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Theories involving curved momentum space, which recently became a topic of interest in the quantum-
gravity literature, can, in general, violate many apparently robust aspects of our current description of the
laws of physics, including relativistic invariance, locality, causality, and global momentum conservation.
Here, we explore some aspects of the pathologies arising in generic theories involving curved momentum
space for what concerns causality and momentum conservation. However, we also report results suggesting
that when momentum space is maximally symmetric, and the theory is formulated relativistically, most
notably including translational invariance with the associated relativity of spacetime locality, momentum is
globally conserved and there is no violation of causality.
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I. INTRODUCTION

Over the last decade several independent arguments
suggested that the Planck scale might characterize a non-
trivial geometry of momentum space (see, e.g., Refs. [1–8]).
Among the reasons for interest in this possibility, we should
mention approaches to the study of the quantum-gravity
problem based on spacetime noncommutativity, particularly
when considering models with “Lie-algebra spacetime non-
commutativity,” ½xμ; xν� ¼ iζσμνxσ , where the momentum
space in which spacetime coordinates generate translations
is evidently curved (see, e.g., Ref. [9]). Also, in the loop
quantum gravity approach [10], one can adopt a perspective
suggesting momentum-space curvature (see, e.g., Ref. [11]).
And one should take notice of the fact that the only quantum
gravity we actually know how to solve, quantum gravity in
the (2þ 1)-dimensional case, definitely does predict a
curved momentum space (see, e.g., Refs. [12–16]).
In light of these findings, it is important, then, to under-

stand what the implications of the curvature of momentum
space are.Of course, themost promising avenue is the one for
accommodating this new structure while preserving, to the
largest extent possible, the structure of our current theories.
And some progress in this direction has already beenmade in
works adopting the “relative-locality curved-momentum-
space framework,” which was recently proposed in
Ref. [8]. Working within this framework, it was shown
[17–19] in particular that some theories on curved momen-
tum spaces can be formulated as relativistic theories. These
are not special-relativistic theories, but they are relativistic
within the scope of the proposal of “DSR theories” [2,3]
(Doubly-Special-Relativity theories, also see Refs. [20–24]),
theories with two relativistic invariants, the speed-of-light
scale c and a length/inverse-momentum scale l. The scale
that characterizes the geometry of momentum space must in

fact be an invariant if the theories on such momentum spaces
are to be relativistic.
Concerning locality, some works based on Ref. [8] have

established that, while for generic theories on curved
momentum spaces locality is simply lost, in some appro-
priate cases the curvature of momentum space is compat-
ible only with a relatively mild weakening of locality. This
is the notion of relative spacetime locality, such that [25]
events observed coincident by nearby observers may be
described as noncoincident by some distant observers. In
the presence of relative spacetime locality, one can still
enforce as a postulate that physical processes are local, but
requiring the additional specification that they be local for
nearby observers.
The emerging assumption is that research in this area

should give priority to theories on curved momentum space
which are (DSR) relativistic, including (and this is the key
point for our analysis) translational invariance and the
associated relativity of spacetime locality. Of course, it is
important to establish whether these two specifications are
sufficient for obtaining acceptable theories. Here, acceptable
evidentlymeans theorieswhose departures from current laws
are either absent or small enough to be compatible with the
experimental accuracy with which such laws have, so far,
been confirmed experimentally. In this respect, some note-
worthy potential challenges have been exposed in recent
studies in Refs. [26,27]. Reference [26] observed that, in
general, theories on curvedmomentum space do not preserve
causality, whereas Ref. [27] observed that, in general,
theories on curved momentum space, even when one
enforces momentum conservation at interactions, may end
up losing global momentum conservation.
The study we report here intends to contribute to the

understanding of theories formulated in the relative-locality
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curved-momentum-space framework proposed in Ref. [8].
Like Refs. [26,27], we keep our analysis explicit by
focusing on the case of the so-called κ-momentum space,
which is known to be compatible with a (DSR-)relativistic
formulation of theories. Our main focus then is on
establishing whether enforcing relative locality is sufficient
for addressing the concerns about causality reported in
Ref. [26] and the concerns about momentum conservation
reported in Ref. [27]. This is indeed what we find:
enforcing relative locality for theories on κ-momentum
space is sufficient for excluding the causality-violating
processes of Ref. [26] and the processes violating the global
momentum conservation of Ref. [27].
A key role in our analysis is played by translation

transformations in relativistic theories with a curvedmomen-
tum space. As established in previous works [19,28], the
relevant laws of translation transformations are, in some
sense, less rigid than in the standard flat-momentum-space
case, but still must ensure that all interactions are local as
described by nearby observers. It is of course only through
such translation transformations that one can enforce relative
spacetime locality for chains of events such as those
considered in Refs. [26,27]. In the presence of a chain of
events, any given observer is at most “near” one of the events
(meaning that the event occurs in the origin of the observer’s
reference frame) and, because of relative locality, that
observer is then not in a position to establish whether or
not other events in the chain are local. Enforcing the principle
of relative locality [8] then requires the use of translation
transformations connecting at least as many observers as
there are distant events in the chain: this is the only way for
enforcing the spacetime locality of each event in the chain, in
the sense of the principle of relative locality.
The main issues and structures we are concerned with

here are already fully active and relevant in the case of
1þ 1 spacetime dimensions and at leading order in the
scale l of the curvature of momentum space. We shall
therefore mainly focus on the (1þ 1)-dimensional case and
on the leading-in-l-order results, so that our derivations can
be streamlined a bit and the conceptual aspects are more
easily discussed.

II. PRELIMINARIES ON CLASSICAL PARTICLE
THEORIES ON THE κ-MOMENTUM SPACE

As announced, our analysis adopts the relative-locality
curved-momentum-space framework proposed in Ref. [8],
and for definitiveness focuses on the κ-momentum space.
This κ-momentum space is based on a form of on shellness
and a form of the law of composition of momenta inspired
by the k-Poincaré Hopf algebra [29,30], which had already
been of interest from the quantum-gravity perspective for
independent reasons [9,11,12]. The main characteristics of
this momentum space are that, at leading order in the
deformation scale l, the on shellness of a particle of
momentum p and mass mp is

Cp ≡ p2
0 − p2

1 − lp0p2
1 ¼ m2

p; ð1Þ

while the composition of two momenta p, q is

ðp ⊕ qÞ0 ¼ p0 þ q0;

ðp ⊕ qÞ1 ¼ p1 þ q1 − lp0q1: ð2Þ

Useful for several steps of the sorts of analyses we are
here interested in is the introduction of the “antipode" of
the composition law, denoted by ⊖, such that
ðq ⊕ ð⊖qÞÞμ ¼ 0 ¼ ðð⊖qÞ ⊕ qÞμ. For the κ-momentum
case, one finds that

ð⊖qÞ0 ¼ −q0; ð⊖qÞ1 ¼ −q1 − lq0q1:

We shall not review here the line of analysis which
describes these rules of kinematics as the result of adopting
on momentum space the de Sitter metric and a specific
torsionful affine connection. These points are discussed in
detail in Refs. [17,28].
In light of our objectives, it is useful for us to briefly

summarize here the description of events within the
relative-locality curved-momentum-space framework.
More detailed and general discussions of this aspect can
be found in Refs. [8,28]. Here we shall be satisfied with
briefly describing the illustrative case of the event in Fig. 1,
for which we might think, for example, of the event of
absorption of a photon by an atom. The case of interest in
the recent literature on the relative-locality framework is the
one of events of this sort analyzed within classical
mechanics (so, in particular, the diagram shown here in
Fig. 1 should not be interpreted in the sense of quantum
theory’s Feynman diagrams, bur rather merely as a sche-
matic description of a classical-physics event).
The formalism introduced in Ref. [8] allows the descrip-

tion of such an event in terms of the law of on shellness,
which for the κ-momentum space is (1), and the law of

FIG. 1 (color online). We here show schematically a three-
valent event marked by a Kð0Þ that symbolizes a boundary term
conventionally located at value s0 of the affine parameter s. The
boundary term enforces (deformed) momentum conservation
at the event.
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composition of momenta, which for the κ-momentum space
is (2). This is done by introducing the action [8]

S ¼
Z

s0

−∞
dsðzμ _kμ þN k½Ck −m2

k�Þ

þ
Z

s0

−∞
dsðxμ _pμ þN p½Cp −m2

p�Þ

þ
Z þ∞

s0

dsðyμ _qμ þN q½Cq −m2
q�Þ − ξμð0ÞK

ð0Þ
μ : ð3Þ

Here the Lagrange multipliers N k, N p, N q enforce in a
standard way the on shellness of particles. The most
innovative part of the formalization introduced in
Ref. [8] is the presence of boundary terms at end points
of worldlines, enforcing momentum conservation. In the
case of (3), describing the single interaction in Fig. 1, there
is only one such boundary term, and the momentum-

conservation-enforcing Kð0Þ
μ takes the form1

Kð0Þ
μ ¼ ðk ⊕ pÞμ − qμ: ð4Þ

Relative spacetime locality is an inevitable feature of
descriptions of events governed by curvature of momentum
space of the type illustrated by our example (3). To see this
we vary the action (3), keeping the momenta fixed at

s ¼ �∞, as prescribed in Ref. [8], and we find the
equations of motion

_kμ ¼ 0; _pμ ¼ 0; _qμ ¼ 0; ð5Þ

Ck ¼ m2
k; Cp ¼ m2

p; Cq ¼ m2
q; ð6Þ

Kð0Þ
μ ¼ 0; ð7Þ

_zμ ¼N k
∂Ck
∂kμ ; _xμ ¼N p

∂Cp
∂pμ

; _yμ ¼N q
∂Cq
∂qμ ; ð8Þ

and the boundary conditions at the end points of the three
semi-infinite worldlines

zμðs0Þ ¼ ξνð0Þ
∂Kð0Þ

ν

∂kμ ;

xμðs0Þ ¼ ξνð0Þ
∂Kð0Þ

ν

∂pμ
;

yμðs0Þ ¼ −ξνð0Þ
∂Kð0Þ

ν

∂qμ : ð9Þ

The relative locality is codified in the fact that for
configurations such that ξμð0Þ ≠ 0, the boundary conditions
(9) impose that the end points of the worldlines do not
coincide since, in general,

∂Kð0Þ
ν

∂kμ ≠
∂Kð0Þ

ν

∂pμ
≠ −

∂Kð0Þ
ν

∂qμ ; ð10Þ

FIG. 2 (color online). We give here a schematic description of a process composed of two causally connected events. The event at
Alice could be the absorption of a photon by an atom and the event at Bob could be another absorption of a photon by the same atom.
The implications of relative locality are visualized by describing Alice’s perspective on the process in the left panel and the perspective
of Bob (distant from Alice and in relative rest with respect to Alice) in the right panel. According to Alice’s description, the first
absorption event (which occurs in Alice’s origin of the reference frame) is local, but Alice’s inferences about the second absorption event
(which occurs at Bob, far away from Alice) would characterize it as nonlocal. Bob has a relativistically specular viewpoint: Bob’s
description of the second absorption event (which occurs in Bob’s origin of the reference frame) is local but Bob’s inferences about the
first absorption event (which occurs at Alice, far away from Bob) would characterize it as nonlocal. This is how a pair of causally
connected distant local events gets described in the presence of relative locality.

1Note that for associative composition laws, as in the case of
the κ-momentum-space composition law (2), one can rewrite
ðk ⊕ pÞμ − qμ ¼ 0 equivalently as ððk ⊕ pÞ ⊕ ð⊖qÞÞμ ¼ 0.
This is due to the logical chain ððk ⊕ pÞ ⊕ ð⊖qÞÞμ ¼ 0 ⇒
ððk ⊕ pÞ ⊕ ð⊖qÞ ⊕ qÞμ ¼ qμ ⇒ ðk ⊕ pÞμ ¼ qμ.
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so that in the coordinatization of the (in that case, distant)
observer, the interaction appears to be nonlocal. However,
as shown in Fig. 2, for observers such that the same
configuration is described with ξμð0Þ ¼ 0, the end points of

the worldlines must coincide and must be located in the
origin of the observer (xμðs0Þ ¼ yμðs0Þ ¼ zμðs0Þ ¼ 0). And
it is important to notice that taking as a starting point of the
analysis some observer Alice for whom ξμð0Þ½A� ≠ 0—i.e., an

observer distant from the interaction who sees the inter-
action as nonlocal—one can obtain from Alice an observer
Bob for whom ξμð0Þ½B� ¼ 0, if the transformation from Alice

to Bob for end points of coordinates has the form

zμBðs0Þ ¼ zμAðs0Þ − ξνA
∂Kð0Þ

ν

∂kμ ;

xμBðs0Þ ¼ xμAðs0Þ − ξνA
∂Kð0Þ

ν

∂pμ
;

yμBðs0Þ ¼ yμAðs0Þ þ ξνA
∂Kð0Þ

ν

∂qμ : ð11Þ

Such a property for the end points is produced, of course,
for the choice bν ¼ ξνA, by the corresponding prescription
for the translation transformations:

xμBðsÞ ¼ xμAðsÞ − bν
∂Kν

∂pμ
¼ xμAðsÞ þ bνfðk ⊕ pÞν; xμðsÞg;

zμBðsÞ ¼ zμAðsÞ − bν
∂Kν

∂kμ ¼ zμAðsÞ þ bνfðk ⊕ pÞν; zμðsÞg;

yμBðsÞ ¼ yμAðsÞ þ bν
∂Kν

∂qμ ¼ yμAðsÞ þ bνfqν; yμðsÞg;

ξμB ¼ ξμA − bμ; ð12Þ
where it is understood that fxμ; pνg ¼ δμν , fzμ; kνg ¼ δμν ,
fyμ; qνg ¼ δμν . This also shows that in this framework one
can enforce the “principle of relative locality” [8] that all
interactions are local according to nearby observers
(observers such that the interaction occurs in the origin
of their reference frame).

III. CAUSE AND EFFECT WITH
RELATIVE LOCALITY

Technically, our goal is to work within the framework
briefly reviewed in the previous section (and described in
more detail and more generality in Refs. [8,28]), specifically
assuming the laws (1) and (2) for the κ-momentumspace, and
show that the concerns for causality reported in Ref. [26] and
the concerns for momentum conservation reported in
Ref. [27] do not apply once the principle of relative locality
is enforced. We start with the causality issue and, before
considering specifically the concerns discussed in Ref. [26],
we devote this section to an aside on the relationship between
cause and effect in our framework. We intend to show only

that relative locality, though weaker than ordinary absolute
locality, is strong enough to ensure the objectivity of the
causal link between a cause and its effect. An example of a
situation where this is not obvious a priori with relative
locality is the one in Fig. 3, wherewe illustrate schematically
two causal links: a pair of causally connected events is
shown in red and another pair of causally connected events
is shown in blue, but there is no causal connection [in spite
of the coincidence of the events Kð0Þ and Kð1Þ] between
events where blue lines cross and events where red
lines cross. An example of a situation of the type shown
in Fig. 3 is one with two atoms both getting coincidently
excited by photon absorption, then both propagating
freely and, ultimately, both getting deexcited by emitting a
photon each.
A problem might arise when (as suggested in Fig. 3)

events on two different causal links happen to be rather
close in spacetime: because of relative locality observers
distant from such near-coincident (but uncorrelated)
events might get a sufficiently distorted picture of the
events that the causal links could get confused. We will
arrange for just such a particularly insightful situation by
the end of this section. And, ultimately, we shall find that
no confusion about causal links arises if information on
the different events is gathered by nearby observers.
Specifically, for the situation in Fig. 3 it will be necessary
to rely on at least two observers: an observer Alice near

events Kð0Þ
μ and Kð1Þ

μ and an observer Bob near events Kð2Þ
μ

and Kð3Þ
μ .

We shall do this analysis in detail but by making some
simplifying assumptions about the energies of the particles
involved. For the particles described by dashed lines in
Fig. 3, we assume that they are “soft” [28]; i.e., their
energies E are small enough that the terms of order lE2 are

FIG. 3 (color online). We show schematically here two causal
links: a pair of causally connected events is shown in red and
another pair of causally connected events is shown in blue, but
there is no causal connection [in spite of the coincidence of the
events Kð0Þ and Kð1Þ] between events where blue lines cross and
events where red lines cross. We analyze this situation with the
simplifying assumption that some of the particles involved (those
described by dashed lines) have energies small enough that the
Planck-scale effects of interest here can be safely neglected.
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negligible in comparison to all of the other energy scales
that we shall instead take into account. The particles
described by solid lines in Fig. 3 are instead “hard,”
meaning that for them l corrections must be taken into
account. We also adopt the simplification that all particles

are ultrarelativistic; i.e., for massive particles the mass can
be neglected.
The action describing the situation in Fig. 3 within the

relative-locality curved-momentum-space framework pro-
posed in Ref. [8] is

S ¼
Z

s1

−∞
dsðzμ _kμ þN kC

ð0Þ
k Þ þ

Z
s1

−∞
dsðxμ _pμ þN pðCp −m2

pÞÞ þ
Z

s0

−∞
dsðyμ _qμ þN qðCð0Þq −m2

qÞÞ

þ
Z

s0

−∞
dsðuμ _rμ þN rC

ð0Þ
r Þ þ

Z
s2

s1

dsðx0μ _p0
μ þN p0 ðCp0 −m2

p0 ÞÞ þ
Z

s3

s0

dsðy0μ _q0μ þN q0 ðCð0Þq0 −m2
q0 ÞÞ

þ
Z þ∞

s3

dsðy00μ _q00μ þN q00 ðCð0Þq00 −m2
q00 ÞÞ þ

Z þ∞

s3

dsðu0μ _r0μ þN r0C
ð0Þ
r0 Þ þ

Z þ∞

s2

dsðx00μ _p00
μ þN p00 ðCp00 −m2

p00 ÞÞ

þ
Z þ∞

s2

dsðz0μ _k0μ þN k0C
ð0Þ
k0 Þ − ξμð0ÞK

ð0Þ
μ − ξμð1ÞK

ð1Þ
μ − ξμð2Þ − ξμð3ÞK

ð3Þ
μ ; ð13Þ

where the KðiÞ
μ appearing in the boundary terms enforce the

relevant conservation laws

Kð0Þ
μ ¼ ðr ⊕ qÞμ − q0μ;

Kð1Þ
μ ¼ ðk ⊕ pÞμ − p0

μ;

Kð2Þ
μ ¼ p0

μ − ðk0 ⊕ p00Þμ;
Kð3Þ

μ ¼ q0μ − ðr0 ⊕ q00Þμ: ð14Þ

Several aspects of (13) are worth emphasizing. First we
notice that the action in (13) is just the sum of two
independent pieces, one for each (two-event) chain of
causally connected events. For soft particles we codified

the on shellness in terms of Cð0Þp ¼ p2
0 − p2

1, while for hard
particles we have Cp ≡ p2

0 − p2
1 − lp0p2

1, appropriate for
the κ-momentum case. For conceptual clarity, massive
particles in (13) are identifiable indeed because we write
a mass term for them, even though, as announced, we shall
assume throughout this section that all particles are ultra-
relativistic. Also note that the action (13) is not specialized
for the case which will be of interest here from the causality
perspective, which is the case of the coincidence of the two
events Kð0Þ and Kð1Þ: we shall enforce that feature later by
essentially focusing on solutions such that ξμð0Þ ¼ ξμð1Þ.
By varying the action (13), one obtains the following

equations of motion:

_pμ¼0; _qμ¼0; _kμ¼0; _rμ¼0; _p0
μ¼0; _q0μ¼0; _p00

μ¼0; _q00μ¼0; _k0μ¼0; _r0μ¼0;

Cp¼m2
p; Cð0Þq ¼m2

q; Cð0Þk ¼0; Cð0Þr ¼0; Cp0 ¼m2
p0 ; Cð0Þq0 ¼m2

q0 ; Cp00 ¼m2
p00 ; Cð0Þq00 ¼m2

q00 ; Cð0Þk0 ¼0; Cð0Þr0 ¼0;

Kð0Þ
μ ¼0; Kð1Þ

μ ¼0; Kð2Þ
μ ¼0; Kð3Þ

μ ¼0;

_xμ¼N p
∂Cp
∂pμ

; _yμ¼N q
∂Cð0Þq

∂qμ ; _zμ¼N k
∂Cð0Þk

∂kμ ; _uμ¼N r
∂Cð0Þr

∂rμ ;

_x0μ¼N p0
∂Cp0

∂p0
μ
; _y0μ¼N q0

∂Cð0Þq0

∂q0μ ; _x00μ¼N p00
∂Cp00

∂p00
μ
; _y00μ¼N q00

∂Cð0Þq00

∂q00μ ; _z0μ¼N k0
∂Cð0Þk0

∂k0μ ; _u0μ¼N r0
∂Cð0Þr0

∂r0μ ;

and the boundary conditions for the end points of the worldlines

xμðs1Þ ¼ ξνð1Þ
∂Kð1Þ

ν

∂pμ
; zμðs1Þ ¼ ξνð1Þ

∂Kð1Þ
ν

∂kμ ; yμðs0Þ ¼ ξνð0Þ
∂Kð0Þ

ν

∂qμ ; uμðs0Þ ¼ ξνð0Þ
∂Kð0Þ

ν

∂rμ ; x0μðs1Þ ¼−ξνð1Þ
∂Kð1Þ

ν

∂p0
μ
;

x0μðs2Þ ¼ ξνð2Þ
∂Kð2Þ

ν

∂p0
μ
; y0μðs0Þ ¼−ξνð0Þ

∂Kð0Þ
ν

∂q0μ ; y0μðs3Þ ¼ ξνð3Þ
∂Kð3Þ

ν

∂q0μ ; x00μðs2Þ ¼−ξνð2Þ
∂Kð2Þ

ν

∂p00
μ
; z0μðs2Þ ¼−ξνð2Þ

∂Kð2Þ
ν

∂k0μ ;

y00μðs3Þ ¼−ξνð3Þ
∂Kð3Þ

ν

∂q00μ ; u0μðs3Þ ¼−ξνð3Þ
∂Kð3Þ

ν

∂r0μ :
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It is easy to check to see that the above equations of motion
and boundary conditions are invariant under the following
translation transformations:

xμB ¼ xμA þ bνfðk ⊕ pÞν; xμg;
zμB ¼ zμA þ bνfðk ⊕ pÞν; zμg;
yμB ¼ yμA þ bνfðr ⊕ qÞν; yμg;
uμB ¼ uμ þ bνfðr ⊕ qÞν; uμg;
x0μB ¼ x0μA þ bνfp0

ν; x0μg;
y0μB ¼ y0μA þ bνfq0ν; y0μg;
x00μB ¼ x00μA þ bνfðk0 ⊕ p00Þν; x00μg;
z0μB ¼ z0μA þ bνfk0 ⊕ p00Þν; z0μg;
y00μB ¼ y00μA þ bνfðr0 ⊕ q00Þν; y00μg;
u0μB ¼ u0μA þ bνfðr0 ⊕ q00Þν; u0μg; ð15Þ

where bμ are the translation parameters and it is understood
that fzμ;kνg¼δμν , fxμ;pνg¼δμν , fyμ;qνg¼δμν , fuμ;rνg¼δμν ,
fz0μ; k0νg ¼ δμν , fx0μ;p0

νg¼δμν , fy0μ;q0νg¼δμν , fu0μ; r0νg ¼ δμν ,
fx00μ; p00

νg ¼ δμν , fy00μ; q00νg ¼ δμν .
Because of relative locality, we evidently need here two

observers Alice and Bob, chosen so that the questions of
interest here can be investigated in terms of the locality of
interactions near them. As announced, we focus on the
case in which the interactions Kð0Þ and Kð1Þ are coincident,
and we take as Alice an observer for whom these two
interactions occur in the origin of her reference frame.
This, in particular, allows us to restrict our attention to
cases with x0μAðs1Þ ¼ y0μAðs0Þ ¼ 0. We take the other
observer, Bob, to be at rest with respect to Alice and such
that the event Kð3Þ occurs in the origin of Bob’s reference
frame, so that y0μBðs3Þ ¼ 0. Since in the κ-momentum case
the physical speed of ultrarelativistic particles depends on
their energy [28], the interaction Kð2Þ cannot be coincident
to the interaction Kð3Þ [since Kð0Þ and Kð3Þ exchange a soft
particle whereas Kð1Þ and Kð2Þ exchange a hard particle,
one must take into account the difference in physical speed
between the hard and the soft exchanged particle]. But this
dependence on energy of the physical speed of ultra-
relativistic particles is, in any case, a small l-suppressed
effect, so we can focus on a situation where Kð2Þ and Kð3Þ
are nearly coincident, and we study that situation assuming
Kð2Þ occurs in the spatial origin of Bob’s reference frame
[but at a time different fromKð3Þ]. This allows us to specify
x01Bðs2Þ ¼ 0. Also note that as long as the distance of Kð2Þ

from the spacetime origin of Bob’s reference frame is an l-
suppressed feature, Bob’s description of the locality (or
lack thereof) of the interaction Kð2Þ is automatically
immune from relative-locality effects at leading order in
l, which is the order at which we are working.

Equipped with this choice of observers and these
simplifying assumptions about the relevant events, we
can quickly advance with our analysis of causal links from
the relative-locality perspective. We start by noticing that
from the equations of motion it follows that for both Alice
and Bob,2

_x01

_x00
¼ 1 − lp0

1;
_y01

_y00
¼ 1: ð16Þ

This implies that, according to Alice [for whom the events
Kð0Þ andKð1Þ occur in the origin of the reference frame], the
worldlines of the two exchanged particles are

x01A ¼ ð1 − lp0
1Þx00A;

y01A ¼ y00A: ð17Þ
A key aspect of the analysis we are reporting on in this
section is establishing how these two worldlines are
described by the distant observer Bob. On the basis of
(15), one concludes that the relevant translation trans-
formation is undeformed:

x0μBðsÞ ¼ x0μAðsÞ þ bνfp0
ν; x0μg ¼ x0μAðsÞ − bμ;

y0μBðsÞ ¼ y0μAðsÞ þ bνfq0ν; y0μg ¼ y0μAðsÞ − bμ: ð18Þ
So, the worldlines in Bob’s coordinatization must have the
form

x01B ¼ ð1 − lp0
1Þx00B − b1 þ b0 − b0lp0

1;

y01B ¼ y00B − b1 þ b0: ð19Þ

Since we have specified for Bob that Kð3Þ occurs in the
origin of his reference frame, y0μBðs3Þ ¼ 0, we must have
b0 ¼ b1. And then, finally, we establish that the event Kð2Þ,
occurring in the spatial origin of Bob’s reference frame,
x1Bðs2Þ ¼ 0, is timed by Bob at

x00Bðs2Þ ¼ b1lp0
1: ð20Þ

In particular, for positive l one has that, according to Bob,
Kð2Þ occurs before Kð3Þ in his spatial origin, with a time
difference between them given by Δt ¼ b1lp0

1.
This was just preparatory material for the point we most

care about in this section, which concerns possible para-
doxes for causality and their clarification. For that we need
to look at how Alice describes the two events distant from
her,Kð2Þ andKð3Þ. Kð3Þ is an interaction involving only soft
particles, so nothing noteworthy can arise from looking at
Kð3Þ, but Kð2Þ involves hard particles and, therefore, the

2Note that within our conventions, the direction of propagation
and the sign of the spatial momentum with lower index, p1, are
opposite. So, negative p1 is actually for propagation along the
positive direction of the x1 axis.
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inferences about Kð2Þ by observer Alice, who is distant
from Kð2Þ, will give a description of Kð2Þ as an apparently
nonlocal interaction. This is the main implication of relative
locality, and we can see that it does give rise to a combined
description of Kð2Þ and Kð3Þ that may at first appear
puzzling from the causality perspective. We show this
by noting the values of the coordinates of particles involved
in Kð2Þ and Kð3Þ, according to Alice. For the particles with
coordinates y00μ and u0μ on the basis of (15), one finds that
the translation is completely undeformed, and since
y00μBðs3Þ ¼ u0μBðs3Þ ¼ 0, one has

y00μAðs3Þ ¼ u0μAðs3Þ ¼ ξμð3ÞA ¼ b1:

For the particles involved in the hard vertex Kð2Þ, with
coordinates x00μ and z0μ, on the basis of (15) one finds
that the translation is deformed, and starting with the fact
that x000B ¼ b1lp0

1, x001B ¼ 0, z00B ¼ b1lp0
1, z01B ¼ 0, one

finds that

x000Aðs2Þ ¼ b1 þ b1lp0
1;

x001Aðs2Þ ¼ b1 − b1lk01 ≈ b1;

z00Aðs2Þ ¼ b1 þ b1lp0
1 − b1lp00

1;

z01Aðs2Þ ¼ b1: ð21Þ

As shown in Fig. 4, the most striking situation from the
viewpoint of causality arises when p0

1 ≃ p00
1 , in which case,

according to Alice, z00Aðs2Þ ¼ z01Aðs2Þ ¼ b1, which means
that the particle with coordinates z0μ, which actually
interacts at Kð2Þ, in the coordinatization by distant observer
Alice appears to come out of the interactionKð3Þ. This is an
example of the sort of apparent paradoxes for causality that
can be encountered with relative locality: they all concern
the description of events by distant observers. Of course,
there is no true paradox since a known consequence of
relative locality is that inferences about distant events are
misleading. Indeed, as also shown in Fig. 4, Bob’s
description of the interactions Kð2Þ and Kð3Þ (which are
near Bob) is completely unproblematic. However, in turn,
Bob’s inferences about the events Kð0Þ and Kð1Þ (which are
distant from Bob) are affected by peculiar relative-locality
features, as also shown in Fig. 4. In looking at Fig. 4,
readers should also keep in mind that for that figure we
magnified effects in order to render them visible: actually,
all noteworthy features in Fig. 4 are Planck-scale sup-
pressed and would amount to time intervals of no greater
than 10−19 s for Earth experiments (over distances of, say,
106 m) involving particles with currently accessible ener-
gies (no greater than, say, 1 TeV).

IV. CAUSAL LOOPS

The observations on relative locality reported in the
previous two sections illustrate how misleading the char-
acterizations of events and chains of events can be if they
are not based on how each event is seen by a nearby
observer. For chains of events, this imposes that the
analysis be based on more than one observer: at least
one observer for each interaction in the chain.
Equipped with this understanding, we now progress to

the next level in testing causality: we consider the pos-
sibility of a “causal loop,” i.e., a chain of events that form a
loop in such a way that causality would be violated.
The starting point for being concerned about these causal

loops is the analysis reported in Ref. [26], which considered
a loop diagram of the type shown here in Fig. 5.
Reference [26] works on a curved momentum space—
but without enforcing relative locality—and finds that a
causal loop of the type shown here in Fig. 5 could be
possible. Our objective is to show that such causal loops are

FIG. 4 (color online). The two causally connected pairs of
events considered in this section can lead to a striking picture of
distant inferences (because of relative locality) when p0

1 ≃ p00
1 . In

that case, the particle with coordinates z0μ, which actually
interacts at Kð2Þ, in the coordinatization by distant observer
Alice (top panel) appears to come out of the interaction Kð3Þ. In
turn, as we show in the bottom panel of the figure, Bob’s
inferences about the events Kð0Þ and Kð1Þ (which are distant from
Bob) are affected by peculiar relative-locality features.
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excluded if one enforces relative locality. In light of the
observations reported in the previous two sections, we
shall, of course, need to study the loop diagram in Fig. 5 on
the basis of the findings of two observers, one near the first
interaction and one near the second interaction (whereas the
analysis of Ref. [26] considered only the perspective of one
observer, in which case the principle of relativity of
spacetime locality cannot be enforced or investigated).
We stress that here—just as in Ref. [26]—we are working

at the level of classical mechanics, so the loop diagram in
Fig. 5 involves all particles on shell andmerely keeps track of
the causal links among different events, assigningworldlines
exiting/entering each event (one should not confuse such
loop diagramswith the different notion arising in Feynman’s
perturbative approach to quantum field theory).
We start by writing down an action of the type already

considered in the previous two sections, which gives the
description of the loop diagram in Fig. 5 within the relative-
locality curved-momentum-space formalism proposed in
Ref. [8]. We shall see that our action does reproduce the
equations ofmotion and the boundary conditionswhichwere
at the basis of the analysis reported in Ref. [26]. This action
giving the diagram in Fig. 5 is

S ¼
Z

s0

−∞
dsðyμ _qμ þN qðCq −m2

qÞÞ þ
Z þ∞

s0

dsðy0μ _q0μ þN q0 ðCq0 −m2
q0 ÞÞ þ

Z
s1

−∞
dsðzμ _kμ þN kðCk −m2

kÞÞ

þ
Z þ∞

s1

dsðz0μ _k0μ þN k0 ðCk0 −m2
k0 ÞÞ þ

Z
s1

s0

dsðx0μ _p0
μ þN p0 ðCp0 −m2

p0 ÞÞ þ
Z

s0

s1

dsðxμ _pμ þN pðCp −m2
pÞÞ

− ξμð0ÞK
ð0Þ
μ − ξμð1ÞK

ð1Þ
μ ; ð22Þ

whereKð0Þ
μ ¼ ½ðq ⊕ pÞ ⊕ ð⊖ðp0 ⊕ q0ÞÞ�μ andKð1Þ

μ ¼ ½ðp0 ⊕ kÞ ⊕ ð⊖ðk0 ⊕ pÞÞ�μ. It is important for us to stress, since this
is the key ingredient for seeking a violation of causality, that the last integral, which stands for the free propagation of the
particle which is traveling back in time, has inverted integration extrema. The fact that one of the integrals has inverted
integration extrema is also relevant because the most powerful choice of conventions for ensuring translational invariance,
the one in Ref. [28] (also discussed here later, in Sec. IV D), is not immediately generalizable to such cases with inverted

integration extrema. We opt then, with our choices of Kð0Þ
μ andKð1Þ

μ , for the same formulation of conservation laws adopted
for this diagram in Ref. [26].
By varying this action, we obtain equations of motion

_pμ ¼ 0; _p0
μ ¼ 0; _qμ ¼ 0; _q0μ ¼ 0; _kμ ¼ 0; _k0μ ¼ 0; ð23aÞ

Cp ¼ m2
p; Cp0 ¼ m2

p0 ; Cq ¼ m2
q; Cq0 ¼ m2

q0 ; Ck0 ¼ m2
k0 ; Ck ¼ m2

k; ð23bÞ

_xμðsÞ ¼ N p
∂Cp
∂pμ

; _x0μðsÞ ¼ N p0
∂Cp0

∂p0
μ
; _yμðsÞ ¼ N q

∂Cq
∂qμ ; ð23cÞ

_y0μðsÞ ¼ N q0
∂Cq0
∂q0μ ; _zμðsÞ ¼ N k

∂Ck
∂kμ ; _z0μðsÞ ¼ N k0

∂Ck0
∂k0μ ; ð23dÞ

Kð0Þ
μ ¼ 0; Kð1Þ

μ ¼ 0; ð23eÞ

FIG. 5 (color online). We show schematically here a pair of
events causally connected by the exchange of two particles
arranged in such a way that one would have a causal loop. Such
causal loops are allowed, if one assumes a curvature of mo-
mentum space without enforcing translational invariance
and the associated relativity of spacetime locality. Notice here
that the time flow of the figure goes essentially from bottom
to top: the lines q, y and k, z are incoming, while q0, y0 and k0, z0
are outgoing. For the other figures of this manuscript, we
found it to be more convenient (and to obtain a more pleasant
visualization) to show the time flow going from left to right,
but for this figure we gave priority to having the same visuali-
zation adopted for the corresponding figure of Ref. [26]
(Fig. 2 of that manuscript).
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and boundary terms

yμðs0Þ ¼ ξνð0Þ
∂Kð0Þ

ν

∂qμ ; y0μðs0Þ ¼ −ξνð0Þ
∂Kð0Þ

ν

∂q0μ ; z0μðs1Þ ¼ −ξνð1Þ
∂Kð1Þ

ν

∂k0μ ; zμðs1Þ ¼ ξνð1Þ
∂Kð1Þ

ν

∂kμ ; ð24aÞ

xμðs0Þ ¼ ξνð0Þ
∂Kð0Þ

ν

∂pμ
; xμðs1Þ ¼ −ξνð1Þ

∂Kð1Þ
ν

∂pμ
; x0μðs0Þ ¼ −ξνð0Þ

∂Kð0Þ
ν

∂p0
μ
; x0μðs1Þ ¼ ξνð1Þ

∂Kð1Þ
ν

∂p0
μ
; ð24bÞ

which indeed reproduce the ones used in the analysis reported in Ref. [26].

A. Aside on the absence of causal loops
in special relativity

We find it useful to start by first considering the l → 0
limit of the problem of interest in this section: the causal loop
in special relativity (i.e., with a Minkowskian geometry of
momentum space). This allows us to assume temporarily that
the on shellness is governed by Cð0Þ ¼ p2

0 − p2
1 and that,

therefore, the following relationship holds:

_xμðsÞ ¼ ð_xν _xνÞ12
pμ

mp
: ð25Þ

We take advantage of some simplification of analysis,
without losing any of the conceptual ingredients of interest
here, by focusing on _xμ _xμ > 0, _x0 > 0; p2 ¼ m2

p > 0,
p0 ≥ mp > 0; i.e., our particles travel along timelike world-
lines. We find that the proper time of a particle is given by

dτ ¼ ð_xμ _xμÞ12ds ¼ _x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
_x1

_x0

�
2

s
ds

¼ _x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
p1

p0

�
2

s
ds ¼ _x0γ−1p ds; ð26Þ

where γp is the usual Lorentz factor and in the third equality
we used (25).
Going back to the diagram in Fig. 5, we find that for the

particle with phase-space coordinates ðp0; x0Þ, whose
worldline is exchanged between the interaction Kð0Þ and
the interaction Kð1Þ [and therefore travels from x0μðs0Þ to
x0μðs1Þ], the following chain of equalities holds:

x0μðs1Þ − x0μðs0Þ ¼
Z

s1

s0

ds
dx0μ

ds

¼
Z

s1

s0

dsð_x0ν _x0νÞ12
p0μ

mp0

¼
Z

τ0ðs1Þ

τ0ðs0Þ
dτ0

p0μ

mp0
¼ Δτ0u0μ; ð27Þ

with u0μ ¼ p0μ
mp0

.

Similarly, for the other particle exchanged between
Kð0Þ and Kð1Þ, the one with phase-space coordinates
ðp; xÞ, one has

xμðs0Þ − xμðs1Þ ¼
Z

s0

s1

ds
dxμ

ds

¼
Z

s0

s1

dsð_xν _xνÞ12
pμ

mp

¼
Z

τðs0Þ

τðs1Þ
dτ

pμ

mp
¼ Δτuμ: ð28Þ

Since in this subsection we are working in the l → 0

limit, we have Kð0Þ
μ ¼ qμ þ pμ − p0

μ − q0μ and Kð1Þ
μ ¼ p0

μþ
kμ − k0μ − pμ, in which case it is easy to see that our
boundary conditions simply enforce

ξμð0Þ ¼ x0μðs0Þ; ξμð0Þ ¼ xμðs0Þ;
ξμð1Þ ¼ x0μðs1Þ; ξμð1Þ ¼ xμðs1Þ: ð29Þ

So, evidently,

ξμð1Þ − ξμð0Þ ¼ x0μðs1Þ − x0μðs0Þ ¼ Δτ0u0μ; ð30Þ

ξμð0Þ − ξμð1Þ ¼ xμðs0Þ − xμðs1Þ ¼ Δτuμ; ð31Þ

and

Δτuμ þ Δτ0u0μ ¼ 0: ð32Þ
Since the relevant proper-time intervals are positive and the
zero components of the four-velocities are positive, this
requirement can never be satisfied—as well-known causal
loops are forbidden in special relativity.

B. Causal loop with curved momentum space

Our next step is to introduce leading-order-in-l correc-
tions, but without enforcing the principle of relative local-
ity. Such setups, in general, do allow causal loops, as we
shall now show (in agreement with what was already
claimed in Ref. [26]). What changes with respect to the
special-relativistic case of the previous subsection is that
(for the κ-momentum case, which we chose as an

CAUSALITY AND MOMENTUM CONSERVATION FROM … PHYSICAL REVIEW D 91, 084045 (2015)

084045-9



illustrative example) the on shellness is governed by
Cp ¼ p2

0 − p2
1 − lp0p2

1, while conservation laws at first
order take the form

Kð0Þ
0 ¼ q0 þ p0 − q00 − p0

0; ð33aÞ

Kð0Þ
1 ¼ q1 þ p1 − q01 − p0

1

− l½q0p1 − ðq0 þ p0 − q00 − p0
0Þp0

1

− ðq0 þ p0 − q00Þq01�; ð33bÞ
Kð1Þ

0 ¼ p0
0 þ k0 − p0 − k00; ð33cÞ

Kð1Þ
1 ¼ p0

1 þ k1 − p1 − k01
− l½p0

0k1 − ðp0
0 þ k0 − p0 − k00Þk01

− ðp0
0 þ k0 − p0Þp1�: ð33dÞ

Also, the equations of motion are l deformed, as shown
in (23c) and (23d), and, for example, one has that

_xμðsÞ ¼ N p½2pμ − lðδμ0p2
1 þ δμ12p0p1Þ�: ð34Þ

This still allows one to write a relationship analogous to
(25) from the previous subsection,

_xμðsÞ ¼ ð_xν _xνÞ12uμ; ð35Þ
but with

uμ ¼ pμ

mp
−

l
2mp

�
−2pμ p0p2

1

m2
p

þ δμ0p
2
1 þ δμ12p0p1

�
:

Analogously, for x0μ one has that

_x0μðsÞ ¼ ð_x0ν _x0νÞ12u0μ; ð36Þ
with

u0μ ¼ p0μ

mp0
−

l
2mp0

�
−2p0μ p

0
0p1

02

m2
p0

þ δμ0p1
02 þ δμ12p

0
0p

0
1

�
:

In close analogy with (27) and (28) one easily finds that

x0μðs1Þ − x0μðs0Þ ¼ Δτ0u0μ; ð37Þ
xμðs0Þ − xμðs1Þ ¼ Δτuμ; ð38Þ

and from (24b) it follows that3

ξνð0Þ ¼ −x0μðs0Þ
�∂Kð0Þ

ν

∂p0
μ

�−1

¼ xμðs0Þ
�∂Kð0Þ

ν

∂pμ

�−1

; ð39Þ

ξνð1Þ ¼ x0μðs1Þ
�∂Kð1Þ

ν

∂p0
μ

�−1

¼ −xμðs1Þ
�∂Kð1Þ

ν

∂pμ

�−1

: ð40Þ

Combining (39) with (38), one finds that

−x0μðs0Þ
�∂Kð0Þ

ν

∂p0
μ

�−1 ∂Kð0Þ
ν

∂pρ
¼ xρðs0Þ ¼ xρðs1Þ þ Δτuρp;

ð41Þ

while combining (40) with (37), one finds that

xρðs1Þ ¼ −x0μðs1Þ
�∂Kð1Þ

ν

∂p0
μ

�−1 ∂Kð1Þ
ν

∂pρ

¼ −ðx0μðs0Þ þ Δτ0u0μÞ
�∂Kð1Þ

ν

∂p0
μ

�−1 ∂Kð1Þ
ν

∂pρ
: ð42Þ

Finally, combining (42) with (41), we obtain the same
condition given in [26],

�∂Kð1Þ
ν

∂pρ

�∂Kð1Þ
ν

∂p0
μ

�−1

−
∂Kð0Þ

ν

∂pρ

�∂Kð0Þ
ν

∂p0
μ

�−1�
x0μðs0Þ

¼ −
∂Kð1Þ

ν

∂pρ

�∂Kð1Þ
ν

∂p0
μ

�−1

Δτ0u0μ þ Δτuρ; ð43Þ

which takes the following form upon expanding Kð0Þ
ν and

Kð1Þ
ν to leading order in l:

l½δρ1ðk00 − q0Þ þ δρ0ðq01 − k1Þ�x01ðs0Þ
¼ Δτuρ þ Δτ0½u0ρ þ u01lðδρ0k1 − δρ1k

0
0Þ�: ð44Þ

Equation (44) is what replaces (32) when the causal loop is
analyzed on a curved momentum space without enforcing
relative locality.
Notice that Eq. (44), when its left-hand side does not

vanish, can have solutions with positive Δτ and Δτ0 and
positive zero components of the four-velocities, which was
not possible with (32). This means that, contrary to the
special-relativistic case (Minkowski momentum space),
causal loops are possible on a curved momentum space,
at least if one does not enforce relative locality.
We also set down some equalities that follow from (44)

and therefore must hold for the causal loop to be allowed:

Δτ ¼ −Δτ0
u00

u0
þ lx01ðs0Þ

�
q01 − k1
u0

�
− lΔτ0

�
u01k1
u0

�
;

ð45Þ

3Here and in the following, ð∂Kð1Þ
ν∂p0
μ
Þ−1 denotes the ðν; μÞ element

of the matrix that is obtained by inverting the matrix made
of the derivatives of the different components of Kð1Þ with

respect to the different components of p0, ∂Kð1Þ
ν∂p0
μ
. That is,

ð∂Kð1Þ
ν∂p0
ρ
Þð∂Kð1Þ

ν∂p0
μ
Þ−1 ¼ δρμ. Another possible notation in a substitution

of ð∂Kð1Þ
ν∂p0
μ
Þ−1 could have been ð∂Kð1Þ−1

∂p0 Þν
μ
.
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lx01ðs0Þ¼Δτ0Ω≡Δτ0
u1u00−u0u01þlu01ðk1u1þk00u

0Þ
u0ðq0−k00Þþu1ðq01−k1Þ

;

ð46Þ
where we implicitly defined anΩ for later convenience, and
we note that in order for (45) to have acceptable solutions,
one must have

x01ðs0Þ >
Δτ0ðu00 þ lu01k1Þ

ljq01 − k1j
: ð47Þ

This is in good agreement with the results of Ref. [26], but
we find it useful to add some observations to those reported
in Ref. [26]. A first point to notice is that Eq. (46) has the
structure of x01 ¼ ΩΔτ0=l, with Ω being a certain function
of the momenta involved specified by Eq. (46). In light of
this structure of Eq. (46), one expects that, typically, when
the momenta involved are within our technological reach
(much below the Planck scale) and the Δτ, Δτ0 are also
ordinarily accessible time scales, the predicted values for
x01 are extremely large, as in some of the estimates given in
Ref. [26]—large enough to correspond to distance scales
we have never had any experimental access to. If this were
all that Eq. (46) implied, the related loss of causality would
be physically irrelevant and would therefore cause no
concern. However, this optimistic view on the loss of
causality assumes that, in this structure of type
x01 ¼ ΩΔτ0=l, the Ω takes a value comparable to the
inverse of the characteristic momentum scale involved in
the process, and this assumption may not always be
satisfied. The Ω of Eq. (46) combines—in a rather
complicated way—the momenta involved in the process,
and there can be cases where Ω takes unexpectedly small
values. Lacking a full characterization of how typical such
small-Ω configurations are, one should prudently consider
the related causality violations as potentially serious.
There is also a technical point that deserves some

commentary and is related to this pervasiveness of the
violations of causality: it might appear to be surprising that
within a perturbative expansion, assuming small l, one
arrives at a formula like (47), with l in the denominator.
This is, however, not so surprising considering the role of
x01 in this sort of analysis. The main clarification comes
from observing that in the unperturbed theory (the l ¼ 0

theory, i.e., special relativity), x01 is completely undeter-
mined: as shown in the previous subsection, the only causal

loops allowed in special relativity are those that collapse
(no violation of causality) and such collapsed causal loops
are allowed for any value of x01, however large or small it is.
As stressed above, the fact that x01 can take any value is
preserved by the l corrections. The apparently surprising
factor of 1=l only appears in a relationship between x01 and
Δτ0. If x01 and Δτ0 both have a fixed finite value in l ¼ 0
theory, then at finite small l their values should change
very little. But since in l ¼ 0 theory x01 is unconstrained
(in particular, it could take any value, however large it is)
and its value is not linked in any way to the value Δτ0, then
it is not surprising that the l corrections take the form
shown, for example, in (47).

C. Causal loop analysis in 3þ 1 dimensions

Thus far, we have examined the (1þ 1)-dimensional
case, but it is rather evident that the features we discussed in
the previous subsection are not an artifact of that dimen-
sional reduction. Nonetheless, it is worth pausing briefly in
this subsection to verify that those features are indeed still
present in 3þ 1 dimensions. In this case the on shellness is
governed by Cp ¼ p2

0 − ~p2 − lp0 ~p2, while conservation
laws at first order take the form

Kð0Þ
0 ¼ q0 þ p0 − q00 − p0

0; ð48aÞ

Kð0Þ
i ¼ qiþpi−q0i−p0

i−lδji ½q0pj− ðq0þp0−q00−p0
0Þp0

j

− ðq0þp0−q00Þq0j�; ð48bÞ

Kð1Þ
0 ¼ p0

0 þ k0 − p0 − k00; ð48cÞ

Kð1Þ
i ¼ p0

iþ ki−pi − k0i −lδji ½p0
0kj − ðp0

0þ k0 −p0− k00Þk0j
− ðp0

0þ k0−p0Þpj�; ð48dÞ
where i; j ¼ 1; 2; 3.
Adopting these expressions, Eq. (43), keeping only

terms up to first order in l in the matrices like ∂Kð0Þ
ν∂pρ

and

their products, takes the form

l½δρi ðk00 − q0Þ þ δρ0ðq0i − kiÞ�x0iðs0Þ
¼ ½u0ρ þ u0ilðδρ0ki − δρi k

0
0Þ�Δτ0 þ uρΔτ; ð49Þ

or, more clearly, using the energy conservation laws,

lðq01 − k1Þx01ðs0Þ þ lðq02 − k2Þx02ðs0Þ þ lðq03 − k3Þx03ðs0Þ ¼ ðu00 þ lk1u01 þ lk2u02 þ lk3u03ÞΔτ0 þ u0Δτ;

lðk0 − q00Þx01ðs0Þ ¼ ð1 − lk00Þu01Δτ0 þ u1Δτ;

lðk0 − q00Þx02ðs0Þ ¼ ð1 − lk00Þu02Δτ0 þ u2Δτ;

lðk0 − q00Þx03ðs0Þ ¼ ð1 − lk00Þu03Δτ0 þ u3Δτ: ð50Þ
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Without really losing any generality, we can analyze the
implications of this for an observer orienting her axis of the
reference frame so that pi ¼ 0 and p0

i ¼ 0 for i ¼ 2; 3. As a
result, we also have ui ¼ 0 and u0i ¼ 0 for i ¼ 2; 3.
Concerning the other momenta involved in the analysis,
q, q0, k, k0, this choice of orientation of axis only affects the
conservation laws rather mildly:

q2 ¼ q02 − lp0
0q

0
2; q3 ¼ q03 − lp0

0q
0
3;

q02 ¼ q2 þ lp0
0q2; q03 ¼ q3 þ lp0

0q3;

k2 ¼ k02 þ lp0
0k

0
2; k3 ¼ k03 þ lp0

0k
0
3;

k02 ¼ k2 − lp0
0k2; k03 ¼ k3 − lp0

0k3:

Since ui ¼ 0 and u0i ¼ 0 for i ¼ 2; 3, the last two equations
of Eq. (50) imply x02 ¼ 0 and x03 ¼ 0, which in turn
[looking then at the first two equations of Eq. (50)] takes us
back to (45) and (46):

Δτ¼−Δτ0
u00

u0
þlx01ðs0Þ

�
q01−k1
u0

�
−lΔτ0

�
u01k1
u0

�
;

lx01ðs0Þ¼Δτ0
u1u00−u0u01þlu01ðk1u1þk00u

0Þ
u0ðq0−k00Þþu1ðq01−k1Þ

:

Evidently then, all of the features discussed for the (1þ 1)-
dimensional case in the previous subsection are also present
in the (3þ 1)-dimensional case.

D. Enforcing relative locality

We shall now show that our causal loop is not allowed in
theories with curved momentum space if one ensures that
these theories are (DSR) relativistic, including translational
invariance and the associated relativity of locality. This
suggests that relative locality is evidently a weaker notion
than absolute locality, but it is still strong enough to enforce
causality.
By definition [8], relative locality is such that the locality

of events may not be manifest in coordinatizations by
distant observers, but for the coordinatizations by observers
near an event (ideally, at the event), it enforces locality in a
way that is no weaker than ordinary locality.
Also notice that the definition of relative locality imposes

that translation transformations be formalized in the theory:
since one must verify that events are local according to
nearby observers (while they may be described as nonlocal
by distant observers), one must use translation transforma-
tions in order to ensure that the principle of relative locality
[8] is enforced. Since our interest is in (DSR-)relativistic
theories, such translation transformations must, of course,
be symmetries.
In Ref. [28] some of us introduced a prescription for

having a very powerful implementation of translational
invariance in relative-locality theories. One can easily see
that the causal loop described in the previous subsections is

not compatible with that strong implementation of trans-
lational invariance. Evidently then, we have it that causality
is preserved in theories with curved momentum spaces if
the strong notion of translational invariance of Ref. [28] is
enforced by postulate.
What we want to show here is that the causal loop of

Fig. 5 is still forbidden, even without enforcing such a
strong notion of translational invariance. Causal loops are
forbidden even by a minimal notion of translational
invariance, the bare minimum needed in order to contem-
plate relative locality with a (DSR-)relativistic picture.
Consistent with this objective, we ask only for the

availability of some translation generator (with possibly
complicated momentum dependence) that can enforce the
covariance of the equations of motion and the boundary
conditions. Let us call our first observer Alice and the
second one Bob, purely translated by a parameter bμ with
respect to Alice. For the particles involved inside the loop,
we have

xμBðsÞ ¼ xμAðsÞ − bνT μ
ν ; ð51Þ

xB0μðsÞ ¼ xA0μðsÞ − bνT 0μ
ν ; ð52Þ

where T μ
ν and T

0μ
ν are to be determined through the request

of translational invariance.
Combining the first two boundary conditions of (24b)

with (51), we obtain

−ξνBð1Þ
∂Kð1Þ

ν

∂pμ
¼ xμBðs1Þ ¼ xμAðs1Þ − bνT μ

ν

¼ −ξνAð1Þ
∂Kð1Þ

ν

∂pμ
− bνT μ

ν ; ð53Þ

ξνBð0Þ
∂Kð0Þ

ν

∂pμ
¼ xμBðs0Þ ¼ xμAðs0Þ − bνT μ

ν

¼ ξνAð0Þ
∂Kð0Þ

ν

∂pμ
− bνT μ

ν : ð54Þ

We find it convenient to introduce δξνðiÞ ≡ ξνBðiÞ − ξνAðiÞ and
to rewrite Eqs. (53) and (54) as follows:

bνT μ
ν ¼ δξνð1Þ

∂Kð1Þ
ν

∂pμ
; ð55Þ

bνT μ
ν ¼ −δξνð0Þ

∂Kð0Þ
ν

∂pμ
: ð56Þ

This shows that any form one might speculate about for
what concerns translational invariance will still inevitably
require enforcing
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δξνð1Þ
∂Kð1Þ

ν

∂pμ
¼ −δξνð0Þ

∂Kð0Þ
ν

∂pμ
: ð57Þ

Similarly, combining the last two boundary conditions of
(24b) with the transformation (52), we obtain

−ξνBð0Þ
∂Kð0Þ

ν

∂p0
μ

¼ x0μB ðs0Þ ¼ x0μA ðs0Þ − bνT 0μ
ν

¼ −ξνAð0Þ
∂Kð0Þ

ν

∂p0
μ
− bνT 0μ

ν ; ð58Þ

ξνBð1Þ
∂Kð1Þ

ν

∂p0
μ

¼ x0μB ðs1Þ ¼ x0μA ðs1Þ − bνT 0μ
ν

¼ ξνAð1Þ
∂Kð1Þ

ν

∂p0
μ
− bνT 0μ

ν ; ð59Þ

from which it follows that4

−δξνð1Þ
∂Kð1Þ

ν

∂p0
μ

¼ δξνð0Þ
∂Kð0Þ

ν

∂p0
μ
: ð60Þ

The fact that we are insisting only on a minimal require-
ment of translational invariance is reflected also in the fact
that our requirements are more general (weaker) than the
ones so far used for translational invariance in previous
works on the relative-locality framework. Our requirements
(57) and (60) reproduce the ones enforced in Ref. [19]
upon opting for boundary terms written in the form

⨁
i¼n

i¼1

Pi
in − ⨁

i¼m

i¼1

Pi
out, where Pi

in are the ingoing momenta in

a vertex and Pi
out are the outgoing momenta. And

our requirements (57) and (60) reproduce the strong
translation transformations enforced in Ref. [28], by
adopting δξνð1Þ ¼ δξνð0Þ ¼ −bν, i.e., momentum independ-

ence of the ξμ.
Let us next observe that from Eq. (60), one has

δξνð0Þ ¼ −δξσð1Þ
∂Kð1Þ

σ

∂p0
μ

�∂Kð0Þ
ν

∂p0
μ

�−1

; ð61Þ

and using this in Eq. (57) leads us to

δξσð1Þ

�∂Kð1Þ
σ

∂pρ
−
∂Kð1Þ

σ

∂p0
μ

�∂Kð0Þ
ν

∂p0
μ

�−1 ∂Kð0Þ
ν

∂pρ

�
¼ 0: ð62Þ

Since δξσð1Þ ≠ 0 (in order for this to be a noncollapsed loop,
the two observers must be distant), we conclude that

∂Kð1Þ
ν

∂pρ

�∂Kð1Þ
ν

∂p0
μ

�−1

−
∂Kð0Þ

ν

∂pρ

�∂Kð0Þ
ν

∂p0
μ

�−1

¼ 0: ð63Þ

Equation (63) plays a pivotal role in our analysis since it
shows that a however weak requirement of translational
invariance imposes a restriction on the possible choices of
boundary terms. We shall now easily show that once
condition (63) is enforced on the boundary terms, the
causal loop is forbidden. We start by showing that for
the boundary terms used in Ref. [26], condition (63) takes
the shape of a condition on the momenta involved in the
process, specifically, at leading order in l,

lδ1μ½δρ1ðk00 − q0Þ þ δρ0ðq01 − k1Þ� ¼ 0; ð64Þ
which implies that k00 ¼ q0 þOðlÞ and q01 ¼ k1 þOðlÞ.
The fact that the causal loop is forbidden can then be seen
easily, for example, by looking back at Eq. (44), now
enforcing (64); one obtains

Δτuρ þ Δτ0½u0ρ þ u01lðδρ0k1 − δρ1k
0
0Þ� ¼ 0: ð65Þ

This excludes the causal loop for just the same reasons that,
as observed earlier in this section, the causal loop is
excluded in ordinary special relativity; for ρ ¼ 0, Eq. (65),

Δτ ¼ −Δτ0
u00

u0
− lΔτ0

�
u01k1
u0

�
; ð66Þ

does not admit solutions with positive Δτ and Δτ0 and
positive zeroth component of the two four-velocities. This
causal loop is indeed forbidden once a DSR-relativistic
description—including, of course, translational invariance
and the associated relativity of locality—is enforced.

V. MÖBIUS DIAGRAM AND
TRANSLATIONAL INVARIANCE

Having shown that the causal loop of Ref. [26] is indeed
allowed in generic theories on curved momentum spaces but
is forbidden when one enforces translational invariance and
the associated relativity of spacetime locality, we now
proceed to the next announced task, which concerns the
diagram studied inRef. [27] as a possible source of violations
of global momentum conservation. Reference [27] consid-
ered theories on a curved momentum space, without enforc-
ing relative spacetime locality, and found that, in general, the
diagram shownhere inFig. 6 canproduceviolations of global
momentum conservation. These violations take the shape

4As discussed in Ref. [28], satisfying (60) may require a
suitable choice of the way in which Kð0Þ

ν and Kð1Þ
ν are written. An

interesting issue in this respect arises when there are “spectator
particles,” i.e., particles not intervening in the process of interest.
In some cases it might be necessary to include the momenta of
such particles in the form of Kð0Þ

ν and Kð1Þ
ν for the process. This

could be puzzling and certainly deserves further scrutiny in future
studies. Here we wanted to keep our focus on causality and
momentum conservation in their simplest manifestations, and
therefore we consider processes unaffected by this “spectator
issue.”
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[27] of k0 ≠ k; i.e., themomentum coming into the diagram is
not equal to the momentum going out from the diagram.
Similar towhatwe showed in the previous section for a causal
loop, we shall find that these violations of global momentum
conservation from the diagram in Fig. 6 do not occur if one
enforces translational invariance and the associated relativity
of spacetime locality.
The relative-locality-framework description of the dia-

gram in Fig. 6 is obtained through the action

S ¼
Z

s0

−∞
dsðzμ _kμ þN kðCk −m2

kÞÞ

þ
Z þ∞

s1

dsðz0μ _k0μ þN k0 ðCk0 −m2
k0 ÞÞ

þ
Z

s1

s0

dsðx0μ _p0
μ þN p0 ðCp0 −m2

p0 ÞÞ

þ
Z

s1

s0

dsðxμ _pμ þN pðCp −m2
pÞÞ

− ξμð0ÞK
ð0Þ
μ − ξμð1ÞK

ð1Þ
μ ; ð67Þ

with

Kð0Þ
μ ¼ðk⊕ ð⊖ðp⊕p0ÞÞÞμ

≃kμ−pμ−p0
μþδ1μl½p1ðk0−p0−p0

0Þþp0
1ðk0−p0

0Þ�;
ð68aÞ

Kð1Þ
μ ¼ððp0⊕pÞ⊕ ð⊖k0ÞÞμ

≃p0
μþpμ−k0μþδ1μl½k01ðp0

0þp0−k00Þ−p0
0p1�:

ð68bÞ
From the structure of (68a)–(68b), it is clear why we choose
to label the diagram in Fig. 6 as a “Möbius diagram”: the
laws of conservation at the two vertices use the non-
commutativity of the composition law in such a way that
the particle going out from the first vertex with momentum
appearing on the right-hand side of the composition law
enters the second vertex with momentum appearing on the

left-hand side of the composition law. (Of course, the
opposite applies to the other particle exchanged between
the vertices.) If one then draws the diagram with the
convention that the orientation of pairs of legs entering/
exiting a vertex consistently reflects the order in which the
momenta are composed, then the only way to draw the
diagram makes it resemble a Möbius strip.
Evidently, there is no room for such a structure when

the momentum space has a composition law which is
commutative. In particular, there is no way to contemplate
such a Möbius diagram in special relativity. But on our
κ-momentum space this structure is possible and its
implications surely need to be studied.
Consistent with what we have reported in the previous

sections, our interest is in understanding how the properties
of the Möbius diagram are affected if one enforces relative
spacetime locality in DSR-relativistic theories (which, in
particular, will include—and this is crucial for us—a notion
of translational invariance) on the κ-momentum space. In
particular, we want to show that k0 ¼ k (no violation of
global momentum conservation).
As was also already stressed above, relative spacetime

locality necessarily requires at least a weak form of trans-
lational invariance. This insistence on at least the weakest
possible notion of translational invariance led us to find
Eqs. (57) and (60) for the causal loop, and, as the interested
reader can easily verify, for the case of the Möbius diagram
it leads us to the equations

δξνð0Þ
∂Kð0Þ

ν

∂pμ
¼ −δξνð1Þ

∂Kð1Þ
ν

∂pμ
; ð69aÞ

δξνð0Þ
∂Kð0Þ

ν

∂p0
μ

¼ −δξνð1Þ
∂Kð1Þ

ν

∂p0
μ
: ð69bÞ

These allow us to deduce that

�∂Kð1Þ
σ

∂pμ
−
∂Kð1Þ

σ

∂p0
ρ

�∂Kð0Þ
ν

∂p0
ρ

�−1 ∂Kð0Þ
ν

∂pμ

�
¼ 0: ð70Þ

The implications of this equation are best appreciated by
exposing explicitly the momentum dependence of the terms
appearing in (70):

∂Kð1Þ
σ

∂pμ
¼ δμσ þ lδ1σðδμ0k01 − δμ1p

0
0Þ; ð71aÞ

∂Kð1Þ
σ

∂p0
ρ

¼ δρσ þ lδ1σδ
ρ
0ðk01 − p1Þ; ð71bÞ

�∂Kð0Þ
ν

∂p0
ρ

�−1
¼−δνρ−lδ1ρ½δν1ðk0−p0

0Þ−δν0ðp1þp0
1Þ�; ð71cÞ

∂Kð0Þ
ν

∂pμ
¼ −δμν − lδμ0δ

1
νp1: ð71dÞ

FIG. 6 (color online). We show here schematically two causally
connected events that form a Möbius diagram. The laws of
conservation at the two vertices are set up in such a way that the
particle going out from the first vertex has its momentum
appearing on the right-hand side of the composition law and
its momentum also appears on the left-hand side of the compo-
sition of the momenta at the second vertex.
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These allow us to conclude that from (70), it follows that

l½δμ1k0 − δμ0ðp1 þ p0
1Þ� ¼ 0: ð72Þ

Using this result in combination with the conservation laws

Kð0Þ
μ ¼ 0 and Kð1Þ

μ ¼ 0, one can easily establish that

pμ þ p0
μ ¼ 0þOðlÞ; ð73Þ

and one can also rewrite those conservation laws as
follows:

0 ¼ kμ − pμ − p0
μ − δ1μlp0

1p
0
0; ð74Þ

0 ¼ p0
μ þ pμ − k0μ − δ1μlp0

0p1: ð75Þ

Summing (74) and (75) and also using (73), we get to the
sought result,

kμ ¼ k0μ þOðl2Þ; ð76Þ
showing indeed that by insisting on having a translationally
invariant picture with associated relative spacetime locality,
one finds no global violation of momentum conservation
(at least at leading order in l, which is the level of accuracy
we are pursuing here). Were it not for the limitation to a
leading-order-in-l analysis, one could perhaps characterize
our results on the Möbius diagrams even more strongly: at
leading order translational invariance essentially forbids
Möbius diagrams. This can be seen in particular from
Eq. (72), which also imposes5 lk0 ¼ 0. So (up to possible
corrections of order l2), Möbius diagrams are only allowed
if the energy of the incoming particle vanishes. We interpret
this as implying that, at least to leading order, translational
invariance essentially forbids Möbius diagrams.

VI. COMBINATIONS OF MÖBIUS DIAGRAMS
AND IMPLICATIONS FOR BUILDING A

QUANTUM THEORY

In the previous section we reported results suggesting
that when theories are (DSR) relativistic, with translational
invariance and the associated relativity of spacetime local-
ity, momentum is globally conserved and there is no
violation of causality. It should be noticed that the objective
of enforcing relative spacetime locality led us to introduce
some restrictions on the choice of boundary terms,

particularly for causally connected interactions. The rel-
evant class of theories has been studied so far only within
the confines of classical mechanics, and therefore such
prescriptions concerning boundary terms are meaningful
and unproblematic (they can indeed be enforced by
principle, as a postulate). The quantum version of the
theories we considered here is still not known, but if one
tries to imagine which shape it might take, it seems that
enforcing the principle of relative locality in a quantum
theory might be very challenging: think in particular of
quantum field theories formulated in terms of a generating
functional, where all such prescriptions are usually intro-
duced by a single specification of the generating functional.
While we do not have anything to report on this point which
would directly address the challenges for the construction
of such quantum theories, we find it worthy to provide
evidence for the fact that combinations of diagrams on
curved momentum space might have fewer anomalous
properties—even without enforcing relative locality—than
single diagrams.
In an appropriate sense we are attempting to provide first

elements in support of a picture which we conjecture might
ultimately be somewhat analogous to what happens, for
example, in the analysis of the gauge invariance of the first
contribution to the matrix element of the Compton scatter-
ing e− þ γ → e− þ γ in standard QED. In fact, in that case
there are only two Feynman diagrams that need to be taken
into account, and the matrix element is given by

Mfi ¼ ð−ieÞ2
�
ūp0εðq0Þ i

pþ q −m
εðqÞup

þ ūp0εðqÞ i
p − q0 −m

εðq0Þup
�
; ð77Þ

where p and q are the momenta of the electron and the
photon, respectively, in the initial state, p0 and q0 are
the momenta of the electron and the photon, respectively, in
the final state, up and ūp are Dirac spinors, and ϵμ is the
photon polarization four-vector. For a free photon described
in the Lorentz gauge by plane wave AμðxÞ ∝ ϵμðkÞe�ikνxν ,
the gauge transformation AΛ

μ ðxÞ ¼ AμðxÞ þ ∂μΛðxÞ with

ΛðxÞ ¼ ~ΛðkÞe�ikνxν corresponds to a transformation of
the polarization four-vector εΛμ ðkÞ ¼ εμðkÞ � ikμ ~ΛðkÞ.
Equipped with these observations, one can easily see that
the two terms in (77) are not individually gauge invariant,
but their combination is gauge invariant.
We are not going to provide conclusive evidence that a

similar mechanism is at work for causality and global
momentum conservation in theories on curved momentum
space (it would be impossible without knowing how to
formulate such a quantum theory), but it may nonetheless
be interesting to note that we can find some points of
intuitive connection with stories such as that of gauge
invariance for Compton scattering.

5We should underline that this condition, lk0 ¼ 0, is a striking
manifestation of how Möbius diagrams are foreign to transla-
tionally invariant implementations of the relative-locality frame-
work. The implied requirement k0 ¼ 0 is not a smooth correction
to l ¼ 0 theory, where k0 is free (that is, it can take any value).
What we are seeing here at work is a mechanism similar to the
one described in our comments after Eq. (47): a quantity which
was completely free in the original theory (special relativity, with
l ¼ 0) ends up being governed by an equation in the deformed
theory, or else the diagram must be discarded.
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For definitiveness and simplicity, we focus on the case of
Möbius diagrams. In the previous section we analyzed a
Möbius diagram using the choice of boundary terms
adopted in Ref. [27] since the appreciation of the presence
of a challenge due to Möbius diagrams originated from the
study reported in Ref. [27]. In this section we look beyond
the realm of considerations offered in Ref. [27], so we go
back to our preferred criterion for the choice of boundary
conditions, the one first advocated for in Ref. [28], which
allows us to streamline the derivations. So we consider the
Möbius diagram by adopting the following prescription for
the boundary terms:

Kð0Þ
μ ¼ kμ − ðp ⊕ p0Þμ ≃ kμ − pμ − p0

μ þ lδ1μp0p0
1;

Kð1Þ
μ ¼ ðp0 ⊕ pÞμ − k0μ ≃ p0

μ þ pμ − kμ − lδ1μp0
0p1: ð78Þ

From the conservation of the four-momentum at each
vertex Kð0Þ

μ ¼ 0, Kð1Þ
μ ¼ 0, we get

kμ − k0μ ¼ lδ1μðp0
0p1 − p0p0

1Þ

¼ lδ1μ

�
m2

pp0
1

2p1

−
m2

p0p1

2p0
1

�
≡ lδ1μΔ; ð79Þ

where, since we are considering particles of energy-
momentum l−1 ≫ pμ ≫ m, from on-shell relation (1)
we expressed the energy of the particles

as p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þm2

p
þ lp2

1

2
≈ jp1j þ m2

2jp1j þ
lp2

1

2
.

At this point we must stress that evidently this is not the
only way to have a Möbius diagram since we can
interchange the prescription for which a particle enters
the composition law for the first event on the right side of
the composition law (then entering the second event on the
left side of the composition law). This alternative possibil-
ity (which is the only other possibility allowed within the
prescriptions of Ref. [28]) is characterized by boundary
terms of the form

~Kð0Þ
μ ¼ kμ − ðp0 ⊕ pÞμ ≃ kμ − p0

μ − pμ þ lδ1μp0
0p1;

~Kð1Þ
μ ¼ ðp ⊕ p0Þμ − k0μ ≃ p0

μ þ pμ − k0μ − lδ1μp0p0
1: ð80Þ

Then, the condition one obtains in place of (79) is

kμ − k0μ ¼ −lδ1μΔ: ð81Þ

Of course, in light of what we established in the previous
section, both of these Möbius diagrams must be excluded if
one enforces the principle of relative spacetime locality. But
it is interesting to notice that if we were to allow these
Möbius diagrams, the violation of global momentum
conservation produced by one of them, (79), is exactly
the opposite of the one produced by the other one, (81). In a

quantum field theory version of the classical theories we
analyzed here, one might have to include these opposite
contributions together, in which case we conjecture that the
net result would not be some systematic prediction of
violation of global momentum conservation, but rather
something of the sort rendering global momentum still
conserved but fuzzy.
Going back to the classical-mechanics version of these

theories, it is amusing to notice that a chain composed of
two Möbius diagrams, one of type (79) and one of type
(81), would have as a net result no violation of global
momentum conservation.

VII. SUMMARY AND OUTLOOK

The study of Planck-scale-curved momentum spaces is
presently at a point of balance between the growing
supporting evidence and concerns about its consistency
with established experimental facts. On the one hand, as
stressed in our opening remarks, the list of quantum-
gravity approaches where these momentum-space-
curvature effects are encountered keeps growing, and
interest in this possibility is also rooted in some oppor-
tunities for a dedicated phenomenological program with
Planck-scale sensitivity [8,31]. On the other hand, it is
increasingly clear that, in general, theories on curved
momentum space may violate several apparently robust
aspects of our current description of the laws of physics,
including relativistic invariance, locality, causality, and
global momentum conservation. We contributed here to
the characterization of how severe these challenges can be
for generic theories on curved momentum spaces, but we
also reported results suggesting that when the theory is
formulated (DSR) relativistically, including (crucially for
us) translational invariance and the associated relativity of
spacetime locality, momentum is globally conserved
and there is no violation of causality. It seems then that
(at least in these first stages of exploration) it might be
appropriate to restrict the focus of research on curved
momentum space of this subclass with more conventional
properties.
It should be noticed that here (just like in Refs. [26,27])

we only considered the simplest chain of events that could
have led to violations of causality and global momentum
conservation. This already involved some significant tech-
nical challenges, but it does not suffice to show that, in
general, causality and global momentum conservation are
ensured when these theories are formulated with transla-
tional invariance and relativity of spacetime locality. The
fact that the violations are, in general, present for the simple
chains of events we analyzed but disappear when relative
locality is enforced is surely very encouraging but does not
represent a general result.
Of course, the main challenge on the way toward

greater maturity for this novel research program is the
development of a quantum field theory version. Recently,
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a general framework for introducing such quantum field
theories was proposed in Ref. [32]. While this proposal
appears at present to still be at too early and too formal a
stage of development for addressing the challenges that

were of interest here, it is legitimate to hope that, as its
understanding deepens, a consistent quantum picture of
causality and momentum conservation with curved
momentum spaces will arise.
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