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We study the quantization of geometry in the presence of a cosmological constant, using a discretization
with constant-curvature simplices. Phase space turns out to be compact and the Hilbert space finite
dimensional for each link. Not only the intrinsic, but also the extrinsic geometry turns out to be discrete,
pointing to the discreteness of time, in addition to space. We work in 2þ 1 dimensions, but these results
may be relevant also for the physical 3þ 1 case.
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I. INTRODUCTION

The presence of the cosmological constant can affect the
quantum kinematics of gravity. Here we show that it enters
naturally in loop quantum gravity (LQG) by determining
the size of a compact phase space and the dimension of the
corresponding finite dimensional Hilbert space. This yields
the discretization of the extrinsic curvature and can be
related to time discreteness.
Recent results indicate that a positive cosmological

constant simplifies, rather than complicating, our under-
standing of quantum gravity. Fairbairn and Meusburger [1]
and Han [2–4], building on [5,6] and [7], have shown that
the cosmological constant makes covariant LQG finite.
Haggard, Han, Kamiński and Riello [8] have given a
straightforward construction of the LQG dynamics in the
presence of the cosmological constant, related to the
geometry of constant curvature triangulations, a key idea
introduced by Bahr and Dittrich [9], which grounds the
present work. The LQG kinematics needs to be modified to
take into account the presence of a cosmological constant;
this was realized long ago by Borissov, Major and Smolin
[10–12] and the problem has been recently explored in
detail by Dupius, Girelli, Livine and Bonzom [13–16] for
negative cosmological constant.
A discretization of spacetime in terms of flat simplices is

not suitable for a theory with a cosmological constant
because flat geometry solves the field equations only with a
vanishing cosmological constant. This problem can be
solved choosing a discretization with simplices with con-
stant curvature. Here we show with a positive cosmological
constant, a constant curvature discretization leads to a
modification of the LQG phase space. The phase space
turns out to be compact for each link. The conventional
LQG phase space is modified by curving the conjugate
momentum space. Curved momentum space has been
repeatedly considered in quantum gravity, for instance in
the relative locality framework [17]. Here it is not the
momentum space of a particle to be curved, but rather the

space of the conjugate momentum of the gravitational field
itself. We study the quantization of the resulting phase
space, and we write explicitly modified quantum geomet-
rical operators. We show that these are related to a q
deformation of SUð2Þ. A q deformation has been derived in
LQG as a way to implement the dynamics of the theory
with a cosmological constant in [18,19]. Here we have
shown that it is also directly implied by the constant
curvature of the individual simplices, and we have given
the corresponding form of the geometrical operators of the
gravitational theory, in the presence of a cosmological
constant.
This result has physical consequences: it is not just the

intrinsic geometry, but also the extrinsic geometry to be
discrete in quantum gravity (for a hint of this see [20]). This
indicates that not just space, but also proper time, is
predicted to be discrete in the theory.
We study the quantization of the geometry in 2þ 1

Euclidean dimensions with a positive cosmological con-
stant, which results from building on constant curvature
triangulations, but the results that we obtain may be
relevant for the physical 3þ 1 Lorentzian case.

II. CONSTANT CURVATURE GEOMETRY

We start with the geometry of a constant curvature
triangle. For this, it is convenient to fix units where the
constant curvature has a unit value. The small-curvature
limit is then the limit where the triangle is small. Consider
therefore a metric sphere with unit radius R ¼ 1. A constant
curvature triangle has three vertices on this sphere. It is a
portion of the sphere bounded by three arcs of maximal
circles joining two vertices. The geometry of the triangle is
determined, up to isometries, by giving the length Ll;
l ¼ 1; 2; 3 of these three (oriented) arcs. Importantly, these
lengths are bounded.
Since the radius of the sphere determines a unit of length,

these lengths can be given adimensionally: they are
determined by the three angles αl ¼ Ll=R they define at
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the center of the sphere. There is also an element kl of
SOð3Þ associated which each arc. This is simply the
rotation by an angle αl around the axis normal to the plane
of the great circle of the arc. The intrinsic geometry of the
triangle can therefore be given by associating (noninde-
pendent) SOð3Þ elements kl to each of its sides.
Consider a two-dimensional surface Σ immersed in a

three-dimensional Riemannian manifold. This surface
inherits an intrinsic and an extrinsic geometry from the
third manifold. Fix a third triangulation of the third
manifold, inducing a second triangulation on Σ. The
holonomy of the third spin connection along each side l
of the triangulation is an element hl of SOð3Þ. The index l
runs over all the segments (arcs) of the triangulation. We
choose to approximate the intrinsic geometry of each 3-cell
with a constant curvature metric, and therefore the geom-
etry of each triangle with a triangle of uniform curvature.
The full intrinsic and extrinsic geometry of Σ is defined by a
couple of SOð3Þ elements, ðkl; hlÞ, associated to each arc:
hl is the holonomy of the third connection, kl is the rotation
associated with the curved arc l.
It is customary in LQG to consider the trivalent graph

dual to the triangulation. In two space dimension, each link
l of the graph corresponds to an arc l of the triangulation.
The geometrical data are therefore an element ðkl; hlÞ, in
SOð3Þ × SOð3Þ for each link l of the graph.
In the limit in which the triangles are small compared

to the constant curvature scale, the group elements kl are
near the identity and we can approximate them as

kl ¼ e~Jl·~τ ∼ 1þ Jl ¼ 1þ ~Jl · ~τ, where ~τ is a basis in the
soð3Þ ∼ suð2Þ algebra. In this limit, which we call R → ∞,
the geometry of the surface is approximated by an element

of the group, hl, and an element of the algebra, ~Jl, for each
arc l. These are the standard geometrical data of LQG. Let
us shift from SOð3Þ to SUð2Þ as is conventionally done in
LQG. We write the limit in the form

SUð2Þ × SUð2Þ →
R→∞

suð2Þ × SUð2Þ ¼ T�SUð2Þ
ðk; hÞ ↦

R→∞
ðJ; hÞ:

Thus, what we do here is to modify the usual LQG
kinematics by replacing the algebra with the group. The
role of SUð2Þ × SUð2Þ in Euclidean third gravity with a
positive cosmological constant has been pointed out by
Meusburger and Schroers in [21,22], as the local isometry
group, or as the gauge group of the Chern-Simons
formulation of the theory.

III. COMPACT PHASE SPACES

The key difference between the algebra and the group is
that the second is compact. This has significative conse-
quences in quantum theory. Their importance for finiteness

has been pointed out in [23]. These are the consequences
we explore here.
A compact phase space is the classical limit of a quantum

system with a finite dimensional Hilbert space. This can be
seen in many ways; the simplest is to notice that a compact
phase space has a finite (Liouville) volume, and therefore
can accommodate a finite number of Planck size cells, and
therefore a finite number of orthogonal quantum states. The
familiar example of quantum systems with finite dimen-
sional Hilbert space is given by angular momentum, for
systems with fixed total angular momentum, where the
quantum state space is the Hilbert space Hj that carries the
spin-j representation of SUð2Þ.
In standard LQG, the kinematical data are given by an

element of Γ≡ suð2Þ × SUð2Þ on each link. Γ is the phase
space of the theory, for each link. Since it is a cotangent
space, it carries a natural symplectic structure. The corre-
sponding quantization defines the quantum theory of
gravity in the loop representation. This is defined on the
Hilbert space L2½SUð2Þ�, where the group elements act
multiplicatively and the algebra elements act as left
invariant vector fields. Here we want to modify this
structure by replacing the algebra suð2Þ with the group
SUð2Þ. The problem we address is therefore to determine
the phase space structure of SUð2Þ × SUð2Þ and its
quantization.
As a preliminary exercise, we address this problem for

the simplified case of Uð1Þ ×Uð1Þ.

IV. Uð1Þ × Uð1Þ
Here we define and quantize the phase space

Uð1Þ ×Uð1Þ. We write elements of this space as a couple
ðh; kÞ of complex numbers with unit norms, with
ðh ¼ eiα; k ¼ eiβÞ. Let us start by determining the phase
space structure, namely writing the symplectic two-form.
We are guided to do so by the fact that in the limit in which
the radius of one of the two circles can be considered large
we want to recover the symplectic form of the cotangent
space, which is

ω ¼ dα∧dβ: ð1Þ

This indicates immediately what we need:

ω ¼ −h−1dh∧k−1dk; ð2Þ

which locally is just the same as the previous one. The
corresponding Poisson brackets are easily computed:

fk; hg ¼ hk: ð3Þ

This defines the phase space. Let us look for a correspond-
ing quantum theory. For this, we want a Hilbert space H
and operators h and k with an operator algebra that reduces
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to the above Poisson algebra in the appropriate limit. The
problem is easy to solve.
The Hilbert space is the finite dimensional Hilbert space

H with a discrete basis jni where n ¼ 1;…; N ¼ dimH,
and the operators act as follows:

kjni ¼ ei
2π
Nnjni ð4Þ

and

hjni ¼ jnþ 1i ð5Þ
cyclically (that is kjNi ¼ j1i). A straightforward calcula-
tion gives their commutator algebra

½h; k� ¼
�
ei

2π
N − 1

�
hk; ð6Þ

which gives a representation of the Poisson algebra for
large N. In this limit, the Planck constant (determined by

½â; b̂� ¼ iℏ dfa; bg) is related to N by

ℏ ¼ 2π

N
: ð7Þ

To understand the physics, recall that we have a preferred
length here: the constant curvature radius, which we have
set to unit. Therefore the dimensionless quantity 2π

N is
actually the ratio between two dimensionful quantities: in
the physical theory it is the ratio of the Planck length scale
to the cosmological constant scale.
The physics of the quantum theory of this simple

example is intriguing. Since the phase space is compact,
the Hilbert space is finite dimensional and therefore both h
and k have a discrete spectrum. This is like having a particle
on a circle, and therefore discrete momentum, but also the
circle being actually discrete, and therefore position is
discrete as well. Discreteness of the position gives a
maximum momentum. So, all physical quantities are
discrete, bounded and therefore completely finite.
This is appealing. The mathematics of the continuum is

just a useful approximation to a physical reality which is
always discrete and finite.

V. SUð2Þ × SUð2Þ
Our task is now to repeat the previous exercise for

Γ ¼ SUð2Þ × SUð2Þ. We use the notation

ðk ¼ eJ; hÞ ∈ SUð2Þ × SUð2Þ: ð8Þ
In the R → ∞ limit where the length of the arc is small
compared to R, we have k ∼ 1þ J. The symplectic
structure of T�SUð2Þ is defined by the symplectic form
ω ¼ dθ where

θ ¼ Tr½Jh−1dh�: ð9Þ

There are several possibilities for deforming this structure
to have it well defined on SUð2Þ × SUð2Þ. The simplest
possibility is to take

θ ¼ Tr½kh−1dh�; ð10Þ

which reduces to (9) in the limit. The resulting symplectic
form

ω ¼ Tr½dk∧h−1dh − kh−1dh∧h−1dh� ð11Þ

is closed and invariant under h → λh with λ ∈ SUð2Þ.
(It is not invariant under k → λk, but this transformation
is not a symmetry: it transforms small triangles into large
ones.) But there are other and more interesting phase space
structures that one can write on the group SUð2Þ × SUð2Þ.
The different forms of compatibility between phase space
structure and group structure are studied under the name
of Poisson-Lie groups and quasi-Poisson-Lie groups
[22,24–28].
Instead of trying to guess physically interesting sym-

plectic (or Poisson) structures, we go directly to the
quantum theory and study the problem there. We can then
recover a phase space structure form the classical limit of
the quantum operator algebra. After all, in the real world it
is the quantum theory to have a classical limit, not the other
way around.
What we are seeking is therefore a deformation of the

standard LQG operator algebra giving a finite Hilbert
space. For this, let us start recalling the action of the
operators h and k ¼ eJ on the standard LQG representation.
This is,

hψðUÞ ¼ UψðUÞ ð12Þ

and

JiψðUÞ ¼ LiψðUÞ; ð13Þ

whereLi is the left invariant derivative operator on the group
manifold. Let us transform this to the canonical basis of
L2½SUð2Þ� ∼⊕∞

j¼0ðHj ⊗ HjÞ,

hUjjmni ¼ Dj
mnðUÞ; ð14Þ

defined by the Wigner matrices Dj
mn. The result is

Jijjmni ¼ τðjÞmkjjkni; ð15Þ

where τðjÞmk are the SUð2Þ generators in the j representation,
and

hABjjmni ¼
� 1

2
j j0

A m m0

�� 1
2

j j0

B n n0

�
jj0m0n0i; ð16Þ
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where A;B are the indices of the SUð2Þ matrix, repeated
indices are summed over and the matrices are theWigner 3j
symbols. Equation (16) is obtained from (12) and (14) by
noticing that the group elements are the same as their spin-1

2

representation and using the standard decomposition of
products of representations.
The first of these two equations is analogous to the

Abelian case: the operator is defined on the finite dimen-
sional Hilbert space formed by a single spin component.
The second equation, however, requires the quantum

state space to be infinite dimensional, because there are
nonvanishing Wigner 3j symbols anytime j0 ¼ j� 1

2
.

Can this equation be modified to adapt it to a finite
dimensional Hilbert space? The answer is well known:
let us define the action of the h operator in the constant
curvature case to be

hABjjmni ¼
� 1

2
j j0

A m m0

�

q

� 1
2

j j0

B n n0

�

q

jj0m0n0i;

ð17Þ

where we have replaced the Wigner 3j symbols with their q
deformation, with qr ¼ −1 for an integer r [29]. These
operators are now well defined on the finite dimensional
Hilbert space

H ¼ ⊕jmax
j¼0ðHj ⊗ HjÞ; ð18Þ

where

jmax ¼
r − 2

2
: ð19Þ

Equations (15) and (17) define the quantum theory in the
constant curvature case, and represent our main proposal
for the kinematics of quantum gravity in the presence of a
cosmological constant. (Compare also with [30].)
The h operators no longer commute. This can be seen

using the graphical notation. Writing the Wigner symbols
as a trivalent node, the matrix elements of the h operator
read

ð20Þ

If we act with two operators we have

ð21Þ

while acting in the reverse order gives

ð22Þ

In the R → ∞ (or q ¼ 1) case, the crossing of two lines
gives at most a sign, which squared gives a unit. Therefore
the two operators commute. In the q deformed case, the
crossing gives a q dependent factor [29,31] and therefore
the operators fail to commute. If we call R the operator
giving the crossing, we have

hABhCD ¼ RA0C0
AC RB0D0

BD hC0D0hA0B0 ; ð23Þ

and if R can be expanded in ℏ as R ∼ 1þ r, we obtain
classical Poisson brackets of the form

fhAB; hCDg ¼ rB
0D0

BD hCD0hAB0 þ rA
0C0

AC hC0DhA0B: ð24Þ

Since the h operators do not commute, there is no h
representation in the quantum theory anymore.
This completes the quantization of the SUð2Þ × SUð2Þ

phase space. As in the Abelian case, the resulting Hilbert
space is finite dimensional. The dimension of the Hilbert
space is determined by the ratio between the two constants:
the one introduced by the quantization (physically, the
Planck constant scale), and the constant curvature of the
simplices, which enters via the deformation of the Poisson
algebra—physically, the cosmological constant.
A q deformation of the dynamics renders quantum gravity

finite. This has been known since the early 1990s in 2þ 1
dimensions thanks to the Turaev-Viro state sum model [32],
which renders Ponzano Regge 2þ 1 quantum gravity finite,
and whose strict connection to LQG was early pointed out
[5]. The result has been extended to 3þ 1 dimensions in
[1–4]. The q deformation of the dynamics amounts to the
introduction of a cosmological constant [6,33]; in 2þ 1,
the relation between the deformation parameter q and the
cosmological constant λ is [33,34]

q ¼ ei
ffiffiffi
Λ

p
ℏG: ð25Þ

A q deformation has been derived in LQG as a way to
implement the dynamics of the theory with a cosmological
constant in [18,19]. Here we have shown that a q deforma-
tion is also directly implied by the constant curvature
of the individual simplices, and we have given the corre-
sponding form of the geometrical operators of the gravita-
tional theory.

VI. PHYSICAL CONSIDERATIONS

The Hilbert space H constructed above reduces to the
usual LQG Hilbert space when the triangles are small
compared to the curvature radius, namely when the region
considered is small compared to the cosmological constant
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scale. But there is a bound to this smallness, which is
determined by the value of jmax, namely by the ratio of the
cosmological constant scale to the Planck scale. The region
considered can never be smaller than the Planck scale and
therefore never arbitrarily small, in the units in which the
constant curvature radius is unit. (See [35] for a discussion
of the geometrical interpretation of this ratio).
The effect of the compactness of SUð2Þ in conventional

LQG is the discretization of the intrinsic geometry. In the
quantization considered here, which takes the cosmological
constant into account, there is a further compactness: the
entire phase space, and not just the configuration space,
is compact. Therefore the variable conjugate to the in-
trinsic geometry is also compact. This is evident from
the fact that Hilbert space is finite dimensional (for each
link), and therefore all local operators have a discrete
spectrum. Therefore the extrinsic geometry is quantized
as well.
The extrinsic curvature Kab determines the rate of

change of the intrinsic geometry, because (in the
Lapse ¼ 1, Shift ¼ 0 gauge) it is the proper-time derivative
of the metric: Kab ∼ dqab=dt. Since qabðΔtÞ ∼ qabð0Þþ
dqab=dtΔt, we can infer the lapsed proper time Δt from the
values of qabð0Þ; qabðΔtÞ and Kab. Since all these quan-
tities have a discrete spectrum, we expect proper-time
intervals, measured using gravitational observables, to be
discrete as well. While one expects the scale of minimum
proper time to be Planckian, its full discrete spectrum can
depend on the cosmological constant. This is similar to the
angle discreteness pointed out by Major [36].
Do these results generalize to 3þ 1 dimensions? In the

Euclidean case, the situation appears very similar. In the

presence of a cosmological constant, we cannot choose a
discretization of spacetime with flat simplices, because
these are not solutions of the field equations. A constant
curvature four simplex is bounded by constant curvature
tetrahedra, and the geometry of these determines again a
compact space, as for the curved triangles considered
above. A compact space, in turn, determines a finite
Hilbert space for each link.
In the Lorentzian case, the problem is more subtle,

because of the hyperbolic geometry. However, it seems
reasonable to require single cells of the triangulation to stay
within the de Sitter horizon. This again yields a maximal
size, determined by the cosmological constant, and there-
fore a finite Hilbert space per each link. The situation,
however, is still unclear in the Lorentzian 3þ 1 case.
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