identity to find HðlmÞ
þ ; HðlmÞ

× in

terms of HðlmÞ
fμνg. The resulting expressions involve the

inverse of the operator ∇2
Að∇2

A − 2Þ which is invertible
on the appropriate subspaces due to (4.26).
After dualization of all fields to scalars the equations of

motion (4.15)–(4.24) can be recast as 14 Klein-Gordon
equations coupled by a 14 × 14 block diagonal mass
matrix. We find that 5 components of the mass matrix
are diagonal in our basis. The remaining blocks in the
equations of motion are the 2 × 2 block,

ð∇2
A − lðlþ 1ÞÞ

�
BðlmÞ
⊥

bðlmÞ
⊥

�
¼
�

2 2

2lðlþ 1Þ 0

��
BðlmÞ
⊥

bðlmÞ
⊥

�
;

ð4:29Þ

the 3 × 3 block,

ð∇2
A−lðlþ1ÞÞ

0
BB@
BðlmÞ
∥

bðlmÞ
∥

~bðlmÞ

1
CCA¼

0
B@

2 2 −2
2lðlþ1Þ 0 0

4þ2lðlþ1Þ 4 −4

1
CA
0
BB@
BðlmÞ
∥

bðlmÞ
∥

~bðlmÞ

1
CCA;

ð4:30Þ

and the 4 × 4 block

ð∇2
A − lðlþ 1ÞÞ

0
BBBBB@

HðlmÞ

~BðlmÞ
∥

πðlmÞ

bðlmÞ

1
CCCCCA ¼

0
BBBBB@

2 0 −4 4lðlþ 1Þ
0 2 0 2

0 0 2 −4lðlþ 1Þ
1 −2ð2þ lðlþ 1ÞÞ −1 −4

1
CCCCCA

0
BBBBB@

HðlmÞ

~BðlmÞ
∥

πðlmÞ

bðlmÞ

1
CCCCCA: ð4:31Þ

The final 4 × 4 block is the most complicated with eigenvectors
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V0 ¼ 2lðlþ 1Þ ~BðlmÞ
∥ þ πðlmÞ;

V1 ¼ HðlmÞ
ρ
ρ − 2ð2þ lðlþ 1ÞÞ ~BðlmÞ

∥ −
l − 1

lþ 1
πðlmÞ − 2ðlþ 1ÞbðlmÞ;

V2 ¼ −lHðlmÞ
ρ
ρ þ 2ð2þ lðlþ 1ÞÞl ~BðlmÞ

∥ þ ðlþ 2ÞπðlmÞ − 2l2bðlmÞ;

V3 ¼ −HðlmÞ
ρ
ρ þ 2ð2þ lðlþ 1ÞÞ ~BðlmÞ

∥ þ 4bðlmÞ: ð4:32Þ

Our result for the spectrum and the corresponding modes is

Mode Mass Range

HðlmÞ
þ m2 ¼ lðlþ 1Þ þ 2 l ¼ 0; 1…

HðlmÞ
× m2 ¼ lðlþ 1Þ þ 2 l ¼ 0; 1…

V0 ¼ 2lðlþ 1Þ ~BðlmÞ
∥þπðlmÞ #

m2 ¼ lðlþ 1Þ þ 2 l ¼ 0; 1…

~BðlmÞ
⊥ m2 ¼ lðlþ 1Þ þ 2 l ¼ 1; 2…

bðlmÞ
⊥ − lBðlmÞ

⊥ m2 ¼ lðl − 1Þ l ¼ 0; 1…

V1 m2 ¼ lðl − 1Þ l ¼ 1; 2…
V2 m2 ¼ ðlþ 1Þðlþ 2Þ l ¼ 0; 1…

bðlmÞ
⊥ þ ðlþ 1ÞBðlmÞ

⊥ m2 ¼ ðlþ 1Þðlþ 2Þ l ¼ 1; 2…

~bðlmÞ − bðlmÞ
∥ − 2BðlmÞ

∥ # m2 ¼ lðlþ 1Þ l ¼ 0; 1;…

bðlmÞ
∥ þ lðlþ 1ÞBðlmÞ

∥ ‡ m2 ¼ lðlþ 1Þ l ¼ 1; 2…

BðlmÞ
∥ þ bðlmÞ

∥ − ~bðlmÞ m2 ¼ lðlþ 1Þ − 2 l ¼ 1; 2…

ϕðlmÞ m2 ¼ lðlþ 1Þ − 2 l ¼ 2; 3…
~ϕðlmÞ m2 ¼ lðlþ 1Þ − 2 l ¼ 2; 3…
V3 † m2 ¼ lðlþ 1Þ − 2 l ¼ 1; 2…

Comments:
(i) The eigenvectors Vn with n ¼ 0; 1; 2; 3were defined

in (4.32).
(ii) We express our results for the eigenvalues as scalar

masses defined in the usual way

ð−∇2
A þm2ÞX ¼ 0: ð4:33Þ

(iii) We do not indicate the harmonic modes explicitly.
In the present context they can be absorbed in ∥
components and þ components.

(iv) The mode labeled with † does not apply for l ¼ 1
and the two modes labeled with # similarly do
not apply at l ¼ 0. We inspect these special
cases later.

(v) The entry labeled with ‡ is not a true eigenvector.
Instead it is a generalized eigenvector associated
with a repeated eigenvalue. We discuss the details of
this issue in Appendix A.

D. Gauge violating, longitudinal, and physical states

At this point we have diagonalized the gauge fixed
equations of motion but we did not yet analyze gauge
symmetry. To do so we first write the gauge conditions
(4.2) in components

∇μhfμνg þ∇αhαν −
1

2
∇νhαα ¼ 0; ð4:34Þ

∇αhfαβg þ∇μhμβ −
1

2
∇βh

μ
μ ¼ 0; ð4:35Þ

∇μaμ þ∇αaα ¼ 0; ð4:36Þ

and then insert the partial wave expansion (4.11) to find the
2D version of the gauge conditions

∇μHðlmÞ
fμνg − lðlþ 1Þ ~BðlmÞ

ν −
1

2
∇νπ

ðlmÞ ¼ 0; ð4:37Þ

∇μbðlmÞ
μ − lðlþ 1Þ ~b ¼ 0: ð4:38Þ

lðlþ 1Þ
h
∇μ ~BðlmÞ

μ þ 1

2
ð2 − lðlþ 1ÞÞϕðlmÞ −

1

2
HðlmÞ

ρ
ρ
i
¼ 0;

ð4:39Þ

lðlþ 1Þ
�
∇μBðlmÞ

μ þ 1

2
ð2 − lðlþ 1ÞÞ ~ϕðlmÞ

�
¼ 0: ð4:40Þ

The factors of lðlþ 1Þ in front of (4.39) and (4.40) are due
to the integration over the S2 coordinates. We retained them
to stress that these equations apply only for l ≥ 1. The field
components that are only defined at l ≥ 1 similarly appear
with a prefactor lðlþ 1Þ so that the l ¼ 0 component is not
needed; and the fields ϕðlmÞ, ~ϕðlmÞ that are defined only for
l ≥ 2 both have a prefactor that vanishes at l ¼ 0; 1.
Our next step is to dualize the 2D vectors and the 2D

tensor using (2.14) and (4.25). The gauge conditions
defined for l ¼ 0; 1;… become

∇ν

�
1

2
ð∇2

A − 2ÞHðlmÞ
þ − lðlþ 1Þ ~BðlmÞ

∥ −
1

2
πðlmÞ

�

þ ϵνμ∇μ

�
1

2
ð∇2

A − 2ÞHðlmÞ
× − lðlþ 1Þ ~BðlmÞ

⊥
�
¼ 0; ð4:41Þ

∇2
Ab

ðlmÞ
∥ − lðlþ 1Þ ~b ¼ 0; ð4:42Þ

and those defined for l ¼ 1; 2;… become

∇2
A
~BðlmÞ
∥ þ 1

2
ð2 − lðlþ 1ÞÞϕðlmÞ −

1

2
HðlmÞ

ρ
ρ ¼ 0; ð4:43Þ

∇2
AB

ðlmÞ
∥ þ 1

2
ð2 − lðlþ 1ÞÞ ~ϕðlmÞ ¼ 0; ð4:44Þ
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We can project (4.41) and obtain two linearly independent
scalar equations by applying∇ν or ϵνμ∇μ and then inverting
the resulting overall Laplacian ∇2

A. Our results below will
indeed justify the inversion except for the special case l ¼ 0
which we reconsider later. With this exception we can
therefore simply require both square brackets in (4.41) to
vanish.
Our final step is to eliminate the kinetic operators ∇2

A
from (4.41)–(4.44) by using the equations of motion. This
gives the on-shell gauge conditions:

1

2
lðlþ 1ÞHðlmÞ

þ − lðlþ 1Þ ~BðlmÞ
∥ −

1

2
πðlmÞ ¼ 0; ð4:45Þ

1

2
HðlmÞ

× − ~BðlmÞ
⊥ ¼ 0; ð4:46Þ

~bðlmÞ − bðlmÞ
∥ − 2BðlmÞ

∥ ¼ 0; ð4:47Þ

ð2þ lðlþ 1ÞÞ ~BðlmÞ
∥ þ 2bðlmÞ þ 1

2
ð2 − lðlþ 1ÞÞϕðlmÞ

−
1

2
HðlmÞ

ρ
ρ ¼ 0; ð4:48Þ

ð2þ lðlþ 1ÞÞBðlmÞ
∥ − 2~bðlmÞ þ 2bðlmÞ

∥

þ 1

2
ð2 − lðlþ 1ÞÞ ~ϕðlmÞ ¼ 0: ð4:49Þ

As mentioned above, these equations apply only for l ≥ 1
and we return to l ¼ 0 later.
Themodes presented in Sec. IV Cwere identified only by

their eigenvalues so we can freely choose a new basis by
taking linear combinations of modes with the same mass.
The gauge conditions (4.45)–(4.49) specify particular linear
combinations that are set to zero by thegauge conditions.We
collect these gauge violating modes in a table.

Gauge Violating Modes Mass
1
2
lðlþ 1ÞHðlmÞ

þ − lðlþ 1Þ ~BðlmÞ
∥ − 1

2
πðlmÞ m2 ¼ lðlþ 1Þ þ 2

1
2
HðlmÞ

× − ~BðlmÞ
⊥ m2 ¼ lðlþ 1Þ þ 2

~bðlmÞ − bðlmÞ
∥ − 2BðlmÞ

∥ m2 ¼ lðlþ 1Þ
ð2þ lðlþ 1ÞÞ ~BðlmÞ

∥ þ 2bðlmÞ

þ 1
2
ð2 − lðlþ 1ÞÞϕðlmÞ − 1

2
HðlmÞ

ρ
ρ

m2 ¼ lðlþ 1Þ − 2

ð2þ lðlþ 1ÞÞBðlmÞ
∥ − 2~bðlmÞ þ 2bðlmÞ

∥

þ 1
2
ð2 − lðlþ 1ÞÞ ~ϕðlmÞ

m2 ¼ lðlþ 1Þ − 2

Our next step is to take equivalences under gauge and
diffeomorphism transformations into account. The varia-
tions of the 4D fields are:

δaI ¼ ∇IΛ0 þ ξJFJI þ∇IðξJAJÞ;
δhIJ ¼ ∇IξJ þ∇JξI: ð4:50Þ

The gauge field varies under diffeomorphisms but the
metric fluctuations do not vary under gauge transforma-
tions. It is therefore advantageous to remove field

components in a specific order: first exploit diffeomor-
phisms and then gauge transformations. In particular, we
have not yet specified a gauge for the background gauge
fields AJ although the field strength is of course specified in
(4.4). We take this into account by redefining diffeo-
morphisms to include a compensating gauge transforma-
tion that removes the AJ dependence. We implement this by
henceforth taking Λ0 ¼ Λ − ξJAJ in (4.50).
In our on-shell approach we already fixed the gauge in

(4.2) so at this point we can focus on residual symmetries.
The gauge variations (4.50) that preserve the gauge con-
ditions (4.2) satisfy

∇2
4Λþ 2ϵαβ∇βξα ¼ 0;

ðgIJ∇2
4 þ RIJÞξI ¼ 0: ð4:51Þ

Upon expansion in partial waves (4.12) we find the 2D
equations of motion for the residual symmetries. The 2D
diffeomorphisms ξðlmÞ

∥ ; ξðlmÞ
⊥ have mass m2 ¼ lðlþ 1Þ þ 2

and range l ¼ 0; 1;…, the S2 diffeomorphisms ζðlmÞ; ξðlmÞ
have mass m2 ¼ lðlþ 1Þ − 2 and range l ¼ 1; 2;… while
the gauge symmetry is an eigenvector satisfying

ð∇2
A − lðlþ 1ÞÞλðlmÞ − 2lðlþ 1ÞξðlmÞ ¼ 0; l ¼ 0; 1;…:

ð4:52Þ

We need only consider diffeomorphisms and gauge trans-
formations that satisfy their appropriate on-shell condition.
Inserting the partial wave expansions (4.11) and (4.12)

into the 4D symmetry variations (4.50) we find variations
of all 2D fields. After complete dualization to scalars the
result is

Mode Symmetry Variation Range

HðlmÞ
ρ
ρ 2∇2

Aξ
ðlmÞ
∥ l ¼ 0; 1…

HðlmÞ
þ 2ξðlmÞ

∥ l ¼ 0; 1…

HðlmÞ
× 2ξðlmÞ

⊥ l ¼ 0; 1…

~BðlmÞ
∥ ξðlmÞ

∥ þ ζðlmÞ l ¼ 1; 2…

~BðlmÞ
⊥ ξðlmÞ

⊥ l ¼ 1; 2…

BðlmÞ
∥ ξðlmÞ l ¼ 1; 2…

BðlmÞ
⊥ 0 l ¼ 1; 2…

ϕðlmÞ 2ζðlmÞ l ¼ 2; 3…

~ϕðlmÞ 2ξðlmÞ l ¼ 2; 3….

πðlmÞ −2lðlþ 1ÞζðlmÞ l ¼ 0; 1…

bðlmÞ
∥ λðlmÞ l ¼ 0; 1…

bðlmÞ
⊥ 0 l ¼ 0; 1…

bðlmÞ −2ζðlmÞ l ¼ 1; 2…
~bðlmÞ 2ξðlmÞ þ λðlmÞ l ¼ 1; 2…

The five towers of gauge violating modes identified in
(4.45)–(4.49) are all invariant under symmetry variations as
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they should be. To obtain the longitudinal states we
consider our original list of 14 towers and constrain it
with the gauge conditions. For example, condition (4.46)
allows us to work only with ~BðlmÞ

⊥ and not worry about
HðlmÞ

× since these fields are proportional after imposing
gauge conditions. After constraining the modes in this way
we find combinations that are pure gauge,

Longitudinal Mode Symmetry variation Mass

2lðlþ 1Þ ~BðlmÞ
∥ þ πðlmÞ 2lðlþ 1ÞξðlmÞ

∥ m2 ¼ lðlþ 1Þ þ 2

~BðlmÞ
⊥ ξðlmÞ

⊥ m2 ¼ lðlþ 1Þ þ 2

bðlmÞ
∥ þ lðlþ 1ÞBðlmÞ

∥ λðlmÞ þ lðlþ 1ÞξðlmÞ m2 ¼ lðlþ 1Þ
~ϕðlmÞ 2ξðlmÞ m2 ¼ lðlþ 1Þ − 2
ϕðlmÞ 2ζðlmÞ m2 ¼ lðlþ 1Þ − 2

The mode bðlmÞ
∥ þ lðlþ 1ÞBðlmÞ

∥ was a generalized eigen-
vector prior to gauge fixing. However, the state with mass
lðlþ 1Þ with which it was degenerate was removed by the

gauge condition (4.47) and thus bðlmÞ
∥ þ lðlþ 1ÞBðlmÞ

∥ is

now a true eigenvector. Its symmetry variation λðlmÞþ
lðlþ 1ÞξðlmÞ is not diagonal but in view of (4.52) it is
precisely the combination that is on-shell with mass
so m2 ¼ lðlþ 1Þ.
There is significant ambiguity in the form of the

longitudinal modes we identify. We can freely add modes
proportional to the gauge violating modes since those are
themselves invariant under on-shell gauge transformations.
Similarly (and perhaps more relevant) we can add modes
proportional to the gauge invariant physical states identi-
fied below.
After removal of five towers of gauge violating

modes and five towers of longitudinal modes there
remain four towers of fields that satisfy the gauge
condition and cannot be represented as pure gauge
states. These are the physical states. Simplifying the
modes from our 14 original towers using the gauge
conditions and then forming gauge invariant combina-
tions we find:

Physical Modes Mass Range

bðlmÞ
⊥ − lBðlmÞ

⊥ m2 ¼ lðl − 1Þ l ¼ 2;…
πðlmÞ þ 2ðlþ 1ÞbðlmÞ
þðlþ 1Þðlþ 2ÞϕðlmÞ

m2 ¼ lðl − 1Þ l ¼ 2;…

πðlmÞ − 2lbðlmÞ þ lðl − 1ÞϕðlmÞ m2 ¼ ðlþ 1Þðlþ 2Þ l ¼ 1;…
bðlmÞ
⊥ þ ðlþ 1ÞBðlmÞ

⊥ m2 ¼ ðlþ 1Þðlþ 2Þ l ¼ 1;…

The second line is just − lþ1
l−1 V1, while the third line

is 1
lþ2

V2.

E. l=1 modes

Some of our results warrant special comment for small
values of l. In this subsection we reconsider l ¼ 1 and in
the next we consider l ¼ 0.
There are several issues for l ¼ 1:

(i) The part of the 4D graviton that is a symmetric
traceless tensor on S2 vanishes identically for l ¼ 1.
Consequently the modes ϕðlmÞ and ~ϕðlmÞ are only
defined for l ≥ 2. This leaves 12 2D scalar modes
at l ¼ 1.

(ii) For l ¼ 1 the eigenvalue m2 ¼ lðl − 1Þ of V1 co-
incides with m2 ¼ lðlþ 1Þ − 2 of V3. In fact, V3 ¼
−V1 for l ¼ 1 so in this case our set of modes is
incomplete in its generic form. We address this by
introducing a generalized eigenvector V 0

3 ¼
4bð1mÞ þ πð1mÞ which is acted on as ∇2

AV3
0 ¼ 4V1.

(iii) We have dualized all 2D fields fully to 2D
scalars. This can lead to overcounting in case
of harmonic fields, which we define as those
fields where m2 ¼ 0 after dualization of 2D
vectors and those where m2 ¼ 0 or m2 ¼ 2 after
dualization of 2D symmetric traceless tensors.
There are no modes of this type for l ≥ 2 but they
are present for l ¼ 0; 1. We must therefore revisit
dualization.

We present for convenience the spectrum and the corre-
sponding modes for l ¼ 1:

Modes Mass

V2 ¼ −HðlmÞ
ρ
ρ þ 8 ~Bð1mÞ

∥ þ 3πð1mÞ − 2bð1mÞ m2 ¼ 6

bð1mÞ
⊥ þ 2Bð1mÞ

⊥ m2 ¼ 6

Hð1mÞ
þ m2 ¼ 4

Hð1mÞ
× m2 ¼ 4

V0 ¼ 4 ~Bð1mÞ
∥ þ πð1mÞ m2 ¼ 4

~Bð1mÞ
⊥ m2 ¼ 4

bð1mÞ
∥ þ 2Bð1mÞ

∥ − ~bð1mÞ m2 ¼ 2

bð1mÞ
∥ þ 2Bð1mÞ

∥ ‡ m2 ¼ 2

bð1mÞ
∥ þ Bð1mÞ

∥ − ~bð1mÞ m2 ¼ 0

bð1mÞ
⊥ − Bð1mÞ

⊥ m2 ¼ 0

V1 ¼ HðlmÞ
ρ
ρ − 8 ~Bð1mÞ

∥ − 4bð1mÞ m2 ¼ 0

V 0
3 ¼ 4bð1mÞ þ πð1mÞ‡ m2 ¼ 0

The modes labeled with ‡ are generalized eigenvectors.
The m2 ¼ 2 mode is just the l ¼ 1 version of the gener-

alized state bð1mÞ
∥ þ lðlþ 1ÞBð1mÞ

∥ already present for l ≥ 2.

V 0
3 ¼ 4bð1mÞ þ πð1mÞ is the mode particular to l ¼ 1 that

was discussed above.
As we have stressed we must take care not to

overcount the modes with m2 ¼ 0 that arise from
dualization of a 2D vector to a 2D scalar. In order to
illuminate the issue that may arise we consider the coupled

system of Bð1mÞ
μ , bð1mÞ

μ , and ~bð1mÞ prior to dualization. The
equations of motion (4.15), (4.19), and (4.22) can be
presented as

ð∇2
A þ 1Þðbð1mÞ

μ − Bð1mÞ
μ Þ ¼ 2∇μ

~bð1mÞ; ð4:53Þ
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ð∇2
A − 5Þðbð1mÞ

μ þ 2Bð1mÞ
μ Þ ¼ −4∇μ

~bð1mÞ; ð4:54Þ

ð∇2
A − 2Þ ~bð1mÞ ¼ 2∇μBð1mÞ

μ : ð4:55Þ

Upon dualization to 2D scalars the right-hand side of
(4.53) is manifestly longitudinal so for the perpendicular

component ðbð1mÞ
⊥ − Bð1mÞ

⊥ Þ only the left-hand side remains.
Taking the curvature terms into account we find that this
mode is massless, as indicated in the table. However, recall
that in (2.12) we explicitly defined dualization of a 2D
vector such that dual components do not satisfy the
harmonic condition. This mode is therefore disallowed

except if the longitudinal mode ðbð1mÞ
∥ − Bð1mÞ

∥ Þ is massless
as well. In that event the two modes are interpreted
together as a single harmonic mode. This harmonic mode
forces vanishing ~bð1mÞ and this in turn decouples the

vector mode ðbð1mÞ
μ þ 2Bð1mÞ

μ Þ. We interpret the massless

ðbð1mÞ
⊥ − Bð1mÞ

⊥ Þ as a harmonic mode in this strong
sense.
We next consider the gauge conditions at l ¼ 1

Hð1mÞ
þ − 2 ~Bð1mÞ

∥ −
1

2
πð1mÞ ¼ 0; ð4:56Þ

1

2
Hð1mÞ

× − ~Bð1mÞ
⊥ ¼ 0; ð4:57Þ

bð1mÞ
∥ þ 2Bð1mÞ

∥ − ~bð1mÞ ¼ 0: ð4:58Þ

4 ~Bð1mÞ
∥ þ 2bð1mÞ −

1

2
HðlmÞ

ρ
ρ ¼ 0; ð4:59Þ

∇μBð1mÞ
μ ¼ 0: ð4:60Þ

With the exception of (4.60), these are the continuations
to l ¼ 1 of the higher l conditions (4.45)–(4.49). The
derivation of (4.60) is different from the one of (4.49) only
in that the equations of motion were not used to simplify it
so we simply revert to (4.40).
If we proceed to dualize the gauge condition (4.60) we

find that Bð1mÞ
∥ is harmonic which we have disallowed. Thus

Bð1mÞ
∥ ¼ 0 and so the condition (4.58) becomes a condition

on the massless mode bð1mÞ
∥ þ Bð1mÞ

∥ − ~bð1mÞ in addition to

the massive mode bð1mÞ
∥ þ 2Bð1mÞ

∥ − ~bð1mÞ.

On the other hand we may dualize Bð1mÞ
μ to the true

harmonic mode that is shared between Bð1mÞ
∥ and Bð1mÞ

⊥ .
This mode satisfies the gauge condition since in this sector

we have the constraint ðbð1mÞ
μ þ 2Bð1mÞ

μ Þ ¼ 0 and so Bð1mÞ
μ

has vanishing divergence as well as vanishing curl.

Gauge Violating Modes Mass

Hð1mÞ
þ − 2 ~Bð1mÞ

∥ − 1
2
πð1mÞ m2 ¼ 4

Hð1mÞ
× − 2 ~Bð1mÞ

⊥ m2 ¼ 4

bð1mÞ
∥ þ 2Bð1mÞ

∥ − ~bð1mÞ m2 ¼ 2

4 ~Bð1mÞ
∥ þ 2bð1mÞ − 1

2
HðlmÞ

ρ
ρ m2 ¼ 0

bð1mÞ
∥ þ Bð1mÞ

∥ − ~bð1mÞ m2 ¼ 0

The 5 towers of modes that we project out due to the
gauge conditions are themselves gauge invariant. Among
the remaining 7 towers there are 5 that we can present as
pure gauge. The longitudinal modes are

Longitudinal Modes Mass Symmetry variation

4 ~Bð1mÞ
∥ þ πð1mÞ m2 ¼ 4 4ξð1mÞ

∥

4 ~Bð1mÞ
⊥ m2 ¼ 4 4ξð1mÞ

⊥
bð1mÞ
∥ þ 2Bð1mÞ

∥ m2 ¼ 2 λð1mÞ þ 2ξð1mÞ

4bð1mÞ þ πð1mÞ m2 ¼ 0 −6ζð1mÞ

bð1mÞ
⊥ − Bð1mÞ

⊥ m2 ¼ 0 2ξð1mÞ

The modes in the third and fourth line were generalized
eigenvectors before gauge conditions were imposed but
they are now true eigenvectors.
The fifth line refers to the harmonic mode that can be

presented either perpendicular or longitudinal form. The
longitudinal form can obviously be presented as a pure
diffeomorphism. However, the parameter ξ is itself
harmonic for l ¼ 1 so this symmetry can also be recast
in perpendicular form. These presentations are entirely
equivalent.
The fourth and fifth line in the table both correspond to

modes generated by S2 diffeomorphisms (with a compen-
sating gauge transformation to keep λð1mÞ þ 2ξð1mÞ fixed).
Neither of these l ¼ 1 modes are smooth continuations of
the towers that apply for larger values of l. The last one is
the mode that is physical if it is harmonic since then it is
formally pure gauge but with non-normalizable gauge
function.
The two remaining towers of modes satisfy the gauge

conditions and they are not pure gauge. The gauge invariant
form of these physical towers are the continuations from
higher l:

Physical Modes Mass

πð1mÞ − 2bð1mÞ m2 ¼ 6
bð1mÞ
⊥ þ 2Bð1mÞ

⊥ m2 ¼ 6

F. l ¼ 0 modes

The l ¼ 0 sector is the truncation of gravity and a vector
field to the spherically symmetric sector. It is instructive to
analyze this sector in detail.
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Prior to any dualization the 2D field content is the 2D

graviton Hð00Þ
fμνg, the AdS2 volume mode Hð00Þ

ρ
ρ, the S2

volume mode πð00Þ, and the 2D gauge field bð00Þμ . There is a
total of 6 component fields. The three continuous sym-
metries generated by gauge symmetry λð00Þ and the AdS2
diffeomorpisms ξð00Þμ are each expected to gauge one
component field away and require another to vanish due
to a constraint. Thus we expect no physical degrees of
freedom in the l ¼ 0 sector.
We first consider the equations of motion

ð∇2
A þ 1Þbð00Þμ ¼ 0; ð4:61Þ

ð∇2
A þ 2ÞHð00Þ

fμνg ¼ 0; ð4:62Þ

ð∇2
A − 2Þπð00Þ ¼ 0; ð4:63Þ

ð∇2
A − 2ÞHð00Þ

ρ
ρ þ 4πð00Þ ¼ 0: ð4:64Þ

There is no mixing between the gauge field bð00Þμ and the
gravity modes so we can treat them separately.
The gauge field sector is simply 2D QED. Dualizing the

scalars as in (2.9) the gauge fixed equation of motion (4.61)
amounts to two harmonic equations for the dualized scalars

bð00Þ∥ and bð00Þ⊥ .

∇2
Ab

ð00Þ
∥ ¼ ∇2

Ab
ð00Þ
⊥ ¼ 0: ð4:65Þ

Once again, recall that we define the scalars dual to vector
fields requiring that they do not satisfy the harmonic
condition (2.12). Both these modes therefore vanish on
shell. However, since the equations of motion coincides

with the harmonic equation, the harmonic mode bð00Þμ0 ¼
∇μb

ð00Þ
0 does in fact satisfy the equations of motion. This is

special to the l ¼ 0 sector.
We proceed similarly for the gravity modes described by

the symmetric traceless tensor Hð00Þ
fμνg. We must again take

extra care when dualizing. According to (4.25) we can

dualize to two scalars Hð00Þ
þ ; Hð00Þ

× which cannot satisfy the
generalized harmonic condition

∇2
Að∇2

A − 2ÞX ¼ 0; ð4:66Þ

and one harmonic scalar Hð00Þ
0 that must satisfy this

equation.

Inserting the expansion (4.25) ofHð00Þ
fμνg into (4.62)we find

that the equationsofmotion for the twodual scalarsHð00Þ
þ and

Hð00Þ
× are precisely the generalized harmonic condition.

These modes must therefore must vanish on shell.
However, again we find that since the equations of

motion coincide with the harmonic equation, the harmonic

mode Hð00Þ
fμνg ¼ ∇fμ∇νgH

ð00Þ
0 with Hð00Þ

0 satisfying (4.66)
does in fact satisfy the equations of motion.
The remaining two modes are Hð00Þ

ρ
ρ and πð00Þ. These

are already scalars so we do not have to worry about any
dualization. The equations of motion (4.63)–(4.64) indicate
that these scalars have m2 ¼ 2. Indeed, they are equivalent
to a single “weight-two” scalar with m2 ¼ 2 and satisfying

ð∇2
A − 2Þ2Hð00Þ

ρ
ρ ¼ 0: ð4:67Þ

Either way, both these scalars remain after the gauge fixed
equations of motion are imposed.
Summarizing so far, the fields that are on-shell at l ¼ 0

are the harmonic scalar bð00Þ0 dual to the 2D gauge field, the

generalized harmonic scalar Hð00Þ
0 dual to the traceless

symmetric tensor, and the two scalars Hð00Þ
ρ
ρ and πð00Þ

with m2 ¼ 2.
The 4D gauge condition for diffeomorphisms (4.37)

simplifies at l ¼ 0 to

∇μHð00Þ
fμνg ¼

1

2
∇νπ

ð00Þ: ð4:68Þ

We insert (4.28) into (4.68), giving the condition

∇μð∇2
A − 2ÞHð00Þ

0 ¼ 1

2
∇νπ

ð00Þ; ð4:69Þ

We can contract with ∇ν and find ∇2
Aπ

ð00Þ ¼ 0 in view of

the generalized harmonic condition onHð00Þ
0 . This conflicts

with the equation of motion (4.63) so we conclude that
πð00Þ ¼ 0 after the equations of motion and the gauge
condition have been imposed. Further, the gauge condition

(4.69) then projects on to the m2 ¼ 2 component of Hð00Þ
0 .

The dualization of the on-shell physical fields Hð00Þ
fμνg and

bð00Þμ manifestly presents them as pure gauge. The AdS2-
volume Hð00Þ

ρ
ρ mode is also pure gauge with gauge

function chosen such that

Hð00Þ
ρ
ρ ¼ 2∇ρξ

ρð00Þ: ð4:70Þ

SinceHð00Þ
ρ
ρ hasm2 ¼ 2 the harmonic component of ξρð00Þ

can play no role here. We dualize ξð00Þρ ¼ ∇ρξ
ð00Þ
∥ where

ξð00Þ∥ also has m2 ¼ 2 as already found in (4.51). We
therefore have

Hð00Þ
ρ
ρ ¼ 2∇2

Aξ
ð00Þ
∥ ¼ 4ξ∥: ð4:71Þ

on-shell. In particular, it is manifest that all normalizable
Hð00Þ

ρ
ρ are generated by normalizable gauge functions.

In summary, the only physical modes at l ¼ 0 are the

harmonic modes bð00Þ0 , Hð00Þ
0 . These modes are pure gauge
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so we find that in this sector gauge symmetries remove all
fields (at least formally). This is the expected result.

G. Boundary modes

As we have stressed, special care must be taken when the
dualization of vector or tensor fields gives rise to har-
monic modes.
An important example of this situation is a 2D vector

field that satisfies (2.13)

ð∇2
A þ 1ÞCμ ¼ 0; ð4:72Þ

since then the dual scalar field X satisfies the harmonic
equation ∇2

AX ¼ 0. In this case the gradient and curl
versions of dualization are equivalent so only one of these
configurations should be counted.
There are three 2D vector fields in our setting. Their

equations of motion simplify when we focus on harmonic
fields since those are divergence free and so their couplings
to gradients of scalars can be consistently ignored. With
these simplifications (4.21) becomes

ð∇2
A − lðlþ 1Þ þ 1Þ ~BðlmÞ

μ ¼ 2 ~Bμ; ð4:73Þ

and (4.15), (4.22) combine to

ð∇2
A − lðlþ 1Þ þ 1Þ

�
BðlmÞ
μ

bðlmÞ
μ

�
¼
�

2 2

2lðlþ 1Þ 0

��
BðlmÞ
μ

bðlmÞ
μ

�
:

ð4:74Þ

We must in addition consider the 2D tensor HðlmÞ
fμνg with

equations of motion (4.17).
For bulk modes we define mass as the value needed to

satisfy the on-shell condition ð−∇2
A þm2ÞX ¼ 0 with the

understanding that eventually we will go off-shell and
consider all eigenvalues of the AdS2 Laplacian −∇2

A.
This strategy fails for boundary modes since the harmonic
equation determines the AdS2 wave function completely
from the outset and so the only option will be to go
off-shell on S2. We will instead record the spectrum of
boundary modes as the eigenvalue of the harmonic operator

ð∇2
A þ 1ÞCμ ¼ m2Cμ for vectors and ð∇2

A þ 2ÞHðlmÞ
fμνg ¼

m2HðlmÞ
fμνg for tensors. For boundary modes the “mass”

becomes a measure of the distance off-shell along S2.
With this terminology we find the spectrum

Boundary Mode Mass Range

~BðlmÞ
μ m2 ¼ lðlþ 1Þ þ 2 l ¼ 1; 2…

bðlmÞ
μ − lBðlmÞ

μ m2 ¼ lðl − 1Þ l ¼ 0; 1…
bðlmÞ
μ þ ðlþ 1ÞBðlmÞ

μ m2 ¼ ðlþ 1Þðlþ 2Þ l ¼ 1; 2…
HðlmÞ

fμνg m2 ¼ lðlþ 1Þ l ¼ 0; 1…

ξðlmÞ
μ , cðlmÞ

μ , ~cðlmÞ
μ m2 ¼ lðlþ 1Þ þ 2 l ¼ 0; 1…

The symmetries of the theory include the tower of 2D

diffeomorphisms ξðlmÞ
μ . These are 2D vectors so their

dualization is also delicate. The residual symmetries
remaining after gauge fixing satisfy (4.51), which serves
as their equation of motion. We have included these modes

in our table along with the ghosts cðlmÞ
μ and antighosts

~cðlmÞ
μ that satisfy the same equations of motion.
We have not yet specified which modes violate the gauge

conditions nor have we determined which modes are pure
gauge. In the BRST formalism both of these are anyway
canceled by the ghosts and antighosts. The net effect is that
the last line in the table (one tower of modes and two ghost
towers) cancel the first line in the table (one tower of modes)
except for one mode at l ¼ 0 that counts with negative sign.
The l ¼ 0 is the spherical reduction of Einstein-Maxwell
which is known to have confusing features in AdS2 × S2. In
the present setup there is −1 mode at l ¼ 0 as one expects
from an overconstrained system [30].
We can be more explicit about this. When the 2D

diffeomorphisms ξðlmÞ
μ are harmonic they can be dualized

to a massless scalar that is not normalizable but such that
the vector field itself is normalizable and therefore gen-
erates a true symmetry. We can use this symmetry to gauge
away the metric components hμα with mixed indices on
AdS2 and S2. This justifies a physical on-shell approach

that simply omits ~BðlmÞ
μ and ξðlmÞ

μ from the outset and never
introduces ghosts.
In AdS2 the effective mass is related to conformal weight

throughm2 ¼ hðh − 1Þ. We find that all physical boundary
modes have integral conformal weights.

The dualization of the tensor HðlmÞ
fμνg is less familiar. The

harmonic tensors introduced in (4.25) are formally puregauge
generated by a diffeomorphism that can bedualized to a scalar
H0 that satisfies ∇2

Að∇2
A − 2ÞH0 ¼ 0. We can interpret such

scalar field as two independent scalars with masses m2 ¼ 0

and m2 ¼ 2. The m2 ¼ 0 component corresponds to non-
normalizable scalars that generate a normalizable diffeo-
morphism. These are precisely the boundarymodes that were
cancelled two paragraphs ago. On the other hand, them2 ¼ 2
component corresponds to non-normalizable scalar modes
that generate non-normalizable diffeomorphisms Vμ.
However, these non-normalizable diffeomorphisms in turn
generate normalizable tensors Hfμνg ¼ ∇μVν −∇νVμ −
gμν∇λVλ. These are physical fields on AdS2 even though
they are formally pure gauge. As we discuss in Appendix B,
the summation over allmodes again produces a volume factor
but also amultiplicity factor of three. The tensor thushas three
boundary modes.
The m2 ¼ 2 condition on the scalars H0 imply that the

non-normalizable vector modes Vμ satisfy

ð∇2
A − 1ÞVμ ¼ 0: ð4:75Þ
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Interestingly, the definition of conformal killing vectors on
AdS2 imply this equation. However, the CKVs are pre-

cisely those that generate a trivial HðlmÞ
fμνg so the non-

normalizable vector modes Vμ are the solutions to (6.1)
that are not CKVs on AdS2.
We introduced the notion of mass for boundary modes as

a measure of off-shellness on S2. Thus only the m2 ¼ 0

modes are truly on-shell. In the bðlmÞ
μ − lBðlmÞ

μ tower l ¼ 0 is
the mode that is formally pure gauge but with non-
normalizable gauge function. For l ¼ 0 this mode does
not mix with gravity and so “gauge” really refers to the
gauge field and the problem reduces to the spectator vector
field discussed in Sec. 2. The l ¼ 1mode in the same tower
is also massless and again it is formally pure gauge with
non-normalizable gauge function. However, the symmetry
is a 2D diffeomorphism accompanied by a compensating

gauge transformation such that bð1mÞ
μ þ 2Bð1mÞ

μ is fixed.
Specifically this mode is the conformal killing vector
∇αYð1mÞ on S2 with a compensating gauge transformation
so the gauge field aα is left invariant.

The analogous relation between l ¼ 0 tensors Hð00Þ
fμνg and

2D diffeomorphisms was discussed above so all the on-shell
boundary modes are related to symmetries. These modes
were all previously identified in the discussion of the special
cases l ¼ 1 and l ¼ 0. We can interpret the full towers of
boundary modes as the off-shell realization of these sym-
metries. This extrapolation to general partial wave number l
is nontrivial because of mixing between modes.

V. QUANTUM CORRECTIONS TO
ADS2 × S2 - BOSONIC SECTOR

Quantum corrections depend only on the spectrum rather
than the explicit modes. We consider in turn the contribu-
tions from the physical states, the unphysical states, the
boundary modes, and the zero modes. We then add the
contributions to find the complete heat kernel.

A. Physical states

The physical spectrum is

Mass Multiplicity Range

m2 ¼ lðl − 1Þ 2 l ¼ 2; 3…
m2 ¼ ðlþ 1Þðlþ 2Þ 2 l ¼ 1; 2…

In each entry the mass refers to the value of m2 such that
ð−∇2

A þm2ÞX ¼ 0 is the on-shell condition. The bulk result
we present agrees with [31–33].2 Quantum corrections
necessarily consider modes that are off-shell. For modes
with m2 ¼ 0 there is a continuous spectrum off-shell with
eigenvalues λ ≥ 1

4
for the Euclidean operator ð−∇2

AÞ. The

contributions from this continuous spectrum on AdS2 is
encoded in theAdS2 heat kernel (3.3).We subsequently sum
over the four towers of modes on S2 using (3.4). This gives

Kbulk;b
4 ðsÞ¼ 2Ks

AðsÞ ·
1

4πa2
·

�X∞
l¼2

e−slðl−1Þð2lþ1Þ

þ
X∞
l¼1

e−sðlþ2Þðlþ1Þð2lþ1Þ
�

¼Ks
AðsÞ ·

1

πa2

�X∞
l¼0

e−slðlþ1Þð2lþ1Þ−1−
1

2
e−2s

�

¼ 1

4π2a4s2

�
1−

3

2
sþ137

90
s2þ���

�
ð5:1Þ

B. Unphysical states

The full spectrum of modes include some that violate the
gauge condition and others that are pure gauge. These two
groups of modes coincide precisely. Each has the spectrum

Mass Multiplicity Range

m2 ¼ lðlþ 1Þ þ 2 2 l ¼ 0; 1…
m2 ¼ lðlþ 1Þ 1 l ¼ 0; 1…
m2 ¼ lðlþ 1Þ − 2 2 l ¼ 1; 2…

In our physical quantization scheme we simply omit
these modes. They are not allowed even virtually so they do
not run in loops.
In standard covariant quantization we would instead

impose the gauge condition and then argue using Ward
identities that the pure gauge modes decouple. The upshot
will be that indeed these states give no net contribution to
the quantum corrections. This structure is of course
expected but our construction provides explicit details.
Similarly, in BRST quantization we allow all the modes

and then include b and c-ghosts that contribute with
opposite sign. These ghost modes will have exactly the
same spectrum because they are essentially the pure gauge
modes (and their dual constraints). Again there will be no
net contribution to the quantum corrections.
The unphysical modes with m2 ¼ 0 are special and they

are worth discussing. They are the harmonic gauge mode
bð00Þ0 , the conformal killing vector on S2 generated by ζð1mÞ
and the killing vector on S2 generated by ξð1mÞ. Each is a
harmonic mode ∇2

AX ¼ 0 on AdS2. The standard covariant
quantization above implicitly realizes each of these har-
monic modes in both their gradient and curl form. In the
off-shell theory these two forms are not equivalent so the
two members of the pair are distinct field configurations.
Each is equivalent to a massless scalar and the two
contributions cancel just as they do for higher l.
The harmonic modes and the Killing Vector on S2

ultimately give boundary states and thosewe treat differently
(in the next subsection).Onemay therefore object as amatter
of principle that the harmonic modes should not be included

2Except that we find the S2 volume mode πð00Þ to be
unphysical. This discrepancy was stressed in [3].
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among the unphysical modes. This question is an ambiguity
in the quantization scheme that does not have a “correct”
resolution since no physical quantity will depend on it.

C. Boundary modes

Each boundary mode receives the constant contribution
(3.8) from the AdS2 part. This must be multiplied by the S2

tower using (3.4). The harmonic modes from the two

mixed/gravity towers bðlmÞ
μ ; BðlmÞ

μ combine to give

Kmix bndy;b
4 ðsÞ ¼ 1

2πa2
·

1

4πa2
·

�X∞
l¼0

e−slðl−1Þð2lþ 1Þ

þ
X∞
l¼1

e−sðlþ2Þðlþ1Þð2lþ 1Þ
�

¼ 1

8π2a4

�
2
X∞
l¼0

e−slðlþ1Þð2lþ 1Þ þ 2− e−2s
�

ð5:2Þ

The harmonic modes from pure gravity reside in the tensors
Hfμνg (which count with weight three) and in the almost

cancelling towers ~BðlmÞ
μ ; ξðlmÞ

μ . These contributions combine
to give

Kgrav bndy;b
4 ðsÞ ¼ 1

2πa2
·

1

4πa2
·

�
3
X∞
l¼0

þ
X∞
l¼1

e−2s

−
X∞
l¼0

e−2s
�
ð2lþ 1Þe−slðlþ1Þ

¼ 1

8π2a4

�
3
X∞
l¼0

ð2lþ 1Þe−slðlþ1Þ − e−2s
�
:

ð5:3Þ
The sum of contributions from all bosonic boundary modes
becomes

Kbndy;b
4 ðsÞ ¼ 1

8π2a4

�
5
X∞
l¼0

ð2lþ 1Þe−slðlþ1Þ þ 2 − 2e−2s
�

¼ 1

8π2a4s
· 5

�
1þ 1

3
sþ 13

15
s2 þ � � �

�
: ð5:4Þ

Ultimately we only need the first two orders. At that
precision the boundary modes are equivalent to five free
scalar fields on S2. The addition of 2 − 2e−2s in the exact
result introduces corrections at higher order.

D. Zero modes

Zero-modes are on-shell boundary modes. They are
(i) The pure gauge mode bð00Þμ .

(ii) The modes bð1mÞ
μ − Bð1mÞ

μ (with compensating gauge

transformation so bð1mÞ
μ þ 2Bð1mÞ

μ is fixed) are due to

Killing vectors on S2. These are in the l ¼ 1 sector
so there are 2lþ 1 ¼ 3 modes of this kind.

(iii) The on-shell modes Hð00Þ
μν are generated by 2D

diffeomorphisms on AdS2. The sum over these
modes give a multiplicy factor of 3.

The zero-modes require special considerations because
they are not damped in the Euclidean path integral. As
explained in detail by Sen and collaborators, they can be
incorporated by a change of variable to the corresponding
symmetry parameter [21,34,35]. For gauge symmetry it
turns out that the naive treatment is correct but for diffeo-
morphisms the zero modes were undercounted by a factor
of two. Each of our 3þ 3 ¼ 6 zero modes that are due to
gravity already contributed 1

8π2a4 but this should be multi-
plied by two. This correction contributes

Kzm;b
4 ¼ 1

8π2a4
· 6; ð5:5Þ

to the heat kernel.

E. Summary

Adding contributions from bulk (4D), boundary (2D),
and the zero-modes (0D) we find

Kb
4ðsÞ ¼

1

4π2a4s2

�
1þ sþ 241

45
s2 þ � � �

�
: ð5:6Þ

as the total contributions from bosonic modes.

VI. SUPERGRAVITY IN
ADS2 × S2 - FERMIONIC SECTOR

In this section we analyze the two gravitini in N ¼ 2
supergravity in AdS2 × S2. We derive the equations of
motion in AdS2 point of view via a partial wave expansion
and diagonalize them. Only then do we fix the gauge and
identify longitudinal states.

A. 4D theory

The matter content is a pair of Majorana gravitino fields
ΨIA, where A ¼ 1; 2 is an R index. The action for the 4D
gravitini is

L ¼ −Ψ̄AIΓIJKDJΨAK

þ 1

2
Ψ̄AI

�
FIJ
AB þ 1

2
ΓIJKLFAB;KL

�
ΨBJ: ð6:1Þ

We do not bother matching upstairs and downstairs
indices when summing over A;B. We work with a mag-
netic background that couples differently to each of the
4D gravitini, so we incorporate index structure in
A;B: Fαβ

AB ¼ 2ϵABϵ
αβ.
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The supersymmetry that leaves the Lagrangian (6.1)
invariant is

δΨAI ¼
�
δABDI −

1

4
F̂ABγI

�
θB; ð6:2Þ

for some arbitrary spinor θB.
We vary the Lagrangian to obtain the 4D equation of

motion,

ΓIJKDJΨAK −
1

2

�
FIJ
AB þ 1

2
ΓIJKLFAB;KL

�
ΨJB ¼ 0: ð6:3Þ

We split the AdS2 and S2-components of the equations of
motion, rewrite them in terms of the 2D gamma matrices
γμ; γα, and use the expression for the background field
strength. Our conventions are summarized in Appendix C.
The result is

γμν ⊗ γαDνΨAα − γμν ⊗ γαDαΨAν þ γμ ⊗ γαβγSDαΨAβ þ iγμν ⊗ γSϵABΨBν ¼ 0;

γμ ⊗ γαβγSDβΨAμ − γμDμ ⊗ γαβγSΨAβ þ γμνDμ ⊗ γαΨAν − ϵABϵ
αβΨBβ ¼ 0: ð6:4Þ

Each term is written explicitly as a tensor product to stress
that the gamma matrices in AdS and the sphere are in
different Clifford algebras and therefore commute. The
matrix γS is the sphere analog of Γ5.

B. Partial wave expansion

We denote spherical spinors with definite angular
momentum quantum number ηðσlmÞ. The index σ ¼
� labels the two components of ηðσlmÞ. A complete set
of complex spinors on S2 is then given by ηðσlmÞ and
γSηðσlmÞ satisfying [36,37]

γαDαηðσlmÞ ¼ iðlþ 1ÞηðσlmÞ;

l ¼ 0; 1… ð6:5Þ

We expand the gravitino wave function in spinor spherical
harmonics according to

ΨAμ ¼ ΨðσlmÞ
þAμ ⊗ ηðσlmÞ þΨðσlmÞ

−Aμ ⊗ γSηðσlmÞ; ð6:6Þ

ΨAα ¼ ΨðσlmÞ
þA ⊗ DðαÞηðσlmÞ þΨðσlmÞ

−A ⊗ DðαÞγSηðσlmÞ

þ χðσlmÞ
þA ⊗ γαηðσlmÞ þ χðσlmÞ

−A ⊗ γαγSηðσlmÞ: ð6:7Þ

We expanded the vector index on the gravitino along the
sphere in the basis

DðαÞηðσlmÞ; γαηðσlmÞ; ð6:8Þ

where

DðαÞ ¼ Dα −
1

2
γαγ

βDβ: ð6:9Þ

The spinors DðαÞηðσlmÞ and γαηðσlmÞ pick out the spin-3=2
part and the spin-1=2 part of the Rarita-Schwinger field on
S2. The spin-3=2 part is not defined for l ¼ 0 so the AdS2
field Ψ�A is only defined for l ≥ 1.
Complex conjugation is given by

η�ðσlmÞ ¼ iσγSηð−σlmÞ: ð6:10Þ

The 4D fields ΨIA are Majorana and thus (6.10) gives the
conjugation property

ðΨðσlmÞ
�μA Þ� ¼ ∓iσΨð−σlmÞ

∓μA : ð6:11Þ

The components Ψ�A and χ�A transform analogously.

C. Equations of motion: 2D theory

We now insert the spinor harmonic expansion (6.6) and
(6.7) into the 4D equations of motion (6.4). We drop the
spinor harmonic indices ðσlmÞ to simplify the notation.
We contract the I ¼ μ equation of motion in (6.4) with

γρμ then insert the expansion in spinor harmonics.

0 ¼
�
2Dμχ−A þ iðlþ 1ÞΨ−μA þ 1

2
ððlþ 1Þ2 − 1ÞγμΨþA þ iðlþ 1ÞγμχþA þ iϵABΨþμB

�
⊗ γSη

þ
�
2DμχþA − iðlþ 1ÞΨþμA þ 1

2
ððlþ 1Þ2 − 1ÞγμΨ−A − iðlþ 1Þγμχ−A þ iϵABΨ−μB

�
⊗ η: ð6:12Þ

There is an obvious redundancy in this equation, since the first line is related to the second through complex conjugation.
We multiply (6.12) by ðγSηÞ† and integrate over the sphere coordinates to find

0 ¼ 2Dμχ−A þ iðlþ 1ÞΨ−μA þ 1

2
ððlþ 1Þ2 − 1ÞγμΨþA þ iðlþ 1ÞγμχþA þ iϵABΨþμB: ð6:13Þ
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These are the 2D equations ofmotion.We could alternatively
have multiplied by η† and kept the second line of (6.12).
The procedure is repeated for the I ¼ α equations of

motion [the second equation in (6.4)]. The difference is that
the sphere dependent part now carries a vector index.We find

0 ¼ ð−γμΨþAμ þ γμDμΨþA þ iϵABΨþBÞ ⊗ DðαÞγSη

þ ð−γμΨ−Aμ þ γμDμΨ−A þ iϵABΨ−BÞ ⊗ DðαÞη

þ
�
−
i
2
ðlþ 1ÞγμΨþAμ þ γμDμχþA þ γμνDμΨ−Aν

þ iϵABχþB

�
⊗ γαγSηþ

�
i
2
ðlþ 1ÞγμΨ−Aμ þ γμDμχ−A

þ γμνDμΨþAν þ iϵABχ−B

�
⊗ γαη: ð6:14Þ

The operators DðαÞ and γα are orthogonal so we can project
(6.14) and integrate over the sphere degrees of freedom,

0¼−
i
2
ðlþ1ÞγμΨþAμþ γμDμχþAþ γμνDμΨ−Aνþ iϵABχþB

ð6:15Þ

0 ¼ 1

2
½ðlþ 1Þ2 − 1�½−γμΨþAμ þ γμDμΨþA þ iϵABΨþB�:

ð6:16Þ
The prefactor ½ðlþ 1Þ2 − 1� in (6.16) stresses that this
equation does not apply for l ¼ 0. It is analogous to the
overall factors of lðlþ 1Þ present in some the bosonic sector
equations of motion that were not defined at l ¼ 0.
The complete equations of motion in AdS2 are (6.13),

(6.15), and (6.16). We will work for now with l ¼ 1; 2….
The l ¼ 0 components will be treated separately.
In order to decouple our equations of motion we define

the combinations

Ψ̂μA ¼ ΨþμA − iΨ−μA;

Ψ̂A ¼ ΨþA − iΨ−A;

χ̂A ¼ χþA − iχ−A; ð6:17Þ
and the conjugate fields

~ΨμA ≡ΨþμA þ iΨ−μA; ð6:18Þ

with analogous relations defining Ψ̂A and χ̂A.
Complex conjugation in this basis is given by

ðΨ̂ðσlmÞ
μA Þ� ¼ −σ ~Ψð−σlmÞ

μA : ð6:19Þ
Where we restored the harmonic indices temporarily. The
fields ~ΨμA are related to Ψ̂μA via complex conjugation
according to (6.17). The fields ~ΨμA present no new
information.

By inspection of the equations of motion we see that the
2D Rarita-Schwinger field ΨμA is dependent on the fields
ΨA and χA. Hence, we use (6.13) to expressΨμA in terms of
the othermodes and simplify the remaining equations (6.15)
and (6.16).
Recall that the index A takes two values, and for each

field such as ΨþμA there is a complex conjugate Ψ−μA.
Thus, we are looking into four vector valued equations. It is
somewhat tedious yet straightforward to write all four
equations in components then solve for each Ψ�μA. The
result in the basis (6.17) is

Ψ̂μA ¼ −i
1 − ðlþ 1Þ2 ð−iðlþ 1ÞδAB þ ϵABÞ

×
�
−2iDμ ~χB −

1 − ðlþ 1Þ2
2

γμΨ̂B þ iðlþ 1Þγμ ~χB
�
;

ð6:20Þ

and similarly for the conjugate field ~ΨμA. We will refer to
(6.20) as the Rarita-Schwinger constraint. Note that it
cannot be continued to l ¼ 0 which we study separately.
We now insert the Rarita-Schwinger constraint (6.20)

into the equations of motion (6.15) and (6.16). The first
order derivative in (6.20) is acted on by further derivatives
but the resulting second order term appears as a commu-
tator that reduces to a curvature factor. The resulting
equations are therefore of first order:

ðγμDμ − ðlþ 1ÞÞ

×

�
Ψ̂A þ 2

ðlþ 1Þ2 − 1
ðiðlþ 1ÞδAB − ϵABÞ~χB

�
¼ 0;

ð6:21Þ

ðγμDμ − ðlþ 1ÞÞðiðlþ 1ÞδAB − ϵABÞ

×

�
2Ψ̂B þ 1

ðlþ 1Þ2 − 1
ðiðlþ 1ÞδBC − ϵBCÞ~χC

�
¼ 0:

ð6:22Þ

The operator ðiðlþ 1ÞδAB − ϵABÞ can be inverted for l ≠ 0,
so we can decouple these into Dirac equations for Ψ̂A
and ~χA:

ðγμDμ − ðlþ 1ÞÞΨ̂A ¼ 0;

ðγμDμ − ðlþ 1ÞÞ~χA ¼ 0: ð6:23Þ

The conjugate equations similarly give

ðγμDμ þ ðlþ 1ÞÞ ~ΨA ¼ 0;

ðγμDμ þ ðlþ 1ÞÞχ̂A ¼ 0: ð6:24Þ

At this point we have successfully decoupled all equations
of motion with no constraints or gauge condition imposed.
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D. Dualization

We showed above that the field Ψ̂μA is not independent
from the spinors Ψ̂A and ~χA. However, we are going to fix a
gauge and study supersymmetry variations that involve
components of Ψ̂μA. So instead of throwing away the
vector-spinors Ψ̂μA we will dualize them into spinors in
order to more precisely work with the Rarita-Schwinger
constraint (6.20), gauge conditions, and variations.
We dualize Ψ̂μA according to

Ψ̂μA ¼ DðμÞκ̂A þ γμτ̂A: ð6:25Þ

Where DðμÞ ¼ Dμ − 1
2
γμγ

νDν. An analogous dualization is

carried for ~ΨμA. Our field content is then the 16 compo-
nents: κ̂A, τ̂A, Ψ̂A, χ̂A, with A ¼ 1; 2 and their conjugates
with tildes.
We can recast the Rarita-Schwinger constraint (6.20) as

equations expressing the dual spinors introduced in (6.25)
to other field components:

κ̂A ¼ 2

1 − ðlþ 1Þ2 ðiðlþ 1ÞδAB − ϵABÞ~χB;

τ̂A ¼ −
i
2
ðiðlþ 1ÞδAB − ϵABÞΨ̂B;

~κA ¼ 2

1 − ðlþ 1Þ2 ðiðlþ 1ÞδAB þ ϵABÞχ̂B;

~τA ¼ i
2
ðiðlþ 1ÞδAB þ ϵABÞ ~ΨB: ð6:26Þ

This is the dual form of the result that we can eliminate half
of the initial field components and only work with the
components Ψ̂A, ~ΨA, χ̂A, ~χA. This formulation will be
useful in the following section.

E. Gauge violating, longitudinal, and physical states

We now impose Lorentz gauge on the on shell states we
found and then construct pure gauge states.
The Lorentz gauge condition is ΓIΨI ¼ 0. We write it in

terms of 2D gamma matrices, insert the expansion of ΨI in
spherical spinors, and dualize according to (6.25). The
gauge condition in terms of 2D spinors is

τ̂A − i~χA ¼ 0;

~τA þ iχ̂A ¼ 0: ð6:27Þ

We already have expressed τ̂A and ~τA in terms of other
fields in (6.26) so we can write the gauge condition in terms
of Ψ̂A; ~χA and their conjugates

~χA ¼ −
1

2
ðiðlþ 1ÞδAB − ϵABÞΨ̂B;

χ̂A ¼ −
1

2
ðiðlþ 1ÞδAB þ ϵABÞ ~ΨB: ð6:28Þ

After imposing the equations of motion and gauge
condition there are four field components: Ψ̂A,
~ΨA, A ¼ 1; 2.
We now look for pure gauge states. The supersymmetry

variations of the 4D Rarita-Schwinger fields ΨIA are
given by

δΨIA ¼
�
DIδAB −

1

4
ΓJKFJK

ABΓI

�
θB

¼
�
DIδAB þ i

2
ð1 ⊗ γSÞΓIϵAB

�
θB: ð6:29Þ

In order to compute the supersymmetric variation of each
modewe expand the spinor θA into partial waves in analogy
with (6.6)–(6.7),

θA ¼ θþA ⊗ ηþ θ−A ⊗ γSη; ð6:30Þ

and rewrite the � indices as the combinations θ̂A
and ~θA:

θ̂A ¼ θþA − iθ−A;

~θA ¼ θþA þ iθ−A: ð6:31Þ

Note that the procedure here is in complete analogy
with the bosonic sector: one writes the gauge variations
then expands the parameters in partial waves. The next
step is to find the constraints the gauge condition
imposes on the supersymmetric parameters, that is,
the residual gauge symmetry.
The preservation of the Lorentz gauge condition

ΓIΨI ¼ 0 constrains the 4D supersymmetric parameters
to satisfy

ΓI

�
DIδAB þ i

2
ð1 ⊗ γSÞΓIϵAB

�
θB ¼ 0: ð6:32Þ

Expression (6.32) is once again decomposed into 2D
conditions. The result are the constraints

ðγμDμ þ ðlþ 1ÞÞθ̂A ¼ 0;

ðγμDμ − ðlþ 1ÞÞ~θA ¼ 0: ð6:33Þ

The residual gauge symmetry has to satisfy (6.33) in
order not to violate the imposed gauge.
We compute the supersymmetric variations of the

dualized spinors in terms of the parameters θ̂A, ~θA, by
expanding both sides of (6.29) in spinor harmonics,
dualizing when needed, and comparing each variation in
the (6.31) basis. We get
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δκ̂A ¼ θ̂A;

δ~κA ¼ ~θA;

δτ̂A ¼ 1

2
ðγμDμδAB þ iϵABÞθ̂B;

δ~τA ¼ 1

2
ðγμDμδAB þ iϵABÞ~θB;

δΨ̂A ¼ θ̂A;

δ ~ΨA ¼ ~θA;

δχ̂A ¼ 1

2
ðiðlþ 1ÞδAB − ϵABÞ~θB;

δ~χA ¼ 1

2
ðiðlþ 1ÞδAB þ ϵABÞθ̂B: ð6:34Þ

We cannot remove Ψ̂A and ~ΨA with residual gauge trans-
formations since their equations of motion (6.23)–(6.24)
are inconsistent with (6.33).
As a clarifying example consider the 4D flat space case:

supersymmetry transformations are given by δΨI ¼ ∂Iθ
and the gauge condition γIΨI ¼ 0 requires θ to be massless.
One cannot turn on pure gauge modes with a massive
parameter θ since those would be gauge violating. An
analogous situation is happening here. We cannot gauge
away modes using the residual symmetry we have. Thus,
there are no longitudinal modes.
The modes Ψ̂A, ~ΨA with A ¼ 1; 2, l ≥ 1, and the masses

reported in (6.23), (6.24) satisfy the gauge condition and
are not gauge equivalent to vacuum. They are physical
modes. This result agrees with [3,33].

F. l ¼ 0 modes

In this section we analyze the l ¼ 0 sector. Two related
issues that are special to l ¼ 0 change the equations that
apply: the Ψ�A components of the gravitino are not defined
and also the equation of motion (6.16) does not apply. We
are therefore left with (6.13) and (6.15) which we write in
the “hat-tilde” basis as

−
i
2
γμΨ̂Aμ þ γμDμ ~χA þ iγμνDμΨ̂Aν þ iϵAB ~χB ¼ 0: ð6:35Þ

�
Dμ −

1

2
γμ

�
~χA ¼ 1

2
ðiδAB þ ϵABÞΨ̂μB: ð6:36Þ

There are also analogous expressions for the conjugate
field. Contracting these equations with the projection
operators ðiδAB � ϵABÞ we find

ðiδAB þ ϵABÞ
�
−
i
2
γμΨ̂Bμ þ iγμνDμΨ̂Bν þ ðγμDμ − 1Þ~χB

�
¼ 0; ð6:37Þ

ðiδAB þ ϵABÞ
��

Dμ −
1

2
γμ

�
~χB − iΨ̂Bμ

�
¼ 0: ð6:38Þ

ðiδAB − ϵABÞ
h
−
i
2
γμΨ̂Bμþ iγμνDμΨ̂BνþðγμDμ þ 1Þ~χB

i
¼ 0;

ð6:39Þ

ðiδAB − ϵABÞ
�
Dμ −

1

2
γμ

�
~χB ¼ 0: ð6:40Þ

We next impose Lorentz gauge in the form

γμΨ̂Aμ ¼ 2i~χA: ð6:41Þ

The gauge fixed gravitino equations then simplify to

ðiδAB � ϵABÞ
�
Dμ þ 1

2
γμ
�
Ψ̂Aμ ¼ 0: ð6:42Þ

We still have the equations of motion (6.38) and (6.40)
for ~χA.
In the sector with ðiδAB þ ϵABÞ projection the equation

of motion (6.38) and the gauge condition (6.41) combine
to give

ðiδAB þ ϵABÞðγμDμ þ 1Þ~χA ¼ 0: ð6:43Þ
Given a solution to this equation we can specify the
gravitino Ψ̂Aμ as in (6.38) and then the gauge condition
and the gravitino equation (6.42) are all satisfied. Thus
solutions to (6.43) parametrize the space of solutions to the
full equations. It can be shown that all these solutions are
pure gauge (up to normalization issues). We stress for later
that in the special case where ~χA vanishes the gravitino Ψ̂Aμ
vanishes as well.
The sector with ðiδAB − ϵABÞ projection is more

involved. Here (6.40) specifies ~χA as a Killing spinor in
AdS2 with mass þ1:

ðiδAB − ϵABÞðγμDμ − 1Þ~χA ¼ 0: ð6:44Þ

The gauge condition (6.41) [which we could represent in
terms of dual fields as in (6.27)] then gives the trace part of
the gravitino but the traceless part remains unspecified.
Rewriting the gravitino equation of motion (6.42) in terms
of the dual spinor κ̂A introduced in (6.25) we have

ðiδAB − ϵABÞð½ðγμDμÞ2 − 1�κ̂A − 4i~χAÞ ¼ 0: ð6:45Þ
Given the Killing spinor ~χA this equation permits a
particular solution for κ̂A. To this solution we can add
solutions to the homogenous equation which we can
represent as solutions to

ðiδAB − ϵABÞðγμDμ � 1Þκ̂A ¼ 0; ð6:46Þ
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with either sign. In the special case where ~χA vanishes the
traceless component of the gravitino is given by solutions to
these equations.
The lightest fermion masses �1 are special in that they

correspond to zero modes of the Dirac operator squared.
The Euclidean version of these modes do not comprise a
continuum of solutions of plane wave type but rather a
discrete set of modes which are necessarily non-normal-
izable. For this reason only the solutions with ~χA ¼ 0 are
physical. After this normalizability condition is imposed
the space of l ¼ 0 modes that satisfy the equations of
motion and the gauge condition reduces to the solutions of
(6.46). Although these fields are also non-normalizable
they are dual to physical gravitini

ðiδAB − ϵABÞΨ̂Aμ ¼ ðiδAB − ϵABÞDðμÞκ̂A

¼ ðiδAB − ϵABÞ
�
Dμ �

1

2
γμ

�
κ̂A; ð6:47Þ

that are normalizable in addition to satisfying the equation
of motion and the gauge condition. The κ̂A is such
that γμΨ̂Aμ ¼ 0.
We finally need to ask whether the remaining modes

(6.47) are longitudinal. The pure gauge modes are

ðiδAB − ϵABÞδΨ̂Bμ ¼ ðiδAB − ϵABÞ
�
Dμ þ

1

2
γμ

�
θ̂B: ð6:48Þ

with the residual SUSY transformation such that it pre-
serves the gauge condition

ðγμDμ þ 1Þθ̂A ¼ 0: ð6:49Þ

The mode that appears with upper sign in (6.46) is
therefore pure gauge with the field and the gauge
parameter coinciding κ̂A ¼ θ̂A as we expected from
(6.34). Since the gauge parameter is not normalizable
the corresponding gravitino is physical even though it is
formally pure gauge.
The mode that appears with lower sign in (6.47) is

similarly non-normalizable but corresponding to a normal-
izable gravitino. This mode is again formally pure gauge
but with a transformation parameter that does not satisfy the
condition (6.49) that the gauge is preserved. It is therefore
not pure gauge because the would-be gauge transformation
introduces a nonvanishing γμΨ̂Aμ. It is possible to instead
define a superconformal symmetry that leaves γμΨ̂Aμ
invariant and consider this mode pure gauge with respect
to this extended symmetry. Either way, it is a physical
boundary mode.
Recall that the computation in this subsection focused

for definiteness on the Ψ̂Aμ, ~χA field components. It can be
repeated for the conjugate fields ~ΨAμ. χ̂A. The analogue of
(6.47) in this sector is

ðiδAB þ ϵABÞ ~ΨAμ ¼ ðiδAB þ ϵABÞDðμÞ ~κA

¼ ðiδAB þ ϵABÞ
�
Dμ �

1

2
γμ

�
~κA; ð6:50Þ

with ~κA such that γμ ~ΨAμ ¼ 0. It is the opposite SUSY that
gives rise to a boundary mode and it is now the lower sign
that is a pure gauge mode while the upper is a super-
conformal extension.
In summary, there are no physical bulk modes at l ¼ 0.

However, each of the two SUSYs allow a non-normalizable
gauge parameter (and a superconformal analogue) that
generates normalizable gravitini. This corresponds to four
physical boundary modes.
A more detailed discussion on the normalizability of

fermionic boundary modes is found at Appendix C.

VII. QUANTUM CORRECTIONS TO
ADS2 × S2 - FERMIONIC SECTOR

In this section we compute the heat kernels for the
fermionic sector of the gravity multiplet. An important
preliminary result is the heat kernel of a free spin 1/2
fermion on the sphere S2,

Kf
S ¼ 1

4πa2
X∞
k¼0

e−sðkþ1Þ2ð2kþ 2Þ

¼ 1

4πa2s

�
1 −

1

6
s −

1

60
s2 þ � � �

�
: ð7:1Þ

The AdS2 heat kernel is obtained to the precision we need
by flipping the sign of the terms that are odd in the
curvature (with the overall sign changed due to fermion
statistics)

Kf
A ¼ −

1

4πa2
X∞
k¼0

e−sðkþ1Þ2ð2kþ 2Þ

¼ −
1

4πa2s

�
1þ 1

6
s −

1

60
s2 þ � � �

�
: ð7:2Þ

As in (3.5) for bosons we compute the 4D heat kernels by
summing over towers using

Kf
4 ¼ Kf

A ·
1

4πa2
X
j

e−m
2
j sð2jþ 2Þ: ð7:3Þ

We are summing over each value of the angular momentum
j on S2 weighed by the effective AdS2 masses.

A. Physical states

The physical bulk spectrum summarized at the end of
Sec. VI E is four fermionic bulk degrees of freedom with
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masses m2 ¼ ðkþ 1Þ2 where k > 0. Hence, the 4D heat
kernel is

Kbulk
4 ¼ 4 ·Kf

A ·
1

4πa2
X∞
k¼1

e−sðkþ1Þ2ð2kþ2Þ

¼ 4 ·Kf
A ·

1

4πa2

�X∞
k¼0

e−sðkþ1Þ2ð2kþ2Þ−2e−s
�

¼−
1

4π2a4s2

�
1−

11

180
s2þ�� �−2s

�
1−

5

6
s

�
þ��� ⋅

�
:

ð7:4Þ

We wrote the final line as the sum of the result we
would get from four free fermionic degrees of freedom
and a term we interpret as due to the couplings of the
gravitino field.

B. Unphysical states

The unphysical spectrum consists of twelve fermionic
bulk degrees of freedom with masses m2 ¼ ðkþ 1Þ2 at
k ≥ 0. These modes were all established as unphysical
either due to the Rarita-Schwinger constraint—which is
a component of the equations of motion—or due to the
gauge condition. No on-shell modes were removed by
residual gauge symmetries. In our on-shell method we
do not include contributions from any of these.

C. Boundary modes

The boundary modes are zero modes in AdS2 while
consisting of a full tower on S2. Expression (7.3) for a 4D
heat kernel is then modified to

Kbndy
4 ¼ −

1

8π2a4
X
j

e−m
2
j sð2jþ 2Þ; ð7:5Þ

where the contribution of the AdS2 heat kernel is a factor of
the regulated volume of AdS.
The boundary fields θ̂A; ~θA each have a projection on the

R index A but also a doubling due to conformal symmetry.
Thus there are four towers of boundary states. We used the
mass (6.33) to find the mass squared and then the heat
kernel

ðγμDμÞ2DðνÞθ̂A ¼ DðνÞ½ðγμDμÞ2 − 1�θ̂A
¼ ½ðkþ 1Þ2 − 1�DðνÞθ̂A: ð7:6Þ

The total heat kernel for the four boundary modes then
becomes

Kbndy
4 ¼ −

4

8π2a4
X∞
k¼0

e−½ðkþ1Þ2−1�sð2kþ 2Þ

¼ −
4

8π2a4

�
1

s
−
1

6

�
e−s

¼ −
1

4π2a4

�
2

s
þ 5

3
þ � � �

�
: ð7:7Þ

D. Zero modes

Boundary states that are also zero modes on the S2 are
true zero modes of AdS2 × S2. Hence, the zero mode
content can be read off from the spectrum of boundary
states. The four fermionic zero-modes are the k ¼ 0 entries
in (7.6). As mentioned in the bosonic sector, zero-modes
require special considerations discussed by [21,34,35].
In the naive treatment (7.7) each of the four zero modes

contributes with − 2
8π2a2, but the correct contribution is

larger. The correction due to zero-modes is

Kzm;f
4 ¼ −

8

8π2a4

�
3

2
−
1

2

�
¼ 1

8π2a4
· ð−8Þ: ð7:8Þ

E. Summary

We add the fermionic contributions from bulk (4D),
boundary (2D), and the zero-modes (0D),

Kf
4 ¼ −

1

4π2a4s2

�
1þ 1309

180
s2 þ � � �

�
; ð7:9Þ

which is the total contribution from fermionic modes.
We finally add the total bosonic contribution (5.6) and

the total fermionic contribution (7.9),

Kb
4 þ Kf

4 ¼
1

4π2a4

�
1

s
−
23

12
þ � � �

�
: ð7:10Þ

These are the quantum corrections to supergravity in
AdS2 × S2. The constant term was previously computed
by Sen [1] in a setting where unphysical modes are
canceled by ghosts.
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APPENDIX A: GENERALIZED EIGENVECTORS

Repeated eigenvalues and generalized eigenvectors play
an important role in our solutions so here we review a few
of their features.
An elementary example with an eigenvalue that is

repeated twice is the non-Hermitean 2 × 2 matrix
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M ¼
�
2 1

0 2

�
; ðA1Þ

with two eigenvalues identical to 2. There is only one true
eigenvector

η1 ¼
�
1

0

�
; ðA2Þ

but there also a generalized eigenvector

η2 ¼
�
0

1

�
; ðA3Þ

that satisfies the generalized eigenvalue equation

ðM − λI2Þ2η2 ¼ 0; ðA4Þ

with eigenvalue λ ¼ 2. The generalized eigenvector η2 is
not a true eigenvector since

ðM − λI2Þη2 ¼
�
0 1

0 0

�
η2 ¼ η1: ðA5Þ

However, the generalized eigenvalue equation (A4)
follows because η1 is a true eigenvector. Importantly,
the determinant det M ¼ 2 · 2 ¼ 4 is the product
of eigenvalues even though one appearance of the
repeated eigenvalue λ ¼ 2 only allows a generalized
eigenvector.
Generalized eigenvectors are ubiquitous in our setting

because the linearized equations of motion have kinetic
terms and mass-matrices that cannot be simultaneously
diagonalized. For example, the AdS2 volume mode Hð00Þ

ρ
ρ

and the S2 volume mode hαα ¼ πð00Þ couple through the
Lagrangean

Ll¼0
scalar ¼ −

1

8
Hð00Þ

ρ
ρð∇2

A − 2Þπð00Þ − 1

4
πð00Þ2: ðA6Þ

In the given basis the mass matrix is diagonal but the kinetic
matrix is not. There is no basis where both are diagonal.
The equations of motion are naturally presented in a form
where πð00Þ sources Hð00Þ

ρ
ρ but not the other way around

∇2
x

�
Hð00Þ

ρ
ρ

πð00Þ

�
¼
�
2 −4
0 2

��
Hð00Þ

ρ
ρ

πð00Þ

�
: ðA7Þ

The mass matrix is similar to (A1) and the eigenvalue
problem is analogous to the elementary one discussed
above. πð00Þ is a true eigenvector but Hð00Þ

ρ
ρ is just a

generalized eigenvector satisfying

ð∇2
x − 2Þ2Hð00Þ

ρ
ρ ¼ 0: ðA8Þ

We consider one additional example from our setting: the

fields bðlmÞ
∥ , BðlmÞ

∥ , ~bðlmÞ for l ≥ 1. The equations of motion
(4.30):

ð∇2
x−lðlþ1ÞÞ

0
BBB@
BðlmÞ
∥

bðlmÞ
∥

~bðlmÞ

1
CCCA¼
0
B@

2 2 −2
2lðlþ1Þ 0 0

4þ2lðlþ1Þ 4 −4

1
CA
0
BBB@
BðlmÞ
∥

bðlmÞ
∥

~bðlmÞ

1
CCCA:

ðA9Þ

The 3 × 3 matrix on the right-hand side (RHS) of (A9) has
one eigenvalue λ ¼ −2 and also a repeated eigenvalue
λ ¼ 0. There are two conventional (true) eigenvectors and
one generalized eigenvector:

Mode Mass Comment

bðlmÞ
∥ þ BðlmÞ

∥ − ~bðlmÞ m2 ¼ lðlþ 1Þ − 2 Conventional.

bðlmÞ
∥ þ 2BðlmÞ

∥ − ~bðlmÞ m2 ¼ lðlþ 1Þ Conventional.

bðlmÞ
∥ þ lðlþ 1ÞBðlmÞ

∥ m2 ¼ lðlþ 1Þ Generalized.

The generalized eigenvector satisfies

½∇2
A − lðlþ 1Þ�ðbðlmÞ

∥ þ lðlþ 1ÞBðlmÞ
∥ Þ

¼ −ðbðlmÞ
∥ þ 2BðlmÞ

∥ − ~bðlmÞÞ: ðA10Þ

The RHS is a true eigenvector of ½∇2
A−lðlþ1Þ� with eigen-

value λ¼0 so the higher order operator ½∇2
A−lðlþ1Þ�2

annihilates the generalized eigenvector bðlmÞ
∥ þ lðlþ 1ÞBðlmÞ

∥ .
The contribution to the functional determinant from

these fields is computed correctly by multiplication of
all eigenvalues whether they are repeated or not. Thus, the
complications due to generalized eigenvectors are not an
issue as far as the heat kernels are concerned.

APPENDIX B: TENSOR MODES
ON THE BOUNDARY

We want to identify residual diffeomorphisms that are
not fixed by our gauge. A 2D diffeomorphism generated by
ξμ gives rise to a traceless symmetric tensor

Hfμνg ¼ ∇μξν þ∇μξν − gμν∇ρξ
ρ: ðB1Þ

The gauge condition∇μHfμνg ¼ 1
2
∇νπ with the 2D scalar π

invariant is preserved iff the vector ξμ satisfies

ð∇2
A − 1Þξμ ¼ 0: ðB2Þ

For Kähler metrics on the disc we can rewrite the
holomorphic component of (B2) as

2gzz̄∇z̄∇zξz ¼ 0: ðB3Þ

FINN LARSEN AND PEDRO LISBÃO PHYSICAL REVIEW D 91, 084056 (2015)

084056-24



The covariant derivative is ∇z̄ ¼ ∂ z̄ when acting on an
object with lower holomorphic indices so the solutions are
those where ∇zξz are holomorphic. The induced tensor
Hfμνg is therefore a quadratic holomorphic differential.
We consider the holomorphic differential ∇zξz ¼ zn−2

with n ≥ 2. The holomorphic derivative is

∇zξz ¼ gzz̄∂zðgzz̄ξzÞ ¼ gzz̄∂zξ
z̄; ðB4Þ

so

∂zξ
z̄ ¼ 1

2a
ð1 − jzj2Þ2zn−2; ðB5Þ

and upon integration we find

ξz̄ ¼ 1

2a

�
1

n − 1
zn−1 −

2z̄
n
zn þ z̄2

nþ 1
znþ1

�
: ðB6Þ

This explicit form shows that we must indeed take
n ≠ 0;�1. For n ≥ 2 the vector exists but it is not
normalizableZ

jzj≤1
jξzj2

ffiffiffi
g

p
d2z ¼

Z
jzj≤1

jξzξ�z jd2z

¼
Z
jzj≤1

jgzz̄ξz̄j2d2z → ∞; ðB7Þ

since gzz̄ diverges as jzj → 1 while jξzj remains finite.
Importantly the quadratic holomorphic differential gen-

erated by the non-normalizable vector is finiteZ
jzj≤1

j∇zξzj2
ffiffiffi
g

p
d2z ¼

Z
jzj≤1

gzz̄jzj2ðn−2Þd2z < ∞; ðB8Þ

for n ≥ 2 since gzz̄ ¼ 1
2a ð1 − jzj2Þ2 is perfectly well

behaved near the boundary at jzj ¼ 1. We introduce the
tensor modes

wðnÞ
zz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jnjðn2 − 1Þ

2π

r
zjnj−2; ðB9Þ

normalized such thatZ
jwðnÞ

zz j2 ffiffiffi
g

p
d2z ¼ 1: ðB10Þ

With this normalization the sum over all tensors give

X∞
n¼2

ðjwðnÞ
zz j2þc:c:Þ¼ 1

2a2
X∞
n¼−1

ð1− jzj2Þ4 ·nðn
2−1Þ
2π

· jzj2ðn−2Þ

¼ 1

4πa2
ð1−xÞ4∂3

x
1

1−x
¼ 3

2πa2
: ðB11Þ

This is three times the corresponding value for the
normalized vector field derived from a non-normalizable
scalar. In that case we referred to a single boundary mode so
we interpret the result for the tensor as three boundary
modes. There are of course infinitely many boundary
modes enumerated by the index n but there are three per
unit volume.

APPENDIX C: GRAVITINO MODES
ON THE BOUNDARY

We want to find normalizable pure gauge gravitini
constructed out of non-normalizable spinor parameters.
We start in analogy with the tensor boundary modes,
studying the non-normalizable solutions to Dirac’s equa-
tion in AdS2.
We choose the same gamma matrices as Sen [1] for easy

reference:

γθ̂ ¼ −σ2;

γη̂ ¼ σ1: ðC1Þ

We compute the twisted derivatives

Dη þ
1

2
γη ¼ ∂η þ

1

2
σ1;

Dθ þ
1

2
γθ ¼ ∂θ þ

i
2
cosh ησ3 −

1

2
sinh ησ2: ðC2Þ

The Dirac operator in the coordinates (2.19) with the
gamma matrices (C1) is

D ¼ −σ2
1

sinh η
∂θ þ σ1∂η þ

1

2
σ1 coth η ðC3Þ

We will work with a ¼ 1 for now and restore it later.
Camporesi and Higuchi [38], found the solutions

χ�k ðλÞ ¼ eiðkþ1
2
Þθ
 
i λ
kþ1

coshk η
2
sinhkþ1 η

2
Fðkþ 1þ iλ; kþ 1 − iλ; kþ 2;− sinh2 η

2
Þ

� coshkþ1 η
2
sinhk η

2
Fðkþ 1þ iλ; kþ 1 − iλ; kþ 1;− sinh2 η

2
Þ

!
ðC4Þ

and

η�k ðλÞ ¼ e−iðkþ1
2
Þθ
 

coshkþ1 η
2
sinhk η

2
Fðkþ 1þ iλ; kþ 1 − iλ; kþ 1;− sinh2 η

2
Þ

�i λ
kþ1

coshk η
2
sinhkþ1 η

2
Fðkþ 1þ iλ; kþ 1 − iλ; kþ 2;− sinh2 η

2
Þ

!
ðC5Þ
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which satisfy

Dχ�k ðλÞ ¼ �iλχ�k ðλÞ;
Dη�k ðλÞ ¼ �iλη�k ðλÞ: ðC6Þ

The label k is a non-negative integer. The continuous
spectrum is given by λ real and positive. However, these are
not all the modes of the Dirac operator, for there are non-
normalizable discrete modes with imaginary λ. The solution
corresponding to m2 ¼ 1 is λ ¼ i. In this case the hyper-
geometric functions in (C4) and (C5) simplify,

χ�k ðiÞ ¼ eiðkþ1
2
Þθ
� − sinh η

2
tanhk η

2

� 1
2 coshη

2

ð1þ 2kþ cosh ηÞ tanhk η
2

�
;

η�k ðiÞ ¼ e−iðkþ1
2
Þθ
� 1

2 coshη
2

ð1þ 2kþ cosh ηÞ tanhk η
2

∓ sinh η
2
tanhk η

2

�
;

For k ≥ 0. From now on we will refer to the solutions
(C7) and (C7) as χ�k and η�k for simplicity, since we are
interested in m2 ¼ 1.
Using the complex coordinates defined in (2.19), the

solutions (C7) and (C7) are

χ�k ¼
� −ð1 − jzj2Þ−1

2jzj12
�ð1 − jzj2Þ12jzj−1

2ðkþ 1
1−jzj2Þ

�
zkþ1

2 ðC7Þ

η�k ¼
� ð1 − jzj2Þ12jzj−1

2ðkþ 1
1−jzj2Þ

∓ð1 − jzj2Þ−1
2jzj12

�
z̄kþ1

2 ðC8Þ

The normalization condition for the spinors (C7) and
(C8) is

Z � jzj
1 − jzj2 þ

1 − jzj2
jzj

�
kþ 1

1 − jzj2
�

2
�
jzj2kþ1

×
2

ð1 − jzj2Þ2 d
2z ¼ ∞: ðC9Þ

These are non-normalizable modes. We want to construct
gravitini solutions that are pure gauge with gauge function
proportional to the discrete modes (C7) and (C8).
To construct the gravitini solutions we write the

derivatives

zDz ¼ z∂z þ
1

4

1þ jzj2
1 − jzj2 σ

3; ðC10Þ

and the holomorphic gamma matrix,

zγz ¼
jzj

1 − jzj2 ðσ
1 þ iσ2Þ: ðC11Þ

Evaluation of the twisted holomorphic derivative yields�
Dz þ

1

2
γz

�
χþk ¼

�
0

1

�
kðkþ 1Þ

�
1 − jzj2

jzj
�1

2

zk−
1
2:

ðC12Þ

(C12) is explicitly convergent at jzj → 1. Since the nor-
malization integral for gravitini can be evaluated with the
unit metric on the disk, we already know (C12) is normal-
izable. This is an advantage of working with complex
coordinates. We compute the norm of (C12),Z

k2ðkþ 1Þ2
�
1 − jzj2

jzj
�
jzj2k−1d2z

¼ 2πk2ðkþ 1Þ2
Z

1

0

�
1 − xffiffiffi

x
p

�
xk−

1
2dx

¼ 2πkðkþ 1Þ: ðC13Þ

The normalized gravitino boundary mode is

Ψz ¼
�
0

1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 1Þ

2π

r �
1 − jzj2

jzj
�1

2

zk−
1
2: ðC14Þ

The gravitini Ψz are given for k > 0, since k ¼ 0 is
explicitly zero. The solutions (C14) are normalizable
modes that are pure gauge with a non-normalizable gauge
parameter. They are gravitino boundary modes.
Through a similar computation one finds the modes

ðDz þ 1
2
γzÞχ−k to be non-normalizable. Also, if one com-

putes the norms of ðDz − 1
2
γzÞχ�k in analogy with the

previous case, one finds that the gravitini ðDz − 1
2
γzÞχþk

are non-normalizable, while ðDz − 1
2
γzÞχ−k are.

This is easily seen by noting that

χþk ¼ σ3χ−k : ðC15Þ

Also, according to (C1),

½Dμ; σ3� ¼ 0;

fγμ; σ3g ¼ 0: ðC16Þ

So that going from ðDz þ 1
2
γzÞ to ðDz − 1

2
γzÞ can be

achieved by multiplication with σ3, which takes χþk into
χ−k and vice-versa. In fact, ðDz − 1

2
γzÞχ−k is given by�

Dz −
1

2
γz

�
χ−k ¼

�
0

−1

�
kðkþ 1Þ

�
1 − jzj2

jzj
�1

2

zk−
1
2:

ðC17Þ

These are the modes (C12) up to a multiplicative constant.
Thus, one should not count them as additional modes.
We find the action of the antiholomorphic twisted

derivative on χþk to vanish:
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�
Dz̄ þ

1

2
γz̄

�
χþk ¼ 0: ðC18Þ

When building gravitini out of the η�k solutions, we find�
Dz̄ þ

1

2
γz̄

�
ηþk ¼

�
1

0

�
kðkþ 1Þ

�
1 − jzj2

jzj
�1

2

z̄k−
1
2;

�
Dz þ

1

2
γz

�
ηþk ¼ 0: ðC19Þ

and ðDz̄ þ 1
2
γz̄Þη−k are non-normalizable. The normalized

antiholomorphic modes are

Ψ̄z̄ ¼
�
1

0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 1Þ

2π

r �
1 − jzj2

jzj
�1

2

z̄k−
1
2; ðC20Þ

for k > 0. The modes η−k ¼ σ3ηþk are once again just (C19)
up to a phase.
In summary, the boundary modes we need to account for

are (C14) and (C20). One important property of these
modes is that they are (anti-)holomorphic differentials:

Dz̄Ψz ¼ 0;

DzΨ̄z̄ ¼ 0: ðC21Þ
We have encountered a similar dependence for the tensor
modes in (B9). The gravitini modes are different in that
they are not powers of z or z̄, but instead have a jzj
dependent prefactor that is canceled by the spin connection.
Finally, we sum over all values of k in our boundary

modes.

X∞
k¼1

ðjΨzj2 þ jΨ̄z̄j2Þ ¼ 2
X∞
k¼1

kðkþ 1Þ
2πa2

ð1 − jzj2Þ3
2

jzj2k−2;

¼ 1

2πa2
X∞
k¼−1

ð1 − xÞ3∂2
xxkþ1;

¼ 2

2πa2
: ðC22Þ

In the second equality we used the variable x ¼ jzj2, and
added the empty entries k ¼ 0;−1. In the last step we
evaluated the geometric series and the partial derivatives.

We have one mode per unit volume for the holomorphic
gravitino (C14) and one other mode for the antiholomor-
phic gravitino (C20).
The four boundary modes accounted for in Sec. VII are

the modes in (C22) times two supersymmetries.

APPENDIX D: CONVENTIONS FOR
GAMMA-MATRICES

In this appendix we summarize our conventions, nota-
tions, and properties of gamma-matrices.
The upper case ΓI refers to the 4D gamma matrices,

while the lower case γμ, γα refer to AdS2 and S2,
respectively. They satisfy:

fΓI;ΓJg ¼ 2gIJ;

Γμ ¼ γμ ⊗ γS;

Γα ¼ 1 ⊗ γα;

½γμ; γα� ¼ 0; ðD1Þ

Chiral projection operators in 4D and 2D, along with their
relations:

Γ5 ¼ iΓ0Γ1Γ2Γ3 ¼ γA ⊗ γS;

γA ¼ γ01; γS ¼ iγ23;

½γA; γS� ¼ 0;

γ2A ¼ γ2S ¼ 1: ðD2Þ

Conventions on orientation (all indices are local)

ϵ0123 ¼ þ1;

ϵ01 ¼ þ1;

ϵ23 ¼ þ1: ðD3Þ

Some useful identities,

ΓIJKL ¼ −iΓ5ϵ
IJKL; ΓIJK ¼ −iΓ5ϵ

IJKLΓL;

γAϵ
μν ¼ γμν; γSϵ

αβ ¼ iγαβ: ðD4Þ
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