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In this paper, we consider logarithmic and exponential forms of nonlinear electrodynamics as a source
and obtain magnetic brane solutions of the Lovelock gravity. Although these solutions have no curvature
singularity and no horizon, they have a conic singularity with a deficit angle. We investigate the effects of
nonlinear electrodynamics and the Lovelock gravity on the value of the deficit angle and find that various
terms of Lovelock gravity do not affect the deficit angle. Next, we generalize our solutions to spinning
cases with maximum rotating parameters in arbitrary dimensions and calculate the conserved quantities of
the solutions. Finally, we consider nonlinear electrodynamics as a correction of the Maxwell theory and
investigate the properties of the solutions.
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I. INTRODUCTION

Nonsingular solutions are playing an increasingly impor-
tant role in physics. The cosmological singularity at the
early Universe corresponds to an infinite energy density
state, and therefore it may probably be essential to consider
the quantum gravity to understand the initial state of the
Universe. Hence, from the cosmological point of view,
nonsingular models of the Universe have a special position
for scientists [1]. From a gravitational viewpoint, various
regular solutions, such as gravitational instantons, solitons,
and horizonless magnetic branes (string) solutions, have
become the subject of interest in recent years [2–11].
On the other hand, considering four-/higher-dimensional

spacetimes, the cosmic strings/branes are topological
defects that are inevitably formed during phase transitions
in the early Universe [12]. Investigation of the horizonless
magnetic solutions and their relations to the topological
defects help us to think about the origin of cosmic magnetic
fields [13,14]. Besides, from a geometric point of view,
these structures are fascinating objects, which have no
curvature singularity and no horizon but have a conic
singularity. One of the important motivations for inves-
tigating the horizonless magnetic stings/branes comes from
the fact that these kinds of solutions may be interpreted as
cosmic strings/branes. The horizonless solutions of Einstein
and higher-derivative gravity theories in the absence and
presence of theMaxwell and dilaton fields have been studied
in the literature [5,6]. An extension to include the nonlinear
electrodynamics has also been done [7–11].
The purpose of the present paper is constructing a new

class of static and spinning magnetic brane solutions that

produces a longitudinal magnetic field in the background of
anti-de Sitter spacetime. These solutions are the generali-
zation of the solutions of Ref. [11] to higher dimensions
and higher-derivative gravity.
In order to have better description of phenomena in our

Universe, physicists have introduced various theories. It has
been confirmed that most of phenomena in the nature are
inherently chaotic and may be described with nonlinear
theories. In electrodynamics domain, although the Maxwell
theory is in agreement with experimental results, it fails
regarding some important issues such as the self-energy of
pointlike charges, which motivates us to regard nonlinear
electrodynamics (NED). NED theories may be created
from various viewpoint and motivations. For more explan-
ations of some motivations, we refer the reader to the
following brief examples: solving the problem of a point-
like charge self-energy, being compatible with AdS/CFT
correspondence and string theory frames, understanding
the nature of different complex systems, obtaining more
information and insight regarding to quantum gravity,
describing pair creation for Hawking radiation, and the
behavior of the compact astrophysical objects such as
neutron stars and pulsars [15–17]. These evidences moti-
vate one to consider NED theories.
Through the last decades, different classes of the non-

linear theories have been introduced [18–26]. Among the
NED theories, the so-called Born–Infeld (BI) type theories
are quite special, the Lagrangians of which may be
originated from the string theory. It has been shown that
the low-energy limit of heterotic string theory on the
electrodynamics side leads to a quartic correction of the
Maxwell field strength [27]. Moreover, one finds that all-
order loop corrections may be summed up as a BI-type
Lagrangian [28–30]. Recently, two kinds of BI-type
Lagrangians have been considered to examine the
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possibility of black hole solutions [20–25]. Although there
are some analogs between the BI-type theories, one can
find that there exist some differences between them.
In recent years, a renewed interest has grown in higher-

dimensional spacetime as well as higher-dimensional
gravity [31]. The main reason comes from the fact that
these theories emerge in the effective low-energy action of
string theory on the gravitational side [32–35]. One of the
special classes of higher-derivative modifications of
Einstein (EN) gravity is the Lovelock theory [36], which
is a ghost-free model [37,38]. Regarding the postulates of
general relativity, most physicists believe that the Lovelock
Lagrangian is a natural generalization of the EN gravity to
higher dimensions. Besides, Lovelock gravity may solve
some of the problems of the Einstein theory such as the
normalization problem, and hence it is a well-definedmodel
[39–41]. In this paper, we consider the Lovelock gravity in
the presence of two classes of BI-type NED models and
obtain their horizonless solutions. We also investigate the
effect of NED as a correction to the Maxwell theory.
The layout of this paper will be as follows. First, we

introduce the suitable field equations regarding the
Lovelock gravity coupled with different magnetic sources
in which we are interested. Next, we obtain static solutions
for the metric function. Then, we will consider a spinning
magnetic string, and by employing the counterterm
method, we calculate conserved quantities. The last section
will be devoted to closing remarks.

II. STATIC SOLUTIONS

Recently, Dias and Lemos [4] have introduced an
interesting spacetime with a magnetic brane interpretation

that is horizonless. The mentioned metric in d dimensions
may be written as

ds2 ¼ −
ρ2

l2
dt2 þ dρ2

fðρÞ þ l2fðρÞdϕ2 þ ρ2

l2
dX2; ð1Þ

where dX2 ¼ Pd3
i¼1 dx

2
i is the Euclidean metric on the d3-

dimensional submanifold [hereafter, we denote (d − i) with
di]. The angular coordinate ϕ is dimensionless and ranges
in ½0; 2π�, while xi range in ð−∞;∞Þ. This metric provides
us horizonless solutions that are of our interest. Now, we
are going to obtain the solutions of first, second, and third
order of the Lovelock gravity in the presence of NED with
the field equations

∂að
ffiffiffiffiffiffi
−g

p
LFFabÞ ¼ 0; ð2Þ

Λgab þGð1Þ
ab þ α2G

ð2Þ
ab þ α3G

ð3Þ
ab

¼ 1

2
gabLðFÞ − 2LFFacFc

b; ð3Þ

where LF ¼ dLðFÞ
dF , in which LðFÞ is the Lagrangian of

NED;Λ ¼ − d1d2
2l2 andGð1Þ

ab ¼ Rab − 1
2
gabR are, respectively,

the cosmological constant and the Einstein tensor; αi’s are
the Lovelock coefficients; and

Gð2Þ
μν ¼ 2ðRμσκτRν

σκτ − 2RμρνσRρσ − 2RμσRσ
ν þ RRμνÞ

−
Lð2Þ

2
gμν; ð4Þ

Gð3Þ
μν ¼ −3ð4RτρσκRσκλρRλ

ντμ − 8Rτρ
λσRσκ

τμRλ
νρμ þ 2Rν

τσκRσκλρRλρ
τμ − RτρσκRσκτρRνμ þ 8Rτ

νσρRσκ
τμRρ

κ þ 8Rσ
ντμRτρ

σμRκ
ρ

þ 4Rν
τσκRσκμρRρ

τ − 4Rν
τσκRσκτρRρ

μ þ 4RτρσκRσκτμRνρ þ 2RRν
κτρRτρκμ þ 8Rτ

νμρRρ
σRσ

τ − 8Rσ
ντρRτ

σR
ρ
μ

− 8Rτρ
σμRσ

τRνρ − 4RRτ
νμρRρ

τ þ 4RτρRρτRνμ − 8Rτ
νRτρRρ

μ þ 4RRνρRρ
μ − R2RνμÞ −

Lð3Þ

2
gμν; ð5Þ

where Lð2Þ and Lð3Þ denote the Lagrangians of the Gauss–
Bonnet (GB) and third-order Lovelock (TOL) gravities,
given as

Lð2Þ ¼ RμνγδRμνγδ − 4RμνRμν þ R2; ð6Þ

Lð3Þ ¼ 2RμνσκRσκρτRρτ
μν þ 8Rμν

σρRρτ
μκ þ 24RμνσκRσκνρRρ

μ

þ 3RRμνσκRσκμν þ 24RμνσκRσμRκν þ 16RμνRνσRσ
μ

− 12RRμνRμν þ R3: ð7Þ

In this work, we take into account the recently proposed
interesting NED models [21]. One of them is the Soleng
model, which is in logarithmic form of nonlinear

electromagnetic field (LNEF), and another one has an
exponential form of nonlinear electromagnetic field
(ENEF), which was proposed by Hendi with the following
explicit forms

LðFÞ ¼
(
β2½exp ð− F

β2
Þ − 1� ENEF

−8β2 ln ð1þ F
8β2

Þ LNEF
; ð8Þ

where β is the nonlinearity parameter and the Maxwell
invariant is F ¼ FabFab, in which Fab ¼ ∂aAb − ∂bAa is
the electromagnetic field tensor and Aa is the gauge
potential. It is easy to show that the electric field comes
from the time component of the vector potential (At),
while the magnetic field is associated with the angular
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component (Aϕ). Since we are looking for the magnetic
solutions, we consider the following form of the gauge
potential:

Aμ ¼ hðρÞδϕμ : ð9Þ

Using Eq. (9) with the mentioned NED, one can show
that the electromagnetic field equation (2) reduces to the
differential equations

(
ðρl2β2 − 4ρh02Þh00 þ d2l2β2h0 ¼ 0 ENEF

ð4ρl2β2 − rh02Þh002 þ 4d2h0ðl2β2 þ 1
4
h02Þ ¼ 0 LNEF

;

ð10Þ

where the prime and the double prime denote the first and
second derivatives with respect to ρ. Solving these equa-
tions, one obtains

hðρÞ ¼
8<
:

lβ
2

R ffiffiffiffiffiffiffiffiffiffiffiffi
−LW1

p
dρ ENEF

β2ρd1
qd1

− β2

q

R
Γ1ρ

d−2dρ LNEF
; ð11Þ

where q is an integration constant that is related to the
electric charge, LW1 ¼ LambertWð−ð 4ql

βρd2
Þ2Þ, and

Γ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð 2ql

βρd2
Þ2

q
. Taking into account the mentioned

gauge potential, one finds the nonzero components of
the electromagnetic field are

Fϕρ ¼ −Fρϕ ¼
8<
:

2ql2

ρd2
exp ð− LW1

2
Þ; ENEF

β2ρd2
q ð1 − Γ1Þ; LNEF

: ð12Þ

To obtain real solutions for the electromagnetic field, we
should restrict the coordinate ρ with a lower bound ρ0. It
means

ρ > ρ0 ¼
(
ð4qlβ Þ1=d2 expð 1

2d2
Þ; ENEF

ð2qlβ Þ1=d2 ; LNEF
:

We should note that for large values of β all relations
reduce to the corresponding relations of the Maxwell
theory. Besides, one can find that obtained results of
electromagnetic fields reduce to those of Ref. [11] in four
dimensions.
To obtain the metric function, fðρÞ, one can use nonzero

components of the gravitational field equation (3). After
cumbersome calculations, we find that there are two
different differential equations with the explicit forms

et ¼ K1 þ α2K2 þ α3K3 ¼ 0; ð13Þ

eρ ¼ K11 þ α2K22 þ α3K33 ¼ 0; ð14Þ

where

K1 ¼ −ρ6
�
ρA0

d2
þA

�
− β2ρ6

×

(
1 − expð−2h02l2β2 Þ; ENEF

−8 lnð 4l2β2

4l2β2þh02Þ; LNEF
;

K2 ¼ d3d4ρ4
�
2ff00 þ 2f02 þ 4d5ff0

ρ
þ d5d6f2

ρ2

�
;

K3 ¼ −d3d4d5d6d7d8fρ2
�
3ff00 þ 6f02

d7d8
þ 6ff0

d8ρ
þ f2

ρ2

�
;

K11 ¼ ρ6A − β2ρ6

×

8<
:

4h02
l2β2ρ expð−2h

02
l2β2 Þ þ expð−2h02l2β2 Þ − 1; ENEF

8
�

2

1þð2lβ
h0 Þ

2 þ ln ½1þ ð h0
2lβÞ2�

�
; LNEF

;

K22 ¼ −d2d3d4d5fρ2
�
f þ 2ρf0

d5

�
;

K33 ¼ d2d3d4d5d6d7f2
�
f þ 3ρf0

d7

�
:

Now, we desire to obtain higher-dimensional magnetic
brane solutions in the EN, GB and TOL gravities, sepa-
rately. One can set α3 ¼ 0 to obtain the GB solutions, and
for α2 ¼ α3 ¼ 0, we obtain magnetic solutions of the EN
gravity. After some simplifications, we obtain

fEN ¼ 2ml3

ρd3
−
2Λρ2

d1d2

þ

8>><
>>:

8β2ρ2

d1d2
þ −8β2ð

R
ρd2 ½Γ1þlnðβ2ρ2d2 ð1−ΓÞ

2l2q2
Þ�dρÞ

d2ρd3
LNEF

− β2ρ2

d1d2
þ

4lqβð
R

½ ffiffiffiffiffiffiffiffiffi
−LW1

p þ 1ffiffiffiffiffiffiffi
−LW1

p �dρÞ
d2ρd3

ENEF

;

ð15Þ

fGB ¼ ρ2

2d3d4α2
ð1 −Ψ1=2Þ; ð16Þ

fTOL ¼ ρ2

d3d4α2
ð1 −Ψ1=3Þ; ð17Þ

where

Ψ ¼ 1þ 2χd3d4α2
d1d2

�
Λ −

d1d2l3m
ρd1

þW
�
; ð18Þ

with
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W ¼

8>><
>>:

4β2
n
ln ðβ2ρ2d2

2l2q2 ½1 − Γ1�Þ − ð2d2þ1Þ
d1

Γ1

o
þ 16d2

2
l2q2

ρ2d2d1d3
F LNEF

β2
h
1
2
þ 2d1ql

βρd1

R � ffiffiffiffiffiffiffiffiffiffiffiffi
−LW1

p þ 1ffiffiffiffiffiffiffiffiffi
−LW1

p
�
dρ

i
ENEF

; ð19Þ

in which χ ¼ 4 and 3 for the GB theory and the TOL

gravity, respectively; F is 2F1ð½12 ; d3
2d2

�; ½3d2−1
2d2

�; 4l2q2

β2ρ2d2
Þ; m is

an integration constant related to total finite mass of the
solutions; and we set α3 ¼ d3d4

3d5d6
α22 for more simplifications

of TOL gravity solutions.

A. Properties of solutions

At the first step, we are going to discuss the geometric
properties of the solutions. To do this, we look for possible
black hole solutions by obtaining the curvature singularities
and their horizons. We usually calculate the Kretschmann
scalar, RαβγδRαβγδ, to achieve essential singularity. Con-
sidering the mentioned spacetime (1), it is easy to show that

RαβγδRαβγδ ¼ f002 þ 2d2

�
f0

ρ

�
2

þ 2d2d3

�
f
ρ2

�
2

: ð20Þ

Inserting the metric function, fðρÞ, in Eq. (20) and using
numerical analysis, one finds that the Kretschmann scalar
diverges at ρ ¼ ρ0 and it is finite for ρ > ρ0, and naturally
one may think that there is a curvature singularity located at
ρ ¼ ρ0. In what follows, we state an important point, which
confirms that the spacetime never achieves ρ ¼ ρ0. As one
can confirm, easily, the metric function has a positive value
for large values of ρ ≫ ρ0. So, two cases may occur. For the
first case, fðρÞ is a positive definite function with no root.
Since we are not interested in naked singularity, we give up

this case. We consider the second case, in which the
metric function has one or more real positive root(s) larger
than ρ0.
From Figs. 1–3, we find that there is a ρmin (ρmin ¼ ρ0) in

which for ρ ≥ ρmin the metric function is real. These figures
show that increasing the nonlinearity parameter leads to
decreasing ρmin. Since we are looking for the metric
function with at least one real root, we should adjust the
metric parameters with a suitable range of the nonlinearity
parameter to obtain fðρ ¼ ρminÞ ≤ 0.
Moreover, Fig. 3 indicates that, although metric func-

tion of the TOL gravity is real for arbitrary ρ, in GB
gravity, one encounters an imaginary interval for some
values of the GB parameter. In other words, in GB
gravity, we should adjust the metric parameters with a
suitable interval of α to obtain a real metric function with
at least one real root. Besides, Fig. 3 shows that the root
of metric function does not depend on the Lovelock
parameters.
Now, we denote rþ as the largest real positive root of

fðρÞ. The metric function is negative for ρ < rþ and
positive for ρ > rþ and hence the metric signature may
change from (−þþþþ � � �þ) to (− − −þþ � � � þ) in
the range 0 < ρ < rþ. Taking into account this apparent
change of signature of the metric, we conclude that one
cannot extend the spacetime to ρ < rþ. To get rid of this
incorrect extension, one may use the following suitable
transformation by introducing a new radial coordinate r:

FIG. 1. LNEF branch of EN gravity: fENðρÞ vs ρ for l ¼ 3, q ¼ 1, and d ¼ 4. Left panel: m ¼ 0.5, β ¼ 2 (continuous line), β ¼ 2.5
(doted line), and β ¼ 5 (dashed line). Right panel: β ¼ 5, m ¼ 0.5 (continuous line), m ¼ 1 (doted line), and m ¼ 2 (dashed line).
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r2 ¼ ρ2 − r2þ;

ρ ≥ rþ⇔r ≥ 0: ð21Þ

Using the mentioned transformation with dρ¼ rffiffiffiffiffiffiffiffiffiffi
r2þr2þ

p dr,
one finds that the metric (1) should change to

ds2 ¼ −
r2 þ r2þ

l2
dt2 þ r2

ðr2 þ r2þÞfðrÞ
dr2 þ l2fðrÞdϕ2

þ r2 þ r2þ
l2

dX2: ð22Þ

It is worthwhile to mention that with this new coordinate,
the electromagnetic field, and the metric functions lead to
the form

Frϕ ¼

8>><
>>:

2ql2

ðr2þr2þÞ
d2
2

exp ð− LW
2
Þ; ENEF

β2ðr2þr2þÞ
d2
2

q ð1 − ΓÞ; LNEF

; ð23Þ

FIG. 3. LNEF branch of TOL gravity: fTOLðρÞ vs ρ for l ¼ 2, q ¼ 0.1, m ¼ 0.005, and d ¼ 7. Left panel: β ¼ 10, α2 ¼ 0.01
(continuous line), α2 ¼ 0.03 (doted line), and α2 ¼ 0.06 (dashed line). Right panel: α2 ¼ 0.01, β ¼ 2.6 (continuous line), β ¼ 3.2
(doted line), and β ¼ 10 (dashed line).

FIG. 2. LNEF branch of GB gravity: fGBðρÞ vs ρ for l ¼ 2, q ¼ 0.1, m ¼ 0.005, and d ¼ 7. Left panel: β ¼ 10, α2 ¼ 0.01
(continuous line), α2 ¼ 0.03 (doted line), and α2 ¼ 0.06 (dashed line). Right panel: α2 ¼ 0.01, β ¼ 2.6 (continuous line), β ¼ 3.2
(doted line), and β ¼ 10 (dashed line).
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fEN ¼ 2ml3

ðr2 þ r2þÞ
d3
2

−
2Λðr2 þ r2þÞ

d1d2
þ

8>>><
>>>:

8β2ðr2þr2þÞ
d1d2

þ −8β2ð
R

rðr2þr2þÞ
d3
2 ½Γþln ðβ

2ðr2þr2þÞd2
2l2q2

ð1−ΓÞÞ�drÞ
d2ðr2þr2þÞ

d−3
2

LNEF

− β2ðr2þr2þÞ
d1d2

þ
4lqβð

R
ð ffiffiffiffiffiffiffi

−LW
p þ 1ffiffiffiffiffiffi

−LW
p Þ rffiffiffiffiffiffiffiffi

r2þr2þ
p drÞ

d2ðr2þr2þÞ
d3
2

ENEF

; ð24Þ

fGB ¼ ðr2 þ r2þÞ
2d3d4α2

ð1 −Ψ1=2Þ; ð25Þ

fTOL ¼ ðr2 þ r2þÞ
d3d4α2

ð1 −Ψ1=3Þ; ð26Þ

where

Ψ ¼ 1þ 2χd3d4α2
d1d2

�
Λ −

d1d2l3m

ðr2 þ r2þÞd1=2
þW1

�
; ð27Þ

with

W1 ¼

8>><
>>:

4β2
n
ln
�
β2ðr2þr2þÞd2

2l2q2 ½1 − Γ�
�
− ð2d2þ1Þ

d1
Γ
o
þ 16d2

2
l2q2

ðr2þr2þÞd2d1d3 F LNEF

β2
h
1
2
þ 2d1ql

βðr2þr2þÞ
d1
2

R � ffiffiffiffiffiffiffiffiffiffi
−LW

p þ 1ffiffiffiffiffiffiffi
−LW

p
�

rffiffiffiffiffiffiffiffiffiffi
r2þr2þ

p dr
i

ENEF
; ð28Þ

in which LW ¼ LambertWð− 16q2l2

β2ðr2þr2þÞd2Þ, F ¼

2F1ð½12 ; d3
2d2

�; ½3d2−1
2d2

�; 4l2q2

β2ðr2þr2þÞd2Þ, and Γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4q2l2

β2ðr2þr2þÞd2
q

.

Since we suppose that rþ ≥ ρ0, the solutions (electromag-
netic field and metric functions) are real for r ≥ 0. In
addition, the function fðrÞ given in Eqs. (24)–(26) is
positive in the whole spacetime and is zero at r ¼ 0.
Although the Kretschmann scalar does not diverge in the

range 0 ≤ r < ∞, one can show that there is a conical
singularity at r ¼ 0. One can investigate the conic geom-
etry by using the circumference/radius ratio. Using the
Taylor expansion, in the vicinity of r ¼ 0, we find

fðrÞ ¼ fðrÞjr¼0 þ
�
dfðrÞ
dr

				
r¼0

�
rþ 1

2

�
d2fðrÞ
dr2

				
r¼0

�
r2

þOðr3Þ þ � � � ; ð29Þ

where

fðrÞjr¼0 ¼
dfðrÞ
dr

				
r¼0

¼ 0;

and it is a matter of calculation to show that, regardless of
gravity branches (EN, GB, and TOL), we will have the
relation

d2fðrÞ
dr2

				
r¼0

¼ −
2Λ
d2

þ 2

d2
E0 þ

2rþ
d1d2

E0
0 ≠ 0; ð30Þ

where E0 ¼ EðrÞjr¼0, in which EðrÞ denotes the electro-
magnetic part of metric functions [third term of Eq. (24)

and W1 in Eq. (27)], and E0
0 ¼ dEðrÞ

dr jr¼0
. With employing

obtained results, one can show that

lim
r⟶0þ

1

r

ffiffiffiffiffiffiffi
gϕϕ
grr

r
¼ lim

r⟶0þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2þ

p
lfðrÞ

r2
¼ lrþ

2

d2fðrÞ
dr2

				
r¼0

≠ 1; ð31Þ
which confirms that as the radius r tends to zero the limit of
the circumference/radius ratio is not 2π and therefore the
spacetime has a conical singularity at r ¼ 0. This canonical
singularity may be removed if one identifies the coordinate
ϕ with the period

Periodϕ ¼ 2π

�
limr⟶0

1

r

ffiffiffiffiffiffiffi
gϕϕ
grr

r �−1
¼ 2πð1 − 4μÞ; ð32Þ

where μ is given by

μ ¼ 1

4

�
1 −

2

lrþ

�
d2fðrÞ
dr2

				
r¼0

�−1�
: ð33Þ

In other words, the near-origin limit of the metric (22)
describes a locally flat spacetime that has a conical
singularity at r ¼ 0 with a deficit angle δϕ ¼ 8πμ.
Using the Vilenkin procedure, one can interpret μ as the
mass per unit volume of the magnetic brane [42]. It is
evident from Eqs. (30) and (33) that the deficit angle is
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independent of the Lovelock coefficients and is only a
function of the cosmological constant and electromag-
netic field.
It is obvious that the nonlinearity of electrodynamics can

change the value of deficit angle δϕ. To investigate the
effects of nonlinearity, rþ, q, and dimensionality, we plot
δϕ vs β and rþ (Figs. 4–8). Figures 4 and 5 show that, for
the ENEF branch, the deficit angle is an increasing function
of nonlinearity parameter, while for the LNEF branch, it is a
decreasing function of β. In addition, figures of the deficit
angle show that there is a minimum for nonlinearity
parameter βmin in which for β ≤ βmin the obtained values
for deficit angle are not real (see Figs. 4–5). Besides, one
finds βmin increases as the charge parameter of magnetic

branes increases, whereas for an increasing value of rþ,
βmin decreases (see Figs. 4 and 5).
The figuresof thedeficit angleversusrþ (seeFigs. 6 and7)

show that there is also a minimum rþmin
in which for rþ ≥

rþmin
the deficit angle is real. For large values of β, the

deficit angle isan increasingfunctionofrþ (seeFigs.6and7).
These figures show that there is an extremum rþext

that for
rþmin

≤ rþ ≤ rþext
, deficit angle is adecreasing functionofrþ

whereas for rþ ≥ rþext
the deficit angle is an increasing

function of β (see Figs. 6 and 7).
Considering the fact that obtained results are magnetic

branes in arbitrary dimensions, studying the effect of
dimensionality on the deficit angle is another important
issue. Figures 7 and 8 show that for fixed values of

FIG. 5. δϕ=π vs β for d ¼ 4, l ¼ 1, and q ¼ 1. Left panel (ENEF): rþ ¼ 1 (continuous line), rþ ¼ 1.2 (doted line), and rþ ¼ 1.4
(dashed line). Right panel (LNEF): rþ ¼ 1 (continuous line), rþ ¼ 1.2 (doted line), and rþ ¼ 1.4 (dashed line).

FIG. 4. δϕ=π vs β for d ¼ 4, l ¼ 1 and rþ ¼ 2. Left panel (ENEF): q ¼ 1 (continuous line), q ¼ 2 (doted line), and q ¼ 3 (dashed
line). Right panel (LNEF): q ¼ 1 (continuous line), q ¼ 2 (doted line), and q ¼ 3 (dashed line).
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metric parameters the deficit angle is an increasing
function of d. Also, as one can see, βmin is a decreasing
function of dimensionality, and for higher dimensions
βmin goes to zero (see Fig. 8). Also, numerical analysis
confirms that rþmin

is an increasing function of dimen-
sionality (see Fig. 7).

III. CLASS OF SPINNING SOLUTIONS

In this section, we generalize the static spacetime to the
case of rotating solutions. As we know, the rotation group
in d dimensions is SOðd − 1Þ with ½ðd − 1Þ=2� independent
rotation parameters, in which [x] denotes the integer part of
x. The rotating magnetic solutions with k ≤ ½ðd − 1Þ=2�
rotation parameters may be written as

ds2 ¼ −
r2 þ r2þ

l2

�
Ξdt −

Xk
i¼1

aidϕi

�2

þ fðrÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

Ξ2 − 1
p

dt −
Ξffiffiffiffiffiffiffiffiffiffiffiffiffi

Ξ2 − 1
p

Xk
i¼1

aidϕi

�2

þ r2dr2

ðr2 þ r2þÞfðrÞ
þ r2 þ r2þ
l2ðΞ2 − 1Þ

Xk
i<j

ðaidϕj − ajdϕiÞ2

þ r2 þ r2þ
l2

dX2; ð34Þ

where Ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þP

k
i a

2
i =l

2
p

, dX2 is the Euclidean metric
on the ðd − k − 2Þ-dimensional submanifold with volume
Vd−k−2, and fðrÞ is the same as fðrÞ given in Eqs. (24)–(26)

FIG. 7. δϕ=π vs rþ for β ¼ 4, l ¼ 1, and q ¼ 1. Left panel (ENEF): d ¼ 5 (continuous line), d ¼ 7 (doted line), and d ¼ 11 (dashed
line). Right panel (LNEF): d ¼ 5 (continuous line), d ¼ 7 (doted line), and d ¼ 11 (dashed line).

FIG. 6. δϕ=π vs rþ for d ¼ 4, l ¼ 2 and q ¼ 1. Left panel (ENEF): β ¼ 2 (continuous line), β ¼ 3 (doted line), and β ¼ 5 (dashed
line). Right panel (LNEF): β ¼ 1.1 (continuous line), β ¼ 1.5 (doted line), and β ¼ 5 (dashed line).
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for various gravity. We should note that the nonvanishing
components of electromagnetic field are

Frt ¼ −
ðΞ2 − 1Þ
Ξai

Frϕi
¼ −

ðΞ2 − 1Þ
Ξai

×

8<
:

2ql2

ðr2þr2þÞd2=2
exp ð− LW

2
Þ; ENEF

β2ðr2þr2þÞd2=2
q ð1 − ΓÞ; LNEF

: ð35Þ

Again, we should note that, although this rotating
spacetime has no curvature singularity and horizon, it
has a conical singularity at r ¼ 0.

A. Conserved quantities

Here, we calculate the angular momentum and mass
density of the magnetic solutions. To obtain finite con-
served quantities for the asymptotically anti-de Sitter (AdS)
solutions, one may use the counterterm method [43]. Here,
for the asymptotically AdS solutions of the Lovelock
gravity with flat boundary, R̂abcdðγÞ ¼ 0 (our solutions),
the finite energy-momentum tensor is [44]

Tab ¼ 1

8π

�
ðKab − KγabÞ þ 2α2ð3Jab − JγabÞ

þ 3α3ð5Pab − PγabÞ þ d2
leff

γab
�
; ð36Þ

where leff is a function of l and α, and when α goes to zero
(Einstein solutions), leff reduces to l. In Eq. (36), Kab is the
extrinsic curvature of the boundary, K is its trace, γab is the
induced metric of the boundary, and J and P are, respec-
tively, traces of Jab and Pab, where

Jab¼
1

3
ðKcdKcdKabþ2KKacKc

b−2KacKcdKdb−K2KabÞ;
ð37Þ

and

Pab ¼
1

5
f½K4 − 6K2KcdKcd þ 8KKcdKd

eKec

− 6KcdKdeKefKfc þ 3ðKcdKcdÞ2�Kab

− ð4K3 − 12KKedKed þ 8KdeKe
fK

fdÞKacKc
b

− 24KKacKcdKdeKe
b

þ ð12K2 − 12KefKefÞKacKcdKdb

þ 24KacKcdKdeKefKbfg: ð38Þ
To compute the conserved charges, one can write the

boundary metric in Arnowitt–Deser–Misner form,

γabdxadxb ¼ −N2dt2 þ σijðdφi þ VidtÞðdφj þ VjdtÞ;
ð39Þ

where the coordinates φi are the angular variables para-
metrizing the hypersurface of constant r around the origin
and N and Vi are the lapse and shift functions, respectively.
The quasilocal conserved quantities associated with the
stress tensors of Eq. (36) are

QðξÞ ¼
Z
B
dd2φ

ffiffiffi
σ

p
Tabnaξb; ð40Þ

where σ is the determinant of the metric σij, na is the
timelike unit normal vector to the boundary B, and ξ is a
Killing vector field. The rotating magnetic spacetime (34)
has two conserved quantities that are associated with the
Killing vectors ξ ¼ ∂=∂t and ζi ¼ ∂=∂ϕi. The total mass

FIG. 8. δϕ=π vs β for rþ ¼ 2, l ¼ 1 and q ¼ 1. Left panel (ENEF): d ¼ 5 (continuous line), d ¼ 7 (doted line), and d ¼ 11 (dashed
line). Right panel (LNEF): d ¼ 5 (continuous line), d ¼ 7 (doted line), and d ¼ 11 (dashed line).
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and angular momentum of the magnetic brane solutions per
unit volume Vd−k−2 are given by

M ¼
Z
B
dd2x

ffiffiffi
σ

p
Tabnaξb ¼

ð2πÞk
4

½d1ðΞ2 − 1Þ þ 1�m;

ð41Þ

Ji ¼
Z
B
dd2x

ffiffiffi
σ

p
Tabnaζbi ¼

ð2πÞk
4

Ξd1mai; ð42Þ

where the mass parameter m comes from the fact that
limr→0fðrÞ ¼ 0. Our last step will be devoted to calculate
the electric charge of the magnetic solutions. To do so, we
should consider the projections of the electromagnetic field
tensor on a special hypersurface. The electric charge per
unit volume Vd−k−2 can be found by calculating the flux of
the electromagnetic field at infinity, yielding

Q ¼ ð2πÞk
2

ql
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ξ2 − 1

p
; ð43Þ

which shows that the electric charge is proportional to
the magnitude of the rotation parameters and is zero for
the static solutions (Ξ ¼ 1). This is due to the fact that the
electric field, Ftr, vanishes for the static solutions. In
addition, since the asymptotic behavior of the electromag-
netic field is the same as that of the Maxwell theory, the
nonlinearity does not affect the total electric charge.

IV. NED AS A CORRECTION

It is arguable that, instead of considering nonlinear
theories of the Maxwell field, one can use the method in
which the nonlinearity is playing as a correction term. In
other words, one is free to consider nonlinearity as a
perturbation to linear theory and construct a new nonlinear
theory. This treatment is justified with the following
reasons. First, to find experimental results for nonlinear
electromagnetic fields, one should consider its weak non-
linearity and not strong. This is due to the fact that the
Maxwell theory has acceptable consequences in most
domains and the perturbed nonlinear theory of electrody-
namics may increase the Maxwell accuracy. On the other
hand, to avoid the complexity of nonlinear theories and
obtaining interesting solutions, it is logical to consider the
dominant nonlinearity terms and use them in order to study
a nonlinear theory. As for BI types of nonlinear electro-
dynamics for large values of nonlinearity parameter, they
have same structure with a little differences in some factors.
One can show that the first and second leading-order terms
are, respectively, the Maxwell Lagrangian and quadratic
power of the Maxwell invariant. Therefore, in this section,
we consider following Lagrangian as a source and study the
effects of additional correction to the Maxwell theory (MC)
as nonlinear electromagnetic field on solutions:

LðFÞ ¼ −F þ ηF2 þOðη2Þ: ð44Þ

One may follow the procedure of previous sections with
the mentioned Lagrangian (44) and the metric (34) to
obtain

Frt ¼ −
ðΞ2 − 1Þ
Ξai

Frϕi

¼ −
ðΞ2 − 1Þ
Ξai

�
q

ðr2 þ r2þÞ
d4
2

−
4q3η

l2ðr2 þ r2þÞ
3d2
2

�
: ð45Þ

Inserting Eq. (45) in the gravitational field equations, we
find the following metric functions for the EN, the GB, and
the TOL gravities in the presence of the Lagrangian (44),

fEN ¼ 2Ml3

ðr2 þ r2þÞd3=2
−
2ðr2 þ r2þÞ

d1d2

×

�
Λ −

4d1l2q2

d3ðr2 þ r2þÞd2
þ 32d1l4q4η
ð3d − 7Þðr2 þ r2þÞ2d2

�
;

ð46Þ

fGB ¼ ðr2 þ r2þÞ
2d3d4α2

ð1 −Ψ
1
2Þ; ð47Þ

fTOL ¼ ðr2 þ r2þÞ
d3d4α2

ð1 −Ψ
1
3Þ; ð48Þ

where

Ψ ¼ 1þ 2χd3d4α2
d1d2

�
Λ −

d1d2l3M

ðr2 þ r2þÞd1=2
−

4d1l2q2

d3ðr2 þ r2þÞd2

þ 32d1l4q4η
ð3d2 − 1Þðr2 þ r2þÞ2d2

�
; ð49Þ

and χ ¼ 4 and 3 for the GB theory and the TOL gravity,
respectively.
We should note that, regardless of various coefficients,

one can obtain these solutions, directly, by suitable series
expansions of Eqs. (24)–(26). In addition, in agreement
with Eqs. (41), (42), and (43), independent calculations
show that the conserved charges do not depend on the
nonlinearity parameter of BI-type NED theories.
Here, we are in position to study the deficit angle. To do

so, we employ the method that was mentioned in previous
sections and plot various appropriate graphs. It is a matter
of calculation to show that the second-order derivation of
the metric with respect to the radial coordinate will be in the
form

d2fðrÞ
dr2

				
r¼0

¼ −
2Λ
d2

−
8l2q2

d2r
2d2þ

þ 64l4q4

d2r
4d2þ

ηþOðη2Þ ð50Þ
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for all mentioned gravity branches, where it is confirmed
that the deficit angle does not depend on the Lovelock
coefficients.
Studying the effects of the charge parameter show that,

for very small values of q and η ¼ 0, the calculated deficit
angle is nonzero and is a decreasing function of charge (see
the left panel in Fig. 9). As charge increases, for a certain
range of the correction parameter, the deficit angle is
negative, and there is a η0 where calculated deficit angle
is zero. This η0 is an increasing function of charge (see the
left panel in Fig. 9). As for the effects of rþ, plotted graphs
have similar behavior as the charge, whereas the effects of
rþ are exactly opposite of the effects of charge (see the right
panel in Fig. 9).

Considering different values of the correction parameter,
the deficit angle vs rþ shows that calculated deficit angles
have different behaviors. For small values of nonlinearity,
three different behaviors are seen for different regions of rþ
in which these regions are specified with rþDiv1

and rþDiv2

(see the left panel in Fig. 10). For 0 < rþ < rþDiv1
, the

deficit angle is a decreasing function of rþ, and in
rþ ¼ rþDiv1

, there is a divergency. In this region, calculated
deficit angles are positive and real valued, and in the case of
rþDiv1

< rþ < rþDiv2
for a calculated deficit angle, first it is a

decreasing and then increasing function of rþ, and for
rþ ¼ rþDiv2

, the second divergency happens. Next, for
rþ > rþDiv2

, one finds that the deficit angle is an increasing
function of rþ, but there exists a region in which calculated

FIG. 10. δϕ=π vs rþ for l ¼ 1. Left panel: q ¼ 3, d ¼ 4, η ¼ 0.02 (continuous line), η ¼ 0.05 (doted line), and η ¼ 0.08 (dashed line).
Right panel: q ¼ 1, η ¼ 0.05, d ¼ 5 (continuous line), d ¼ 8 (doted line), and d ¼ 11 (dashed line).

FIG. 9. δϕ=π vs η for l ¼ 1 and d ¼ 4. Left panel: rþ ¼ 2, q ¼ 2 (continuous line), q ¼ 2.5 (doted line), and q ¼ 3 (dashed line).
Right panel: q ¼ 3, rþ ¼ 2 (continuous line), rþ ¼ 2.1 (doted line), and rþ ¼ 2.2 (dashed line).
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deficit angles are negative, and for an rþ0
, the deficit angle

is zero (see the left panel in Fig. 10).
Next, for larger values of nonlinearity, there are regions

identified with specific values naming rþ1
, rþext

, and rþ2
.

For 0 < rþ < rþ1
, deficit angles for different values of the

nonlinearity parameter are almost the same. In other words,
calculated values of the deficit angle are almost indepen-
dent of the variation of the nonlinearity parameter because
its effect is so small. rext is an extremum in which for rþ1

≤
rþ ≤ rþext

the deficit angle decreases where rþ increases,
while for rþ2

≥ rþ ≥ rþext
, the deficit angle is an increasing

function of rþ (see Fig. 11). Finally, for large values of rþ
(rþ2

≤ rþ), similar behavior as for the case of small values
of rþ (0 < rþ < rþ1

) is observed. Calculated values of the
deficit angle are almost independent of the nonlinearity
parameter and are almost the same. rþ1

, rþ2
, rþext

, and the
related deficit angle to this extremum are increasing
functions of the nonlinearity parameter. As for the effects
of dimensions, it is evident from plotted graphs that rþext

(and the related deficit angle) is a decreasing (increasing)
function of dimensions (see the right panel in Fig. 10).
These figures indicate that there exist regions in which
calculated values of the deficit angle for different dimen-
sions lead to almost the same result, and it is almost
independent of dimensions.
Here, we present a geometric interpretation for the

negative deficit angle. Considering a two-dimensional
plain, we can cut a segment of a certain angular size
and then sew together the edges to obtain a conical surface.
The deleted segment from the plan is known as a deficit
angle with positive values. Now, we imagine a new
situation when a segment is added to a new plane to obtain
a flat surface with a saddlelike cone (for more details, one
can see Fig. 2 in Ref. [45]). This added segment is

corresponding to a negative deficit angle (or surplus angle)
[45,46]. We should mention that, although the deleted
segment is bounded by the value of 2π, the added segment
is unbounded. Therefore, we conclude that the range of
deficit angles is from −∞ to 2π.

V. CLOSING REMARKS

In this paper, we supposed that the geometry and matter
field of spacetime come from the Lovelock gravity and
NED. At first, we considered a suitable static metric to find
horizonless magnetic solutions. We found that, for having
the real electromagnetic field, we should consider a lower
bound (ρ0) for the coordinate ρ. We discussed the geometric
properties of EN, GB, and TOL solutions and found that,
although these solutions have no curvature singularity,
there is a conical singularity at r ¼ 0 with a deficit angle
δϕ ¼ 8πμ, where one can interpret μ as the mass per unit
volume of the magnetic brane. In addition, we found that
both the NED and the Lovelock gravity do not affect the
asymptotic behavior of the solutions, and in other words,
obtained solutions are asymptotically AdS.We obtained the
deficit angle of the conical geometry and investigated the
effects of Lovelock gravity and NED. At first, calculated
values for the deficit angle showed that it is independent of
the GB and the TOL parameters. In other words, we found
that the Lovelock parameters do not affect the deficit angle.
This result comes from the fact that the value of second
derivatives of the metric function does not depend on the
Lovelock coefficients, which is the consequence of geo-
metric properties of the t ¼ constant and r ¼ constant
hypersurface (this hypersurface is a Ricci flat manifold).
This behavior is similar to the property of Ricci-flat black
holes in higher orders of the Lovelock gravity, in which

FIG. 11. δϕ=π vs rþ for l ¼ 1, q ¼ 4 and d ¼ 4. Left panel: Maxwell case (continuous line), ENEF case for β ¼ 5 (doted line), and
LNEF case for β ¼ 5 (dashed line), respectively. Right panel: Maxwell case (bold line), MC case for η ¼ 0.02 (doted line), η ¼ 0.05
(dashed line), and η ¼ 0.08 (continuous line).
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their horizons and conserved quantities of the black hole do
not depend on the Lovelock parameters.
We also investigated the effects of nonlinear electrody-

namics. Although both ENEF and LNEF branches are BI
type, they have different nature. We found that there is a
minimum value for the nonlinearity parameter where for β ≤
βmin the deficit angle was not real. This is because of the
behavior of the Lambert function that is present in the ENEF
branch and the logarithmic function that appears in the
LNEF branch. We also showed that, considering higher-
dimensional solutions, βmin may change, and for certain
dimensions, the deficit angle is real for arbitrary β
(βmin < 0). We found that the deficit angle is an increasing
function of the nonlinearity parameter in ENEF, whereas for
LNEF, it showed the opposite behavior. We also saw that
increasing the charge parameter leads to increasing βmin,
while for increasing rþ, the value of βmin decreased.
Looking at the behavior of the deficit angle vs rþ, we

found that there is an rþmin
, where for rþ ≥ rþmin

, the deficit
angle is real valued. Moreover, we found that for small
values of the nonlinearity parameter the deficit angle is only
an increasing function of rþ, whereas for an increasing
value of β, there will be rþext

in which for rþmin
≤ rþ ≤ rþext

the deficit angle is a decreasing function of rþ, and for
rþ ≥ rþext

it increases as rþ increases.
The next step was devoted to introducing spinning

magnetic branes, which are horizonless. We found that
for rotating magnetic branes there is an electric field in
addition to the magnetic one. We employed the Gauss law
and the counterterm method to calculate the electric charge,
finite mass, and angular momentum of rotating magnetic
brane solutions. We found that the electric charge is
proportional to the rotation parameters, and it vanishes
for the static solutions (Ξ ¼ 1). We should note that
vanishing the electric charge for Ξ ¼ 1 is due to the fact
that the electric field, Ftr, vanishes for the static solutions.
As one can see for the weak nonlinearity power, the

obtained deficit angle for different theories of nonlinearity
has different values compared to the Maxwell theory. One
may argue that, for large values of β, the obtained values for
the deficit angle should lead to those of the Maxwell theory
and support this statement with fact that for large values of
β these two electromagnetic fields become Maxwell theory.
This idea is an acceptable one, when we are only dealing
with the electromagnetic fields. But in calculation of the
deficit angle, we are using the second derivation of the
metric function. Because of different structures of nonlinear
theories (logarithmic and exponential ones), it is most
likely that this property of these two nonlinear electrody-
namics (for large values of β, they lead to the Maxwell
theory) is not preserved, and therefore the obtained values
are different. In other words, one may expect to see
different values for the deficit angle even for large values
of the nonlinearity parameter, and they are not necessarily
the same as Maxwell ones. It means that, although these

two types of nonlinear theory are BI type and for
β⟶∞ they lead to the same result, they are completely
different theories with their different characteristics and
properties.
In addition, we found that the plotted graph for the

Maxwell theory presents a divergency that is due to root(s)
of f00. While for considering nonlinear theories, the
divergency vanishes, and calculated values of the deficit
angle and plotted graphs showed no divergency. In other
words, in the process of going from a linear theory
(Maxwell) to a nonlinear theory (logarithmic form or
exponential one), calculated values of the deficit angle
will be divergence free, and it has smooth behavior.
Therefore, considering nonlinear theories changes proper-
ties of solutions and solves the problems regarding the
linear theory that is the primary motivation of considering
nonlinear electrodynamics. It is notable that considering
nonlinear theories puts some restriction on values. In other
words, there is a region in which the calculated values of
the deficit angle are not real. But this region is not where
the divergency of the Maxwell theory exists. In other
words, by considering a suitable value of the nonlinearity
parameter, one can cover regions in which the Maxwell
theory has divergency.
Later, we investigated the effects of nonlinearity as a

correction. We found that, despite other two nonlinear
theories (logarithmic and exponential forms), deficit angle
of MC theory is always a real value function, and there is no
region in which the deficit angle is imaginary. Plotted graphs
of this theory also showed that variation of the nonlinearity
parameter is only effective in a region (rþ1

≤ rþ ≤ rþ2
), and

in other regions (rþ1
≥ rþ, rþ ≥ rþ2

), it is almost indepen-
dent of this variation. The same behavior was seen for the
effects of dimensions as well. It was shown that for small and
large values of rþ the effect of the nonlinearity part decreases
rapidly (almost vanishes) and the structure of magnetic
branes (conelike) is similar to the Maxwell theory. On the
other hand, for small values of the correction parameter, not
only did it not solve the divergency of the Maxwell field, but
it also added another divergency to it. In other words, two
divergencies in the case of the very weak correction
parameter were seen in MC theory. This shows the fact
that this theory of nonlinearity and its deficit angle are quite
sensitive to the modification of the correction parameter.
This sensitivity is stronger even for small values of the
correction parameter. Although for some regions the calcu-
lated values of the deficit angle are almost the same as the
one for the Maxwell theory, there is an effective range in
which nonlinearity (correction) will be dominant and has the
most contribution in the deficit angle.
Other interesting results were the existence of the

negative, vanishing and divergences values for the deficit
angle. The positive deficit angle is representing a conelike
structure for the object, whereas the negative deficit angle is
denoted as an extra angle that is known as a surplus angle
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[45,46]. This extra angle changes the shape of the object
into a saddlelike cone.
Finally, it is worthwhile to think about the physical

properties of deficit angle as well as the surplus one. In
addition, one may investigate the possible wormhole
solutions [47] of the mentioned models. These works are
under examination.
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