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We study the post-Newtonian expansion of a class of Lorentz-violating gravity theories that reduce to
khronometric theory (i.e. the infrared limit of Hořava gravity) in high-acceleration regimes and reproduce
the phenomenology of modified Newtonian dynamics (MOND) in the low-acceleration, nonrelativistic
limit. Like in khronometric theory, Lorentz symmetry is violated in these theories by introducing a
dynamical scalar field (the “khronon”) whose gradient is enforced to be timelike. As a result, hypersurfaces
of constant khronon define a preferred foliation of the spacetime, and the khronon can be thought of as a
physical absolute time. The MOND phenomenology arises as a result of the presence, in the action, of
terms depending on the acceleration of the congruence orthogonal to the preferred foliation. We find that
if the theory is forced to reduce exactly to general relativity (rather than to khronometric theory) in the
high-acceleration regime, the post-Newtonian expansion breaks down at low accelerations, and the theory
becomes strongly coupled. Nevertheless, we identify a sizeable region of the parameter space where the
post-Newtonian expansion remains perturbative for all accelerations, and the theory passes both Solar
System and pulsar gravity tests, besides producing a MOND phenomenology for the rotation curves of
galaxies. We illustrate this explicitly with a toy model of a system containing only baryonic matter but no
dark matter.
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I. INTRODUCTION

The year 2015 marks the hundredth anniversary of
general relativity (GR). This elegant theory has been
greatly successful at interpreting and predicting gravita-
tional phenomena on a huge range of length scales,
velocities, gravitational-field strengths and spacetime cur-
vatures. On small length scales, submillimeter experiments
verified the validity of Newtonian gravity, to which GR
reduces in the quasistatic weak-field regime characterizing
these experiments, down to micrometer scales [1,2].
Newtonian gravity has been historically tested in the
Solar System, but in the course of the twentieth century,
technological progress made it possible to test also the first
post-Newtonian (1PN) corrections to Newtonian dynamics
[3,4], i.e. the GR corrections of fractional order Oðv=cÞ2,
with v being the system’s characteristic velocity. Indeed,
these 1PN Solar System tests date back to the first triumph
of GR, Einstein’s prediction of the correct perihelion shift
for Mercury, and later came to include also light deflection
measurements, time-delay and gyroscopical precession
experiments, as well as exquisite verifications of one of
GR’s building blocks, the equivalence principle. However,
because velocities in the Solar System are v≲ 10−4c, and
the gravitational fields are weak (i.e. ϕN=c2 ≲ 10−6, ϕN

being the Newtonian potential), tests of the GR dynamics
beyond this weak-field, mildly relativistic regime are
impossible there.
A glimpse at the workings of gravitation in a different

regime is offered by binary pulsars, i.e. systems comprising
of a pulsar (which allows accurate tracking of the orbital
period) and another compact star (typically a neutron star
or a white dwarf). These systems, the first of which was
discovered in 1974 [5], have velocities that are not much
larger than in the Solar System (v ≲ 10−3c) but present
large gravitational fields/curvatures inside the compact
stars. In this mildly relativistic but strong-field regime,
GR predicts that gravitational waves (GWs) should be
copiously emitted, thus carrying enough energy and angu-
lar momentum away from the binary to produce an
observable backreaction on its orbital evolution. Indeed,
as the binary shrinks as a result of GW emission, its period
should decrease. This effect has indeed been observed in
binary pulsars, and the period’s rate of change matches
perfectly the GR prediction, thus providing indirect
evidence of the existence of GWs [6,7].
Finally, “advanced” ground-based GW interferometers,

such as Advanced LIGO, Advanced Virgo and KAGRA,
will come online in the next few years, and are expected to
detect GWs directly before the end of this decade. Because
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the main GW sources for these detectors are expected to
be binaries of neutron stars and/or black holes at small
separations (and thus with relative velocities v ∼ c), these
interferometers will provide the first test of GR in the
currently unexplored highly relativistic and strong-field
regime (see e.g. Refs. [8,9] for two recent reviews).
Despite GR’s past triumphs and the busy experimental

activity to test it even further with GWs, signs that some-
thing could be wrong with our understanding of gravity
might already be hidden in plain sight in cosmological data.
In the last two decades, observations of the cosmic micro-
wave background (CMB), type-Ia supernovae, and the
large-scale structure of the Universe pointed to the exist-
ence of a dark matter component and a cosmological
constant (or a dynamical dark energy component); see
e.g. Ref. [10] for a review. While this “concordance”
ΛCDM model is in agreement with essentially all obser-
vations so far, it is theoretically unappealing because
“naturalness” arguments can explain neither the small
value of the cosmological constant compared to the
Planck scale, nor why it has only recently started to drive
the expansion of the Universe [11–13]. In the light of the
ΛCDM model’s “unattractiveness,” it makes sense at least
to ask the question of whether the existence of a dark sector
may simply be an artifact of our use of GR to explain
cosmological observations. Because these observations are
well within the weak-field, mildly relativistic regime tested
in the Solar System, the answer to this question would seem
to be negative. This reasoning, however, neglects some
important considerations.
First, the Newtonian and PN dynamics that are verified in

the Solar System and in binary pulsars are expansions
around the Minkowski geometry. This is not suitable for
describing cosmological scales, which are rather described
by the Robertson-Walker geometry (and by perturbative
expansions around it). While in GR perturbative expan-
sions around the two spacetimes behave in similar ways,
the same is not guaranteed to happen in more general
gravity theories. For instance, certain gravity theories may
have a screening mechanism built in, which triggers
modifications away from the GR behavior only under
certain conditions [14–16], e.g. on large cosmological
scales. It is remarkable that hints in favor of such a
screening mechanism might be hidden in already available
cosmological data. Indeed, observations of velocities on
galactic and galaxy-cluster scales seem to point at the
existence of a universal acceleration scale a0 ¼
1.2 × 10−10 m=s2 ∼ cH0 (where H0 is the present
Hubble rate).
The appearance of such a universal scale is not an

obvious feature of the ΛCDM model, which in order to
interpret these data has to be supplemented with hypotheses
about the baryonic physics and its feedback on the growth
of structures (see e.g. Refs. [17,18] for recent reviews about
galaxy formation in the ΛCDM model). Even worse, these

additional assumptions need to be finely tuned to correctly
reproduce the data, at least in specific cases [19–21].
The appearance of a universal scale linked to the Hubble
rate fits instead in the logic presented above, in which
deviations from the GR behavior appear when one moves
away from perturbative expansions over Minkowski space
toward expansions over a Robertson-Walker spacetime.1

Alternatively, one can devise gravity theories that include
an acceleration-based screening mechanism, whereby GR
is recovered in high-acceleration regimes (i.e. in the
Solar System and binary pulsars) and modified in low-
acceleration ones, where the ΛCDM postulates the exist-
ence of dark matter (and dark energy). Indeed, the
appearance of the universal acceleration a0 in observations
of galaxies and galaxy clusters may be a guiding principle
in constructing a theory of gravity alternative to Newtonian
theory/GR, in the same way in which Kepler’s laws were
instrumental in overcoming the Aristotelian/Ptolemaic
mechanics. These acceleration-based attempts, which are
known under the name of “modified Newtonian dynamics”
(MOND) [22–24], are not yet completely successful,
because to explain observations of galaxy clusters, they
still need some residual “dark missing baryons,” with mass
roughly twice that of observed baryons [19] and possibly in
the form of molecular hydrogen [25]. [Note that this is not
in contrast with the estimate of the baryon density coming
from big bang nucleosynthesis (BBN), since about 30%
of the baryons produced during BBN are still undetected,
and only 4% are observed in clusters [26].] Nevertheless,
the appearance of a universal scale in the data is a genuine
empirical feature, the explanation of which is still poorly
understood.
Another independent motivation for considering possible

modifications of GR comes from its intrinsic incompati-
bility with quantum field theory, i.e. the long-known fact
that GR, when quantized, is not power-counting renorma-
lizable in the ultraviolet (UV) regime, where it should be
replaced by a (yet unknown) quantum theory of gravity. In
addition, GR generically predicts the existence of curvature
singularities in time evolutions starting from regular initial
data. Even though these singularities are conjectured to be
always enclosed by black hole horizons and thus inacces-
sible to outside observers [27,28], their existence is a
disturbing feature that one expects should be solved by a
full quantum theory of gravity.
A candidate quantum-gravity theory that addresses these

two problems is given by Hořava gravity [29,30]. This
theory breaks boost symmetry (and thus Lorentz invari-
ance) in the gravitational sector by adding to the action
terms that are of fourth and sixth order in the spatial
derivatives of the metric. In simpler scalar toy models, these

1The Robertson-Walker geometry globally reduces to the
Minkowski one when the Hubble expansion rate is zero at all
times.

MATTEO BONETTI AND ENRICO BARAUSSE PHYSICAL REVIEW D 91, 084053 (2015)

084053-2



terms are enough to achieve UV power-counting renorma-
lizability [29,31], and the hope is that the same will happen
for spin-2 gravitons. Also, the presence of the higher-order
terms in the spatial derivatives is expected to smooth the
curvature singularities typically forming in GR evolutions
[32]. On astrophysical scales, Hořava gravity is practically
indistinguishable from its low-energy limit, sometimes
called “khronometric theory” [30,33]. This theory has
been extensively studied, thanks also to the fact that it is
closely related [34,35] to another previously introduced
and actively scrutinized family of phenomenological boost-
violating gravity theories, i.e. Einstein-Æther theories
[36,37]. Remarkably, khronometric theory (and thus
Hořava gravity) has been shown to pass all experimental
tests, i.e. submillimeter tests [32], absence of gravitational
Čerenkov radiation [38], Solar System experiments
[33,39,40], binary and isolated pulsar observations
[41,42], and existence of regular black holes forming from
gravitational collapse (so as to agree with astrophysical
observations of black hole candidates) [43–49], in regions
of parameter space where khronometric theory is stable at
both the classical and quantum levels.
An attempt at modifying khronometric theory and

Hořava gravity to account for the presence of a universal
acceleration scale in galaxy and galaxy-cluster data was
done in Ref. [50], which introduced a theory that reduces to
a (very special) khronometric/Hořava-gravity theory in
high-acceleration regimes, and which produces a MOND
behavior in the low-acceleration, nonrelativistic/weak-
field regime relevant for galaxies and clusters. This theory
clearly shares both the flaws and the blessings of MOND
that we mentioned above—namely, it accounts for the
appearance of a universal acceleration without finely tuned
baryonic physics/feedback, but may still need some form
of dark matter in the center of galaxy clusters.2 Also, the
theory of Ref. [50] is related to some of the older theories
proposed to obtain a MOND-like phenomenology in the
nonrelativistic limit—namely, tensor-vector-scalar gravity
(TeVeS) [51] and generalized Einstein-Æther theories
[52,53]; cf. also Ref. [19] for an extensive review of the
theories giving a MOND phenomenology—but is better
motivated theoretically, because it reduces to a viable
quantum gravity model such as Hořava gravity at high
accelerations.
In this paper, we will work out the 1PN expansion of

the theory of Ref. [50], in both the high- and low-
acceleration regimes. We will show that if one imposes
that the theory reduces to GR in the high-acceleration

regime, a strong-coupling problem arises in the low-
acceleration regime when 1PN terms are considered in
the dynamics, and this would ruin the agreement with the
observed rotation curves of galaxies. Indeed, we will show
that while these observations are reproduced in the
Newtonian limit, the 1PN dynamics is strongly coupled,
as a result of which the 1PN terms become dominant over
the Newtonian ones in regimes accessible by galaxy
rotation curves. However, we will then show that a simple
slight generalization of the theory of Ref. [50] allows us to
avoid this strong-coupling problem; i.e., one can obtain a
fully viable theory by relaxing the assumption that the
dynamics should reduce exactly to GR in the high-
acceleration limit. We will therefore end up with a theory
that (i) presents a well-behaved (i.e. perturbative) PN
expansion at all accelerations; (ii) passes submillimeter,
pulsar, and Solar System tests; (iii) reduces to a general
khronometric theory (and thus to Hořava gravity) at high
accelerations; and (iv) gives a MOND-like phenomenology
at the low accelerations characterizing galaxies and clusters.
This paper is organized as follows: In Sec. II, we

introduce the theories under investigation. The dynamics
of these theories in the high-acceleration regime, as well as
the experimental/theoretical constraints on it, are discussed
in Sec. III. The low-acceleration regime, and in particular
the 1PN dynamics, is discussed in Sec. IV, both in the
general case and for the special case of a galaxy accreting
gas. We show that the low-acceleration 1PN dynamics is
strongly coupled in a certain region of parameter space, and
that this may jeopardize the agreement of the theory with
data on the scales of galaxies. In Sec. V, we identify this
region, and show that the theories that we consider remain
viable in large portions of the parameter space. A final
discussion is then presented in Sec. VI.
We will also use a metric signature ð−þþþÞ, and we

will denote spacetime indices by greek letters and spatial
ones by latin letters. Spatial vectors are also denoted by an
overarrow. We will set c ¼ 1 throughout this paper, except
when dealing with PN expansions in Secs. IV B, IV C, and
in the Appendix, where we reinstate the factors 1=c as PN
bookkeeping parameters. We will denote in particular the
n=2-th PN order by OðnÞ, i.e. OðnÞ≡Oðc−nÞ.

II. KHRONOMETRIC THEORIES WITH A
MOND NONRELATIVISTIC LIMIT

The action of Hořava gravity [29,30] can be written as

SH ¼ 1 − β

16πG

Z
dTd3xN

ffiffiffi
γ

p �
Lkh þ

L4

M2⋆
þ L6

M4⋆

�
þ Smðφ; gμνÞ; ð1Þ

where the spacetime has been foliated in spacelike hyper-
surfaces, and the metric gμν has been accordingly decom-
posed in 3þ 1 form, i.e. we introduce the lapse function

2The necessary amount of dark matter is smaller than in the
ΛCDMmodel. Indeed, as mentioned above, it might be sufficient
to identify this dark matter with some of the “missing dark
baryons” that are predicted by BBN, but which are not observed
in the local Universe in the form of visible matter. It has been
proposed that these dark baryons may be in the form of molecular
hydrogen [25].
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N ¼ ð−g00Þ−1=2, the shift 3-vector Ni ¼ g0i, the induced
3-metric γij ¼ gij (as well as its determinant γ), and the
extrinsic curvature

Kij ¼
1

2N
ð∂tγij −DiNj −DjNiÞ; ð2Þ

with Di denoting covariant derivatives relative to the
geometry of the spacelike hypersurfaces (i.e. Diγjk ¼ 0).
The matter part of the action is instead represented
by Sm, where the matter fields φ couple to the covariant
four-dimensional metric gμν, so as to enforce the weak
equivalence principle and to confine Lorentz violations in
the gravitational sector (at tree level) [54]. The Lagrangian
density Lkh is the most generic one at quadratic order in
derivatives (up to total divergences), i.e.

Lkh¼KijKij−
1þλ

1−β
K2þ 1

1−β
ð3ÞRþ α

1−β
aiai; ð3Þ

where ai ¼ ∂i lnN; K ¼ γijKij is the trace of the extrinsic
curvature; and α, β, and λ are dimensionless free param-
eters. The parameter α regulates (among other things)
the relation between the “bare” gravitational constant G
appearing in the action and the “Newtonian” gravitational
constant GN measured by a Cavendish experiments, which
turns out to be

GN ¼ 2G
2 − α

: ð4Þ

The L4 and L6 Lagrangian densities are instead of fourth
and sixth order, respectively, in the spatial derivatives Di,
but contain no time derivatives [29,30,55]. This ensures
that the theory does not suffer from the Ostrogradski
instability [56],3 and most of all provides the anisotropic
scaling necessary for power-counting renormalizability
[29,31]. For dimensional reasons, the L4 and L6 terms
must be suppressed by an energy scaleM⋆. This scale must
be M⋆ ≲ 1016 GeV to ensure that the theory remains
perturbative at all scales, which is a necessary condition
for power-counting renormalizability arguments to apply.
Also, experimental constraints put lower bounds on M⋆.
More precisely, to ensure agreement with submillimeter
experiments [1,2], it must be M⋆ ≳ 10−2 eV, and even
more stringent bounds may be possible depending on the
details of the percolation of the Lorentz violations in the
matter sector beyond tree level. Indeed, observations of
the synchrotron emission from the Crab Nebula show
that this percolation should be suppressed if the theory
is to remain viable and perturbative on all scales [54].
Several mechanisms have been proposed to suppress the

percolation of Lorentz violations from the gravity sector
into the matter one, including fine tuning, “gravitational
confinement” [58], “custodial symmetries” (e.g., softly
broken supersymmetry [59,60]), or dynamical emergence
of Lorentz symmetry at low energies in the matter sector
(e.g., due to renormalization group flows [61,62]). We refer
the reader to Ref. [63] for a review of these possibilities,
and assume in this paper that one of these mechanisms
suppresses the percolation to acceptable levels, so that
the bounds on M⋆ are Mobs ≲M⋆ ≲ 1016 GeV, with
Mobs ≳ 10−2 eV. For these values of M⋆ and at the low
energies typically characterizing astrophysical observa-
tions, the higher-order terms L4 and L6 are typically
negligible [49], with the possible exception of black
holes (whose causal structure does depend on the
presence of the L4 and L6 terms, cf. the concept of
universal horizon [45,46]). When those terms are neglected,
Hořava gravity coincides with “khronometric” theory
[29,30], i.e. a theory with the action (1), but with L4

and L6 set to zero ab initio.
A useful way of writing the action of khronometric

theory is to introduce a scalar field T (the “khronon”)
defining the 3þ 1 foliation, i.e., such that the constant-T
surfaces coincide with the foliation’s spacelike hypersur-
faces. Because of this requirement, this scalar field must
have a timelike gradient, i.e. gμν∂μT∂νT < 0 within our
conventions. In terms of this khronon field, the action of
khronometric theory [i.e. Eq. (1) with L4 ¼ L6 ¼ 0] can be
written in covariant form as [34,35]

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

3
ðβ þ 3λÞθ2

− βσμνσ
μν þ αaμaμ

�
þ Smatðφ; gμνÞ; ð5Þ

where g is the metric’s determinant, R is the (four-
dimensional) Ricci scalar,

nμ ¼ −
∂μTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gαβ∂αT∂βT
q ð6Þ

is the (timelike) unit-norm vector field orthogonal to the
foliation, and

aμ ¼ nν∇νnμ; ð7Þ

θ ¼ ∇μnμ; ð8Þ

σμν ¼ ∇ðνnμÞ þ aðμnνÞ −
1

3
θγμν ð9Þ

(with γμν ¼ gμν þ nμnν the projector onto the spacelike
hypersurfaces) are the acceleration, expansion, and shear of

3See also Sec. 2 of Ref. [57] for a pedagogical review of the
Ostrogradski instability.
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the congruence defined by nμ, i.e. ∇μnν¼−aνnμþσμνþ
1
3
θγμν. [Note that the vorticity ωμν ¼ ∇½νnμ� þ a½μnν� ¼
∂ ½νnμ� þ a½μnν� vanishes identically because of Eq. (6).]
It should be noted that the action (5) is very similar to

that of Einstein-Æther theory [36,37], with the caveat that
in that theory, the vector nμ is assumed to be timelike and
unit-norm (thus nμnμ ¼ −1) but not hypersurface orthogo-
nal; i.e., nμ is a full-fledged (timelike and unit-norm) vector
that cannot be expressed in terms of a scalar through Eq. (6)
at the level of the action. For this reason, the vorticity of nμ
is not zero, and the most generic action for Einstein-Æther
theory is obtained by adding to the action (5) an extra term
cωωμνω

μν (cω being a dimensionless coupling constant),
as well as a term ξðnμnμ þ 1Þ (where ξ is a Lagrange
multiplier) enforcing the unit-norm timelike character of
the vector field nμ.
Reference [50] proposed to modify the action of khro-

nometric theory at the very large scales (i.e. very low
energies) characterizing cosmological observations, i.e.
in the infrared limit. The idea, as we outlined in the
Introduction, is that the cosmological evidence for dark
matter comes from systems with accelerations a < a0≈
H0=6, and the theory introduced in Ref. [50] seeks to
reproduce the dark matter phenomenology without any
actual dark matter (with the possible exception, as
explained above, of some “dark baryons” on galaxy-cluster
scales) by modifying the gravity theory in that low-
acceleration regime. This corresponds to modifying the
gravity theory on cosmological scales ≳1=a0, or
equivalently energies ≲ℏa0 ∼ 10−34 eV. More precisely,
Ref. [50] considered a modified khronometric theory with
action

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ fðaÞ� þ Smatðφ; gμνÞ; ð10Þ

with a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γμνaμaν

p
and nμ still given by Eq. (6).

Reference [50] then showed that in order to obtain a
MOND-like phenomenology in the nonrelativistic, low-
acceleration limit, the free function fðaÞmust asymptote to
fðaÞ ≈ −2Λ0 þ 2a2 − 4a3=ð3a0Þ (where Λ0 is a constant)
for a ≪ a0, while they propose the limit fðaÞ ∼ −2Λobs
(Λobs being the measured cosmological constant) for
a ≫ a0 in order to reproduce GR (with a cosmological
constant) in the high-acceleration regime. As we will show
below, however, this theory does not produce a perturbative
post-Newtonian (PN) expansion in time-dependent situa-
tions such as those of interest for cosmology and astro-
physics; i.e., the PN expansion turns out to be strongly
coupled. We will show, however, that this problem can
be avoided with a slight modification of the theory of
Ref. [50], namely one with action

S¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
R−

1

3
ðβþ 3λÞθ2 − βσμνσ

μν þ fðaÞ
�

þ Smatðφ; gμνÞ; ð11Þ

where again a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γμνaμaν

p
, nμ is given by Eq. (6),

and fðaÞ satisfies again the asymptotic limit fðaÞ ≈
−2Λ0 þ 2a2 − 4a3=ð3a0Þ for a ≪ a0. Note that this action
can be rewritten in a 3þ 1 foliation adapted to the khronon,
in the same way in which khronometric theory can be
written in the two equivalent forms [(1)–(3) and (5)], thus
obtaining

SH ¼ 1 − β

16πG

Z
dTd3xN

ffiffiffi
γ

p �
KijKij −

1þ λ

1 − β
K2

þ 1

1 − β
ð3ÞRþ fðaÞ

1 − β

�
þ Smðφ; gμνÞ; ð12Þ

where a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γμνaμaν

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γijaiaj

q
in 3þ 1 form. In the

high-acceleration regime relevant for astrophysical and
experimental tests (i.e. submillimeter, Solar System, and
pulsar ones), we impose that the theory reduces to
khronometric gravity (plus a cosmological constant), i.e.
for a ≫ a0 (but a ≪ M⋆) we choose4 fðaÞ ∼ −2Λþ αa2,
while at higher energies (i.e. a ≫ M⋆) we may identify our
theory with the full Hořava theory.
Of course, it remains to be seen whether the renormal-

ization-group flow is compatible with this choice for the
coupling function fðaÞ; i.e., whether the MOND-like
theory of Ref. [50] (or a similar one, cf. discussion in
Sec. VI) is an infrared fixed point of the renormalization-
group flow of Hořava gravity. From this point of view, our
treatment is purely phenomenological.

III. THE HIGH-ACCELERATION REGIME

As discussed above, for high accelerations (i.e. high
energies) a ≫ a0, our theory reduces to Hořava gravity.
In particular, for the accelerations a0 ≪ a ≪ M⋆ relevant
for experiments on Earth and in the Solar System, as well
as for most astrophysical (noncosmological) observations,
the theory described by actions (11) or (12) reduces to
khronometric theory. Here, we therefore review the exper-
imental constraints on the coupling constants α, β, and λ of
khronometric theory. Clearly, those constraints also apply
to our theory.

4Λ is related to the measured cosmological constant Λobs by
Λ ¼ ΛobsGc=GN , where Gc ¼ 2G=ð2þ β þ 3λÞ is the gravita-
tional constant appearing in the Friedmann equations [64],
and GN [given by Eq. (4)] is the value measured locally by
Cavendish-type experiments. In practice, in order for BBN to
predict the correct element abundances, it must be jGC=GN−1j≲
1=8 [41,65] (cf. also Sec. III), hence Λ ∼ Λobs.
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A linear expansion of the field equations of khronometric
theory on a Minkowski background shows that the theory
presents a spin-2 graviton polarization propagating with
speed ct, as well as a spin-0 one with propagation speed cs.
These speeds are given by [33,40]

c2t ¼
1

1 − β
; ð13Þ

c2s ¼
ðα − 2Þðβ þ λÞ

αðβ − 1Þð2þ β þ 3λÞ : ð14Þ

To avoid gradient instabilities on Minkowski space, one
must impose c2s > 0 and c2t > 0. These conditions also
ensure that energies are positive [33,66], thus avoiding
ghost instabilities. Even more stringently, to prevent ultra-
high-energy cosmic rays from losing energy to gravitons
by vacuum Čerenkov radiation [38], the gravitational
modes must also propagate luminally or superluminally,
i.e. c2t ≥ 1 and c2s ≥ 1.
To ensure that khronometric theory agrees with experi-

ments at the level of the Solar System, one can solve the
field equations at first PN order and compute the para-
metrized PN (PPN) parameters [4]. All these parameters
turn out to be the same as in GR, with the exception of the
preferred-frame parameters α1 and α2 [33,40]:

α1 ¼
4ðα − 2βÞ
β − 1

; ð15Þ

α2 ¼
ðα − 2βÞ½−βð3þ β þ 3λÞ − λþ αð1þ β þ 2λÞ�

ðα − 2Þðβ − 1Þðβ þ λÞ :

ð16Þ

Solar System tests constrain jα1j≲ 10−4 and jα2j ≲ 10−7

[3]. To satisfy these bounds, one can simply impose
α ¼ 2β þOðα1; α2Þ at leading order in α1 and α2. This
is sufficient to satisfy the constraints on both α1 and α2,
since both quantities are proportional to the combination
α − 2β. This allows decreasing the dimension of the
theory’s parameter space from three (i.e. α; β; λ) to two
(i.e. β; λ).5

Once the constraints discussed above are accounted
for, the viable parameter space ðβ; λÞ is given by the cyan
region in Fig. 1. Additional bounds on the parameters then
come, as mentioned above, from the requirement that BBN
produce the observed element abundances [41,42,64,65]
(orange region in Fig. 1). Also, stringent bounds

(represented in green in Fig. 1) come from the absence
of any anomalous precession in observations of isolated
pulsars [41,42], as well as from the change of the measured
period of binary pulsars under gravitational wave emission
[41,42]. Indeed, the latter effect puts very strong constraints
on β and λ, because the presence of a khronon field coupled
nonminimally to the metric causes the appearance of
dipolar fluxes in the gravitational wave emission from
binary systems, besides the quadrupolar fluxes of GR
[41,42]. Because binary-pulsar observations are in good
agreement with the GR predictions, these dipolar fluxes
must be suppressed by sufficiently small values of the
coupling constants.
Nevertheless, as is clear from Fig. 1, there is a sizeable

region of parameter space where khronometric theory [and
thus the theory described by Eqs. (11) or (12)] is viable,
around the limit β ¼ λ ¼ 0 (in which GR is recovered at
high accelerations). Note that in this viable region of
parameter space, black hole solutions that arise from
gravitational collapse [43] have also been shown to exist
[44–49]. These solutions present properties compatible
with current electromagnetic observations of black hole
candidates (i.e. their exterior geometry is very close to the
black hole solutions of GR) [45,49].
Finally, as discussed in the previous section, our theory

reduces to Hořava gravity in the UV regime a ≫ M⋆.
Therefore, constraints coming from submillimeter tests
of the 1=r2 decay of the Newtonian attraction force are
satisfied provided that M⋆ ≳ 10−2 eV [32], while tests of

FIG. 1 (color online). Allowed parameter space for β and λ
[41,42], from observations with accelerations a ≫ a0 (Solar
System tests, absence of Čerenkov vacuum radiation, BBN,
pulsars) and from stability requirements (no gradient/ghost
instabilities).

5One may also impose the bounds jα1j ≲ 10−4 and jα2j≲ 10−7

without exploiting the fact that both α1 and α2 are proportional to
α − 2β. However, this would produce a one-dimensional param-
eter space, which turns out to be a subset of the two-dimensional
parameter space that one obtains by choosing α¼2βþOðα1;α2Þ.
In this sense, one may choose α ≈ 2β without loss of generality,
cf. Ref. [41] for a detailed discussion.
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Lorentz invariance in the matter sector will be passed
provided that a suitable mechanism exists that suppresses
the percolation of Lorentz violations from gravity to the
matter sector (cf. discussion and references above). In
addition, as alluded above, the higher-order derivative
terms of Hořava gravity are important for the propagation
of signals in a black hole spacetime, but are not expected to
destroy its causal structure (which still possesses a univer-
sal horizon from which no signals can escape, not even with
infinite propagation speed [45,46]).

IV. THE LOW-ACCELERATION REGIME

In this section, we will study the 1PN expansion of the
theory described by actions (11) or (12). While our treat-
ment is valid in both the high- and low-acceleration
regimes, we will focus mostly on the latter. Indeed, as
discussed in the previous section, at high accelerations the
theory reduces to khronometric theory/Hořava gravity, for
which the 1PN expansion has already been derived in
Refs. [33,40], and shown to agree with experimental
constraints coming from Solar System tests in large
portions of the parameter space. As a check of our
calculation, we will, however, verify that we reproduce
the 1PN expansion of khronometric theory derived in
Refs. [33,40], confirming in particular their expressions
for the preferred-frame parameters α1 and α2 [Eqs. (15)
and (16)].
The calculation of the 1PN expansion in the low-

acceleration regime, which we present below, may a priori
be expected to be of purely academic interest. After all,
the tests of the PN dynamics of GR (Solar System tests
and binary pulsars) are in high-acceleration regimes,

while systems with accelerations a ≪ a0 (such as those
encountered in cosmology) have velocities too small
relative to the speed of light to test even the first PN order
(with the accuracy of current data).
Nevertheless, we will show that surprises arise in the

course of the calculation. In particular, we will show that if
one sets the couplings β and λ to zero (as in the original
theory of Ref. [50]) or to values below a certain threshold,
the 1PN expansion in the low-acceleration regime becomes
strongly coupled. Wewill show that this prevents the theory
from reproducing the dark matter phenomenology at
accelerations a ≪ a0, at least in dynamical/time-dependent
situations and unless the couplings β and λ are significantly
different from zero. We will show this explicitly by
calculating the rotation curves of the gas surrounding a
galaxy [whose mass grows due to accretion from the
intergalactic medium (IGM)] at 1PN order. Based on this
toy model, we will then compute a lower bound on the
combination jλþ βj [cf. Eq. (73)]; i.e., we will determine
the minimum value of this combination for which the
theory avoids the aforementioned strong-coupling problem,
and can thus reproduce the dark matter phenomenology
at low accelerations. We will show that by combining this
bound with existing constraints on the couplings from the
high-acceleration regime, the theory remains viable in a
non-negligible region of parameter space (cf. Fig. 2).

A. Modified field equations

As a first step toward computing the 1PN expansion, let
us first derive the field equations by varying the action in
adapted coordinates, i.e. Eq. (12). The variation with
respect to the lapse N gives

FIG. 2 (color online). The bound on β þ λ coming from the requirement that the theory reproduce the rotation curves of galaxies,
combined with constraints from the high-acceleration regime (Solar System tests, absence of Čerenkov vacuum radiation, BBN, pulsars,
classical and quantum stability).
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ð3ÞR
1 − β

− KijKij þ
1þ λ

1 − β
K2 þ fðaÞ

1 − β

−
2

1 − β
χa2 −

2

1 − β
DiðχaiÞ ¼

16πGE
ð1 − βÞc4 ; ð17Þ

the variation with respect to the shift Ni gives

Dj

�
Kij −

1þ λ

1 − β
γijK

�
¼ 8πGJ i

ð1 − βÞc4 ; ð18Þ

and the variation with respect to the 3-metric γij yields

1

1 − β

�
ð3ÞRij−

1

2
ð3ÞRγij

�
þ 1

N
Dt

�
Kij −

1þ λ

1 − β
γijK

�

þ 2

N
Dk

�
NðiðKjÞk −

1þ λ

1 − β
γjÞkÞ

�
þ 2KikKj

k

−
1þ β þ 2λ

1 − β
KijK −

1

2
γij

�
KklKkl þ

1þ λ

1 − β
K2

�

−
1

ð1 − βÞN ðDiDjN − γijDkDkNÞ

þ 1

1 − β
χaiaj −

fðaÞ
2ð1 − βÞ γ

ij ¼ 8πG
ð1 − βÞc4 T

ij: ð19Þ

In these equations, χ ¼ f0ðaÞ=ð2aÞ, Di denotes the covar-
iant derivative compatible with γij, while Dt is a shortcut
for ∂t − NkDk. Also, the terms E;J i; T ij come from the
variation of the matter action, i.e.

E ¼ −
1ffiffiffi
γ

p δSmat

δN
; ð20Þ

J i ¼ 1ffiffiffi
γ

p δSmat

δNi
; ð21Þ

T ij ¼ 2

N
ffiffiffi
γ

p δSmat

δγij
; ð22Þ

and are related to the canonical stress-energy tensor
components, Tμν ¼ ð2= ffiffiffiffiffiffi−gp ÞðδSmat=δgμνÞ, by

E ¼ N2T00; ð23Þ

J i ¼ NðT0i þ NiT00Þ; ð24Þ

T ij ¼ Tij − NiNjT00: ð25Þ

Note also that by combining Eq. (18) with the trace of
Eq. (19) (obtained by contracting that equation with γij),
we obtain

ð3ÞR
1 − β

−
2

N

�
1 − 3

1þ λ

1 − β

�
DtK þ 3KklKkl

þ 1þ 2β þ 3λ

1 − β
K2 −

4

Nð1 − βÞDkDkN þ 3

1 − β
fðaÞ

−
2

1 − β
χa2 ¼ −

16πG
ð1 − βÞc4

�
T þ 2

N
NkJ k

�
; ð26Þ

which will come in handy later.
Several comments are in order about these field equa-

tions. First, for λ ¼ β ¼ 0 they reduce to those presented in
Ref. [50].6 Also, the structure of these equations is clearly
similar to GR, i.e. Eq. (19) is a modified evolution equation
and Eq. (18) is the modified momentum constraint. On
the other hand, Eq. (17) clearly looks like a modified
Hamiltonian constraint, but a key difference from GR is
present. Indeed, in GR one may in principle choose a
specific gauge (defined by some conditions on N and Ni),
choose initial data compatible with the constraints, and
evolve the evolution equation, which would ensure that the
constraints are satisfied at later times. This is not possible in
the case of Eqs. (17)–(19), since we have already used up
our “time” gauge freedom by adapting our coordinates to
the preferred foliation. This can be seen explicitly by
transforming the action of Eq. (11) to that of Eq. (12),
by choosing a 3þ 1 decomposition such that the time
coordinate t matches the khronon scalar T. As result, the
lapse N is not a gauge field in Eqs. (17)–(19), but should
rather be solved for at each step of the evolution via
Eq. (17). Indeed, it can be shown that once Eqs. (18), (19),
and the equations of motion of matter are assumed to hold,
Eq. (17) is needed to ensure the validity of the khronon
evolution equation [34,50], which is obtained by varying
the covariant action (11) with respect to T. Also, as we will
see below, the lack of freedom to “gauge away” the lapse
will be the origin of the PN strong-coupling problem
mentioned above.7

B. Post-Newtonian expansion

To calculate the PN, let us start by writing the most
generic perturbed flat metric in Cartesian coordinates
ðx0 ¼ ct; xiÞ (see e.g. Refs. [67–69]):

6Note that our definition of fðaÞ as given in the action
[Eqs. (11) or (12)] differs by a factor −2 from the definition
chosen in Ref. [50].

7Although in the next sections we will show that the PN
dynamics becomes nonperturbative (i.e. strongly coupled) when
β and λ are equal or close to zero, this does not necessarily mean
that the theory’s structure itself is pathological, even when
β ¼ λ ¼ 0. Indeed, one may in principle integrate in time the
evolution equation (19) as in GR, and solve the Hamiltonian
constraint (17) (which is an elliptic equation for N) at each time
step (given appropriate boundary conditions). This would be
possible even for β ¼ λ ¼ 0, although the resulting dynamics
would not be perturbatively close to the Newtonian one.
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g00 ¼ −1 −
2

c2
ϕ −

2

c4
ϕð2Þ þOð6Þ;

g0i ¼
wi

c3
þ ∂iω

c3
þOð5Þ;

gij ¼
�
1 −

2

c2
ψ

�
δij þ

�
∂i∂j −

1

3
δij∇2

�
ζ

c2

þ 1

c2
∂ðiζjÞ þ

ζij
c2

þOð4Þ: ð27Þ

Under transformations of the spatial coordinates,
ψ ; ζ;ω;ϕ;ϕð2Þ transform as scalars; wi; ζi behave instead
as transverse vectors (i.e. ∂iwi ¼ ∂iζ

i ¼ 0); and ζij is a
transverse and traceless tensor (i.e. ∂iζ

ij ¼ ζii ¼ 0).
Since we have already chosen our time coordinate to

coincide with the khronon field T, we only have freedom
to redefine the spatial coordinates on our foliation, i.e.
we are only allowed to perform gauge transformations
hμν → hμν þ ∂ðμξνÞ, with hμν ¼ gμν − ημν representing the
perturbation and ξν ¼ ð0; ξiÞ a purely spatial vector. For
this calculation, we find it convenient to impose the gauge
conditions ζ ¼ ζi ¼ 0 [68]. As a result, the lapse, shift,
spatial metric, and acceleration at 1PN order are given by

N ¼ 1ffiffiffiffiffiffiffiffiffiffi
−g00

p ¼ 1þ ϕ

c2
−
1

2

ϕ2

c4
þ ϕð2Þ

c4
þOð6Þ; ð28Þ

Ni ¼ g0i ¼
wi

c3
þ ∂iω

c3
þOð5Þ; ð29Þ

γij ¼ gij ¼
�
1 −

2

c2
ψ

�
δij þ

ζij
c2

þOð4Þ; ð30Þ

ai ¼
∂iϕ

c2
− 2

ϕ∂iϕ

c4
þ ∂iϕð2Þ

c4
þOð6Þ; ð31Þ

which can be used to compute the left-hand sides of the
field equations (17)–(26). To compute the right-hand side
of those equations, we use a perfect fluid stress-energy
tensor, i.e.

Tμν ¼
�
ρþ p

c2

�
uμuν þ pgμν; ð32Þ

where ρ is the matter mass-energy density, p the pressure,
and uμ ¼ dxμ=dτ the four-velocity of the fluid elements
(with τ the proper time).
Before proceeding with the calculation, let us clarify the

PN order of the function fðaÞ. As mentioned in Sec. II, in
the high-acceleration regime (i.e. for ac2≫a0), fðaÞ≈
−2Λþαa2≈αa2, so Eq. (31) implies fðaÞ ¼ Oð4Þ. Note
that in deriving this scaling, we have used the fact that Λ is
comparable to the observed value of the cosmological
constant, i.e. c4Λ ∼ c2H2

0 ∼ a20 ≪ a2c4, which allows
neglecting the −2Λ term. (Of course, this corresponds to

the known fact that the cosmological constant has negli-
gible impact on the 1PN dynamics on small scales.) In
the low-acceleration regime (i.e. on cosmological scales),
the cosmological constant would instead be expected to
enter the 1PN dynamics. Indeed, for ac2 ≪ a0, fðaÞ≈
−2Λ0 þ 2a2 − 4a3c2=ð3a0Þ, and assuming (as is natural to
do) that Λ0 is comparable to the observed value of the
cosmological constant, the term −2Λ0 dominates over
2a2 − 4a3c2=ð3a0Þ ¼ Oð4Þ. However, in order to have
the same scaling fðaÞ ¼ Oð4Þ as in the high-acceleration
regime, we can simply move the cosmological constant
to the right-hand side of the field equations, and absorb
it in the matter stress-energy tensor as a “fluid” component
with equation of state p=c2 ¼ −ρ ¼ −Λc2=ð8πGÞ, as
routinely done in cosmology. Therefore, in what follows,
we will consider fðaÞ ¼ Oð4Þ in both the high- and low-
acceleration regimes, with the caveat that in the latter,
fðaÞ ≈ 2a2 − 4a3c2=ð3a0Þ, and the matter is meant to
include a “dark energy” component p=c2 ¼ −ρ ¼
−Λc2=ð8πGÞ.
With these Ansätze and scalings, deriving the 1PN field

equations is now straightforward. In particular, expanding
Eq. (26) to lowest order in 1=c yields [50]

ψ ¼ ϕþOð2Þ; ð33Þ

which implies that light deflection behaves as in GR
(except, as we will show below, that the relation between
ϕ and the mass distribution of matter is different than in
GR). This is important, as it allows the theory to reproduce
the successes of the ΛCDM model in the interpretation of
gravitational lensing from galaxies and clusters of galaxies
[19,50,70]. Also, based on Eq. (33), we can write

ψ ¼ ϕþ δψ

c2
þOð4Þ; ð34Þ

where we have defined the potential δψ , which will appear
in the rest of the calculation [cf. Eq. (41) below].
Using this result in Eq. (17), to lowest order in 1=c we

obtain [50]

~∇ ·

��
1 −

χ

2

�
~∇ϕ

�
¼ 4πGρþOð2Þ; ð35Þ

where since fðaÞ∝a2¼Oð4Þ, one has that χ ¼ f0ðaÞ=ð2aÞ
is of zeroth order in 1=c. In the high-acceleration regime,
fðaÞ ≈ αa2; thus χ ¼ α, and this equation becomes the
usual Poisson equation

∇2ϕN ¼ 4πGNρþOð2Þ; ð36Þ

with GN given by Eq. (4). At intermediate and low
accelerations, χ is not necessarily constant, and defining
an “interpolation function”
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μ ¼ 1 −
χ

2
; ð37Þ

Eq. (35) becomes the modified Poisson equation of the
MOND dynamics [19,22–24], i.e.

~∇ ·

�
μ

�j ~∇ϕj
a0

�
~∇ϕ

�
¼ 4πGρþOð2Þ: ð38Þ

In particular, in the low-acceleration regime ac2 ≪ a0 (i.e.
in the “deep-MOND regime”), fðaÞ ≈ 2a2 − 4a3c2=ð3a0Þ,
and Eq. (35) becomes

~∇ ·

�j ~∇ϕj
a0

~∇ϕ

�
¼ 4πGρ: ð39Þ

From the off-diagonal part of the modified evolution
equation [Eq. (19)], we obtain

ζ ij ¼ Oð2Þ; ð40Þ

i.e., ζ ij appears at higher order than 1PN. This is, of course,
expected, since this term represents gravitational waves,
which do not enter in the 1PN metric in GR.
Solving then the trace of the evolution equation [Eq. (26)]

to Oð4Þ, we obtain

2

c4
∇2δψ ¼ −

3

2
fðaÞ þ 1

c4
ð−24πGp − 8πρv2 − 7∂iϕ∂iϕ

þ χ∂iϕ∂iϕ − 8ϕ∇2ϕ

þ ð2þ β þ 3λÞð∂t∇2ωþ 3∂2
tϕÞÞ; ð41Þ

and by replacing this expression in the modified Hamiltonian
constraint [Eq. (17)] at Oð4Þ, we find

~∇ ·

��
1 −

χ

2

�
~∇
�
ϕþ ϕð2Þ

c2

��

¼ 4πGρþ c2
fðaÞ
2

þ 1

c2

�
8πGρv2 þ 12πGp

þ 2 ~∇ϕ · ~∇ϕ −
3

2
χ ~∇ϕ · ~∇ϕ

−
1

2
ð2þ β þ 3λÞð∂t∇2ωþ 3∂2

tϕÞ
�
: ð42Þ

Finally, the 1PN equation for the “frame-dragging” potential
wi can be obtained from the momentum constraint
[Eq. (18)], whose expansion yields

∇2wi þ 2

�
β þ λ

β − 1

�
∂i∇2ω

¼ 16πGρvi
1 − β

− 2

�
2þ β þ 3λ

β − 1

�
∂i∂tϕ: ð43Þ

By taking the divergence of this equation, we obtain

∇2∇2ω ¼ 1

β þ λ
½8πG∂tρ − ð2þ β þ 3λÞ∂t∇2ϕ�; ð44Þ

where we have used the condition ∂iwi ¼ 0 (cf. the
definition of wi) and the energy conservation to
Newtonian order, ∂tρ ¼ −∂iðρviÞ½1þOð2Þ�. Denoting by
ϕN ¼ 4πGN∇−2ρ [withGN given by Eq. (4)] the Newtonian
potential in the high-acceleration regime, we can rewrite
Eq. (44) in the more useful form

∇2ω ¼ 1

β þ λ
∂t½ð2 − αÞϕN − ð2þ β þ 3λÞϕ�: ð45Þ

Note that Eqs. (42)–(45) are valid both in the high-
acceleration regime, in which fðaÞ ≈ αa2, and in the low-
acceleration, deep-MOND regime, characterized by fðaÞ ≈
2a2 − 4a3c2=ð3a0Þ (and thus χ ¼ 2 − 2c2a=a0). In the
high-acceleration regime, we must of course recover the
known results for khronometric theory, namely that all
the PPN parameters vanish except for α1 and α2, which
are given by Eqs. (15) and (16). Indeed, we show explicitly
that this is the case in the Appendix.
The low-acceleration, deep-MOND regime is instead

analyzed in detail in the next section. However, already
looking at Eq. (45), we can understand that the 1PN
expansion in the deep-MOND regime may have a non-
perturbative character, because the right-hand side seems to
diverge for β þ λ → 0. Clearly, this cannot be the case in
GR, where we know that the 1PN expansion is perturbative.
Indeed, in GR one has α ¼ β ¼ λ ¼ 0 and ϕ ¼ ϕN , thus the
two terms in round brackets on the right-hand side cancel
out. This is consistent with the fact that in GR one can set
ω ¼ 0 by a gauge transformation of the time coordinate
[68] (while still imposing the conditions ζ ¼ ζi ¼ 0 by a
gauge transformation of the spatial coordinates, as we do
in this paper). Because in the khronometric theories that
we are considering we already fixed the time foliation by
adapting it to the khronon T, we have no residual gauge
freedom to set ω to zero, and ∇2ω may indeed diverge (in
general) when λ; β → 0. Another way of seeing that the
case β ¼ λ ¼ 0 is pathological is to note that if we had
started from such a theory, we would have derived Eq. (43)
with β ¼ λ ¼ 0, i.e. the same equation as in GR. That
equation, however, would have no dependence on ω, which
would therefore remain completely undetermined. This is
not a problem in GR, as ω is a gauge mode (so it should
indeed remain undetermined), but it is a problem in the
modified khronometric theory of Ref. [50], becauseω is not
a gauge mode there.
Indeed, already in the high-acceleration regime, the

terms in round brackets on the right-hand side of
Eq. (45) do not cancel out (in general) in the theories
we are considering. This is because ϕ ¼ ϕN is that regime,

MATTEO BONETTI AND ENRICO BARAUSSE PHYSICAL REVIEW D 91, 084053 (2015)

084053-10



but α; β and λ are in general nonzero. Of course, this
corresponds to the fact that in khronometric theory the
preferred-frame parameter α2 becomes large when λþ β is
small, unless α ≈ 2β [cf. Eq. (16)].8 For high accelerations,
however, we have already discussed that one does indeed
have the freedom to set α ≈ 2β, so as to satisfy the Solar
System constraints jα1j≲ 10−4 and jα2j≲ 10−7. There are
therefore no strong-coupling problems in the viable part of
the parameter space of the couplings at high accelerations.
The situation is different in the low-acceleration, deep-

MOND regime, since ϕ ≠ ϕN there. Indeed, we will
show explicitly that the right-hand side of Eq. (45) diverges
in the limit β; λ → 0, in low-acceleration, time-dependent/
dynamical systems. We will also show that this strong-
coupling problem appears in a region of parameter space
that would be otherwise allowed based on experimental
constraints coming from the high-acceleration regime.

C. The strong-coupling problem
in galactic rotation curves

As shown in the end of the previous section, the 1PN
equations present a strong-coupling problem in time-
dependent situations, if λ and β are very close to 0. In
this section, we will show this explicitly by solving the
1PN equations for a toy model consisting of a spherical
galaxy whose massMðtÞ increases linearly as a function of
time due to e.g. accretion of gas from the IGM. We will
then compute the conditions that λ and β must satisfy to
avoid this strong-coupling problem, and show the resulting
parameter space in which the theory remains viable. More
specifically, wewill compute the rotation curves for such an
accreting galaxy outside its luminous center, assuming that
no dark matter is present, and assess for what values of λ
and β the aforementioned strong-coupling problem modi-
fies the rotation curves in a way that is incompatible with
observations [71–74].

1. The Newtonian order

At Newtonian order, the equation for the perturbation ϕ

at low accelerations j ~∇ϕj ≪ a0 is given by Eq. (39). In
spherical symmetry, however, ϕ is only a function of the
distance r from the galaxy’s center; thus, we can always

write j ~∇ϕj ~∇ϕ=a0 ¼ ~∇S for some scalar function SðrÞ.
Inserting this definition in Eq. (39), we obtain that S must
coincide with the GR Newtonian potential ϕN . Therefore,
to find the MOND gravitational potential ϕ in spherical
symmetry, we can simply solve the corresponding
Newtonian problem in GR for ϕN, and then compute ϕ
by solving

dϕðrÞ
dr

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0

dϕNðrÞ
dr

r
: ð46Þ

As our toy model for an accreting galaxy, let us consider
a spherical body with massM ¼ M0 þ _Mt (with _M andM0

constants) and radius R, surrounded by a spherically
symmetric, stationary accretion flow [whose density, sim-
ply by mass conservation, is ρ ¼ _M=½4πr2vrðrÞ�, where
vrðrÞ is the radial infall velocity as a function of radius].
Note that because no dark matter is assumed to exist, we
identify R with the galaxy’s half-mass radius, which is
related to the (baryonic) mass M by the observational
fit [75]

log10ðReff=kpcÞ ¼

8>>>>><
>>>>>:

−5.54þ 0.56log10ð M
M⊙Þ

for log10ð M
M⊙Þ > 10.3;

−1.21þ 0.14log10ð M
M⊙Þ

for log10ð M
M⊙Þ ≤ 10.3:

ð47Þ

Let us focus on the region outside the galaxy’s radius R,
where only the accreting gas and the cosmological constant
are present. In this region, ϕN is given by

ϕN ¼ −
GNM
r

þOfiniteð _M;ΛobsÞ; ð48Þ

where Ofiniteð _M;ΛobsÞ denotes corrections (proportional to
either Λobs or _M) that remain finite as β; λ → 0. Indeed,
these corrections are clearly independent of β; λ in this
case, and are also time-independent, because both ρ ¼
Λobsc2=ð8πGNÞ and ρ ¼ _M=½4πr2vrðrÞ� do not change
with time.
To compute ϕ, one can then just solve Eq. (46). To do so,

one needs to specify conditions ensuring a smooth tran-
sition to the GR solution, which is valid in the high-
acceleration regime near the galaxy. In particular, let us
define the transition radius

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
GNM
a0

s
ð49Þ

at which the Newtonian gravitational acceleration j ~∇ϕN j ¼
GM=r2 þOfiniteð _M;ΛobsÞ matches the acceleration con-
stant a0. [Note that r0 is larger than the half-light radius
given by Eq. (47) for typical galaxy masses.]
At distances from the body’s center r ≪ r0 (but r > R,

i.e. outside the galaxy), ϕ coincides with ϕN as given by
Eq. (48), while for r ≫ r0, ϕ is given by Eq. (46). We
can therefore assume a sharp transition at r ¼ r0, and
solve Eq. (46) by imposing continuity of ϕ and its first
derivative, i.e. ϕðr0Þ ¼ −GNM=r0 þOfiniteð _M;ΛobsÞ and
dϕ=dr ¼ GNM=r20 þOfiniteð _M;ΛobsÞ, thus obtaining

8Indeed, for α ¼ 2β and ϕ ¼ ϕN , the right-hand side of
Eq. (45) is independent of β; λ.
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ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNMa0

p �
ln

�
r
r0

�
− 1

�
þOfiniteð _M;ΛobsÞ ð50Þ

for r > r0.
Finally, as we will show explicitly in the next section, we

do not need the explicit form of the potential ϕ ¼ ϕN inside
the galaxy (i.e. for r < R ≪ r0) to solve the 1PN equations,
if we focus on the terms that dominate when β þ λ → 0.

2. The metric at 1PN order

At 1PN order, the metric is characterized by the
potentials ω, wi, and ϕð2Þ. In spherical symmetry, however,
wi ¼ 0.9

To determine ω, let us start from Eq. (45). By using the
Green function of the Laplace operator, we obtain

ωð~x;tÞ¼−∂t

�Z
r0>r0

d3~x0
ð2−αÞϕNðr0;tÞ−ð2þβþ3λÞϕðr0;tÞ

4πðβþλÞj~x−~x0j

−
Z
r0<r0

d3~x0
ðαþβþ3λÞϕNðr0;tÞ
4πðβþλÞj~x−~x0j

�
þψ0; ð51Þ

where ψ0 is an integration constant, and we have used the
fact that ϕ ¼ ϕN at high accelerations (i.e. for r < r0). As
already noted in the previous section, if α ≈ 2β (as required
by Solar System tests), the second integral in Eq. (51) is
finite when β; λ → 0 and can therefore be neglected with
respect to the first one, which diverges. More precisely, by
assuming α ¼ 2β þOðα1; α2Þ (so as to pass Solar System
tests), in spherical coordinates the above solution becomes

ωðr; tÞ ¼ −
1

ðβ þ λÞ × ∂t

�
1

r

Z
r

r0

dr0r02½2ð1 − βÞϕNðr0; tÞ

− ð2þ β þ 3λÞϕðr0; tÞ�

þ
Z

Rmax

r
dr0r0½2ð1 − βÞϕNðr0; tÞ

− ð2þ β þ 3λÞϕðr0; tÞ�
�

× ½1þOðα1; α2Þ� þ ψ0 þOðβ þ λÞ0: ð52Þ

Because ϕ diverges as ln r as r → ∞, the second integral
on the right-hand side of this equation formally diverges.
This is simply because the PN formalism is by definition a
perturbative expansion on a Minkowski background
[cf. Eq. (27)]. Of course, for any given spacetime, one
can choose locally Riemannian coordinates xα centered on
a given event, and such that the metric is locally

gμν ¼ ημν þOðr=RÞ2, where r ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηαβxαxβ

q
is the proper

distance from the event andR is the curvature radius of the
spacetime at the event. In the particular case of a system
embedded in a cosmological spacetime,R ∼ c=H (H being
the Hubble rate); i.e., the Minkowski metric is the appro-
priate background metric only on length and time scales
much smaller than the cosmological ones (i.e., respectively,
the Hubble radius and Hubble time) [4]. For this reason, we
can truncate the second integral on the right-hand side of
Eq. (52) at a cutoff radius Rmax, which can be thought of as
much smaller than the present Hubble radius but much
larger than the typical size of the luminous component of a
galaxy.
In practice, the cutoff Rmax never enters our calculations

and results, as it can be renormalized in the integration
constant ψ0. Indeed, once this cutoff is imposed, we can
use Eqs. (48) and (50) for ϕN and ϕ in Eq. (52), and the
integration yields the following expression:

ωðr;tÞ¼−
_M

72rðβþλÞ
�
72GNð1−βÞðr2þr20Þ

−ð2þβþ3λÞ
ffiffiffiffiffiffiffiffiffiffiffi
a0GN

MðtÞ

s �
17r3þ28r30−6r3 ln

�
r
r0

���

−
_MRmax

8ðβþλÞ
�
−16GNð1−βÞþRmaxð2þβþ3λÞ

×

ffiffiffiffiffiffiffiffiffiffiffi
a0GN

M

r
ð5þ2lnðr0=RmaxÞ

�
× ½1þOðα1;α2Þ�

þψ0þOfiniteð _M;ΛobsÞþOðβþλÞ0; ð53Þ

from which it is clear that the terms that depend on the
cutoff radius can be absorbed in the integration constant ψ0.
Therefore, the final solution for the potential ωðr; tÞ is
simply

ωðr;tÞ¼−
_M

72rðβþλÞ
�
72GNð1−βÞðr2þr20Þ−ð2þβþ3λÞ

×

ffiffiffiffiffiffiffiffiffiffiffi
a0GN

MðtÞ

s �
17r3þ28r30−6r3 ln

�
r
r0

���

× ½1þOðα1;α2Þ�þOfiniteð _M;ΛobsÞþOðβþλÞ0:
ð54Þ

Let us now consider the modified Hamiltonian constraint
[Eq. (42)]. Because of spherical symmetry and taking into
account only the terms that diverge when β þ λ → 0, at
1PN order that equation becomes

9This follows from the requirement that ∂iwi ¼ 0, imposing
regularity at r ¼ 0. Alternatively, one can solve the divergence-
less part of Eq. (43), noting that in spherical symmetry the
velocity only has a radial component vrðrÞ, which can be
expressed as the gradient of a scalar potential.
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2

a0r2

� ∂
∂r

�
r2
∂ϕ
∂r

∂ϕð2Þ
∂r

��

¼ −
2þ β þ 3λ

2
∂t∇2ωþOðβ þ λÞ0

¼ −
2þ β þ 3λ

2ðβ þ λÞ ∂2
t ½2ð1 − βÞϕN − ð2þ β þ 3λÞϕ�

× ½1þOðα1; α2Þ� þOðβ þ λÞ0: ð55Þ

By inserting the explicit expression for ϕ at low accel-
erations [Eq. (50)] and isolating the derivatives of ϕð2Þ on
the left-hand side, in the deep-MOND region r > r0,
Eq. (55) becomes

∂
∂r

�
r
∂ϕð2Þ
∂r

�
¼ Fðr; tÞ

≡ −
ð2þ β þ 3λÞr2
4ðβ þ λÞr0

∂2
t ½2ð1 − βÞϕN − ð2þ β þ 3λÞϕ�

× ½1þOðα1; α2Þ� þOðβ þ λÞ0 þOfiniteð _M;ΛobsÞ;
ð56Þ

where Fðr; tÞ represents the source on the right-hand
side. To solve this equation, let us construct the Green
function Gðr; r0Þ, i.e. the solution to ∂rðr∂rGÞ ¼ δðr − r0Þ.
As usual, the Green function can be constructed from
solutions of the homogeneous problem. In brief, for
r ≠ r0, the equation defining the Green function becomes
∂rðr∂rGÞ ¼ 0, which has the general solution Gðr; r0Þ ¼
K2 ln ðr=r0Þ þ K1, with K1 and K2 being integration
constants. Imposing then the junction conditions Gjr¼
r0 þ 0þ ¼ Gjr¼r0−0þ and r∂rGjr¼r0þ0þ − r∂rGjr¼r0þ0− ¼ 1

to account for the presence of the Dirac delta on the right-
hand side, we then obtain

Gðr; r0Þ ¼
(
K2 lnð rr0Þ þ K1 r < r0

lnðrr0Þ þ K2 lnð rr0Þ þ K1 r > r0:
ð57Þ

The general solution to Eq. (56) can then be written as

ϕð2Þðr; tÞ ¼
�
K2 ln

�
r
r0

�
þ K1

� Z
Rmax

r0

dr0Fðr0; tÞ

þ
Z

r

r0

dr0 ln
�
r
r0

�
Fðr0; tÞ; ð58Þ

which explicitly gives

ϕð2Þðr; tÞ ¼ −
a0ð2þ β þ 3λÞ2 _M2

432ðβ þ λÞM2

�
5ðr30 − r3Þ

þ 12K1ðr30 − R3
maxÞ þ 9K1R3

max ln

�
Rmax

r0

�

þ 3 ln

�
r
r0

��
r3 þ 4r30 þ 4K2ðr30 − R3

maxÞ

þ 3K2R3
max ln

�
Rmax

r0

���
× ½1þOðα1; α2Þ�

þOðβ þ λÞ0 þOfiniteð _M;ΛobsÞ: ð59Þ

The integration constants K1 and K2 can be fixed by
imposing that the solution matches the high-acceleration
solution ϕhigh acc

ð2Þ and its derivative at r ¼ r0, i.e. ϕð2Þðr0Þ ¼
ϕhigh acc
ð2Þ ðr0Þ≡H1 and ∂rϕð2Þðr0Þ ¼ ∂rϕ

high acc
ð2Þ ðr0Þ≡H2,

thus obtaining

ϕð2Þðr; tÞ ¼ H1 þH2r0 ln

�
r
r0

�
−
a0ð2þ β þ 3λÞ2 _M2

432ðβ þ λÞM2

×

�
5ðr30 − r3Þ þ 3ðr3 þ 4r30Þ ln

�
r
r0

��

× ½1þOðα1;α2Þ� þOðβ þ λÞ0

þOfiniteð _M;ΛobsÞ:
ð60Þ

Note that the cutoff radius Rmax is once again absorbed in
the integrations constantsH1 and H2 (as for the potential ω
earlier in this section). Since in the high-acceleration
regime the theories that we consider reduce to khrono-
metric theory, in which no strong-coupling problem is
present when β þ λ → 0 if the Solar System constraints are
satisfied (cf. discussion in Sec. IV B), we have H1 ¼
Oðβ þ λÞ0 and H2 ¼ Oðβ þ λÞ0, and Eq. (60) can be
rewritten simply as

ϕð2Þðr; tÞ ¼ −
a0ð2þ β þ 3λÞ2 _M2

432ðβ þ λÞM2

×

�
5ðr30 − r3Þ þ 3ðr3 þ 4r30Þ ln

�
r
r0

��
× ½1þOðα1; α2Þ� þOðβ þ λÞ0
þOfiniteð _M;ΛobsÞ: ð61Þ

3. The impact of the strong coupling
on the rotation curves

Let us now explore the impact of the strong-coupling
problem described above on the rotation curves of galaxies.
To this purpose, let us model the gas (whose velocity is
measured to determine the rotation curves) by test particles
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following circular geodesics in the deep-MOND region
r > r0. Because of spherical symmetry, we can assume that
the orbits are on the equatorial plane, without loss of
generality; i.e., in spherical coordinates xμ ¼ ðct; r; θ;φÞ
the four-velocity of the gas is

uμ ¼ dt
dτ

ðc; 0; 0; _φÞ; ð62Þ

where at 1PN order the relation between coordinate time t
and proper time τ is given by

dt
dτ

¼ 1 −
ϕ

c2
þ ðr _φÞ2

2c2
þOð4Þ; ð63Þ

which follows from the normalization condition
uμuμ ¼ −c2.
The geodesics equation

d2xμ

dτ2
¼ −Γμ

αβ

dxα

dτ
dxβ

dτ
ð64Þ

can now be expressed in terms of the coordinate time (i.e.
the time measured by an observer far from the galaxy):

d2xμ

dt2
¼ −Γμ

αβ

dxα

dt
dxβ

dt
þ 1

c
dxμ

dt
Γt
αβ

dxα

dt
dxβ

dt
: ð65Þ

Focusing on the radial component, and because d2r=dt2 ¼
dr=dt ¼ 0 for circular orbits, Eq. (65) then gives

v2φ;1PN ¼ r2 _φ2

¼ r
∂ϕ
∂r ðt; rÞ þ

r
c2

�
r
�∂ϕ
∂r ðt; rÞ

�
2

þ 2ϕðt; rÞ ∂ϕ∂r ðt; rÞ þ
∂ϕð2Þ
∂r ðt; rÞ þ ∂2ω

∂t∂r ðt; rÞ
�

þOð4Þ: ð66Þ

By using Eq. (50), at the lowest (i.e. Newtonian) order,
this equation yields

v2φ;N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNMa0

p
þOfiniteð _M;ΛobsÞ þOð2Þ; ð67Þ

i.e. the rotation curves of galaxies are flat in the deep-
MOND region. [Note also that the scaling of Eq. (67) with
the mass agrees with the Tully-Fisher relation for disk
galaxies and the Faber-Jackson relation for elliptical
galaxies and clusters; cf. Ref. [19] for a review of these
two relations in the context of MOND.] At 1PN order, and
focusing on the terms that diverge as β þ λ → 0, the
rotational velocity becomes

v2φ;1PN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNMa0

p
þ r
c2

�∂ϕð2Þ
∂r ðt; rÞ þ ∂2ω

∂t∂r ðt; rÞ
�
þOðβ þ λÞ0 þOfiniteð _M;ΛobsÞ þOð4Þ; ð68Þ

or more explicitly, by using the solutions given by Eqs. (54) and (60),

v2φ;1PN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNMðtÞa0

p
þ 1

c2

�
−
a0ð2þ β þ 3λÞ2

144ðβ þ λÞ
_M2

MðtÞ2
�
4ðr30 − r3Þ þ 3r3 ln

�
r
r0

��

−
_M2

36rðβ þ λÞMðtÞ

ffiffiffiffiffiffiffiffiffiffiffi
a0GN

MðtÞ

s �
ð2þ β þ 3λÞ ×

�
4r3 þ 14r30 − 3r3 ln

�
r
r0

��
þ 36ðβ − 1Þr30

��

× ½1þOðα1; α2Þ� þOðβ þ λÞ0 þOfiniteð _M;ΛobsÞ þOð4Þ: ð69Þ

Clearly, if _M ≠ 0 and β þ λ → 0, the 1PN terms in this
expression will dominate over the Newtonian ones, spoil-
ing the agreement with galaxy rotation curves and with
the Tully-Fisher and Faber-Jackson relations. In the
next section, we will determine exactly for what values
of β þ λ this happens.

V. CONSTRAINTS FROM THE
LOW-ACCELERATION REGIME

In order to determine, at least approximately, the range of
the combination β þ λ for which the PN expansion remains

perturbative and the agreement with observations of galac-
tic rotation curves (as well as with the observed Tully-
Fisher relation in disk galaxies and the Faber-Jackson
relation in ellipticals and clusters) is not ruined, let us
consider systems (galaxies or clusters) with baryonic
masses in the range M ¼ 1010–1014M⊙. Note that for
these masses, the radius r0 marking the onset of the MOND
effects lies well outside the half-light radius given by
Eq. (47), so our calculations (which assume that r0 is larger
than the size of the luminous component of the system) do
hold, at least to first approximation. One crucial ingredient

MATTEO BONETTI AND ENRICO BARAUSSE PHYSICAL REVIEW D 91, 084053 (2015)

084053-14



to calculate the impact of the 1PN terms on the rotation
curves is, as can be seen from Eq. (69), the accretion rate of
IGM gas onto the galaxy. A very rough estimate for this
quantity is _M ∼M=tH, where tH ≈ 1.4 × 1010 yr is the
Hubble time.
A useful measure of the impact of the 1PN terms on the

rotation curves is given by the fractional deviation

ϵðM; r; β þ λÞ ¼ jv2φ;1PN=v2φ;N − 1j: ð70Þ

Clearly, this quantity is a function of β þ λ, but also of the
galaxy’s mass M and the orbital radius r. Since what is of
interest to us is the range of β þ λ for which ϵðM; r; β þ λÞ
is not “too large,” we can marginalize over
M ∈ ½1010∶1014�M⊙, and over r. For the latter, we mar-
ginalize over a range spanning from r ¼ r0ðMÞ (the
distance from the center at which MOND effects become
dominant) up to the virial radius r ¼ rvirðMÞ (at z ¼ 0) of
the ΛCDM halo corresponding to the galaxy under con-
sideration. This choice is justified because rotation curves
are measured well beyond the galaxy’s luminous part, deep
into what in the ΛCDM model is the dark matter halo
region. In order to estimate rvir (at z ¼ 0), we use [76–78]

rvir ¼
�

M
fb × 5.5 × 1013M⊙

�
1=3

Mpc; ð71Þ

where fb ≈ 0.17 is the baryon fraction in the
ΛCDM model.
In order to identify the range of β þ λ for which 1PN

terms “spoil” the agreement with observations, we then
consider the marginalized fractional deviation

ϵ̄ðβ þ λÞ ¼ max ½ϵðM; r; β þ λÞ�jr∈½r0ðMÞ;rvirðMÞ�
M∈½1010−1014M⊙�; ð72Þ

and when this quantity exceeds a certain threshold, we
conclude that the 1PN terms jeopardize the agreement
between the theory and observations. Assuming a 20%
threshold (i.e. ϵ̄ ¼ 0.2), we find that in order for the theory
to reproduce galaxy rotation curves, one must have

jβ þ λj≳ 2.5 × 10−7: ð73Þ

This bound is very conservative, e.g. when considering a
30% threshold, and marginalizing only over M ∈
½1011∶1013�M⊙ and r ∈ ½2r0; 0.5rvirðMÞ�, a larger region
of the ðβ; λÞ plane would remain viable, namely
jβ þ λj≳ 2.5 × 10−9. Nevertheless, even with the
conservative bound given by Eq. (73), a significant region
of the ðβ; λÞ plane remains viable when one combines that
bound with the constraints from the high-acceleration
regime (cf. discussion in Sec. III). This viable region of
the parameter plane is represented in Fig. 2.

VI. DISCUSSION: OPEN QUESTIONS
AND PROBLEMS

In this paper, we have introduced a theory that can
reproduce the MOND phenomenology (and in particular
the rotation curves of galaxies) at low accelerations (i.e. low
energies), and which reduces to khronometric theory/Hořava
gravity at intermediate/high accelerations (i.e. intermediate/
high energies), thus satisfying experimental requirements
such as Solar System tests [33,39,40], binary- and isolated-
pulsar constraints [41,42], BBN [41,42,64,65], the existence
of well-behaved black hole solutions forming from gravi-
tational collapse [43–49], and the absence of gravitational
Čerenkov radiation [38], as well as theoretical requirements
such as classical and quantum stability [33,40,66].
This transition from a MOND-like theory to khrono-

metric theory/Hořava gravity is achieved by making one of
the coupling constants of the theory effectively energy
dependent. This was first proposed in Ref. [50], but here we
generalize that idea by showing that the theory’s 1PN
dynamics becomes strongly coupled at low accelerations,
unless the other (two) coupling constants of khronometric
theory also have nonzero values. In other words, we
show that in order to make the 1PN dynamics perturbative
at low energies, the theory cannot reduce exactly to GR
at intermediate/high energies (as was conjectured by
Ref. [50]), but rather to khronometric theory/Hořava
gravity. Of course, one clear shortcoming of our approach
is that it is purely phenomenological at this stage. Indeed,
we assume that the running of the coupling constants is
exactly the one that we need to reproduce data/observa-
tions. It remains to be seen if this running is actually the one
predicted by the renormalization-group flow, but as far as
we are aware no studies in this direction are available yet.
Another open question about our approach (and about

Lorentz-violating gravity in general) is the nature of the
mechanism preventing the violations of Lorentz symmetry
from percolating into the matter sector, where they are
strongly constrained by cosmic-ray/particle-physics experi-
ments. In particular, the higher-order operators that are
crucial for the power-counting renormalizability of Hořava
gravity must become important at energies ≲1016 GeV to
ensure that the theory remains perturbative in the UV. This
scale is comparable with the energy at which Lorentz
violations can be probed in the matter sector, thanks to the
synchrotron emission from the Crab Nebula [54]. The
percolation of Lorentz violations into the matter sector can,
of course, be suppressed at tree level (by assuming that
matter does not couple directly to the Lorentz-violating
field), but it naturally reappears due to radiative corrections.
To ensure the viability of the theory, a more efficient
suppression mechanism must therefore be present.
Proposals include fine-tuning, “gravitational confinement”
[58], “custodial symmetries” (e.g. softly broken supersym-
metry [59,60]), or dynamical emergence of Lorentz
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symmetry at low energies in the matter sector (e.g. due to
renormalization group flows [61,62]).
At a more phenomenological level, a pertinent question

is whether the theory that we propose can explain all
cosmological data (besides galaxy rotation curves) with no
dark matter at all. This seems unlikely because MOND
itself, as mentioned earlier, requires some amount of dark
matter in the center of galaxy clusters—with mass roughly
twice that of observed baryons [19]. As mentioned, how-
ever, this “missing mass” problem is much less serious than
in the ΛCDM model, since one can postulate that this dark
matter is given by a (small) fraction of the “dark missing
baryons” predicted by BBN and not yet observed. In
particular, these dark baryons may be in the form of
molecular hydrogen [25]. Another possibility is that the
missing mass in clusters may be given by neutrinos [19].
(Note that the bounds on the neutrino masses and families
from the CMB do not hold in MOND, at least rigorously, as
they assume the ΛCDM model to start with.) Also, we
recall that without some amount of dark matter (in baryons
or other components), MOND might have a hard time
reproducing observations of the “Bullet Cluster” [79],
although the interpretation of the data may be more subtle
than initially thought, since a similar system—the “Train-
wreck Cluster” [80]—shows a different behavior.
On scales even larger than those of galaxy clusters (i.e.,

those relevant for type-Ia supernovae, CMB, and large-
scale galaxy surveys), the full relativistic theory has to be
used, in order to account for both the background expan-
sion and perturbations about it. For a Robertson-Walker
(i.e. homogeneous and isotropic) background, and assum-
ing that the khronon field is aligned with the cosmic time
(i.e., that hypersurfaces of constant khronon are also ones
of constant cosmic time), our theory predicts the same
Friedmann-Lemaître-Robertson-Walker equations as in
GR, with the only differences being that (i) no dark matter
is present (except possibly the small amount, e.g. in “dark
missing baryons”, needed to explain galaxy-cluster data);
and (ii) the gravitational constant differs from the value
GN measured in the Solar System, and is given by
GC ¼ GNð1 − α=2Þ=ð1þ β=2þ 3λ=2Þ. Given the con-
straints on α, β, and λ discussed in this paper, GC ≈GN
to within a few percent. This probably makes it difficult to
reproduce both type-Ia and CMB data. Indeed, type-Ia
supernova observations are only sensitive to the back-
ground expansion history, and (to first approximation)
constrain a linear combination of the density parameters
of matter (Ωm) and cosmological constant (ΩΛ) at z ¼ 0. As
for the CMB, a detailed study of perturbations over the
cosmological background is needed to predict the details of
its angular spectrum, but the position of its first peak only
depends, to first approximation, on the sound speed of
the photon-baryon fluid, and on the angular distance to the
baryon-photon decoupling. Both these quantities are the
same in our theory as in the ΛCDM model. Therefore,

because the position of the first CMB peak within the
ΛCDMmodel constrainsΩm þΩΛ ≈ 1 (a constraint almost
orthogonal to that coming from type-Ia supernovae), it is
clear that our model may have a hard time reproducing both
CMB and type-Ia supernova data, unless we allow as much
dark matter as in the ΛCDM model. A more detailed
analysis, however, is needed to confirm this, and will be
performed in future work. Indeed, one may be able to
reproduce the data without dark matter, but by relaxing the
assumption that the khronon must be aligned with the
cosmic time.
Another possibility comes from the observation that an

effective dark matter component on large cosmological
scales naturally arises in theories similar to ours, namely in
Hořava gravity with the projectability condition. That is a
theory with (infrared) action given by Eq. (5), but with
α ¼ 0 and the extra condition (“projectability”) that the
lapse N is only a function of time (i.e. aμ ¼ 0) at the level
of the action. More specifically, Ref. [81] (cf. also
Ref. [82]) showed that such an effective dark matter
component appears in projectable Hořava gravity if devia-
tions from homogeneity are present on large (even super-
horizon) scales. It is also well known that the solutions to
projectable Hořava gravity can be obtained from solutions
to khronometric theory [action given by Eq. (5)] in the limit
α → ∞ [30,35], or equivalently from solutions to our
theory [action given by Eq. (11)] for χ → ∞.10 This can
be shown by following the argument of Ref. [35].
Let us then assume that at the scales relevant for galaxies

and clusters we still have fðaÞ ≈ −2Λ0 þ 2a2 − 4a3=ð3a0Þ
(so that the results of this paper remain valid), but on larger
cosmological scales (i.e. even smaller accelerations a → 0),
fðaÞ ≈ −2Λ0 þOðaÞ, so that χ ∝ 1=a diverges as a → 0.
With this ansatz, the terms depending on a in the field
equations (17)–(26) all vanish when a → 0, with the
exception of the terms giving the cosmological constant
and the term DiðχaiÞ in the modified Hamiltonian con-
straint (17). To find the effective Friedmann-Lemaître-
Robertson-Walker equations in an inhomogeneous universe,
one can take a spatial average of the field equations. In the
case of Eq. (17), the average of the termDiðχaiÞ produces a
boundary term C, which may not be zero if the universe is
inhomogeneous on large (even superhorizon) scales.
Indeed, this boundary term might be interpreted as an
effective dark matter component, because it has the right
scaling with the expansion parameter AðtÞ; i.e., the spatial
average of the modified Hamiltonian constraint (17) yields
an effective Friedmann-Lemaître-Robertson-Walker equa-
tion _A2 þ kc2 ¼ 8πGA2ðρþ ρdmÞ=3, with ρdm ≡ C=A3.
Note that this effective dark matter component might also
improve the agreement of the theory with galaxy-cluster
observations, which as mentioned above show some
tension with MOND.

10We thank Niayesh Afshordi for suggesting this point.
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Finally, another possibility would be to replace the
term θ2 in the action (11) with a function of θ2. Since θ
is essentially given by the Hubble rate for a cosmologi-
cal background, this change may provide enough free-
dom to fit the background’s expansion history, possibly
even providing an effective “dark energy” component.
(Note that this is similar to the “generalized” Einstein-
Æther theories introduced in Refs. [52,53] or the
“K-essence” of Ref. [83].) Clearly, such a modification
of the action (11) may affect the analysis of the 1PN
dynamics that we performed in this paper, but the
formalism that we developed here is readily extensible
to that case.
Of course, all of these possibilities require further

detailed exploration before one can make any definitive
claims about them. We will study them, both at the level of
the cosmological background and perturbations about it, in
subsequent publications.
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APPENDIX: THE PPN PARAMETERS IN THE
HIGH-ACCELERATION REGIME

In this appendix, we show how to solve the 1PN
dynamics in the high-acceleration regime, where our theory
reduces to khronometric theory/Hořava gravity. In particu-
lar, we confirm, as already shown in Ref. [33,40], that all
the PPN parameters of khronometric theory are the same as
in GR, with the exception of the preferred-frame param-
eters α1 and α2.
At high accelerations (where χ ¼ α), Eq. (35) yields the

usual expression for the Newtonian potential,

ϕN ¼ −GN

Z
d3x0

ρð~x0; tÞ
j~x − ~x0j ; ðA1Þ

where we recall that the locally measured gravitational
constant GN is related to the “bare” one appearing in the
action by Eq. (4). The equations characterizing the 1PN

dynamics are Eqs. (42) and (43), which in the high-
acceleration regime become

∇2

�
ϕN þ ϕð2Þ

c2

�

¼ 4πGNρþ
1

c2

�
8πGNρv2 þ 12πGNpþ 2 ~∇ϕN · ~∇ϕN

−
2þ β þ 3λ

2 − α
ð∂t∇2ωþ 3∂2

tϕNÞ
�
: ðA2Þ

∇2wi þ 2

�
β þ λ

β − 1

�
∂i∇2ω

¼ 16πGρvi
1 − β

− 2

�
2þ β þ 3λ

β − 1

�
∂i∂tϕN: ðA3Þ

Before solving them, let us first define the PN potentials
~x0 [4]:

Xð~x; tÞ ¼ GN

Z
d3x0ρð~x0; tÞj~x − ~x0j; ðA4Þ

Vi ¼ GN

Z
d3x0

ρð~x0; tÞv0i
j~x − ~x0j ; ðA5Þ

Wi ¼ GN

Z
d3x0

ρð~x0; tÞ~v0 · ð~x − ~x0Þðx − x0Þi
j~x − ~x0j ; ðA6Þ

Φ1 ¼ GN

Z
d3x0

ρð~x0; tÞv02
j~x − ~x0j ; ðA7Þ

Φ2 ¼ −GN

Z
d3x0

ρð~x0; tÞϕNð~x0; tÞ
j~x − ~x0j ; ðA8Þ

Φ4 ¼ GN

Z
d3x0

pð~x0; tÞ
j~x − ~x0j ; ðA9Þ

and recall the following relations among them [4]:

∇2X ¼ −2ϕN; ðA10Þ

∇2Vi ¼ −4πGNρvi; ðA11Þ

∇2Φ1 ¼ −4πGNρv2; ðA12Þ

∇2Φ2 ¼ 4πGNρϕN; ðA13Þ

∇2Φ4 ¼ −4πGNp; ðA14Þ

∂iVi ¼ ∂tϕN; ðA15Þ

∂iVi ¼ −∂iWi; ðA16Þ

∂t∂iX ¼ Wi − Vi: ðA17Þ
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Equation (A3) can then be written as

∇2wi þ 2

�
β þ λ

β − 1

�
∂i∇2ω

¼ −
2ð2 − αÞ∇2Vi

1 − β
þ
�
2þ β þ 3λ

β − 1

�
∂i∂t∇2X: ðA18Þ

Taking the divergence of this equation and using the
relations above between the PN potentials, we then obtain
the solution for ω, i.e.

ω ¼ αþ β þ 3λ

2ðβ þ λÞ ∂tX; ðA19Þ

which, when replaced back into Eq. (A18), allows the
computing of wi. The solution for g0i then reads

g0i ¼
wi

c3
þ ∂iω

c3
þOð5Þ

¼ β2 þ λþ 3βð1þ λÞ − αð1þ β þ 2λÞ
2ðβ − 1Þðβ þ λÞ

Wi

c3

þ αþ 5β − 3αβ − β2 þ λð7 − 2α − 3βÞ
2ðβ − 1Þðβ þ λÞ

Vi

c3
þOð5Þ:

ðA20Þ
By using the solution for ω and the relations (A10)–(A17),
one can then solve Eq. (A2) for ϕð2Þ, obtaining

ϕð2Þ ¼ ϕ2
N − 2Φ1 − 2Φ2 − 3Φ4

þ ðα − 2βÞð2þ β þ 3λÞ
2ðα − 2Þðβ þ λÞ ∂2

tX; ðA21Þ

which yields the complete solution for g00 at 1PN order:

g00 ¼ −1 − 2
ϕN

c2
− 2

ϕ2
N

c4
þ 4

Φ1

c4
þ 4

Φ2

c4
þ 6

Φ4

c4

−
ðα − 2βÞð2þ β þ 3λÞ

ðα − 2Þðβ þ λÞ
∂2
tX
c4

þOð6Þ: ðA22Þ

Finally, by performing a gauge transformation t → tþ δt
(with δt ∝ ∂tX), we can write the 1PNmetric in the standard
PN gauge, i.e.

g00 ¼ −1 − 2
ϕN

c2
− 2

ϕ2
N

c4
þ 4

Φ1

c4
þ 4

Φ2

c4
þ 6

Φ4

c4
þOð6Þ;

ðA23Þ

g0i ¼ −
1

2

�
7þ α1 − α2

�
Vi

c3
−
1

2

�
1þ α2

�
Wi

c3
þOð5Þ;

ðA24Þ

gij ¼
�
1 − 2

ϕN

c2

�
δij þOð4Þ; ðA25Þ

where the preferred frame parameters are given, as in
Refs. [33,40], by

α1 ¼
4ðα − 2βÞ
β − 1

; ðA26Þ

α2 ¼
ðα − 2βÞ½−βð3þ β þ 3λÞ − λþ αð1þ β þ 2λÞ�

ðα − 2Þðβ − 1Þðβ þ λÞ :

ðA27Þ
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