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potential implications of instantons on the associated nonperturbative coupling constants.
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I. INTRODUCTION

The general form of the classically scale-invariant theory
of the metric takes the form

S1 ≡
Z
M

d4x
ffiffiffi
g

p
L1; ð1:1aÞ

L1 ≡ 1

2α
C2 þ 1

3β
R2 þ 2

γ
R̂2
μν; ð1:1bÞ

where C2 ≡ CκλμνCκλμν is the square of the Weyl tensor,
R̂μν ≡ Rμν − gμνR=4 is the traceless part of the Ricci tensor,
and R ¼ gμνRμν is the Ricci scalar. The integral is over the
spacetime manifoldM. (See Appendix B for the definition
of the Weyl tensor.) In general, the action1 Eq. (1.1a)
must be augmented by the addition of certain surface or
boundary terms in order to have the proper relationship for
the composition of the path integral [1]. For the most part,
such complications will not concern us since our interest
is in perturbation theory, and we shall ignore such terms
or simply assume that the manifold has no boundaries.
We shall adopt a Euclidean metric throughout this paper,
assuming that any spacetime in which we are interested
can be realized, with some choice of coordinates, through
the replacement of one coordinate, say, x4 by −ix0, with a
corresponding redefinition of the metric gμν.
Classically, the three quadratic invariants in Eq. (1.1b)

are in a sense not independent, because of the Gauss-
Bonnet (G-B) relation, whose local form may be written as

G ¼ C2 − 2W; where W ¼ R̂2
μν − R2

12
; ð1:2aÞ

G¼ R�R� ¼ R�
κλμνR

�κλμν; R�
κλμν ≡ 1

2
ϵκλρσRρσ

μν: ð1:2bÞ

R�
κλμν is the dual of the Riemann tensor. The first equation,

Eq. (1.2a), may be taken as the definition of G in any
dimension, whereas the second equation, Eq. (1.2b), is
valid only in four dimensions where the totally antisym-
metric tensor is well defined. The fundamental result in
four dimensions is that G may be written locally as a
divergence G ¼ ∇μBμ of a “vector” Bμ where

Bμ ≡ ϵμνγδϵρσ
κλΓρ

κν

�
1

2
Rσ

λγδ þ
1

3
Γσ
τγΓτ

λδ

�
; ð1:3Þ

where Γκ
μν is the Levi-Civita connection associated with the

metric. In fact, Bμ does not transform as a vector under
general coordinate transformations but transforms like a
connection.
Assuming that the four-manifold M is compact and has

no boundaries,

Z
M

d4x
ffiffiffi
g

p
G ¼ 32π2χðMÞ; ð1:4Þ

where the integer χ is the Euler characteristic of the
manifold. If we rewrite the original Lagrangian,2

Eq. (1.1b), as [2–5]*meinhorn@umich.edu
†drtj@liv.ac.uk
1To be complete, a term □R should be added as well, but it

plays no role in the following. Like G, it appears in the conformal
anomaly, but unlike G, it is the covariant divergence of a true
vector ∇μR.

2In Eq. (1.5), we have used a different notation than in our
earlier work, Ref. [2], for the coefficient of G, where it was
called ε.
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L2 ≡ 1

2a
C2 þ 1

3b
R2 þ cG; ð1:5Þ

then since
ffiffiffi
g

p
G is a total derivative, it makes no contri-

bution to the equations of motion (EoM) and can be
ignored, thereby reducing the classical theory from three
parameters ðα; β; γÞ to two ða; bÞ. This is a bit glib, since, in
a spacetime that is not asymptotically locally Euclidean, G
can give a finite contribution to the classical action, even
though it still would contribute nothing to the EoM.
For future reference, a commonly used Lagrangian [6,7],

equivalent to Eq. (1.5), utilizes the combination W in
Eq. (1.2a) instead of C2, rewriting the Lagrangian density
as

L3 ≡ 1

a
W þ 1

3b
R2 þ ~cG: ð1:6Þ

As a starting Lagrangian, one may choose G together with
any two other linear combinations of C2; R2, and R̂2

μν, so
long as they are linearly independent of G. One could not,
for example, choose C2, W, and G.3 Any such Lagrangian
can be brought to the form of Eq. (1.5). In that sense, the
theory is unique.
What about the quantum field theory (QFT)? A distin-

guishing property is that the theory is renormalizable [6],
at least in a topologically trivial background. Since the
topology ought not affect the short-distance behavior of
correlation functions, it is believed to be renormalizable
generally. Insofar as perturbation theory is concerned, the
preceding three Lagrangian densities, when expressed in
terms of renormalized couplings and operators, require the
addition of divergent counterterms in order to obtain finite
matrix elements as functions of the renormalized coupling
constants. In the process, the operator G cannot be ignored
because divergences arise that are not of the form of linear
combinations of W or R2, but require a third invariant [7].
A fundamental difference between the classical theory

and the QFT is that the latter is not scale invariant after
renormalization. In the context of such a scale or conformal
anomaly, one might well wonder whether the G-B relation
is also anomalous [8]. On the other hand, the G-B relation,
especially in its integral form, is a generic result in
topology.4 Like the Bianchi identities, to which it is related,
it would be disturbing if the four-dimensional QFT did not
recover these topologically based identities.

Assuming that the G-B relation holds in four dimensions
in the QFT, then, under any small variation of the metric
gμν → gμν þ δgμν, the variation of the action is zero,

δ

Z
d4xð ffiffiffi

g
p

GÞ ¼
Z

d4x∂μδð
ffiffiffi
g

p
BμÞ ¼ 0: ð1:7Þ

By “small variation,” we mean any variation that does not
change the spacetime topology. Although it is peculiar to
four dimensions, this relation is an algebraic identity and
does not depend on any assumptions about the background
or require any reference to the EoM. As a result, researchers
have tended to ignore G when formulating the Feynman
rules for this theory, even though it is essential for
renormalizability.
One source of confusion is that the preferred form

of gauge-invariant regularization, viz. dimensional-
regularization (DREG), requires that we entertain the
meaning of the theory outside of four dimensions. While
there are alternative possibilities for a four-dimensional,
gauge-invariant regularization, such as the generalized
zeta-function method, it is not so clear that they are
implementable beyond one loop. In any case, unlike the
dual operators in Eq. (1.2b), it is possible to generalize
Eq. (1.2a) to any dimension, so one can expect to recover
this linear combination when returning to four dimensions.
In this paper, we wish to make explicit that the

renormalized theory can be made consistent with the G-B
relation and derive a relation between the renormalization
of c and the renormalizations of the other two couplings,
say, a; b. One may use DREG, and it is not even necessary
to modify the usual mass-independent renormalization
procedures such as minimal subtraction (MS). It is neces-
sary to reinterpret the way in which the reduction from
three couplings to two has been achieved by previous
authors, especially since it plays an important role in our
earlier discussion of dimensional transmutation [2]. Since
the present paper is the companion promised there, Ref. [2]
will henceforth be referred to as [I].
We conclude this introduction with an outline of the

remainder of the paper. In Sec. II, we discuss aspects of
perturbative renormalization for the higher-order theory
without matter. This is divided into three parts, reviewing
the rather confusing history and status of this puzzle, the
details of renormalization using DREG and MS, and finally
some insights that may be gleaned by the use of the
renormalization group equations (RGE). Then, in Sec. III,
we indicate how our results may easily be extended to
include matter fields. In Sec. IV, we discuss briefly another
topologically significant parameter, the Hirzebruch signa-
ture, that will enter discussions of the axial anomaly,
CP violation, and related issues, such as the Uð1Þ problem
in QCD. That leads us to speculate, in Sec. V, about the
potential role that gravitational instantons, a nonperturba-
tive effect, may have on some of these considerations.
Finally, in Sec. VI, we end with a summary of results and

3Such a choice would correspond to what has been called
conformal or Weyl gravity, with a Lagrangian involvingC2 andG
(or W and G). Such models presume that there is a renormaliza-
tion scheme free of the conformal anomaly. Such a construction
has never been displayed. In this paper, we assume that the
anomaly exists and only consider models renormalizable in that
context.

4For an introduction to differential geometric concepts, see,
e.g., Refs. [9,10]. In its most general form, it does not even
require a metric [11].
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some important remaining questions. Two appendixes have
been added to clarify some issues in background field
quantization (Appendix A) and in the extension of curva-
ture to n dimensions (Appendix B).

II. PERTURBATIVE RENORMALIZATION–PURE
GRAVITY

A. History and framework

In their seminal papers on this theory, Fradkin and
Tseytlin [7] adopted the form Eq. (1.6). They initially
state that the topological termG can be “disregarded” under
the usual assumptions, such as the “natural asymptotically
flat boundary conditions.” Nevertheless, after obtaining the
Feynman rules, which of course requires the addition of
gauge-fixing terms and Faddeev-Popov ghosts, they find
that there are gauge-invariant divergences not only of the
tensor structure of the operators W and R2 but also of the
form of G. They therefore assign a counterterm to cG,
which, because the Feynman rules are independent of c,
depend only on the other parameters of the theory. That is,
the counterterms assigned to the “coupling constant” c are
independent of c. However, when one goes beyond one-
loop order, one might think that one must include vertices
involving such counterterms for G in addition to those for
W and R2. Although they feel no need to modify their
Feynman rules, this is an unusual prescription, and it is
unclear what is precisely going on. In particular, it is not
so clear that, when G is expressed as a linear combination
of the three renormalized operators as in Eq. (1.2), the
resulting renormalized Lagrangian in four dimensions
necessarily obeys Eq. (1.7).
Similarly, Avramidi and Barvinsky [3] and Buchbinder

and Odintsov [12] choose a Lagrangian density of the form
Eq. (1.5). Buchbinder and Odintsov state [below their
Eq. (8.3)] that the topological term can only make a finite
contribution to the one-loop corrections and, for k loops,
will only contribute to the poles in 1=ðn − 4Þk−i with i ≥ 1.
Nevertheless, in their elaboration of the one-loop diver-
gences [see their Eqs. (8.102) and (8.103)], they encounter
a divergent, one-loop contribution to the term cG. In fact, in
Ref. [12], it is stated and assumed that the action without
the G term is multiplicatively renormalized, which is not
true. These paradoxes derive from the conflict between
using DREG, on the one hand, and a four-dimensional
identity Eq. (1.7) on the other.5 Beyond one-loop order, it is
not obvious that this conflict can always be resolved.
We submit that a consistent formulation exists that

regards the beta-function βc as determined by the beta-
functions of the other coupling constants. The point is that,
as in the procedure adopted in Ref. [7] at one loop, the

counterterms for c are determined by the counterterms for
the other couplings, a; b. This suggests that we regard
c ¼ cða; bÞ, a function of the other couplings, satisfying
the consistency relation

∂c
∂a βa þ

∂c
∂b βb ¼ βc: ð2:1Þ

We shall shortly prove this, viz., c is indeed a function of
a; b that obeys Eq. (2.1). This equation will be shown to
determine the function c up to its initial value c0.
In fact, the beta-function βc described above represents a

generalization to the quantized R2-gravity case of the Euler
anomaly coefficient, and thus a candidate for an a-function
as proposed by Cardy [14], manifesting a four-dimensional
c-theorem. Results for this anomaly coefficient (without
quantizing gravity) include a nonzero five-loop contribu-
tion involving four quartic scalar couplings [15] and
nonzero three-loop contributions involving gauge and
Yukawa couplings [16]. (For some recent progress on
the a theorem and references, see Refs. [17].)
The relation c ¼ cða; bÞ or Eq. (2.1) is reminiscent of

the method of coupling constant reduction by Oehme
and Zimmermann,6 employed to seek general relations
among renormalized coupling constants that were
renormalization group invariant. Their method leads to
nontrivial constraints on the parameters of the theory,
whereas, in the present case, the relation is a direct
consequence of the renormalization properties of the
theory. This case is similar in the following sense:
Suppose that you had started from Eq. (1.1b) with three
coupling constants α; β; γ. Each of the three operators can
be defined in n dimensions. (See Appendix B.) So you
can use DREG to regularize and MS to renormalize this
theory consistent with gauge invariance. Then, having
obtained a finite renormalized theory in four dimensions,
you might ask whether there is some relation among the
three renormalized couplings and eventually discover
that, for certain linear combinations of couplings, only
two linear combinations appear in the beta-functions.
So you might eventually arrange them in the form of,
say, Eq. (1.5) or Eq. (1.6), hypothesize that c ¼ cða; bÞ,
and discover that the relation Eq. (2.1) can be imposed,
in effect, reducing the number of couplings from three
to two.
On the other hand, the present situation is dissimilar

from coupling constant reduction since, in order to
recover the Bianchi identities and maintain the G-B
relation, properties that the theory in four dimensions
must have, the relations among the couplings are essential.
These relations act like additional symmetries, but ones
that only hold in four dimensions. They cannot be
anomalous since their validity makes no reference to5Some of these considerations were taken up in Ref. [13],

which also considered the nature of the theory for finite but small
ϵ ¼ 4 − n. 6For reviews with references to earlier works, see Ref. [18].
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the EoM or to a conserved current resulting from a
symmetry. They are constraints that must follow for a
sensible gauge-invariant, renormalized theory in four
dimensions, not a hypothesis to be tested.
To show that Eq. (2.1) is satisfied, it may be helpful to

define w≡ a=b and to rewrite the Lagrangian density,
Eq. (1.5), as7

L4 ≡ 1

a

�
1

2
C2 þ w

3
R2

�
þ cG: ð2:2Þ

We imagine quantizing the theory by the background field
method, as briefly explained in Appendix A. We presume
that gauge fixing is done in a manner consistent with
background field gauge invariance. In fact, we shall
suppress gauge-fixing parameters and ghost terms in the
following, because our concern will be with the gauge-
invariant beta-functions. Assuming Eq. (1.7), we can ignore
cG in formulating our Feynman rules. Then we may
identify a with the loop-counting parameter.
Although a slight digression, a word of warning must

be added. Using a running coupling to count loops only
works so long as the renormalization scale is held fixed.
Recall from [I] that, at one-loop order, the scale depend-
ence of a is

aðμÞ ¼ a0
1þ a0Lt

¼ a0 − a20Lt þ a30L
2
t þ � � � ; ð2:3Þ

where Lt ≡ κβ2t, with t≡ lnðμ=μ0Þ; κ and β2 are constants.
Thus, the coupling constant at scale μ involves the coupling
constant a0 at some reference scale μ0 to arbitrary orders
in a0. This observation becomes especially important in
higher loops or, even at one loop, for couplings such as w
that mix with others. To discuss the renormalization group,
one must use a different, fixed parameter such as ℏ to count
loops. These seemingly trivial observations will become
extremely important below when a function of wðμÞ will be
reexpressed in terms of aðμÞ, at the same order in the loop
expansion. [See Eq. (2.25) below.]

B. Renormalization in detail

First, we shall review some details of DREG and MS to
establish notation and to emphasize certain features of MS.
Following ’t Hooft [19], we renormalize the couplings a
and w as follows:

1

aB
¼ μ−ϵ

�
1

a
þ A1ða; wÞ

ϵ
þ A2ða; wÞ

ϵ2
þ � � �

�
; ð2:4Þ

where n≡ 4 − ϵ, μ is the renormalization scale, and the
ellipses represent higher order terms in powers of 1=ϵ.

The factor μ−ϵ in front appears in order to make the
renormalized coupling a dimensionless, independent of
the dimension n. Similarly,

1

bB
≡ wB

aB
¼ μ−ϵ

�
w
a
þ B1ða; wÞ

ϵ
þ B2ða; wÞ

ϵ2
þ � � �

�
; ð2:5Þ

or, dividing by Eq. (2.4),

wB ¼ wþ aðB1 − wA1Þ
ϵ

þ � � � : ð2:6Þ

From Eq. (2.4), the variation of a with scale t≡ lnðμ=μ0Þ is
given by

0 ¼ −ϵ
�
1

a
þ A1ða; wÞ

ϵ

�
þ da

dt

�
−

1

a2
þ 1

ϵ

∂A1

∂a
�

þ dw
dt

1

ϵ

∂A1

∂w þ � � � : ð2:7Þ

To obtain the beta-functions, we want to isolate the terms
of Oð1Þ or higher in ϵ. (In order for the theory to be
renormalizable, terms involving negative powers of ϵ must
cancel among themselves [19] in the limit ϵ → 0.) As
expected from its definition, the coupling wB is dimension-
less for all n, so dw=dt will have no terms of order ϵ, and
the last term can be neglected. Then we find

da
dt

¼ −ϵaþ βa; with βa ¼ −a2
∂ðaA1Þ
∂a : ð2:8Þ

Similarly, from Eq. (2.6),

dw
dt

¼ βw ¼ a
∂
∂a ½aðB1 − wA1Þ�: ð2:9Þ

The counterterms An; Bn may in principle be calculated
order by order in the loop expansion. In a given orderN, the
counterterms An; Bn vanish for n ≥ N þ 1, so there are only
a finite number of counterterms to each order. Further, as ’t
Hooft showed [19], at a given order, the counterterms
An; Bn for n ≥ 2 are completely determined from the results
of lower-order calculations. (This is why the beta-functions
depended only on A1 and B1 to each order.) We exploited
this fact in [I] to determine the dilaton mass, which first
arises at two loops in this model, from the results at
one loop.
The one-loop divergences have been calculated [3,7]

with the result that

A1 ¼ β2 ¼
133

10
; B1 ¼ β3ðwÞ ¼

10w2

3
− 5wþ 5

12
:

ð2:10Þ
Thinking for a moment of a as a loop-counting parameter,
with the tree approximation of order 1=a, it comes as
no surprise that the one-loop divergences are independent

7As explained in Ref. [2], there are reasons why it would be
more logical to use the ratio b=a rather than a=b, but, as before,
we choose to remain faithful to the usual convention.
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of a. This is why, in [I], we found that at one loop,
βw ¼ aβ̄wðwÞ, with β̄wðwÞ ¼ β3ðwÞ − wβ2. (As we shall
see in Sec. II C, this scaling relation will not persist in
higher orders.)
Presuming that these beta-functions are known, at least

to some loop order, wewish to obtain the running couplings
aðtÞ; wðtÞ by solving the coupled system of equations,

da
dt

¼ βaða; wÞ;
dw
dt

¼ βwða; wÞ; ð2:11Þ

where we have taken the limit ϵ → 0 in Eq. (2.8). It is well
known that the general solution of a first-order system of
this kind is unique up to the specification of the initial
values ða0; w0Þ at some reference scale μ0, which we have
defined to be t ¼ 0. The fixed points of the system are
obtained from the simultaneous zeros of the beta-functions
βaða; wÞ ¼ 0; βwða; wÞ ¼ 0. As remarked above, at one-
loop order, βa ¼ −β2a2 for a positive constant β2. Within
the perturbative regime, we may conclude that βa=a2 < 0
to all orders, so that aðtÞ is monotonically decreasing from
its initial value a0 > 0. Thus, in this simple model, the fixed
points are determined by the zeros of βw.
Since the counterterms A1 and B1 can in principle be

calculated order by order in the loop expansion, the beta-
functions fβaða; wÞ; βwða; wÞg can be presumed known to
arbitrary order. The running couplings aðtÞ; wðtÞ are there-
fore in principle known from the solutions to their defining
equations, Eqs. (2.8) and (2.9), up to their initial values
a0; w0. We now want to discuss the coupling c and its beta-
function. As described earlier, having chosen Feynman
rules that are independent of the coupling c, its counter-
terms, Cnða; wÞ, are also completely fixed in terms of
ða; wÞ. For example, the counterterm C1ða; wÞ=ϵ is deter-
mined by what is “left over” from the divergences assigned
to A1ða; wÞ=ϵ and B1ða; wÞ=ϵ (as well as any contribution
to □R, which, as discussed earlier, we can ignore). The
renormalization of c therefore proceeds more or less like
the renormalization of any other coupling constant,

cB ¼ μ−ϵ
�
cðϵÞ þ C1ða; wÞ

ϵ
þ C2ða; wÞ

ϵ2
þ � � �

�
; ð2:12Þ

where we assume that the function cðϵÞ may be expanded
as a power series in ϵ with non-negative powers, so that
the renormalized coupling c≡ limϵ→0cðϵÞ exists. What is
different about the renormalization of c is that all the
counterterms Cnða; wÞ are independent of c. Hence, we
have8

dcðϵÞ
dt

¼ ϵcðϵÞ þ βc; ð2:13aÞ

where βcða; wÞ ¼
∂ðaC1ða; wÞÞ

∂a : ð2:13bÞ

The one-loop calculation [3,7] gives C1 ¼ −β1 with
β1 ¼ þ196=45, a constant.
Given its defining equation [now taking the limit ϵ → 0

in Eq. (2.13a)],

dc
dt

¼ βcðaðtÞ; wðtÞÞ; ð2:14Þ

with the running couplings aðtÞ; wðtÞ and the function
βcða; wÞ presumed known, the formal solution is

cðtÞ − c0 ¼
Z

t

0

dt0βcðaðt0Þ; wðt0ÞÞ: ð2:15Þ

Thus, the renormalized coupling cðtÞ is completely deter-
mined up to its initial value c0, which was our first claim.
Equation (2.15) does not determine that cðtÞ − c0 is a
function of ðaðtÞ; wðtÞÞ at the same scale t. It appears to
depend upon their history; i.e., it appears as if cðtÞ − c0 is
actually a functional F½aðtÞ; wðtÞ�. That is an illusion. Since
aðtÞ is monotonically decreasing, its inverse t ¼ tðaÞ is
well defined, so that, in the integral in Eq. (2.15), we can
change variables from t0 to a0, writing

cðtÞ − c0 ¼
Z

aðtÞ

a0

da0
βcða0; wðtða0ÞÞÞ
βaða0; wðtða0ÞÞÞ

: ð2:16Þ

This shows that cðtÞ is actually an ordinary function of the
value aðtÞ at the same scale. Further, it shows that the only t
dependence of cðtÞ is implicit through its dependence on
aðtÞ, just like other couplings. A similar argument applies
to the dependence on w. By definition, βwða; wÞ does not
vanish except at a fixed point, so that, within a given phase,
βwða; wÞ will have a definite sign. Therefore, although wðtÞ
may be increasing or decreasing, it too is monotonic and
may be inverted t ¼ tðwÞ. As with aðtÞ, we may change
variables in Eq. (2.15) from t0 to w0 to establish that cðtÞ
only depends on the function wðt0Þ through its value wðtÞ at
the same scale. Therefore, we have established our second
claim9: c − c0 ¼ CðaðtÞ; wðtÞÞ for some function C.

8There are potentially negative powers of ϵ in Eq. (2.13b) in
addition to these non-negative ones, but, as ’t Hooft [19] showed,
these all must cancel among themselves.

9This conclusion may be generalized to include additional
dimensionless coupling constants λi associated with the inclusion
of matter, but, since not all couplings necessarily run monoton-
ically, the preceding argument must be modified slightly.
As the couplings fwðtÞ; λiðtÞg evolve, the interval ð0; tÞ may
be broken up into a finite number of closed subintervals
½0; t1�; ½t1; t2�;…; ½tN; t� between which all the couplings run
monotonically. Since the couplings are continuous, they must
agree at the end points tp. Thus, the result may be built up
piecewise.
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To summarize what has been determined thus far, in
Eq. (2.15), we have displayed a solution to Eq. (2.14). If we
know the functions aðtÞ; bðtÞ, then the solution is unique up
to the constant c0. Further, we know that the functions
aðtÞ; bðtÞ are uniquely determined by the values of ða0; b0Þ.
If we do not know these initial values, then we could regard
the solution in Eq. (2.15) as a three-parameter family of
solutions cðt; a0; w0; c0Þ.
If this were a real theory of nature rather than a model,

we believe that, in principle, ða0; w0Þ would be experi-
mental observables. We have not determined that c0 is
observable, and we will return to this question later.
We know in addition that cðtÞ is in fact a function of
ða; wÞ, i.e., c ¼ c0 þ CðaðtÞ; wðtÞÞ. Can we say more about
the function Cða; wÞ? The answer is yes since c obeys the
renormalization group equations.

C. Renormalization group equations

Knowing that cðtÞ − c0 is a function of ðaðtÞ; wðtÞÞ, we
may write

∂c
∂a

da
dt

þ ∂c
∂w

dw
dt

¼ dc
dt

; ð2:17aÞ

or βaða; wÞ
∂c
∂aþ βwða; wÞ

∂c
∂w ¼ βcða; wÞ: ð2:17bÞ

These equations are very powerful; each is a form of the
RGE for the function Cða; wÞ. One of its applications is to
relate the functions in different orders in perturbation
theory. For example, it is clear from Eq. (2.17b) that the
one-loop approximation to the three beta-functions con-
strains the tree approximation to the function Cða; wÞ. The
two-loop approximation to the beta-functions will constrain
the one-loop correction to Cða; wÞ, etc.
Note that Eq. (2.17b) makes no reference to the scale

parameter t and poses the problem of finding c as one of
determining the solutions of a first-order, inhomogeneous
partial differential equation. Although these equations are
not linear in c, the difference between any two solutions
satisfies the homogeneous equation, which is linear. The
generic approach to the study of such equations employs
the method of characteristics.10 In the present context,
however, we believe that it is simpler to exploit the loop
expansion, especially because nothing much is known
beyond one-loop order about theories of this type.
We may take advantage of the fact that Eq. (2.17b)

makes no explicit reference to the scale parameter to
parametrize the loop expansion in terms of the coupling
a, at some fixed scale. In particular, the counterterms may
be expanded as

A1 ¼
X∞
k¼1

akðwÞak−1; B1 ¼
X∞
k¼1

bkðwÞak−1;

C1 ¼
X∞
k¼1

ckðwÞak−1; ð2:18Þ

where the ak; bk; ck correspond to the kth term in the loop
expansion. Then, from Eqs. (2.8), (2.9), and (2.13b), we
have

−
βa
a2

¼
X∞
k¼1

kakðwÞak−1;

βw
a

¼
X∞
k¼1

kwkðwÞak−1; βc ¼
X
k¼1

kckðwÞak−1; ð2:19Þ

where, for brevity, we defined wkðwÞ≡ bkðwÞ − wakðwÞ.
Similarly, we may expand cða; wÞ as

cða; wÞ ¼ c0 þ
e0ðwÞ
a

þ
X∞
k¼1

ekðwÞak−1; ð2:20Þ

where, in addition to the constant c0, a tree-level contri-
bution e0ðwÞ=a has been included.
To determine e0ðwÞ explicitly, we must insert the one-

loop contributions to the beta-functions into Eq. (2.17b) to
obtain

a1ðwÞe0ðwÞ þ w1ðwÞe00ðwÞ ¼ c1ðwÞ; ð2:21aÞ

β2e0ðwÞ þ β̄wðwÞe00ðwÞ ¼ −β1; ð2:21bÞ

where, in Eq. (2.21b), we inserted the one-loop values for
a1; c1, and w1ðwÞ ¼ β̄wðwÞ from Eq. (2.10) and from
immediately below Eq. (2.13b). The actual values are
not so important as the fact that β1; β2 are constants.
Then we observe that a solution of Eq. (2.21b) is simply
e0ðwÞ ¼ −β1=β2, a constant, regardless of the form.11

Therefore, the tree approximation to c is

cða; wÞ ¼ c0 −
β1
β2a

: ð2:22Þ

This is a rather remarkable result in some ways. As
advertised, the one-loop beta-functions in Eq. (2.17b)
determine the tree approximation for c. On the other hand,
unlike ordinary coupling constants, the only arbitrariness in
c is the constant c0, so rather than a consistency check, the
RGE actually determines the tree approximation. Even

10See, e.g., Ref. [20]. For an application in an analogous
context, see Ref. [21]. If the initial values ða0; w0; c0Þ are
regarded as unknown, this method can provide insight into the
manifold of all solutions.

11In other words, we would not need to know the one-loop
renormalization b3ðwÞ of the R2 term. Although we will not
demonstrate it here, this persists in higher orders in the sense that,
in order to determine the OðNÞ-loop contribution to c, we only
need to know the renormalization of R2 to OðN − 1Þ.
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though β1 and β2 are quantum corrections of OðℏÞ, their
ratio is Oð1Þ.
It is convenient but not crucial that the one-loop

corrections β1; β2 be independent of w; however, if β2
were dependent on w, there may be a danger that their ratio
either would be singular or would vanish for certain values
of w. Nevertheless, there remains a paradox: although
Eq. (2.22) corresponds to one solution, there appear to be
others, since, to any solution e0ðwÞ of Eq. (2.21b) may be
added a solution ehðwÞ of the homogeneous equation

β2ehðwÞ þ β̄wðwÞe0hðwÞ ¼ 0: ð2:23Þ

Thus, we could replace the solution Eq. (2.22) by

cða; wÞ ¼ c0 þ
ehðwÞ
a

−
β1
β2a

: ð2:24Þ

On the other hand, we argued earlier that the solution
Eq. (2.15) was unique up to the constant c0. How can
both statements be true? The answer is that, like c0,
ehðwðtÞÞ=aðtÞ is renormalization group invariant; i.e., to
one-loop order, it is independent of t. This is easily seen in
the following:

d
dt

�
ehðwðtÞÞ
aðtÞ

�
¼ −

βa
a2

ehðwÞ þ e0hðwÞ
βwða; wÞ

a

¼ β2ehðwÞ þ e0hðwÞβ̄w; ð2:25Þ

which is identical to Eq. (2.23) and therefore zero.
[Recall our earlier warning surrounding Eq. (2.3).]
Thus, the ambiguity simply corresponds to the freedom
to choose a different value of c0. [It is easy enough to verify
this explicitly by writing down the general solution of
Eq. (2.23), using β2 and β3ðwÞ as defined in Eq. (2.10)].
Our general arguments above assure us that this result
remains true to arbitrary order in perturbation theory; we
can choose any solution for the ekðwÞ and the ambiguity
can eventually be absorbed into the freedom to choose c0
arbitrarily.
Therefore, for R2 gravity without matter, we have

shown that formulating the theory in terms of Feynman
rules depending on only two coupling constants is
self-consistent, provided the coupling constant associated
with the Gauss-Bonnet term G is correspondingly
renormalized.
We have only discussed the dimensionless coupling

constants because, in a mass-independent renormalization
scheme, the addition of UV irrelevant operators, such as an
Einstein-Hilbert term or a cosmological constant, does not
change the counterterms for the dimensionless couplings.
Thus, they may be added without consequences for this

proof. The preceding proof in no way required classical
scale invariance.
This result may be rewritten in a number of other ways.

Most commonly, C2 is exchanged for W as in Eq. (1.6).
We have that ~c ¼ cþ 1=2a, so that β ~c ¼ βc − βa=ð2a2Þ.
Therefore, to one-loop order, β ~c ¼ κð−β1 þ β2=2Þ, and the
tree approximation to ~c will be

~c ¼ c0 þ
�
1

2
−
β1
β2

�
1

a
: ð2:26Þ

III. EXTENSION TO MATTER

The results of the preceding section may be extended
to the incorporation of matter with only slight modifica-
tions. The fundamental consistency relation must be
extended to

βc ¼
∂c
∂a βa þ

∂c
∂b βb þ

X
i

∂c
∂λi βλi ; ð3:1Þ

where fλig represents all the additional dimensionless
coupling constants in the theory. For example, the addition
of a scalar field in the form

Sm ¼
Z

d4x
ffiffiffi
g

p �
1

2
ð∇ϕÞ2 þ λ

4
ϕ4 −

ξϕ2

2
R

�
: ð3:2Þ

(Again, one could add mass terms or cubic couplings
without changing the results for the dimensionless cou-
plings.) The divergences for a and c are modified by the
inclusion of matter, but, at one loop, they simply change
the values of the constants β2 and β1, respectively [3,7]. The
nonminimal coupling ξ adds to the divergences propor-
tional to R2, modifying the beta-function for w. Similarly,
the divergences for λ as well as for the wave-function
renormalization of ϕ receive gravitational contributions.
Their structure is well understood [4]. The form of these
renormalizations can be brought into the same form as
before as follows: it turns out to be natural to rescale the
field ϕ ¼ ~ϕ=

ffiffiffi
a

p
and coupling λ≡ ay, so that the matter

action Eq. (3.2) takes the form

Sm½ϕ; gμν� ¼
Z

d4x
ffiffiffi
g

p
a

�
1

2
ð∇ ~ϕÞ2 þ y

4
~ϕ4 −

ξ ~ϕ2

2
R

�
:

ð3:3Þ
Thus, 1=a factors out, so that a remains a loop-counting
parameter, and the beta-functions for w, y, and ξ may be
written in the form

∂w
∂u ¼ β̄wðw; ξÞ;

∂ξ
∂u ¼ β̄ξðw; ξ; yÞ;

∂y
∂u ¼ β̄yðw; ξ; yÞ;

ð3:4Þ
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where du ¼ −da=ðβ2aÞ. (See [I] for further details.) In this
case, the fixed point behavior is far more complicated. We
found that there are six fixed points, only one of which is a
UV fixed point for all three couplings. Its basin of attraction
is limited and does not include all values of the couplings,
which is to say that these parameters do not always
approach finite fixed points. It therefore depends on the
initial conditions whether, as a → 0, all other couplings are
asymptotically free (AF) or finite. Thus, in the loop
expansion of the renormalized couplings, the coefficients
depend on the three parameters w; ξ; y in general.
Finally, one may add scalars, fermions, and non-Abelian

gauge fields. Each species makes contributions to the
constants β1 and β2, but these gravitational couplings
remain independent of other coupling constants. This is
not true for βw, which can depend on the nonminimal
couplings ξi of the scalar fields as well as other dimension-
less coupling constants. On the other hand, there are more
interrelated matter couplings that complicate the determi-
nation of fixed points.
We shall not discuss these in detail here, but some

examples have been worked out previously. (For a sum-
mary of models, see Chap. 9 of Ref. [4].) At one-loop, the
gauge couplings receive no contributions from the gravi-
tational couplings, a vestige of their classical conformal
symmetry. Generally, the Yukawa couplings vanish more
rapidly than the bosonic couplings, but the top quark
coupling is so large in the standard model (SM) that it
is often necessary to include it, at least up to the scale of the
Planck mass, to obtain realistic predictions. For present
purposes, the important point is that none of these com-
plications will alter the conclusions of this paper concern-
ing the treatment of the couplings of the topologically
significant operators discussed herein.

IV. THE HIRZEBRUCH SIGNATURE

The G-B relation is not the only topologically moti-
vated relation in theories such as these. Another is the
Hirzebruch signature whose topological density R�R is the
gravitational contribution to the axial anomaly. Our
excuse for neglecting it until now is that, unlike G, it is
only needed for renormalization in models that include
fermions whose couplings imply CP violation, as in the
Standard Model. Analogous to Eq. (1.3), the local form of
the relation

R�R ¼ ∇μHμ; Hμ ≡ ϵμνγδΓρ
νκ

�
1

2
Rκ

ργδ þ
1

3
Γκ
γλΓλ

ρδ

�
:

ð4:1Þ

Like Bμ, Hμ transforms like a connection. The corre-
sponding integral for a compact manifold without boun-
daries is

48π2τ ¼
Z
M

d4x
ffiffiffi
g

p
R�R ¼

Z
M

d4x
ffiffiffi
g

p
C�C; ð4:2Þ

where the integer τ is referred to as the Hirzebruch
signature or Hirzebruch index. (If M has boundaries,
then there will be additional terms representing their
contributions.) Since ðC� C�Þ2 ≥ 0, C2 ≥ jC�Cj, with
equality only for C ¼ �C� (self-dual or anti-self-dual.)
Thus,

Z
M

d4xC2 ≥ 48π2jτj: ð4:3Þ

Consequently, only a compact spacetime that is not
conformally flat can have a nonzero signature. Since

C�C ¼
�
Cþ C�

2

�
2

−
�
C − C�

2

�
2

; ð4:4Þ

it may come as no surprise that τ can be related to the
number of self-dual ðbþ2 Þ or anti-self-dual ðb−2 Þ harmonic
two forms. In fact, τ ¼ bþ2 − b−2 .
The upshot of this is that another term may be added to

the Lagrangian Eq. (1.1a) of the form iϑC�C. Obviously, ϑ
is analogous to the θ parameter of QCD, and a nonzero
value of ϑ implies the model is P and CP violating. As with
G, since R�R is a total derivative, ϑ will not contribute to
the Feynman rules. On the other hand, we expect that, if
renormalized, it will obey an equation like Eq. (3.1), since
fermions contribute to the beta-functions for a, b, as well
as to those for other couplings, in particular, the beta-
functions for Yukawa couplings.

V. INSTANTONS

The inclusion of these topologically significant terms in
the action suggests that they could become even more
relevant nonperturbatively, although this is not the focus
of this paper. There has been a great deal of discussion
about instantons in the context of Einstein-Hilbert
theory12 and in string theory in higher dimensions,
especially their role in anomalies [22]. For higher-order
gravity of the type considered herein, there has been
speculation about instantons and their potential effects
assuming that the theory has a sensible conformal limit
[23,24]. Although our work specifically assumes that the
QFT is not scale invariant, let alone conformal invariant,
the potential physical implications of instantons may well
be similar to those that were discussed for the conformal
theory. Thus, an instanton that has a nonzero Euler
characteristic χ would presumably be topology changing,
representing a tunneling amplitude from an initial state

12For a review of early work, see, e.g., [9]. Ref. [10] reviews
some of the subsequent developments.
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that represents one genus (e.g., a sphere) to a final state
that represents another (e.g., a torus). Similarly, if an
instanton carries a nonzero Hirzebruch signature τ, tran-
sitions between states of different “winding numbers”
should occur. Since τ ≠ 0 will affect the chiral anomaly, it
would be interesting to investigate what changes, if any,
such instantons would imply for the usual picture of
nonperturbative effects in QCD.
We have not yet investigated the role of instantons in

these theories, but, as pointed out in Ref. [23], some of the
instantons presented there for the conformal theory ought
to survive in a scale-invariant theory, although these
authors appear to have in mind a theory without anoma-
lies. Motivated by the considerations in this paper and in
[I], we suggest that classically scale-invariant theories
may well provide a hospitable setting for treating such
instantons semiclassically, even though their QFT’s are
anomalous. The point is that, at sufficiently high scales,
their background fields will be approximately scale
invariant. By this, we mean that, if all relevant couplings
are AF, then the degree of scale breaking becomes small
asymptotically. Even if one supposes that the background
has constant curvature, the actual magnitude of the
curvature will still be undetermined. It remains to be seen
whether topological characteristics can be discussed
within such a framework.
Earlier work assumes that instantons are asymptotically

locally Euclidean, but in order to consider spacetimes such
as de Sitter space, anti–de Sitter space, and others where
curvature is essential and persistent, one must apparently
give up this requirement. Exactly what alternative con-
straints are mandated for such theories has yet to be
determined.
For cosmological applications, one probably should be

discussing only initial states with the time evolution
determined by an “in-in” or Schwinger-Keldysh formal-
ism.13 The Hartle-Hawking no-boundary hypothesis [26] is
one such possibility, with a transition at the birth of the
universe from Euclidean to Lorentzian signature. It has
been argued that such a framework strongly favors infla-
tionary cosmologies [27]. Just how starting from R2 gravity
and including instantons might affect such deliberations, if
at all, remains unclear.

VI. CONCLUSIONS AND OPEN QUESTIONS

We have demonstrated that, quite generally, renorma-
lizable gravity allows reduction from three to two
primary operators and their associated couplings, as
required by the local Gauss-Bonnet relation in four
dimensions.14 This has been tacitly assumed by previous

authors, but there can be confusion concerning the
precise role of topological terms such as G in the
renormalization of the theory, since it must be included
among the renormalized operators. It holds quite gen-
erally for the extension of pure gravity to include matter
consisting of an arbitrary collection of scalars, vectors,
and fermions. A similar discussion undoubtedly applies
to the Hirzebruch signature density C�C, which is also a
covariant divergence of a “current” Hμ. When fermions
are added in such a way that CP is violated, ϑ is expected
to be renormalized, but in a manner similar to cða; bÞ.
The idea then is that the only arbitrariness in couplings
such as cða; bÞ or ϑða; bÞ would be in the constants c0
and or ϑ0.
One open question is whether the parameter c0, the only

free parameter in the Gauss-Bonnet coupling, is in principle
observable. We have our doubts that it can be observed in a
purely perturbative framework, but if instantons come to
play a role in the determination of acceptable states of
the theory, then c0 may well affect the outcome. Similar
remarks should apply to ϑ0 as well.
All these speculations presume that there are extensions

of our earlier work [I] to classically scale-invariant models
in which there is dimensional transmutation with an
induced Planck mass in the same phase in which the
coupling constants are asymptotically free. We suspect that
such models exist, as other authors have usually assumed
about models that explicitly break scale invariance
classically.15
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APPENDIX A: BACKGROUND FIELD
QUANTIZATION

In this section, we elaborate what we mean by the
background field method of quantizing Eq. (2.2). This is
completely standard, except for the way in which the
term cG enters the theory. We shall follow the notation
and conventions of Appendix B of Ref. [2], employing
DeWitt’s condensed notation [30], using a single index to
denote all indices, including spacetime xμ or other13For some recent perspectives, see, e.g., Refs. [25].

14Concerns about the viability of DREG were expressed in
Ref. [28]. One consequence of our results is that these concerns
have finally been laid to rest. See also Ref. [13].

15A recent application of this type [29] attempts to include the
effects of the Gauss-Bonnet coupling.
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continuous parameters. Repeated indices are (usually)
summed or integrated over.
For a classical action S½ϕi�, the effective action may be

formally defined by Γ½ϕi�≡ S½ϕi� þ ΔΓ½ϕi�, where

e−ΔΓ½ϕi� ¼
Z
B
Dhie

−ΔS½ϕi;hi�þhk
δΔΓ½ϕi �
δϕk ; ðA1aÞ

with ΔS½ϕi; hi�≡ S½ϕi þ hi� − S½ϕi� − hj
δS½ϕi�
δϕj

: ðA1bÞ

B denotes the background manifold associated with ϕi.
Equation (A1a) is a complicated integro-differential equa-
tion, whose meaning we have summarized previously in
[I]. Here, we want to focus on Eq. (A1b), with ϕi replaced
by the background metric, gμν, and hi, by the metric
fluctuations,16 hμν. The point is that, according to
Eqs. (1.7) and (A1b), the operator G enters only into the
classical action S½gμν� and not into ΔS½gμν; hμν�, Eq. (A1b),
and therefore does not contribute to the integral Eq. (A1a)
that determines the QFT in the classical background. The
term cG contributes neither to the propagator nor to the
vertices.
Next, since one is dealing with a gauge theory, one

must add gauge-fixing terms to ΔS, together with their
associated Faddeev-Popov ghosts, although for the most
general background field, this may not be necessary.17 Of
course, one then finds that the Feynman rules lead to
divergent integrals, so that the theory must be regularized
and renormalized. The canonical procedure is to express
the classical action in terms of finite renormalized fields
and couplings plus divergent but local counterterms
chosen to cancel these divergences order by order in
perturbation theory. In the case of interest, even though G
contributes nothing to the Feynman rules arising from ΔS,
there are divergences arising that contribute to the
renormalization of the coupling c. Such phenomena are
familiar already from QFT in curved spacetime even
without quantizing the gravitational field. (For example,
see Ref. [32].) If one is to use DREG, this procedure
requires extending the operators in the classical action to n
dimensions. This can easily be done for C2, R2, as well as
for G in the form of Eq. (1.2a) [but not in the form
of Eq. (1.2b)].
By this reasoning, we believe that there is no obstruc-

tion to renormalization (as there are with anomalies), and

the renormalization program can proceed as usual.
Fortunately, we are not alone in our belief, inasmuch as
this has also been implicitly assumed by all previous
authors.
Had one defined the QFT by extending the operators to n

dimensions at the outset, e.g., in the form of Eqs. (1.1b) and
(1.5), or Eq. (1.6), one could not use Eq. (1.7) to develop
the Feynman rules.18 ΔS would include terms from cG in
the QFT contributing to the propagator and to vertices of
order ϵ or higher. In that case, it must be shown that the
renormalized operators in four dimensions actually respect
Eq. (1.7), the Bianchi identities, and other special proper-
ties peculiar to the four-dimensional theory. It would be
nice to have a proof of this, but we have not found such an
argument in the literature. Nevertheless, by our previous
argument above, it seems that the coupling constant c can
be renormalized without including it in the Feynman rules
for the QFT.

APPENDIX B: CURVATURE IN n DIMENSIONS

The Riemann curvature Rκ
μλν can be defined in n

dimensions, from which one can obtain the Ricci tensor
Rμν ≡ Rλ

μλν and scalar R≡ Rμ
μ. The Weyl tensor Cκλμν can

then be defined by the linear relation19

Cκλμν ≡ Rκλμν − 1

n − 2
ðgκ½μR̂ν�λ − gλ½μR̂ν�κÞ

− R
nðn − 1Þ ðgκ½μgν�λÞ; ðB1Þ

where R̂μν ≡ Rμν − gμνR=n. Exchanging the positions
of the Riemann and Weyl tensors, we may regard this
as the decomposition of the Riemann tensor into its
irreducible components under SOðnÞ, symbolically as
R ¼ C⊕R̂⊕R. This decomposition is orthogonal in the
sense that

R2
κλμν ¼ C2

κλμν þ
4R̂2

μν

n − 2
þ 2R2

nðn − 1Þ : ðB2Þ

In four dimensions, this becomes

R2
κλμν ¼ C2

κλμν þ 2R̂2
μν þ

R2

6
: ðB3Þ

16An expression for ΔS to second order in hμν may be found in
Ref. [5], Eqs. (4.53)–(4.55), spanning more than two full pages.
To go beyond one loop requires adding vertices arising in higher
order, a formidable task.

17The quadratic terms in hμν may be invertible without gauge
fixing, at least off-shell, which may be sufficient for determining
beta-functions. For further discussion, see the appendix of
Ref. [31].

18In flat background, it has been shown by Zwiebach [33] that,
even in higher dimensions, G surprisingly remains a total
derivative. See also Ref. [34].

19Our convention concerning bracketed indices is to antisym-
metrize those contained, so, e.g., gκ½μR̂ν�λ ≡ gκμR̂νλ − gκνR̂μλ. A
common alternative takes the brackets to mean half the
difference.
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