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I. INTRODUCTION

In the standard model, the electromagnetic, weak, and
strong interactions are all described by gauge theories for
appropriate gauge groups. Therefore, it would be desirable
to fit the fourth fundamental interaction, the gravitation, in
this beautiful scheme. Although not obvious from the usual
presentation, it turns out that general relativity can also be
described as a gauge theory, with the Lorentz group being
its structure group [1]. Since the symmetry under spacetime
translations is of fundamental physical relevance, it is
natural to extend general relativity and look for the gauge
theory whose structure group is the Poincaré group. The
simplest gravitational theory with such a property is the so-
called Einstein-Cartan theory [2,3]. The latter theory
reduces to general relativity in vacuum. However, in the
presence of particles with spin, Einstein-Cartan theory
yields that the connection must be endowed with torsion,1

departing from the formalism of general relativity. Since
intrinsic spins are of quantum nature, it follows that
gravitational theories with torsion may be of great rel-
evance for the quantization of gravity. Particularly, in
superstring theory, the field strength of the Kalb-
Ramond field is generally interpreted as the torsion, as
illustrated in [4]. In addition, torsion have also been
considered in the context of AdS/CFT correspondence
[5], which can lead to applications in condensed matter
physics.
One of the areas in which the physical implications of

torsion have been exploited the most is cosmology. For
instance, the richness of the theories with torsion may be of
relevance to explain dark matter and dark energy [6,7]. In
addition, there are several works studying the possible
connections between torsion and inflation [6,8]. The

torsion can also be used to change the apparent value of
the cosmological constant, which can be valuable for a
conciliation between supersymmetry and experimental
observations [7] as well as for the solution of the so-called
cosmological constant problem. A great drawback toward
the acceptance of torsion as a useful tool to model our
world is that it is very difficult to measure the effects of a
torsion field. Indeed, it turns out that torsion couples just to
particles with intrinsic spin [9]. So, for instance, experi-
ments like Gravity Probe B, in which the measuring devices
are gyroscopes with macroscopic orbital angular momen-
tum but with no net intrinsic spin, are not able to detect the
possible existence of torsion [10,11]. In spite of such a
difficulty, it has been pointed out that it is possible to put
constraints in the torsion by means of the data from
experiments of Lorentz violation [12]. Actually, quite
recently, an experiment using neutrons in liquid Helium
have just been put forward with the aim of constraining the
torsion field [13].
The hidden symmetries represented by Killing-Yano

(KY) tensors have proved to be of fundamental relevance
to the development of four-dimensional general relativity.
Indeed, it was due to the existence of a KY tensor of order
two that the geodesic, Klein-Gordon, and Dirac equations
could be analytically integrated in Kerr background
[14–17]. More generally, it has been proved that Kerr-
NUT-(A)dS spacetimes of arbitrary dimension admit a
closed conformal Killing-Yano tensor of rank two from
which one can construct a tower of KY tensors [18] that
provides just enough conserved charges to enable the
explicit integration of the geodesic [19], the Klein-
Gordon [20], and the Dirac equations [21]. Furthermore,
such hidden symmetries are also related to the separability
of gravitational perturbations in Kerr-NUT-(A)dS space-
times [22].
The present article aims to work out the integrability

conditions for the existence of KY tensors, of arbitrary
order, in the presence of torsion. To the best of author’s
knowledge, this has not been done before. These integra-
bility conditions can be of great help in the involved task of
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1If the matter field does not couple to the connection then no

torsion is generated. For instance, the Lagrangian of the electro-
magnetic field is defined independently of the connection. So, in
spite of the fact that such a field has spin one, it does not generate
torsion.
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integrating the KY equation, since they constrain the
algebraic form of the KY tensor, which, in turn, eliminates
several degrees of freedom in the general ansatz of a KY
tensor, as illustrates [23] for the torsion-free case. The
integrability conditions for KY tensors in the absence of
torsion have already been obtained before in Refs. [24,25].
Regarding works considering hidden symmetries in the
presence of torsion, in Ref. [26] the metrics that allow the
existence of a non-degenerate closed conformal Killing-
Yano tensors of rank two in the presence of skew-
symmetric torsion have been investigated, in Ref. [27] it
has been shown that, in general, a KY tensor does not lead
to an operator that commutes with the Dirac operator if the
connection has skew-symmetric torsion, whereas in
Ref. [4] some spacetimes in which the torsion play an
important role have been investigated. The interplay
between KY tensors and torsion is also of relevance for
the study of spaces with special holonomy [28,29] as well
as for the analysis of the index of the Dirac operator [30].
This article is organized as follows. Section II provides a

review of connections with torsion. Particularly, the alge-
braic identities satisfied by the curvature tensor are dis-
played and a discussion about the ambiguity in the
definition of geodesics and Killing vectors, due to the
existence torsion, is made. In Sec. III, we define KY tensors
in the presence of torsion and show that they can be
equivalently described as covariantly closed conformal
Killing-Yano tensors. Then, the integrability conditions
for the latter objects are obtained. As an application, in
Sec. IV, all the metrics and antisymmetric torsions admit-
ting a KY tensor of order n − 1, with n being the dimension
of the space, are explicitly obtained. Finally, in Sec. V, the
issue of defining a maximally symmetric space in the
presence of torsion is investigated. In particular, it is shown
that, for a general nonvanishing torsion, a manifold with the
maximal number of Killing vectors does not admit the
maximum number of KY tensors. For the sake of general-
ity, most of the calculations performed here assume no
constraint in the torsion such as skew-symmetry.

II. REVIEWING CONNECTIONS WITH TORSION

The intent of the present section is to provide a review of
some basic aspects of the connections with torsion as well
as to set the notation convention adopted in the forthcoming
sections. A nice review on the role of torsion in theories of
gravitation is available in [3]. Let ðM; gÞ be a differential
manifold of dimension n endowed with a metric tensor g.
Then, if V is a vector field in such manifold, its covariant
derivative shall be written as

∇aVb ¼ ∂aVb þ Γb
acVc;

where fa; b; c;…g denote coordinate indices and Γb
ac is the

connection symbol. Since the symbol Γb
ac does not trans-

form homogeneously under coordinate transformations, it

turns out that it is not a tensor. Nevertheless, its skew-
symmetric part in the lower indices is a tensor known as the
torsion tensor,

Tc
ab ≡ 2Γc

½ab� ¼ Γc
ab − Γc

ba;

where, as usual, indices enclosed by square brackets are
antisymmetrized whereas indices enclosed by round brack-
ets are symmetrized. Because of its skew-symmetry in the
last pair of indices, it follows that the torsion can be written
as

Tabc ¼
2

3
TðabÞc −

2

3
TðacÞb þ T ½abc�: ð1Þ

Physically, it is reasonable to work with connections that
preserve lengths and angles under parallel transports over
the manifold, namely connections compatible with the
metric. Therefore, we shall assume that the metric is
covariantly constant, ∇agbc ¼ 0. One can solve the latter
requirement for the connection and the solution is uniquely
given by2

Γc
ab ¼

1

2
gceð∂agbe þ ∂bgae − ∂egab − Tabe − Tbae þ TeabÞ

¼ Γ
∘ c
ab þ Kc

ab; ð2Þ

with Γ
∘ c
ab denoting the familiar Levi-Civita connection,

which is metric-compatible and torsion-free, whereas
Kc

ab is the so-called contortion tensor, whose definition is

Kc
ab ≡ −

1

2
gceðTabe þ Tbae − TeabÞ: ð3Þ

It is interesting noting that, although the torsion arises from
the antisymmetric part of the connection, in general, it also
contributes to the symmetric part of the connection. Indeed,

Γc
ðabÞ ¼ Γ

∘ c
ab − TðabÞc: ð4Þ

When we are dealing with a torsion-free connection,
there are two equivalent ways of defining a geodesic:
(i) Geodesics are the curves that minimize the distance
between two points in the manifold; (ii) Geodesics are the
integral curves of the vector fields with vanishing accel-
eration. However, for connections with nonzero torsion,
these definitions cease to be equivalent. Indeed, if fxag is a
coordinate system, these two definitions lead to the
following differential equations respectively:

2A manifold endowed with this connection is called a
Riemann-Cartan space.
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δs¼ δ

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gabdxadxb

q
¼ 0⇔

d2xa

ds2
þΓ

∘ a
bc
dxb

ds
dxc

ds
¼ 0

Va∇aVb ¼ 0⇔
d2xa

ds2
þΓa

bc
dxb

ds
dxc

ds
¼ 0;

where s represents the arc-length functional and Va ¼ dxa
ds .

Note that the first of the these differential equations can be

written as Va∇∘ aVb ¼ 0, with ∇∘ standing for the Levi-
Civita covariant derivative. Due to Eq. (4), it follows that
these differential equations are equivalent if, and only if,
TðabÞc ¼ 0. Therefore, because of (1), we conclude these
two definitions of a geodesic curve are equivalent if, and
only if, the torsion is totally antisymmetric, Tabc ¼ T ½abc�.
The case of totally skew-symmetric torsion is also of great
relevance for string theory, in which the torsion is generally
given by the field strength of a 2-form field. In spite of the
physical appeal of the totally antisymmetric torsions, in
what follows most of the results are worked out without
assuming this constraint.
It is worth remarking that none of these geodesics

represent the orbits of general free falling particles in the

presence of torsion. Indeed, if Va∇∘ aVb ¼ 0 had been the
equation of motion of a general particle interacting just with
the gravitational field then the particles would not have
been affected by the torsion at all, so that it would have
been physically unnecessary to introduce the concept of
torsion. On the other hand, had Va∇aVb ¼ 0 been the
correct equation of motion of a general free falling particle
then all particles would have been affected by the torsion.
However, this cannot be true, since it is well established
that only particles with intrinsic spin feel the torsion
[31,32]. The requirement of diffeomorphism invariance
of the matter action implies a conservation law involving
the energy momentum tensor. It turns out that by means of
this conservation law it is possible to deduce the equations
of motion of a test particle in a gravitational field, for an
alternative derivation see [33]. For instance, in the torsion-
less case the conservation law states that the divergence of
the energy-momentum tensor vanishes and, using this fact,
it is possible to obtain differential equations involving the
momentum and the spin of the test particle [34,35], the so-
called Mathisson-Papapetrou-Dixon equations.3 The analo-
gous of these equations in the presence of torsion have been
obtained in [9,31]. Nevertheless, it is worth pointing out
that such equations of motion do not predict the whole
motion of the test particle, since the dynamic of the center
of mass of the particle is not fixed by these conservation
laws. In spite of this, in the torsionless case one can use the
requirement of energy positiveness in order to argue that
the momentum is proportional to the velocity of the center

of mass [34,36] and then deduce that a point particle
without intrinsic spin follow the geodesic path, but some
ambiguities remain in the case of nonvanishing torsion
[31]. However, it is worth stressing that, due to spin-orbit
couplings, a point particle with nonzero spin generally will
not follow the geodesic path even in the absence of torsion,
an exception being the massless particles since in this case,
semiclassically speaking, the spin must be aligned with the
momentum [37]. Irrespective of the correct path followed
by a point test particle in the presence of torsion, the two
concepts of geodesic presented here are of great geomet-
rical significance and are worth studying in their own
rights.
Whenever a fiber bundle is endowed with a connection,

its curvature operator is defined by

∇X∇Z −∇Z∇X −∇½X;Z�;

where X and Z are tangent vector fields and ½X;Z� denotes
their Lie Bracket. Particularly, assuming X and Z to be
the coordinate vectors ∂a and ∂b, we end up with the
following form for the curvature operator on the tangent
bundle

ð∇a∇b −∇b∇a þ Te
ab∇eÞ:

Since the action of the above operator in any scalar function
gives zero, it follows that

ð∇a∇b −∇b∇a þ Te
ab∇eÞðfLÞ

¼ fð∇a∇b −∇b∇a þ Te
ab∇eÞL

for any tensorial field L. Therefore, such operator defines a
tensor called the curvature tensor and denoted by Rabc

e.
More precisely, the action of such operator in a tensor of
rank p is given by:

ð∇a∇b −∇b∇a þ Te
ab∇eÞLc1c2���cp

¼
Xp
i¼1

Rabci
eLc1���c

̬
ieciþ1���cp ; ð5Þ

where c
̬
i means that the index ci has been withdrawn.

Writing the covariant derivatives in the left-hand side of (5)
in terms of partial derivatives and the connection symbol,
we arrive at the following expression for the curvature:

Rabc
e ¼ ∂bΓe

ac − ∂aΓe
bc þ Γd

acΓe
bd − Γd

bcΓe
ad

¼ −2∂½aΓe
b�c þ 2Γd

½ajcjΓ
e
b�d: ð6Þ

Now, inserting Eq. (2) into the above relation, i.e., assum-
ing the connection to be metric-compatible, one arrive at
the following relation

3There are two inequivalent versions for these equations of
motion, it turns out that the version deduced by Dixon implies the
one obtained by Papapetrou but not the converse [36].
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Rabc
e ¼ R

∘
abc

e
− 2∇½aKe

b�c þ 2Ke½ajdjKd
b�c − Td

abKe
dc;

ð7Þ
with R

∘
abc

e
standing for the curvature of the Levi-Civita

connection. By means of the latter identity, one can prove
that the curvature of the general metric-compatible con-
nection obeys the following identities:

Rabcd ¼ R½ab�½cd�
R½abc�e ¼ −∇½aTe

bc� þ Td½abTe
c�d

∇½aRbc�de ¼ Tf ½abRc�fde
Rab ¼ Rba þ∇cTc

ab þ 2∇½aTc
b�c þ Tc

abTd
cd ð8Þ

where Rab ≡ Rc
acb denotes the Ricci tensor. Note, in

particular, that in the presence of torsion the Ricci tensor
generally is not symmetric. In the special case in which the
torsion is totally skew-symmetric, we further have the
following relations:

Tabc ¼ T ½abc� ⇒
�
Rabcd ¼ Rcdab þ∇½cTd�ab −∇½aTb�cd
Rab ¼ Rba þ∇cTc

ab:

ð9Þ

The exterior derivative of a differential form can be
defined irrespective of the existence of a connection on the
bundle of differential forms. Indeed, if F is a p-form then
its exterior derivative is a ðpþ 1Þ-form whose components
are:

ðdFÞab1b2���bp ¼ ðpþ 1Þ∂½aFb1b2���bp�:

It is well known that in the case of a torsion-free
connection it is harmless to replace the partial derivative
in the latter expression by a covariant derivative.
Nevertheless, for connections with torsion this replace-
ment is not allowed anymore. Instead, the following
relation holds:

ðdFÞab1b2���bp ¼ ðpþ 1Þ∇½aFb1b2���bp�

þ pðpþ 1Þ
2

Fc½b2���bpT
c
ab1�:

As usual, if dF ¼ 0 we shall say that the differential form
F is closed, whereas if ∇½aFb1b2���bp� ¼ 0 then F will be
said to be covariantly closed. These concepts coincide
just for connections with vanishing torsion.

A. Killing vectors and torsion

In the absence of torsion there are two equivalent ways
of saying that a vector field η is a Killing vector: (i) The

metric is invariant under the Lie dragging along the orbits
of η, namely Lηgab ¼ 0, with Lη standing for the Lie
derivative along η; (ii) The vector field η obeys the
Killing equation ∇ðaηbÞ ¼ 0. However, if the connection
has torsion these two definitions generally are not
equivalent anymore. Indeed, one can check that the
following relation holds:

∇aηb þ∇bηa ¼ Lηgab þ 2TðabÞeηe: ð10Þ

If we choose a coordinate frame in which the Killing
vector is one of the basis vectors, η ¼ ∂x1 , then, in these
coordinates, the operator Lη is given by the partial
derivative ∂x1 . Therefore, the definition (i) means that
the components of the metric do not depend on the
coordinate x1. Differently, in the presence of torsion, the
existence of a vector field obeying ∇ðaηbÞ ¼ 0 does not
guarantee that the metric is independent some coordinate
in a suitable coordinate frame.
These two notions of Killing vector are intimately related

to the two distinct definitions of geodesic. In fact, if V is a
vector field tangent to a geodesic and η is a Killing vector
according to the definition (i) then the scalar ðηaVaÞ is
conserved along the curves of minimum length, while if η is
a Killing vector according to the definition (ii) then ðηaVaÞ
is conserved along the curves of zero acceleration. More
precisely,

Va∇∘ aVb ¼ 0 and Lηgab ¼ 0 ⇒ Va∇aðηbVbÞ ¼ 0;

Va∇aVb ¼ 0 and ∇ðaηbÞ ¼ 0 ⇒ Va∇aðηbVbÞ ¼ 0:

Looking at Eq. (10), one conclude that in order for both
definitions of a Killing vector to be equivalent we must
have TðabÞc ¼ 0, which means that the torsion is totally
skew-symmetric. Likewise, this is exactly the necessary
condition for the two concepts of geodesic to be equivalent.
In what follows we shall mainly stick to the definition (ii) of
a Killing vector.
Before proceeding to the integrability conditions of the

conformal Killing-Yano tensors, let us write the second
derivative of a Killing vector in a convenient way for later
purposes. Here, by a Killing vector it is meant a vector field
obeying the Killing equation with the general metric-
compatible connection. Thus, if η is a Killing vector then
the following equation hold:

∇a∇bηc þ∇a∇cηb ¼ ∇að∇bηc þ∇cηbÞ ¼ 0:

Using permutations of this equation along with (5) we find
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2∇a∇bηc ¼ ð∇a∇b −∇b∇aÞηc þ ð∇c∇a −∇a∇cÞηb þ ð∇c∇b −∇b∇cÞηa
¼ ðRabc

e þ Rcab
e þ Rcab

eÞηe − ðTe
ab∇eηc þ Te

ca∇eηb þ Te
cb∇eηaÞ

¼ ð3R½abc�e þ 2Rcba
eÞηe − ðTe

ab∇eηc þ Te
ca∇eηb þ Te

cb∇eηaÞ: ð11Þ

III. KILLING-YANO AND COVARIANTLY
CLOSED CONFORMAL KILLING-YANO

TENSORS

In this section we shall define Killing-Yano tensors and
covariantly closed conformal Killing-Yano tensors and
argue that these objects are two sides of the same coin.
Then, the integrability conditions for the existence of these
objects will be obtained.
A nonzero p-form Y is called a conformal Killing-Yano

(CKY) tensor of order p whenever it obeys the following
differential equation

∇aYb1b2���bp þ∇b1Yab2���bp ¼ 2ga½b1hb2���bp� þ 2gb1½ahb2���bp�;

ð12Þ

with hb2���bp being some totaly antisymmetric tensor of rank

p − 1. Actually, contracting the above equation with gab1
we find that

hb2���bp ¼
p

2ðnþ 1 − pÞ∇
aYab2���bp ; ð13Þ

with n standing for the dimension of the manifold. By
means of algebraic manipulations, one can show that the
conformal Killing-Yano equation (12) is equivalent to the
following condition:

∇aYb1b2���bp ¼ ∇½aYb1b2���bp� þ 2ga½b1hb2���bp�: ð14Þ

There are two very special cases of CKY tensors. If hb2���bp
vanishes, i.e., if Y has vanishing divergence, then the CKY
tensor is called a Killing-Yano (KY) tensor. While if
∇½aYb1b2���bp� vanishes thenwe shall say thatY is a covariantly
closed conformal Killing-Yano (CCCKY) tensor.
It turns out that every KY tensor is the Hodge dual of a

CCCKY tensor and vice versa. Indeed, if ϵa1a2���an is the
volume-form of the manifold then it follows that

ϵa1…aqbqþ1…bnϵa1…aqcqþ1…cn ¼ q!ðn − qÞ!ð−1Þn−s2 δ½bqþ1
cqþ1

…δbn�cn ;

ð15Þ

with s being the signature of the metric. Taking the
covariant derivative of the latter equation we conclude that
ϵ is covariantly constant with respect to any metric-
compatible connection. Now, let A be a KY tensor of rank
n − p, so that

∇aAb1���bn−p ¼ ∇½aAb1b2���bn−p�: ð16Þ

Then, let us define the tensors

Ha1a2���ap ≡ ϵa1a2���apb1���bn−pAb1���bn−p and

ha1a2���ap−1 ≡ ð−1Þðp−1Þp!ðn − pÞ!
ðp − 1Þ!ðn − pþ 1Þ!
× ϵa1a2���ap−1cb1���bn−p∇½cAb1b2���bn−p�:

Now, contracting the above definition of ha1a2���ap−1 with
ϵa1a2���ap−1de1���en−p we find that

∇½aAb1b2���bn−p� ¼
ð−1Þðn−s2 þp−1Þ

p!ðn − pÞ! hc1c2���cp−1ϵc1c2���cp−1ab1b2���bn−p :

Inserting the latter identity into (16) then contracting the
final equation with ϵd1d2���dpb1���bn−p , and using the fact that
the volume form is covariantly constant, eventually lead us
to the following differential equation:

∇aHb1���bp ¼ 2ga½b1hb2���bp�:

Thus, H is a CCCKY tensor. Since, apart from a non-
important multiplicative constant, H is the Hodge dual of
A, we have proved that the Hodge dual of a KY tensor is a
CCCKY tensor. In a completely analogous fashion, one can
prove that the Hodge dual of every CCCKY tensor is a KY
tensor. Hence, studying the CCCKYequation is equivalent
to analyzing KY equation. Particularly, in this article we
have made the choice of working out the integrability
conditions for CCCKY tensors of arbitrary rank. The
choice of dealing with CCCKY tensors instead of KY
tensors is mainly based on the fact that in Kerr-NUT-(A)dS
spacetimes of arbitrary dimension a CCCKY tensor of rank
two is the origin of the integrability of Klein-Gordon and
Dirac equations in this background [20,21].
The importance of Killing-Yano tensors relies on the fact

that they generate conserved quantities along the geodesic
curves, where here a geodesic means a curve of zero
acceleration. Indeed, if V is a geodesic vector field,
Va∇aVb ¼ 0, and A is a KY tensor of order p then it
follows that the scalar

C ¼ VaVbAac2���cpAb
c2���cp

is conserved along the geodesic tangent to V, i.e.,
Va∇aC ¼ 0. In particular, this implies that the symmetric
tensor
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Qab ¼ Aac2���cpAb
c2���cp

is a Killing tensor of rank two, namely ∇ðaQbcÞ ¼ 0. More
generally, if A and Â are both KY tensors of order p then

~Qab ¼ Aðac2���cpÂbÞc2���cp

is a Killing tensor of rank two. On the other hand, the utility
of CCCKY tensors relies on the fact that the exterior
product of two CCCKY tensors is another CCCKY tensor.
Thus, if H and Ĥ are CCCKY tensors of order p and q
respectively then

~Ha1���apb1���bq ¼ H½a1���apĤb1���bq�

is a CCCKY tensor of order ðpþ qÞ. Therefore, once we a
have a CCCKY tensor we can, in principle, build a tower of
CCCKY tensors by means of taking exterior products of the
CCCKY tensor with itself. Then, taking the Hodge dual of
these CCCKY tensors we end up with a tower of KY
tensors and, hence, a tower of conserved scalars. Note that,
since Killing tensors lead to conserved quantities along
geodesics, it follows from Noether’s theorem that such
tensors might generate symmetry transformations that leave
particle’s action invariant, a fact that have been addressed in
Refs. [29,38]. In the case of KY tensors they also generate
symmetries in superspace [29]. For more on the relation

between KY tensors and conserved quantities as well as
their importance in general relativity, the reader is referred
to Ref. [18] and references therein.

A. Integrability condition

Now let us obtain the integrability conditions for the
existence of a covariantly closed conformal Killing-Yano
tensor of arbitrary order in the presence of torsion. The
torsion-free case have already been addressed in [24,25]. A
skew-symmetric tensor H of rank p is said to be a CCCKY
tensor if it obeys the following equation:

∇aHb1���bp ¼ 2ga½b1hb2���bp�; ð17Þ

where h is a skew-symmetric tensor of rank ðp − 1Þ given
by

hb2���bp ¼
p

2ðnþ 1 − pÞ∇
aHab2���bp : ð18Þ

In order to simplify the notation, let us define the tensor h0
as

h0ab2���bp ¼ ∇ahb2���bp :

Particularly, note that h0ab2���bp ¼ h0a½b2���bp�. Now, let us use
Eq. (5) in order to compute the trace of h0:

h0aab3���bp ¼ ∇ahab3���bp ¼
p

2ðnþ 1 − pÞ∇
a∇cHcab3���bp

¼ −p
4ðnþ 1 − pÞ ð∇

a∇c −∇c∇aÞHacb3���bp

¼ p
4ðnþ 1 − pÞ

�
2RacHacb3���bp þ

Xp
i¼3

Race
biHacb3���b

̬

iebiþ1���bp þ Teac∇eHacb3���bp

�

¼ p
4ðnþ 1 − pÞ

�
2R½ac�Hacb3���bp þ

Xp
i¼3

R½ace�
biHacb3���b

̬

iebiþ1���bp þ
4

p
Ta

achcb3���bp þ
2ðp − 2Þ

p
hac½b4���bpTb3�

ac

�

ð19Þ

where it is worth recalling that the notation b
̬

i means that the index bi is absent. In order to attain (19) it has been used the
following useful algebraic identity valid for any totally skew-symmetric tensor A of rank ðp − 1Þ:

ge½aAcb3���bp� ¼
1

p
geaAcb3���bp −

p − 1

p
Aa½b3���bpgc�e

¼ 1

p
geaAcb3���bp −

1

p
gecAab3���bp þ

p − 2

p
Aac½b4���bpgb3�e: ð20Þ

Note that the right-hand side of (19) is zero for vanishing torsion. Now, taking the covariant derivative of (17), we find that

∇a∇bHc1c2���cp ¼ 2h0a½c2���cpgc1�b

Thus, using this equation along with (5) we arrive at
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2h0a½c2���cpgc1�b − 2h0b½c2���cpgc1�a ¼ ð∇a∇b −∇b∇aÞHc1c2���cp

¼
Xp
i¼1

Rabci
eHc1c2���c

̬
ieciþ1���cp − Te

ab∇eHc1c2���cp

¼
Xp
i¼1

Rabci
eHc1c2���c

̬
ieciþ1���cp − 2h½c2���cpTc1�ab: ð21Þ

As it is, this equation is an integrability condition involving the CCCKY tensor H and its second derivative through the
tensor h0. However, in order to apply an integrability condition it is more useful when it is purely algebraic. Therefore, let us
try to express the tensor h0 in terms of H and h. Expanding Eq. (21) by means the algebraic identity (20) lead us to

2

p
gc1bh

0
ac2���cp −

2ðp − 1Þ
p

h0ac1½c3���cpgc2�b −
2

p
gc1ah

0
bc2���cp þ

2ðp − 1Þ
p

h0bc1½c3���cpgc2�a

¼ Rabc1
eHec2���cp þ

Xp
i¼2

Rabci
eHc1c2���c

̬
ieciþ1���cp −

2

p
Tc1abhc2���cp þ

2ðp − 1Þ
p

hc1½c3���cpTc2�ab:

So, contracting the latter equation with gbc1 , we end up with the following expression for h0:

h0ac2���cp ¼
−p

2ðn − pÞ
�
Ra

eHec2���cp þ
Xp
i¼2

Rb
aci

eHbc2���c
̬
ie���cp þ

2ðp − 1Þ
p

h0ee½c3���cpgc2�a

þ 2ðp − 1Þ
p

he½c3���cpTc2�ea −
2

p
hc2���cpT

e
ea

�
: ð22Þ

Then, inserting (19) into (22) we can find the wanted
expression for h0. Finally, inserting such expression into
(21) we arrive at the integrability condition for the existence
of a CCCKY tensor involving just H and h, without higher
derivatives of H. Thus, the integrability condition amounts
to the Eqs. (21), (22) and (19).
As a first consequence of such integrability condition, let

us obtain a constraint on the torsion tensor. Taking the
totally skew-symmetric part of indices abc1 � � � cp in
Eq. (21) we find that

2T ½abc1hc2���cp� ¼
Xp
i¼1

R½abci
eHc1c2���c

̬
ijejciþ1���cp�

¼ ð−1Þðp−1ÞpR½abc1
eHc2���cp�e: ð23Þ

Now, using the first Bianchi identity in (8) we can write the
above equations as

2T ½abc1hc2���cp�

¼ ð−1Þppð∇½aTe
bc1Hc2���cp�e þ Te

d½aTd
bc1Hc2���cp�eÞ:

ð24Þ

This is a constraint involving just the torsion. Therefore,
besides the metric, the torsion is also constrained by the
existence of a covariantly closed conformal Killing-Yano
tensor.

As another consequence of these integrability condi-
tions, let us consider the case p ¼ 2, namely a bivector H
obeying to ∇aHbc ¼ 2ga½bhc�. It is well known that in the
absence of torsion the vector field ha is a Killing vector
whenever the Ricci tensor is proportional to the metric [25].
Differently, since ∇ðahbÞ ¼ h0ðabÞ, it follows from (22) that
if torsion is different from zero then, in general, ha will not
be a Killing vector even if the Ricci tensor is proportional to
the metric. For instance, if the torsion is totally skew-
symmetric and Rab ∝ gab then Eqs. (22), (19), (8) and (9)
imply that ∇ðahbÞ vanishes if, and only if,

ð∇½aTe�cb þ∇½cTe�abÞHeb

also vanishes, which generally is not the case. Now, let us
apply the results obtained in the present section for the case
p ¼ 1, i.e., the case of a covariantly closed conformal
Killing vector.

IV. COVARIANTLY CLOSED CONFORMAL
KILLING VECTORS

The aim of the present section is to find all metrics and
torsions compatible with the existence of a covariantly
closed conformal Killing vector (CCCKV), namely a
vector field H obeying

∇aHb ¼ 2hgab with h ¼ 1

2n
∇aHa: ð25Þ
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Since every Killing-Yano tensor of order n − 1 is the Hodge
dual of a CCCKV, we will, equivalently, find all metrics
and torsions compatible with a KY tensor of order n − 1.
Assuming p ¼ 1 in Eqs. (21) and (24) we arrive at the

following integrability conditions:

Rabc
eHe þ 2gcah0b − 2gcbh0a ¼ 2hTcab; ð26Þ

He∇½aTe
bc� þHeTe

d½aTd
bc� þ 2hT ½abc� ¼ 0; ð27Þ

where, using (22), we have that h0a is given by

h0a ¼ ∇ah ¼ −1
2ðn − 1Þ ðRa

eHe − 2hTe
eaÞ: ð28Þ

Therefore, inserting (28) into (26) we arrive at the follow-
ing algebraic integrability condition:

½ðn − 1ÞRabc
e − gacRb

e þ gbcRa
e�He

¼ 2h½ðn − 1ÞTcab − gacTe
eb þ gbcTe

ea�: ð29Þ

Now, let us denote the squared norm of H by N,

N ≡HaHa:

Then, taking the derivatives of this equation and using (25)
we find that

∇bN ¼ 4hHb; ð30Þ

∇a∇bN ¼ 4h0aHb þ 8h2gab: ð31Þ

The commutator of covariant derivatives acting in a scalar
gives

ð∇a∇b −∇b∇aÞN ¼ −Te
ab∇eN:

Thus, inserting (30) and (31) into this identity we find the
following useful relation

Hah0b −Hbh0a ¼ hHeTe
ab: ð32Þ

In particular, such equation implies

HeTe½abHc� ¼ 0; if h ≠ 0: ð33Þ

Note that h ≠ 0 means that the vector H is not covariantly
constant. Now, since H is covariantly closed it follows that

0 ¼ ∇½aHb� ¼ ∂½aHb� − Γe
½ab�He ⇒ ∂½aHb� ¼

1

2
HeTe

ab:

ð34Þ

So, using (34) and (33) we conclude that

H½c∂aHb� ¼ 0; if h ≠ 0: ð35Þ

In what follows we shall assume the condition h ≠ 0 to
hold, the case h ¼ 0 will be considered separately later.
According to the Frobenius theorem, the relation (35)
guarantees that the vector field H is orthogonal to a family
of hyper-surfaces. Thus, if λ is a parameter along the orbits
of H we can locally introduce coordinates fxi; λg, with
i; j ∈ f1; 2; � � � ; n − 1g, such that the vector fieldH ¼ ∂λ is
orthogonal to the ðn − 1Þ basis vectors ∂i. Therefore, in
these coordinates the line element is given by

ds2 ¼ Ndλ2 þ gijdxidxj; ð36Þ

where, in principle, N and gij are functions of λ and fxig.
However, since in these coordinates the components of H
are

Ha ¼ δaλ and Ha ¼ Nδλa

it follows from (30) that

∂aN ¼ 4hNδλa ⇒

� ∂λN ¼ 4hN;

∂iN ¼ 0 ⇒ N ¼ NðλÞ: ð37Þ

Therefore, N is just a function of λ. Consequently, we have
that

∂½aHb� ¼ ∂½aNδλb� ¼ ∂λNδλ½aδ
λ
b� ¼ 0: ð38Þ

Thus, besides being covariantly closed, it turns out thatH is
also closed. As a consequence of (38) and (34), we arrive at
the following constraint for the torsion:

HeTeab ¼ Tλab ¼ 0: ð39Þ
This, along with (32), implies that

h0a ∝ Ha ⇒ h ¼ hðλÞ; ð40Þ

which could be anticipated from (37). In addition, taking
the covariant derivative of (39) and then using (25) we
immediately find

He∇cTe
ab ¼ −2hTcab: ð41Þ

The latter identity along with (39) implies that the torsion
integrability condition (27) is readily satisfied. Now, writ-
ing down the equation ∇aHb ¼ 2hgab in these coordinates
and using (2) we eventually find

2hgab ¼ ð∂λNÞδλaδλb þ
1

2
½∂λgab − ∂agbλ − ∂bgaλ þ 2TðabÞλ�:

Apart from the relations already obtained, the above
equation is equivalent to
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∂λgij ¼ 4hgij − 2TðijÞλ: ð42Þ

Therefore, we have proved that a manifold endowed with a
metric-compatible connection admits a vector field H
obeying the CCCKV equation, ∇aHe ¼ 2hgab, with h ≠
0 if, and only if, its line element can be written as (36) with
N being a function of λ, gij obeying the differential
equation (42) and the torsion obeying the constraint
(39). In the previous coordinates the CCCKV is given
by H ¼ ∂λ.

A. The case of a totally skew-symmetric torsion

Let us now consider the important special case of a
totally skew-symmetric torsion, Tabc ¼ T ½abc�. In such a
case the Eq. (42) can be nicely integrated for the metric gij.
Indeed, since in this case TðabÞc ¼ 0, equations (42) and
(37) yield

N∂λgij ¼ gij∂λN ⇒ gijðλ; xÞ ¼ NðλÞ~gijðxÞ;

where the functions ~gij are functions just of the coordinates
fxig. Therefore, the metric (36) can be written as

ds2 ¼ NðλÞ½dλ2 þ ~gijðxÞdxidxj�: ð43Þ

Thus, a manifold endowed with a metric-compatible
connection with totally skew-symmetric torsion admits a
vector fieldH obeying the CCCKVequation if, and only if,
its metric can be written as (43) and the torsion is such that
Tλab ¼ 0. In the latter case the CCCKV is given byH ¼ ∂λ.
It is interesting noting that, in the case of a totally skew-
symmetric torsion, Eqs. (40) and (28) imply that H is an
eigenvector of the Ricci tensor, Ra

eHe ∝ Ha.
Now, suppose that a manifold admits a CCCKV H and a

Killing vector η. Then, let us prove that in this case the
vector field χb ¼ ∇bðHcηcÞ is a conformal Killing vector.
Indeed, using (25) we have that

χb ¼ ∇bðHcηcÞ ¼ 2hηb þHc∇bηc ⇒

∇aχb ¼ 2h0aηb þHc∇a∇bηc; ð44Þ

where it has been used the fact that η obeys the Killing
equation.4 Now, inserting Eqs. (28) and (11) into (44) and
using the condition HeTeab ¼ 0 we find that:

∇aχb ¼
−1
n − 1

Ra
eHeηb þHcηe

�
3

2
R½abc�e þ Rbcea

�

−
1

2
Te

abHc∇eηc:

Then, using (8) and (9) to rewrite the terms R½abc�e and
Rbcea in the latter equation we have

∇aχb ¼
−1
n − 1

Ra
eHeηb þHcηe

�
−
3

2
∇½aTbc�e þ ðReabc

þ∇½eTa�bc −∇½bTc�eaÞ
�
−
1

2
Te

abHc∇eηc:

Now, making use of (41) and manipulating the derivative
on the last term of the above relation, we end up with

∇aχb ¼
−1
n − 1

Ra
eHeηb þ ηeReab

cHc − 3hηeTeab

−
1

2
Te

abðχe − ηc∇eHcÞ:

Finally, using the integrability condition (29) to rewrite the
term ηeReab

cHc lead us to the following result:

∇aχb ¼
−1
n − 1

gabðηeRecHcÞ − 1

2
χeTe

ab: ð45Þ

In particular, taking the symmetric part of (45) we see that
the right-hand side is proportional to the metric. Therefore,
the following theorem can be stated.
Theorem.—Let ðM; gÞ be a manifold endowed with a

metric-compatible connectionwhose torsion is totally skew-
symmetric. Then, if η is a Killing vector field in M and H
obeys ∇aHb ¼ 2hgab with h ≠ 0 then the vector field χa ¼∇aðHcηcÞ is a conformal Killing vector. Moreover, if
χeTeab ¼ 0 then χ is covariantly closed, ∇½aχb� ¼ 0.
The torsion-free version of this theorem was proved

in [39].

B. Covariantly constant vector fields, the case h ¼ 0

Previously, we have considered a vector field H obeying
∇aHb ¼ 2hgab with h being nonvanishing. Now, let us
consider the special case h ¼ 0, namely when the vector
field H is covariantly constant,

∇aHb ¼ 0: ð46Þ
The integrability condition is this case is

Rabc
eHe ¼ 0:

In the general case h ≠ 0we have made use of (32) to prove
that H is orthogonal to a family of hyper-surfaces.
However, Eq. (32) is trivial for the case h ¼ 0, so that
we cannot arrive at the same conclusion in such a case.
Instead, using (34) we have that

∂½aHb� ¼
1

2
HeTe

ab and H½c∂aHb� ¼
1

2
HeTe½abHc�:

ð47Þ

4Recall that in the case of a totally skew-symmetric torsion the
two traditional definitions of Killing vector coincide, so that it is
not necessary to specify what it is meant by a Killing vector (see
Sec. II A).
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Note that for vanishing torsion Eq. (47) not only implies
that H is hyper-surface-orthogonal but also guarantees that
it H is closed. Nevertheless, for a general torsion neither
conclusions need to hold.
In order to attain these conclusions more explicitly, let us

introduce coordinates fxi; λg with i; j ∈ f1; 2; � � � ; n − 1g
and such that H ¼ ∂λ. In these coordinates the metric is
generally written as

ds2 ¼ Ndλ2 þ 2ξidxidλþ gijdxidxj; ð48Þ

where N is a constant while ξi and gij can, in principle, be
general functions of λ and fxig. Now, imposing the
equation ∇aHb ¼ 0 in this coordinate frame we find that
the connection symbol Γb

aλ must vanish, which is tanta-
mount to

∂agλc þ ∂λgac − ∂cgaλ ¼ Taλc þ Tλac − Tcaλ: ð49Þ
This equality, in turn, is equivalent to the following three
constraints:

∂λξi ¼ Tλλi; ∂λgij ¼ −2TðijÞλ; ∂iξj − ∂jξi ¼ Tλij:

ð50Þ
In particular, the third condition in (50) guarantees that if
Tλij is nonvanishing then the functions ξi cannot all vanish,
so that generally H is not orthogonal to a family of hyper-
surfaces. This is intriguing. Since the equation∇aHb ¼ 0 is
more restrictive than the CCCKVequation,∇aHb ¼ 2hgab,
it is natural to expect that the results valid for h ≠ 0 would
also be valid in the more special case h ¼ 0. However, we
have proved that there are constraints valid in the case h ≠
0 that do not carry to the special case h ¼ 0, such as the
hyper-surface-orthogonal condition and the restriction
Tλab ¼ 0. Note, however, that such unexpected fact hap-
pens only when the torsion is nonzero.

V. MAXIMALLY SYMMETRIC SPACES

A Riemannian manifold endowed with the Levi-Civita
connection is called maximally symmetric when it admits
the maximum number independent Killing vector fields. In
n dimensions this maximal number is 1

2
nðnþ 1Þ, which

physically arises from n translations and 1
2
nðn − 1Þ rota-

tions. In this section, we shall consider the issue of defining
a maximally symmetric space in the presence of torsion.
Here, we shall say that η is a Killing vector field if it obeys
the Killing equation

∇aηb þ∇bηa ¼ 0:

Recall that we could have defined a Killing vector as a
vector field such that Lηgab ¼ 0. As pointed out in Sec. II
A, these two definitions are not equivalent in the presence
of general torsion. However, since

Lηgab ¼ ∇∘ aηb þ∇∘ bηa;

it turns out that the latter definition is just a particular
case of the former. Namely, the equation Lηgab ¼ 0 can
be retrieved from the equation ∇ðaηbÞ ¼ 0 by choosing
the connection to be torsion-free. Maximally symmetric
spaces in the presence of torsion have been investigated
before. In [40], a couple of integrability conditions for
the Killing equation are worked out, but along the
calculations some unjustified constraints are imposed
over the torsion as well as over the curvature. In
Refs. [41,42], it is imposed that the torsion tensor should
also be “maximally symmetric,” namely it is assumed
that the torsion is invariant under the Lie dragging along
the Killing vectors of a maximally symmetric manifold or
submanifold, see also [43]. Here we go further and
deduce the integrability conditions of a maximally
symmetric space without imposing any constraint over
the torsion. Moreover, we also investigate spaces with the
maximal number of KY tensors of order n − 1. For a nice
review of maximally symmetric spaces in the torsion-free
case, the reader is referred to Ref. [44].
The first natural question is: what is the maximum

number of Killing vectors when the connection has
nonzero torsion? The answer is held in Eq. (11),
according to which the second derivative of a Killing
vector can be written in terms of the vector itself and its
first derivative. Thus, successively differentiating this
equation one can write all derivatives of the Killing
vector in terms of the Killing vector itself and its first
derivative. So, if the components of ηa and ∇aηb are
given in one point of the manifold it is possible to
reconstruct the vector field η in the whole manifold.
Therefore, since ηa has n components and ∇aηb is an
antisymmetric rank 2 tensor with 1

2
nðn − 1Þ components,

it follows that maximum number of Killing vector fields
remains being 1

2
nðnþ 1Þ. Therefore, even in the pres-

ence of torsion, we shall say that an n-dimensional
manifold is maximally symmetric if it admits 1

2
nðnþ 1Þ

independent Killing vector fields.
Now, let us investigate how the existence of

1
2
nðnþ 1Þ independent Killing vector fields constrains

the metric and the torsion of a manifold. In order to
accomplish this, we should find the integrability con-
dition for the Killing equation. Using the identity (5) we
have that

ð∇d∇a −∇a∇dÞ∇bηc ¼ Rdab
e∇eηc þ Rdac

e∇bηe

− Te
da∇e∇bηc:

Now, rewriting the second derivative of η in the right-
hand side of the above equation by means of (11) we
obtain
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2ð∇d∇a∇bηc −∇a∇d∇bηcÞ ¼ 2Rdabe∇eηc þ 2Rdace∇bη
e þ RbcefTf

adη
e − RbfceTf

adη
e

þ RcfbeTf
adη

e þ TebfTf
ad∇eηc þ TeadTfbc∇fηe − TecfTf

ad∇eηb ð51Þ

Then, using (11) to write the terms∇a∇bηc and∇d∇bηc on the left-hand side of (51) and then using (11) again to rewrite the
second derivatives of η that eventually appear, lead us to the following integrability condition:

ðRcdefTf
ab − RcfdeTf

ab − RdfceTf
ab − RbdefTf

ac þ RbfdeTf
ac þ RdfbeTf

ac − 2RbcefTf
ad þ 2RbfceTf

ad − 2RcfbeTf
ad

− 2RadefTf
bc − RacefTf

bd − RafceTf
bd − RcfaeTf

bd þ RabefTf
cd

þ RafbeTf
cd þ RbfaeTf

cd þ 2∇aRbcde þ 2∇aRbdce − 2∇aRcdbe þ 2∇dRabce − 2∇dRacbe − 2∇dRbcaeÞηe
¼ −2Rbcde∇aη

e − 2Rbdce∇aη
e þ 2Rcdbe∇aη

e − 4Radce∇bη
e − 2Rabce∇dη

e þ 2Racbe∇dη
e

þ 2Rbcae∇dη
e − TecfTf

bd∇eηa þ TebfTf
cd∇eηa − 2∇dTebc∇eηa þ TedfTf

ac∇eηb − 2TecfTf
ad∇eηb

þ TeafTf
cd∇eηb − 2∇aTecd∇eηb − 2∇dTeac∇eηb − 4Radbe∇eηc − TedfTf

ab∇eηc þ 2TebfTf
ad∇eηc

− TeafTf
bd∇eηc þ 2∇aTebd∇eηc þ 2∇dTeab∇eηc − TecfTf

ab∇eηd þ TebfTf
ac∇eηd þ 2∇aTebc∇eηd − TecdTfab∇fηe

þ TebdTfac∇fηe þ 2TebcTfad∇fηe þ 2TeadTfbc∇fηe þ TeacTfbd∇fηe − TeabTfcd∇fηe: ð52Þ

This integrability condition must hold for any vector field obeying the Killing equation. In the particular case of a
maximally symmetric space, we can make linear combinations of the 1

2
nðnþ 1Þ Killing vectors in order to construct a

Killing vector field such that ηa has arbitrary components at some point of the manifold and such that ∇aηb is an arbitrary
skew-symmetric matrix at the same point. In particular, we can take ∇aηb ¼ 0 and ηa ¼ δea, with e being an arbitrary fixed
coordinate index. In this case we are led to the following integrability condition:

RcdefTf
ab − RcfdeTf

ab − RdfceTf
ab − RbdefTf

ac þ RbfdeTf
ac þ RdfbeTf

ac − 2RbcefTf
ad

þ 2RbfceTf
ad − 2RcfbeTf

ad − 2RadefTf
bc − RacefTf

bd − RafceTf
bd − RcfaeTf

bd þ RabefTf
cd

þ RafbeTf
cd þ RbfaeTf

cd þ 2∇aRbcde þ 2∇aRbdce − 2∇aRcdbe þ 2∇dRabce − 2∇dRacbe − 2∇dRbcae ¼ 0: ð53Þ

Differently, we can take ηa ¼ 0 and ∇aηb ¼ 2δh½aδ
k
b� in some arbitrary point of the manifold with h and k being arbitrary

fixed indices. In the latter case, Eq. (52) lead us to the following constraint that must be satisfied by a maximally symmetric
space:

4gckRdabh þ 4gchRadbk þ 4gbkRadch − 4gbhRadck þ 2gakRbcdh − 2gahRbcdk þ 2gakRbdch − 2gahRbdck

− 2gakRcdbh þ 2gahRcdbk − gckTfbdTha
f þ gbkTfcdTha

f þ 2gckTfadThb
f þ gakTfcdThb

f − 2gbkTfadThc
f

− gakTfbdThc
f − gckTfabThd

f þ gbkTfacThd
f þ gchTfbdTka

f − gbhTfcdTka
f − 2gchTfadTkb

f − gahTfcdTkb
f

þ 2gbhTfadTkc
f þ gahTfbdTkc

f þ gchTfabTkd
f − gbhTfacTkd

f þ 2gck∇aThbd − 2gbk∇aThcd − 2gch∇aTkbd

þ 2gbh∇aTkcd þ 2gck∇dThab − 2gbk∇dThac − 2gak∇dThbc − 2gch∇dTkab þ 2gbh∇dTkac þ 2gah∇dTkbc

þ gdkð2Rabch − 2Racbh − 2Rbcah þ TfacThb
f − TfabThc

f þ 2∇aThbcÞ
þ gdhð−2Rabck þ 2Racbk þ 2Rbcak − TfacTkb

f þ TfabTkc
f − 2∇aTkbcÞ ¼ 0: ð54Þ

In particular, contracting the latter equation with gbk we find the following simpler condition which can be proved to be
equivalent to (54):

ðn − 1Þð4Radch þ TfcdTha
f − TfcaThd

f − 2TfadThc
f þ 2∇aThdc − 2∇dThacÞ

− gdhð2Rac þ 2Rca − Tf
a
kTkcf − Tf

acTk
fk − 2∇aTf

cfÞ þ gahð2Rcd þ 2Rdc − Tf
c
kTkdf þ Tf

cdTk
fk − 2∇dTf

cfÞ
þ 2gchðTf

adTk
fk þ∇aTf

df −∇dTf
afÞ ¼ 0: ð55Þ

Therefore, the integrability conditions satisfied by a maximally symmetric space are (53) and (55). Now, contracting (55)
with gac and using the curvature properties (8) we conclude that in a maximally symmetric space the Ricci tensor might be
given by:
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4nRdh ¼ gdhð4R − TabfTbaf þ 2∇bTa
a
bÞ þ ðn − 1ÞðTadbTh

ab − 2∇aThd
aÞ þ 2∇aTa

dh

þ Ta
d
bTbha þ 5Ta

dhTb
ab þ 6∇dTa

ha − 4∇hTa
da ð56Þ

with R≡ gabRab denoting the Ricci scalar. Then, inserting the above expression for the Ricci tensor into the integrability
condition (55) lead us to the following expression for the curvature tensor:

Radch ¼
1

8nðn − 1Þ fðgacgdh − gahgcdÞð8R − 2TbfkTfbk þ 4∇fTb
b
fÞ þ 4ngchð2∇½dTb

a�b − Tb
adTf

bfÞ

þ gdh½ðn − 1ÞðTa
bfTbcf þ TbafTc

bf − 2Tb
a
fTfcb − 4∇bTðcaÞbÞ

þ 2nTb
caTf

bf þ 2∇cTb
ab þ 2∇aTb

cb − 4n∇aTb
cb�

− gah½ðn − 1ÞðTbdfTc
bf þ TbcfTd

bf − 2Tb
c
fTfdb − 4∇bTðcdÞbÞ

þ 2nTb
cdTf

bf þ 2∇cTb
db þ 2∇dTb

cb − 4n∇dTb
cb�

þ 2nðn − 1Þð2∇aThcd þ 2∇dThac þ 2TbadThc
b − TbcdTha

b − TbacThd
bÞg: ð57Þ

Note that while the left-hand side of (57) is skew-sym-
metric in the indices ch, the right-hand side is not
automatically skew-symmetric. Therefore, taking the sym-
metric part of the equation (57) in the indices ch we are led
to a first order differential equation for the torsion.
Particularly, contracting (57) with gch we find that

∇aTe
de −∇dTe

ae ¼ −Te
keTk

ad:

It is worth mentioning that the latter constraint is necessary
in order to prove the equivalence between (54) and (55).
Probably, the results presented in this section can be more
succinctly written in terms of the curvature of a suitable
extension of the connection considered here to the bundle
TM�⊕∧2TM�, in the lines of Ref. [23]. The investigation
of this possibility is very interesting in itself, but it is out of
the scope of the present article.
Using (7) to write the curvature tensor on the left-hand

side of (57) in terms of the Levi-Civita Riemann tensor lead
us to a second order differential equation for the metric with
the torsion being the source. Then, once we have found the
metric we can substitute the expression (57) for the
curvature tensor into the integrability condition (53), which
yields a second order differential equation for the torsion.
Going through these steps in the case of general torsion is
certainly rather involved. So, probably, the best way to
address these constraints is to make some simplifying
assumptions on the torsion. Particularly, in the special
case of a totally skew-symmetric torsion, it turns out that all
these integrability conditions can be solved. Indeed, in this
case using the integrability condition (57) along with (7)
lead us to the following equation:

Tabc ¼ T ½abc� ⇒ R
∘
adch ¼

R
∘

nðn − 1Þ ðgacgdh − gahgdcÞ;

ð58Þ

with R
∘ ≡ gacgbdR

∘
abcd denoting the Ricci scalar of the Levi-

Civita curvature. In particular, the second Bianchi identity
implies that R

∘
is constant. Moreover, if (58) holds it turns

out that the integrability condition (53) is automatically
satisfied. Therefore, we conclude that the integrability
conditions of a maximally symmetric space, namely
Eqs. (53) and (55), impose no constraint over the torsion
tensor if the torsion is totally skew-symmetric. The spaces
obeying Eq. (58) are the well-known maximally symmetric
spaces according to the Levi-Civita connection. For in-
stance, in the case of Euclidean signature the metrics
compatible with (58) can always be written in suitable
coordinates fxag as

gab ¼
1

ð1þ κr2Þ2 δab;

where r2 ¼ ½ðx1Þ2 þ ðx2Þ2 þ � � � þ ðxnÞ2�; and

κ ¼ constant: ð59Þ

One can grasp this interesting result regarding maximally
symmetric spaces with respect to connections with totally
skew-symmetric torsion by analyzing Eq. (10), according
to which

Tabc ¼ T ½abc� ⇒ ∇aηb þ∇bηa ¼ ∇∘ aηb þ∇∘ bηa:

Therefore, a vector field η obeys the Killing equation for a
connection with totally antisymmetric torsion if, and only
if, it obeys the Killing equation for the Levi-Civita
connection. Thus, if a manifold ðM; gÞ is maximally
symmetric according to the Levi-Civita connection then
this manifold is also maximally symmetric with respect to
any connection whose torsion is totally skew-symmetric.
Moreover, the Killing vectors are the same for both
connections. For instance, using the coordinates adopted
in (59), the 1

2
nðnþ 1Þ independent Killing vectors in the
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Euclidean case are given by

ηi ¼ ð1 − κr2Þ∂i þ 2κxixa∂a and ηij ¼ xi∂j − xj∂i;

where i; j are labels running from 1 to n and i < j.

A. Maximal number of Killing-Yano tensors
of order n − 1

One remarkable property of the maximally symmetric
manifolds with respect to the Levi-Civita connection is that,
besides admitting the maximal number of Killing vectors,
they also admit the maximal number of hidden symmetries,
namely Killing tensors and Killing-Yano tensors. So, it is
natural to wonder whether this property remains valid for
maximally symmetric manifolds with respect to connec-
tions with nonzero torsion. In this section, we shall see that
the answer is negative. More precisely, by means of
analyzing the simpler case of a Killing-Yano tensor of
order n − 1, we shall prove that in general a maximally
symmetric space will not admit the maximal number of
Killing-Yano tensors when the torsion is different
from zero.
As mentioned before, every Killing-Yano tensor of rank

p is the Hodge dual of a covariantly closed conformal
Killing-Yano tensor of rank ðn − pÞ and vice versa.
Therefore, instead of considering Killing-Yano tensors of
order n − 1, we shall deal with covariantly closed con-
formal Killing vectors, i.e., vector fields H obeying (25).
Taking the covariant derivative of (25) and then using (22)
lead us to:

∇a∇bHc ¼ 2gbc∇ah ¼ −1
n − 1

gbcðRa
eHe − 2hTe

eaÞ:
ð60Þ

Analogously, differentiating the latter equation and using
(22) one find that all derivatives of H can be written in
terms of H and h ¼ 1

2n∇aHa. Thus, if we know the values
ofHa and ∇aHa at some point of the manifold then we can
obtain Ha throughout the whole manifold. Therefore, the
maximal number of independent covariantly closed con-
formal Killing vectors in an n-dimensional manifold is
ðnþ 1Þ. In addition, if a manifold admits the maximal
number of CCCKVs then it is always possible to find a
CCCKV H such that Ha and ∇aHa have any desired value
at some arbitrary point of the manifold. Hence, the
integrability condition (29) implies that if a manifold
admits the maximal number of covariantly closed con-
formal Killing vectors then the following constraints hold:

� ðn − 1ÞRabc
e − gacRe

b þ gbcRe
a ¼ 0

ðn − 1ÞTcab − gacTe
eb þ gbcTe

ea ¼ 0:
ð61Þ

Particularly, the second of these constraints implies that the
torsion has the following form

Tcab ¼
2

n − 1
Te

e½bga�c: ð62Þ

Note, in particular, that the totally skew-symmetric part of
the torsion must be identically zero. This fact contrasts with
what we have seen about spaces admitting the maximum
number of Killing vectors. While the existence of the
maximum number of CCCKVs implies that T ½abc� must
vanish, the existence of the maximum number of Killing
vectors imposes no constraint over the torsion when it is
totally antisymmetric.
Now, working out the first integrability condition in (61)

lead us to the following expression for the curvature tensor:

Rabcd ¼
R

nðn − 1Þ ðgacgbd − gadgbcÞ: ð63Þ

Then, using (7) to rewrite the curvature in the above
expression in terms of the Levi-Civita curvature and then
using (62), eventually lead us to the following expression
for the Levi-Civita curvature:

R
∘
abcd ¼

R
∘ þ 2∇eTke

k

nðn − 1Þ ðgacgbd − gadgbcÞ

þ 2

n − 1
ðgd½a∇b�Te

ce − gc½a∇b�Te
deÞ: ð64Þ

The above condition provides a second order differential
equation for the metric, with the torsion being the source.
Then, once we have found the metric, Eq. (62) yields a first
order differential equation for the torsion. In addition, note
that atisymmetrizing the indices abc in (64) and using the
first Bianchi identity satisfied by the Levi-Civita Riemann
tensor yields the constraint gd½a∇bTe

c�e ¼ 0, which is
equivalent to ∇½aTe

b�e ¼ 0 if n > 2.

VI. CONCLUSIONS

In the present article the integrability conditions for the
existence of Killing-Yano tensors, of arbitrary order, with
respect to general metric-compatible connections have been
obtained. Thus, extending the results of Refs. [24,25] to the
case of nonzero torsion. As we have seen, the case of totally
skew-symmetric torsion is of special appeal, since in such a
case the concepts of geodesic and Killing vector are not
ambiguous. Moreover, in superstring theory the torsion is
associated to the field strength of the Kalb-Ramond field,
so that it is automatically antisymmetric. In spite of such
motivations, for sake of completeness, here no restriction
over the torsion has been assumed. Once the curvature of
the connection is known, the algebraic integrability con-
ditions found here can be used to eliminate several
components of the Killing-Yano tensor, facilitating the
integration of the Killing-Yano equation. Indeed, this kind
of procedure has been successfully applied in Ref. [23] for
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the torsion-free case. As an application of the results
obtained here, in Sec. IV all metrics and torsions compat-
ible with the existence of a Killing-Yano tensor of order
n − 1 have been found.
It is worth pointing out the important role played by KY

tensors in quantum field theory in curved spacetimes.
Although symmetric Killing tensors generate conserved
charges at the classical level, it turns out that at the quantum
level an anomaly term involving the curvature pops up. So,
generally, Killing tensors do not yield a conservation law in
the quantum theory [29]. Differently, in the absence of
torsion, KY tensors yield conserved charges for the Klein-
Gordon and Dirac equations both at classical and quantum
levels [29,45]. Nevertheless, in Ref. [27] it has been proved
that a skew-symmetric torsion generally spoils this property
of KY tensors, namely in the quantum theory an anomaly
involving the torsion arises. Actually, an anomaly due to
the torsion shows up even at the semiclassical treatment of a
spinning particle [27].
Here, the issue of defining a maximally symmetric space

in the presence of torsion has also been addressed.
Differently from the previous works on this topic, in the
present article we have not assumed that the torsion is
invariant by the isometries of the space, making the

approach adopted here more general. It has been obtained
the restrictions that the curvature and the torsion must
obey in order for the space to admit the maximum
number of vector fields obeying the Killing equation with
respect to a general metric-compatible connection.
Particularly, it has been proved that in the case of a
totally skew-symmetric torsion the metric of a maximally
symmetric space must be the same metric of the torsion-
free case and that no restriction is imposed over the
torsion. Moreover, we have shown that, contrary to the
torsion-less case, a maximally symmetric space in the
presence of torsion generally does not admit the maxi-
mum number of Killing-Yano tensors. Hopefully, these
results regarding maximally symmetric spaces can be
valuable for the study of cosmological models in the
presence of torsion.
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