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New exact solutions to the field equations in the Einstein-Gauss-Bonnet modified theory of gravity
for a five-dimensional spherically symmetric static distribution of a perfect fluid are obtained. The
Frobenius method is used to obtain this solution in terms of an infinite series. Exact solutions are generated
in terms of polynomials from the infinite series. The five-dimensional Einstein solution is also found by
setting the coupling constant to zero. All models admit a barotropic equation of state. Linear equations
of state are admitted in particular models with the energy density profile of isothermal distributions. We
examine the physicality of the solution by studying graphically the isotropic pressure and the energy
density. The model is well behaved in the interior, and the weak, strong, and dominant energy conditions
are satisfied.
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I. INTRODUCTION

In many respects, the general theory of relativity pro-
posed by Einstein continues to be the most successful
theory of the gravitational field. However, it does come
short in explaining certain observed phenomena. For
example, the late time expansion of the Universe is not
a direct consequence of the standard Einstein theory but is
reported in experimental observations. One possible
approach to correct this deficiency in the Einstein gravity
is to allow the action principle to include more than just
linear forms of the Riemann tensor, the Ricci tensor, and the
Ricci scalar. The choice of just linear tensorial quantities
has the advantage of producing second-order equations of
motion which are compatible with the standard Einstein
theory in four dimensions. Lovelock [1,2] proposed a
polynomial form of the Lagrangian; if this is taken to be
of quadratic order, we generate the Einstein-Gauss-Bonnet
(EGB) action. The amazing feature associated with the
EGB Lagrangian is that the equations of motion continue to
be second-order quasilinear. If the higher-order effects are
absent, then the regular Einstein field equations are
regained [3]. Thus far, researchers in the field have reported
numerous results involving exterior solutions in five-
dimensional EGB gravity theory. For example, Anabalon
et al. [4] found an exact vacuum solution in five dimensions
with the Kerr-Schild ansatz in EGB gravity, and the vacuum
Boulware-Deser [5] exterior solution is a well-known
model. Issues related to gravitational collapse have received
much attention as well. For instance, the case of collapsing
dust with zero pressure in five-dimensional EGB theory has
been well studied by Maeda [6].

The model that we study in this paper turns out to have
the density profile of an isothermal sphere. Isothermal
spheres have the energy density being inversely propor-
tional to the square of their radius. These spheres have been
widely studied due to their importance as models for
different astronomical objects such as globular and open
clusters, galactic bulges, elliptical galaxies, and clusters of
galaxies as indicated by Milgrom [7]. Saslaw et al. [8]
considered the role of isothermal spheres in inhomo-
geneous cosmological models in general relativity. Some
other past works involving isothermal spheres are gravita-
tional instabilities in the presence of a cosmological
constant [9], gravitational collapse [10–12] and gravita-
tional lensing properties of isothermal spheres with a finite
core [13], and thermodynamics in bounded self-gravitating
isothermal spheres [14]. It is interesting that isothermal
density profiles also arise in EGB theory in five dimensions
as we will demonstrate.
In this paper, we seek new exact interior models in five-

dimensional EGB theory with a spherical distribution of
perfect fluid. Some attempts in this direction have been
made by Kang et al. [15] and Dadhich et al. [16] in EGB
gravity without a cosmological constant. The first gravi-
tational potential is specified. We then express the EGB
field equations in standard canonical coordinates and then
introduce a coordinate transformation which allows the
single master field equation to be written as a second-order
ordinary differential equation in the remaining gravitational
potential. Our approach allows us to solve the master
differential equation in closed form. To integrate the master
field equation we utilize the method of Frobenius.
Solutions are possible in terms of series and polynomials.
Our models are characterized by a barotropic equation
of state.
In Sec. II we briefly discuss the basic principles of

EGB theory. The EGB field equations, used to describe
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gravitational behavior of five-dimensional EGB gravity in
static spherical fields, are derived in Sec. III. In Sec. IV we
present new classes of exact interior solutions. These are
valid for both five-dimensional EGB theory and the five-
dimensional Einstein gravity cases. Elementary functions
which arise from the general solution in Sec. IV are
presented in Sec. V. The physical properties of the model
are examined in Sec. VI. To verify the physical reason-
ableness of the model we perform a graphical analysis. We
make our conclusions in Sec. VII.

II. EINSTEIN-GAUSS-BONNET GRAVITY

We require an action to generate the field equations in
EGB gravity. In this paper we are interested in five
dimensions. The Gauss-Bonnet action in five dimensions
has the form

S ¼
Z ffiffiffiffiffiffi

−g
p �

1

2
ðR − 2Λþ αLGBÞ

�
d5xþ Smatter; ð1Þ

where the parameter α represents the Gauss-Bonnet
coupling constant. We observe that the Lagrangian is
quadratic in the Ricci tensor, Ricci scalar, and the
Riemann tensor. However, the advantage of this action is
that the equations of motion turn out to be second-order
quasilinear which is a distinguishing feature. The Gauss-
Bonnet term makes no contribution for n ≤ 4 but has a
nonzero value for n > 4.
The EGB field equations can be expressed in the form

Gab þ αHab ¼ Tab; ð2Þ

with metric signature ð−þþþþÞ. The quantityGab is the
Einstein tensor. The Lanczos tensor Hab is defined by

Hab ¼ 2ðRRab − 2RacRc
b − 2RcdRacbd þ Rcde

a RbcdeÞ

−
1

2
gabLGB: ð3Þ

The Lovelock term is given by

LGB ¼ R2 þ RabcdRabcd − 4RcdRcd; ð4Þ

which is a specific combination of Ricci scalar, the Ricci
tensor, and the Riemann tensor.

III. FIELD EQUATIONS

As we are concerned with five dimensions, we take the
line element for static spherically symmetric spacetimes to
be of the form

ds2 ¼ −e2νdt2 þ e2λdr2

þ r2ðdθ2 þ sin2θdϕ2 þ sin2θsin2ϕdψ2Þ; ð5Þ

where νðrÞ and λðrÞ are arbitrary functions representing the
gravitational field. We use a comoving fluid velocity ua ¼
e−νδa0 which is timelike and unit. The matter field is
described by a perfect fluid with energy momentum tensor
of the form

Tab ¼ ðρþ pÞuaub þ pgab; ð6Þ

where ρ and p are the energy density and isotropic pressure,
respectively.
Then the EGB field equations (2) may be expressed as

ρ ¼ 3

e4λr3
ðre4λ − re2λ − 4αλ0 þ r2e2λλ0 þ 4αe2λλ0Þ; ð7Þ

p ¼ 3

e4λr3
ð−re4λ þ ðr2ν0 þ rþ 4αν0Þe2λ − 3αν0Þ; ð8Þ

p ¼ 1

e4λr2
ð−e4λ − 4αν00 þ 12αν0λ0 − 4αðν0Þ2Þ

þ 1

e2λr2
ð1 − r2ν0λ0 þ 2rν0 − 2rλ0 þ r2ðν0Þ2Þ

þ 1

e2λr2
ðr2ν00 − 4αν0λ0 þ 4αðν0Þ2 þ 4αν00Þ: ð9Þ

The field equations are highly nonlinear; the appearance
of terms associated with α leads to additional complexity.
The system (7)–(9) consists of three field equations in
four unknowns which is similar to the four-dimensional
field equations in the Einstein limit for spherically
symmetric perfect fluids. We regain the Einstein limiting
case when α ¼ 0.
The transformation

e2ν ¼ y2ðxÞ; e−2λ ¼ ZðxÞ; x ¼ r2 ð10Þ

was introduced by Durgapal and Bannerji [17]. This
transformation has been successfully utilized in the
Einstein case to generate exact solutions. Examples of
simple metrics are provided by Finch and Skea [18] and
Hansraj and Maharaj [19] for neutral and charged
isotropic spheres, respectively. For recent examples to
charged anisotropic relativistic stellar models, found with
the help of this transformation, see the models of Mafa
Takisa and Maharaj [20], Maharaj et al. [21], and
Thirukkanesh and Maharaj [22] in four dimensions.
We apply the transformation (10) to the five-dimensional
EGB equations. Then the field equations (7)–(9) may be
written as

3ð1 − ZÞð1 − 4α _ZÞ
x

− 3 _Z ¼ ρ; ð11Þ

6Z _y
y

þ 24αð1 − ZÞZ _y
xy

−
3ð1 − ZÞ

x
¼ p; ð12Þ
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2xZð4α½Z − 1� − xÞÿ
− ðx2 _Z þ 4α½x _Z − 2Z þ 2Z2 − 3xZ _Z�Þ_y
− ð1þ x _Z − ZÞy ¼ 0: ð13Þ

The last equation is the generalization of the equation of
pressure isotropy. Equation (13) has been written as a
second-order differential equation in y; in four-dimensional
Einstein models, this proves to be a useful form. We seek
exact solutions to the highly nonlinear generalized pressure
isotropy condition (13) in the presence of α. When α ¼ 0,
then (13) becomes

2x2Zÿþ x2 _Z _yþð1þ x _Z − ZÞy ¼ 0: ð14Þ

Clearly (13) is more difficult to integrate in the five-
dimensional EGB case because of its greater complexity
and nonlinearity. Note that the four-dimensional version of
the special case (14) was comprehensively studied by
Thirukkanesh and Maharaj [22].

IV. NEW EXACT INTERIOR SOLUTIONS

To integrate (13) it is necessary to make simplifying
assumptions. Hansraj et al. [23] found several classes of
exact solutions by essentially choosing forms for the
function Z. We observe that if the potential Z is specified
then we can treat (13) as a second-order linear differential
equation in the function y. This approach may lead to exact
solutions in terms of elemenatry functions. We make the
simple choice,

Z ¼ a; ð15Þ

where a is a constant in our approach. Then Eq. (13)
reduces to

xðxþ AÞÿ − A_yþ Ey ¼ 0; ð16Þ

where we have set

A ¼ 4αð1 − aÞ; ð17Þ

E ¼ 1 − a
2a

; ð18Þ

for convenience.
Note that if we introduce a new variable z ¼ xþA

A , then
(16) can be written in the form

zðz − 1Þ d
2y

dz2
−
dy
dz

þ Ey ¼ 0; ð19Þ

which is the hypergeometric differential equation. In
general, (19) admits solutions in terms of special functions,
namely the hypergeometric functions. As equations (16)

and (19) are equivalent we can integrate either equation.
The general solution is expressible in the form of infinite
series but polynomial solutions are also permitted.

A. The case a ¼ 1

We take a ¼ 1. Then (19) reduces to

x2ÿ ¼ 0; ð20Þ
which is solved to give

y ¼ C1 þ C2x; ð21Þ

where C1 and C2 are integration constants. From (11) we
get the density to be ρ ¼ 0, and we do not pursue this case
further.

B. The case a ≠ 1

When a ≠ 1 then (19) is not contained in any of the
standard cases of known solutions for differential equa-
tions. Consequently, we can use the Frobenius method to
solve (19) as x ¼ 0 is a regular singular point.
Take the first solution to be of the form

y1ðxÞ ¼
X∞
n¼0

anxnþc; ð22Þ

where an is the coefficient of the series and c is a constant.
Since the equation (19) is the hypergeometric differential
equation we can write the first solution y1ðxÞ in the form

y1ðxÞ ¼
X∞
n¼1

2a0ð−1Þn
An

1

n!ðnþ 2Þ!
Yn
j¼1

ðjðjþ 1Þ þ EÞxnþ2;

n ≥ 1; ð23Þ

where the symbol
Q

denotes multiplication. In the above
a0, A and E are constants. It is clear that the first solution
y1ðxÞ is an infinite series.
To find the second linearly independent solution y2 to the

differential equation (19) we observe that the roots of the
indicial equation differ by an integer. Then the second
solution is given by

y2ðxÞ ¼ μy1ðxÞ ln xþ
X∞
n¼0

bnxn; ð24Þ

where μ is some constant and bn is the coefficient of the
series. For completeness, it is necessary that we find a
functional form for the coefficient bn. Unfortunately, we
cannot solve the resulting recurrence relation for bn for the
second solution in general. This contrasts with the first
solution y1ðxÞ. However, it is always possible to explicitly
generate the individual coefficients. The general solution to
(19) has the structure
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yðxÞ ¼ C1y1ðxÞ þ C2y2ðxÞ; ð25Þ
where y1ðxÞ and y2ðxÞ are given by (23) and (24),
respectively.

C. The case α ¼ 0

When α ¼ 0 in (16) we obtain the differential equation

x2ÿþ Ey ¼ 0; ð26Þ

which corresponds to the five-dimensional Einstein case.
This has solution

y ¼ C1x
1−

ffiffiffiffiffiffi
3a−2
a

p
2 þ C2x

1þ
ffiffiffiffiffiffi
3a−2
a

p
2 : ð27Þ

The energy density and pressure have the form

ρ ¼ 3ð1 − aÞ
x

; ð28Þ

p ¼ 3ða − 1Þ
x

þ
3a½C1

�
1 −

ffiffiffiffiffiffiffiffi
3a−2
a

q �
x
−
�

1þ
ffiffiffiffiffiffi
3a−2
a

p
2

�
þ C2

�
1þ

ffiffiffiffiffiffiffiffi
3a−2
a

q �
x
−
�

1−
ffiffiffiffiffiffi
3a−2
a

p
2

�
�

C1x
1−

ffiffiffiffiffiffi
3a−2
a

p
2 þ C2x

1þ
ffiffiffiffiffiffi
3a−2
a

p
2

: ð29Þ

An interesting case arises when we set C1 ¼ 0. Then from
(28) and (29) we get

p ¼
�

a
ð1 − aÞ

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3a − 2

a

r �
− 1

�
ρ; ð30Þ

and we obtain a linear barotropic equation of state in the
five-dimensional Einstein case. In (30) we observe that the
density profile ρ ∼ r−2 which is of the form for an
isothermal sphere. For a discussion of the isothermal
inhomogeneous models where pressure balances gravity
see the analysis of Saslaw et al. [8] in four dimensions.

V. ELEMENTARY FUNCTIONS

The first solution y1 in (23) is in the form of a series
which defines a hypergeometric function. For particular
values of the parameter E it is possible to write the solution
in terms of elementary functions which will be polyno-
mials. Such a reduced form is more helpful for discussing
the physical features. If we set E ¼ −m, an integer, then the
general coefficient can be written in the form

an ¼
2a0
An

1

n!ðnþ 2Þ!
Yn
j¼1

ðm − jðjþ 1ÞÞ; 1 ≤ n ≤ m:

ð31Þ

Then the first solution y1ðxÞ to the differential equation (19)
has the form

y1ðxÞ ¼
Xm
n¼1

2a0
An

1

n!ðnþ 2Þ!
Yn
j¼1

ðm − jðjþ 1ÞÞxnþ2: ð32Þ

Therefore the hypergeometric series terminates and the
solution is in terms of simple polynomial functions. This

behavior is also exhibited in the neutral and charged stellar
models of John and Maharaj [24], Thirukkanesh and
Maharaj [21,25], and Maharaj and Komathiraj [26] in
four-dimensional Einstein models.

VI. PHYSICAL PROPERTIES

The matter distribution should be well behaved. We
require that the gravitational potentials and matter variables
are regular, causality is maintained, and energy conditions
should be satisfied in the five-dimensional EGB spherically
symmetric model found in this paper.
Our model has the interesting feature of allowing the

barotropic equation of state in general. We observe from
(11) that

x ¼ 3Cð1 − aÞρ−1: ð33Þ

Since Z is constant, and the variable x is expressible in
terms of ρ, only the function yðxÞ in (25) can therefore be
written in terms of ρ only. Thus, the pressure p in (12) can
be written in terms of the energy density only:

p ¼ pðρÞ: ð34Þ

Thus the model in this paper obeys a barotropic equation of
state. A similar situation arises in the charged analogue of
Finch-Skea stars in four-dimensional general relativity as
established by Hansraj and Maharaj [19].
We now consider the matching at the boundary of the

gravitating body. For physical viability, any stellar interior
solution should match smoothly to the appropriate exterior
spacetime. The junction conditions for matching across
stellar surface in EGB gravity is contained in the treatment
of Davis [27]. The higher-order curvature terms modify the
usual junction conditions of conventional Einstein gravity.
The junction conditions must be satisfied to demonstrate a
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complete model. The exterior spacetime is taken to be the
Boulware-Deser metric [5]

ds2 ¼ −FðrÞdt2 þ dr2

FðrÞ
þ r2ðdθ2 þ sin2θdϕ2 þ sin2θsin2ϕdψ2Þ; ð35Þ

where

FðrÞ ¼ 1þ r2

4α

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8Mα

r4

r �
;

and M is the mass of the gravitating hypersphere. For a
constant density body in five-dimensional EGB theory the
matching across the boundary was performed by Dadhich
et al. [16]. In our variable density model we match the
metrics (5) and (35) across the boundary r ¼ R. This yields
the conditions

1þ R2

4α

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8Mα

R4

r �
¼ y2ðR2Þ ¼ e2νðRÞ; ð36Þ

1þ R2

4α

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8Mα

R4

r �
¼ ZðR2Þ ¼ e−2λðRÞ: ð37Þ

With the help of (12), (15), and (25), the vanishing of the
pressure at the boundary requires

2aðR2 þ 4αð1 − aÞÞðC1 _y1 þ C2 _y2Þ
− ð1 − aÞðC1y1 þ C2y2Þ ¼ 0: ð38Þ

Then we can show that (36)–(38) admits the solution

C1 ¼
ffiffiffi
a

p
− C2y2
y1

; ð39aÞ

C2 ¼
½ð1 − aÞy1 − 2aðR2 þ 4αð1 − aÞÞ_y1�
2

ffiffiffi
a

p ½R2 þ 4αð1 − aÞ�ðy1 _y2 − y2 _y1Þ
; ð39bÞ

a ¼ 1þ R2

4α

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8Mα

R4

r �
: ð39cÞ

This uniquely fixes the arbitrary constants a, C1, and C2 in
terms of the stellar radius R, the mass M, and the Gauss-
Bonnet parameter α.
Now to study the physical features. For the physical

analysis, we truncate (23) to get the first three terms as

y ¼ −
2ð2þ EÞa0

1!3!A
x3 þ 2ð2þ EÞð6þ EÞa0

2!4!A2
x4

−
2ð2þ EÞð6þ EÞð12þ EÞa0

3!5!A3
x5: ð40Þ

This is always possible, in general, since we showed in
Sec. V that polynomial solutions are permitted in the first
solution y1ðxÞ. Using (11), we find the density to be

ρ ¼ 3ð1 − aÞ
x

; ð41Þ

From (12) the pressure is given by

p ¼ 3ða − 1Þ
x

þ 6a

�
x − 4αða − 1Þ

x2

�
KðxÞ; ð42Þ

where

KðxÞ ¼
�
360A2 − 60Að6þ EÞxþ 5ð6þ EÞð12þ EÞx2
120A2 − 15Að6þ EÞxþ ð6þ EÞð12þ EÞx2

�
:

ð43Þ

Plots for the energy density ρ and pressure are given in
Figs. 1–2, respectively. We note that they are both decreas-
ing functions.

1 2 3 4 5
r

2

4

6

8

10
Density

FIG. 1 (color online). Plot of energy density versus radial
coordinate r.

1 2 3 4 5

Pressure

2

4

6

8

10

r

FIG. 2 (color online). Plot of pressure versus radial
coordinate r.
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As ρ and p are known explicitly we can calculate the quantity dp
dρ. This is given by

dp
dρ

¼ 2a½fx − 2ðx − 4αða − 1ÞÞgKðxÞ þ xðx − 4αða − 1ÞÞK0ðxÞ�
ð1 − aÞx − 1; ð44Þ

The speed of sound is plotted in Fig. 3. We find that the
speed of sound is less than the speed of light.
For the energy conditions we require the quantities

ρ − p ¼ 6ð1 − aÞ
x

−
6aðx − 4αða − 1ÞÞKðxÞ

x2
; ð45aÞ

ρþ p ¼ 6aðx − 4αða − 1ÞÞKðxÞ
x2

; ð45bÞ

ρþ 3p ¼ 6ða − 1Þ
x

þ 18aðx − 4αða − 1ÞÞKðxÞ
x2

: ð45cÞ

They are plotted in Fig. 4. The energy conditions
ρ − p > 0, ρþ p > 0 and ρþ 3p > 0 are satisfied in
the interior. We note that, close to the centre, the weak
energy condition ρ − p has different behavior.
We observe that with the help of (41) and (42), we can

write

p ¼ 2aρð3þ 4αρÞ
3ð1 − aÞ KðρÞ − ρ; ð46Þ

where

KðρÞ ¼ 15

�
8ρ2A2 − 4Aða − 1Þð6þ EÞρþ ða − 1Þ2ð6þ EÞð12þ EÞ
40ρ2A2 − 15Að6þ EÞρþ 3ða − 1Þ2ð6þ EÞð12þ EÞ

�
: ð47Þ

Hence, the barotropic equation of state (34) can be written
explicitly for this example. If α ¼ 0, then the equation of
state is

p ¼
�

10a
ð1 − aÞ − 1

�
ρ; ð48Þ

which is the Einstein limit. We have generated the linear
equation of state (cf. with the results of case C in Sec. VI).

VII. CONCLUSION

We have obtained an interior exact solution for a
spherically symmetric sphere in EGB theory coupled with
the Lanczos term. The first gravitational potential Z is taken
to be constant and used to find the structure of the second
potential y. The method of Frobenius was used to find the
first solution in terms of a convergent series. For particular
values it is possible to find solutions expressed as poly-
nomials. The second solution is also in the form of a series.
The EGB model found always admits a barotropic equation
of state. We find that, in both the EGB and Einstein cases,
models exist with a linear equation of state with a energy
density profile consistent with an isothermal distribution.
For the physical analysis, we choose a quintic form for the
function yðxÞ. The model is well behaved in the interior as
illustrated in graphical plots. The simple models presented
here suggest that there may be other exact solutions to the
EGB nonlinear equations which we should attempt to
discover.
On physical grounds it would be desirable to build the

stellar model with an equation of state in the form

1 2 3 4 5

1.0

0.5

0.5

1.0

dp
d

r

FIG. 3 (color online). Plot of sound-speed parameter versus
radial coordinate r.

p

p

3 p

1 2 3 4 5

Energy Condition

r

2

4

6

8

10

FIG. 4 (color online). Plot of energy conditions versus radial
coordinate r.
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p ¼ pðρÞ. However, note that this requirement adds
another nonlinear constraint to the model in addition
to the field equations (11)–(13). With this addition, we
cannot integrate the field equations in general. Even with
vanishing EGB coupling parameter α, very few solutions
are known in the Einstein case [28] for isotropic
pressures. It is, therefore, remarkable that the class of
models found in this paper, with the mathematical
assumption (28) for the metric, does admit an equation
of state. For anisotropic pressures and nonvanishing
electric fields, there is greater freedom, and recently
several exact models have been found with an equation
of state. Mafa Takisa et al. [29] and Maharaj et al. [21]
presented models with linear equations of state, Maharaj
and Mafa Takisa [30] and Mafa Takisa et al. [31]

generated solutions with a quadratic equation of state,
and polytropic equations of state were given by Mafa
Takisa and Maharaj [32]. It would be interesting to
pursue this approach in the future in EGB gravity.
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