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We study the vacuum-subtracted von Neumann entropy of a segment on a null plane. We argue that for
interacting quantum field theories in more than two dimensions, this entropy has a simple expression in terms
of the expectation value of the null components of the stress tensor on the null interval. More explicitly,
ΔS ¼ 2π

R
dd−2y

R
1
0 dxþgðxþÞhTþþi, where gðxþÞ is a theory-dependent function. This function is con-

strained by general properties of quantum relative entropy. These constraints are enough to extend our recent
free field proof of the quantum Bousso bound to the interacting case. This unusual expression for the entropy
as the expectation value of an operator implies that the entropy is equal to the modular energy, ΔS ¼ hΔKi,
where K is the modular Hamiltonian. We explain how this equality is compatible with nonvanishing ΔS.
Finally, we explicitly compute the function gðxþÞ for theories that have a gravity dual.
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I. INTRODUCTION

In a recent paper [1], we proved the Bousso bound, or
covariant entropy bound [2],

ΔS ≤
A − A0

4Gℏ
; ð1Þ

for light sheets with initial area A and final area A0 [3].1 The
proof applies to free fields, in the limit where gravitational
backreaction is small, Gℏ → 0, so that the change in the
area is of first order in G.
Though this regime is limited, the proof is interesting.

No assumption is needed about the relation between the
entropy and energy of quantum states, beyond what
quantum field theory already supplies. Conversely, this
suggests that quantum gravity may determine some proper-
ties of local field theory in the weak gravity limit.
In the present paper, we will generalize our proof to

interacting theories. We will continue to work in the weakly
gravitating regime. In the course of this analysis, we will
establish a number of interesting properties of the entropy
and modular energy on finite planar light sheets, for general
interacting theories.
In the free case, we defined the entropy as the difference

of two von Neumann entropies [8,9]. The relevant states are
the reduced density operators of an arbitrary quantum state
and the vacuum, both obtained by tracing over the exterior
of the light sheet. Following Wall [10], we were able to
work directly on the light sheet.

Let us recall the structure of the proof in the free case.
Being a very general result, the positivity of the relative
entropy [11] implies thatΔS≤ΔK, whereΔK is the vacuum-
subtracted expectation value of the modular Hamiltonian
operator2 [8]. For free theories, themodular energy is found to
be given by an integral over the stress tensor,

ΔK ¼ 2π

ℏ

Z
dd−2y

Z
1

0

dxþgðxþÞTþþðxþ; yÞ: ð2Þ

Here xþ is an affine parameter along the null generators,
which can be scaled so that the null interval has unit length.
The function g is given by

gðxþÞ ¼ xþð1 − xþÞ: ð3Þ

(Ford ¼ 2, g takes this formalso in the interacting case; but as
we shall see, in higher dimensions it will not.)
By Einstein’s equation, the area difference ΔA ¼ A − A0

is also given by a local integral over the stress tensor, plus a
term that depends on the initial expansion of the light rays.
The latter must be chosen so that the expansion remains
nonpositive everywhere on the null interval. This is the

1The search for a holographic entropy bound in general
spacetimes was inspired by [4–6]; see [7] for a review.

2The modular Hamiltonian K is the logarithm of the vacuum
density matrix restricted to the region under consideration: K ¼
− log ρ0. For any state ρ1, the modular energy is the expectation
value of K minus the vacuum expectation value: ΔK≡
TrðKρ1Þ − TrðKρ0Þ. K is defined up to an additive constant,
which can be fixed by requiring that the vacuum expectation
value of K is zero, such that ΔK ¼ hKi. Similarly, ΔS ¼
−Trðρ1 log ρ1Þ þ Trðρ0 log ρ0Þ is the difference between the
entropy for the state ρ1 under consideration and the vacuum ρ0.
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“nonexpansion condition” that determines whether a null
hypersurface is a light sheet. Equations (2)–(3), combined
with Einstein’s equation and the nonexpansion condition,
imply that ΔK ≤ ΔA=4Gℏ.
To generalize this proof to interacting theories, a number

of difficulties must be addressed. Wall’s results do not apply,
so the entropy and modular Hamiltonian cannot be defined
directly on the light sheet. Instead, we must consider spatial
regions that approach the light sheet. The positivity of the
relative entropy, ΔK − ΔS ≥ 0, holds for every spatial
region [8], so it could still be invoked. However, it is no
longer useful; for spatial regions,ΔK is highly nonlocal, and
we are unable to compute it before taking the null limit.
Instead, we benefit from a new simplification, which

happens to arise precisely in the case to which our previous
proof did not apply, namely for interacting theories in
d > 2.3 In this case, the entropy ΔS must be equal to the
modular energy ΔK in the null limit. To show this, we
recall that the von Neumann entropy is analytically
determined by the Rényi entropies. The nth Rényi entropy
is given by the expectation value of twist operators inserted
at the two boundaries of the spatial slab. The approach to
the null limit can thus be organized as an operator product
expansion. We argue that, in the limit, the only operators
that contribute to ΔS have twist d − 2, and that for
interacting theories in d > 2, there is only one such
operator. This implies thatΔS becomes linear in the density
operator, and hence [12]

ΔK − ΔS → 0 ð4Þ
in the null limit.
The unique twist 2 operator is the stress tensor. This

implies a second key result:

ΔS ¼ 2π

ℏ

Z
dd−2y

Z
1

0

dxþgðxþÞTþþðxþ; yÞ: ð5Þ

Together with Eq. (4), this extends the validity of Eq. (2)
to the interacting case: the modular energy is given by a
g-weighted integral of the stress tensor.
These arguments do not fully determine the form of the

function gðxÞ. For interacting conformal field theories with
a gravity dual [13], we are able to compute gðxÞ explicitly
from the area of extremal bulk surfaces [14,15].4 For d > 2,

we find that g differs from the free field case which was
given in Eq. (3).
However, our proof [1] of the Bousso bound did not

depend on Eq. (3). Rather, it is sufficient that g satisfies a
certain set of properties. We show that these properties hold
in the interacting case. In particular, the key property���� dg

dxþ

���� ≤ 1 ð6Þ

can be established by considering highly localized excita-
tions and exploiting strong subadditivity. This completes
the extension of our proof to the interacting case.
Outline This paper is organized as follows. Sections II

and III contain the new results sufficient to prove the
Bousso bound in the interacting case (in the weakly
gravitating limit). In Sec. II we consider the lightlike
operator product expansion of the defect operators that
compute the Rényi entropies. We derive Eqs. (4)–(5), thus
recovering a key step in the free field proof: the local form
of the modular energy, Eq. (2). We further constrain the
modular energy in Sec. III, where we establish Eq. (6) for
interacting fields. All remaining parts of the proof extend
trivially to the interacting case.
In Secs. IVand V, we explore our intermediate results for

the entropy and modular energy on null slabs, which are
of interest in their own right. In Sec. IV, we compute theΔS
explicitly for interacting theories with a bulk gravity dual.
This determines gðxþÞ for these theories. For d > 2, we
find that gðxþÞ differs from the free field result. The
approach to the null limit is studied in detail for an explicit
example in Appendix A.
In Sec. V, we examine the vanishing of the relative

entropy in the null limit, ΔS ¼ ΔK. This arises because the
operator algebra is infinite dimensional for any spatial slab,
whereas no operators can be localized on the null slab. Any
fixed operator is eliminated in the limit and thus cannot be
used to discriminate between states. Appendix B illustrates
this behavior in a discrete toy model.
In Sec. VI, we summarize our results and discuss a

number of open questions.

II. ENTROPIES FOR NULL INTERVALS
IN INTERACTING THEORIES

In this section, we will explore the properties of the
entropy of a quantum field theory on a spatial slab in the
limit where the finite dimension of the slab becomes
lightlike (null). We consider free and interacting conformal
field theories in d ≥ 2 spatial dimensions. (We will com-
ment on the nonconformal case at the end.) For interacting
theories in d > 2, we will find that the entropy is equal to
the modular Hamiltonian, and that both can be expressed as
a local integral over the stress tensor.
First, we will compute the Rényi entropies first. The nth

Rényi entropy SnðAÞ ¼ ð1 − nÞ−1 log TrρnA associated with

3Our original proof applies to theories for which the algebra
of observables is nontrivial and factorizes between null gener-
ators. This includes free theories but also interacting theories
in d ¼ 2 [10]. For d ¼ 2, the area is the expectation value
of the dilatonlike field Φ that appears in the action as
1

16πG

R
d2xΦðxÞRþ � � �. If the d ¼ 2 theory arises from a Kaluza

Klein reduction of a higher dimensional theory, then Φ is the
volume of the compact manifold.

4Note that the bound we prove concerns light sheets in the
interacting theory when it is weakly coupled to gravity, not light
sheets in the dual bulk geometry.

BOUSSO et al. PHYSICAL REVIEW D 91, 084030 (2015)

084030-2



a spatial region A can be computed by taking the expect-
ation value of a defect operator in a theory, which we
denote by CFTn, obtained from taking n copies of a single
CFT. The operator in question is a codimension 2 defect
operator localized on the boundary ∂A of a spatial region A
in the full Euclidean theory. In other words, the second
orthogonal direction to the operator is Euclidean time. The
defect operator is such that when we go around it, the
various copies of the original CFT are cyclically permuted.
In other words, an operator ϕkðxÞ defined on the kth CFT is
mapped to ϕkþ1ðxÞ on the ðkþ 1Þth CFT, and ϕnðxÞ is
mapped to ϕ1ðxÞ; see Fig. 1.5 This operator implements the
boundary conditions for the replica trick [16,17].
To study the property of the lightlike limit of entangle-

ment entropy, we will first employ the replica trick in
Euclidean signature. We then analytically continue them
to Lorentzian time. Finally, we take the lightlike limit. In this
limit, we expect to have an operator product expansion. This
expansion differs from the standard Euclidean operator
product expansion in two respects. First, we are approaching
the lightlike separation,where the operators have zerometric
distance but do not coincide, instead of approaching the
coincident point along a purely spacelike displacement.
Second, in d > 2 dimensions, the two operators are
extended and nonlocal operators defined at a point.
Despite these differences, we expect that there is a kind
of operator product expansion that is applicable in this case.
To our knowledge, the systematics of operator product

expansions of extended operators in the lightlike limit
has not been explored. For the remainder of this section,
we will make reasonable physical assumptions for the
form of these operator product expansions. Operator
product expansions for spacelike regions were consid-
ered in [18,19].
First, we recall the form of the lightlike operator product

expansion for local operators. We will take the limit x2 → 0

with xþ ≡ x0 þ x1 held fixed. The expansion of two scalar
operators has the form

OðxÞOð0Þ ∼
X
k

jxj−2τOþτkðxþÞskOk;sk : ð7Þ

In this equation, the operator Ok;sk has spin sk, scaling
dimension Δk and twist τk ≡ Δk − sk; and τO is the twist of
the operator O. The twist governs the approach to the
lightlike limit. For finite xþ, we sum over all of the
contributions with a given twist.
In free field theories, there are infinitely many higher spin

operators with twist d − 2. These operators contain two free
fields, each with twist 1

2
ðd − 2Þ. In an interacting theory, all

operators with spin greater than 2 are expected to have twist
strictly larger than d − 2. Furthermore, the twist is expected
to increase as the spin increases [20] (see [21] for a more
recent discussion). The only operator with spin 2 and twist
d − 2 is the stress tensor, unless we have two decoupled
theories. Operators with spin 1 include conserved currents.
Scalar operators and operators with spin 1=2 can have twist
τ ≥ 1

2
ðd − 2Þ, with equality only for free fields.

As noted above, for d > 2 the defect operators in
question are extended along some of the spatial dimen-
sions. We now discuss features of the operator product
expansion in this case. Consider first the standard
Euclidean operator product expansion (OPE) (as opposed
to the lightlike one). For such operators, the OPE is
expected to exponentiate and become an expansion of
the effective action for the resulting defect operator. In
general, new light degrees of freedom could emerge when
the two defect operators coincide. However, in our case the
two twist operators annihilate each other, leaving only
terms that can be written in terms of operators of the
original theory. In other words, we expect

DðxÞDð0Þ∼
X

exp

�Z
dd−2y

�X
k

1

jxjd−2−Δk
Okðx¼0;yÞ

��

ð8Þ

where y denotes the transverse dimensions and Ok denotes
local operators on the defect at x ¼ 0. Thus the expansion is
local in y. We can view this equation as an expansion of the
effective action for the combined defect (consisting of both
defects close together) by integrating out objects with a
mass scale of order 1=jxj.
The leading term in Eq. (8) is given by the identity

operator and contributes a factor of Ay=jxjd−2 in the
exponent (with a coefficient that depends on n), where
Ay is the transverse area. This is the expected form of
Trρn0 ¼ e−ðn−1ÞSn , which gives the vacuum Rényi entropies
for the interval. In the vacuum case, all other operators have
vanishing expectation values. This contribution cancels
when we compute the difference ΔS of the von
Neumann entropies of a general state and the vacuum,
so we will not consider it further.
When we take the lightlike limit of the Rényi defect

operators, we expect to have an expansion which looks
both like Eq. (7) and like Eq. (8). In other words, we expect
the expression to be local along the y direction as in Eq. (8),

D
φ

D
φ

i
i+1

Α

FIG. 1 (color online). The Rényi entropies for an interval A
involve the two point function of defect operators D inserted at
the end points of the interval. An operator in the ith CFT becomes
an operator in the ðiþ 1Þth CFT when we go around the defect.

5These defect operators are oriented: there is aDþ which maps
ϕi → ϕiþ1 and a D− which maps ϕi → ϕi−1. For an interval, we
have the insertion of Dþ on one end and D− at the other end.
We will not explicitly discuss this distinction.
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but with terms that are nonlocal along the xþ direction as in
Eq. (7). In principle, along the xþ direction, we can have
terms which are very nonlocal. The operator Okð0; yÞ in
Eq. (8) is replaced by an operator of the form on the right-
hand side of Eq. (7):

DðxÞDð0Þjlightlike
∼ exp

�Z
dd−2y

�X
k

jxj−ðd−2ÞþτkðxþÞskOk;sk

��
: ð9Þ

Note that the operators which appear in Eq. (9) are the
operators of CFTn [18,19]. The generic form of these
operators is

O ¼ O1O2 � � �On; ð10Þ

whereOk is an operator on the kth copy of the original CFT.
Some of the factors in Eq. (10) could be the identity, and the
simplest operatorswe consider have only one factorwhich is
not the identity. Performing the replica trick, the operators
with a single factor that appear in the OPE of the two defect
operators contribute to the entropy proportionally to an
operator in the original CFT. Specifically, we find

Ssingle ¼ hOSi: ð11Þ

Such contributions are linear in the density matrix, and
therefore do not give rise to a nonzero value of ΔK − ΔS.
The reason is that the operator on the right-hand side is
necessarily equal toK, sinceK is the only operator localized
to the region whose expectation value coincides with ΔS
to linear order for any deviation from the vacuum state [12]
(see also [22]).

A. The d > 2 interacting case

We now argue that for interacting theories in d > 2, all
operators that contribute to Eq. (9) are of this simple type:
they all have only one nontrivial factor. In fact, only the
stress tensor contributes.
Clearly, operators with τ > d − 2will not contribute; this

includes all higher spin operators in an interacting theory.
Conserved spin 1 currents have twist τ ¼ d − 2, but cannot
appear because the defect operators are uncharged. Next,
consider possible contributions from operators with twist
1
2
ðd − 2Þ < τ ≤ d − 2. These operators could appear in

representations which are not symmetric and traceless.6

However, since the twist operator is invariant under trans-
verse rotations, these operators must appear in pairs; their
combined twist would be bigger than d − 2.
Thus we can focus on the operators with spin zero.

An operator of CFTn consisting of a single-copy scalar

operator with twist in the range 1
2
ðd − 2Þ < τ ≤ d − 2

would contribute to the entropy. This contribution will
generically be divergent in the lightlike limit to ΔS, which
is state dependent. In any case, single-copy operators
would give an equal contribution to ΔK, so these operators
do not contribute to ΔK − ΔS.7 On the other hand, if we
had two operators in the range 1

2
ðd − 2Þ < τ ≤ d − 2 on

different CFT copies inside CFTn, the total twist would be
higher than d − 2 and we would not get a contribution in
the lightlike limit.
This leaves the stress tensor, which has τ ¼ d − 2

and can contribute in the null limit. However, unless d ¼ 2
(in which case τ ¼ 0), only a single factor can contribute.
Therefore, ΔS ¼ ΔK for interacting theories in d > 2.
Notice that throughout this discussion, we have taken the

coupling fixed and then taken the null limit. In particular, if
we have a weakly coupled theory, we will get corrections to
the result from free field theory which at each fixed order in
perturbation theory will contain logs. One must resum the
logarithms first, before taking the null limit, to recover the
result that only the stress tensor survives.
Returning to the Rényi entropies, we conclude that in

interacting conformal theories, the only operator that can
contribute to the expansion in the lightlike limit is the stress
tensor. All of its descendants contribute as well, so Eq. (9)
becomes a Taylor expansion around xþ ¼ 0. Discarding the
contribution from the identity operator, which will drop out
of ΔS, we get

DnðxÞDnð0Þjlightlike
∼ exp

�
−ðn − 1Þ2π

Z
dd−2y

×
Z

1

0

dxþgnðxþÞTþþðx− ¼ 0; xþ; yÞ�
�
: ð12Þ

In this expression, we have set the size of the interval
Δxþ ¼ 1 and extracted an overall factor of n − 1 from the
exponent. This factor accounts for the vanishing of the
exponent for trivial Rényi operators when n ¼ 1. We have
also replaced the sum over descendants by an integral over
a function, gn, determined by matching with a Taylor

6Examples of such operators are fermion fields, or antisym-
metric tensors in four dimensions.

7In some cases, these contributions are not present because of
symmetry reasons. An example is the Wilson-Fisher fixed point
at small ϵ ¼ 4 − d. In this case, the dimension of ϕ is
1
2
ðd − 2Þ þOðϵÞ. However, due to the ϕ → −ϕ symmetry, this

operator does not appear in the OPE of the defect operators
involved in the replica trick. Another example is the Klebanov-
Witten theory [23]. These are four-dimensional theories with
operators of dimension 3=2 < 2. However, these operators carry
aUð1Þ charge and cannot appear in this OPE. A relevant question
here is whether there are theories with scalars with twists in this
range which are not charged under any symmetry. If these
operators are present, then our definition for ΔS will become
divergent and will need to be modified.
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expansion of the operator T. The integral is restricted inside
the null interval because operators outside this range would
not commute with the operators that are spatially separated
from the interval.
The difference of von Neumann entropies of a general

state and the vacuum is then given by analytic continuation:

ΔS ¼ lim
n→1

ð1 − nÞ−1 loghDnðxÞDnð0Þi

¼ 2π

Z
dd−2y

Z
1

0

dxþgðxþÞTþþðx− ¼ 0; xþ; yÞ

¼ ΔK: ð13Þ

The function g is as yet undetermined and will be further
discussed in the next section.
We expect the same holds for nonconformal theories

with an interacting UV fixed point. For theories with a free
UV fixed point, even if we expect that the modular
Hamiltonian K has the same general form in terms of
the stress tensor, whether ΔK ¼ ΔS or not would generi-
cally depend on further details. For relevant deformations
of a free UV fixed point we expect to have ΔK ≥ ΔS as in
the free theories, while we expect ΔK ¼ ΔS for asymp-
totically free theories.8

B. The case of free fields or d ¼ 2 interacting fields

In free field theory, or if d ¼ 2, states with ΔS < ΔK are
known to exist on a null slab [1]. We close this section by
examining why the above argument for ΔS ¼ ΔK does not
apply in these cases.
If the operator (10) which appears in Eq. (9) contains

more than one nontrivial factor, it can give rise to a
contribution to the entropy which is not equal to the
expectation value of any operator in the original CFT.
These contributions are interesting because they make
ΔS < ΔK possible. In a free field theory, such operators
arise from insertions of the fundamental field ϕ in one copy
and another field ϕ in another copy. They have twist τ ¼
d − 2 and can contribute in the lightlike limit.
In an interacting theory, all such operators gain a nonzero

anomalous dimension. In particular, in a unitary theory, the
field ϕ gains a positive anomalous dimension and so will
not contribute in the null limit.9 However, in a d ¼ 2

interacting theory, multiple copies of the stress tensor can
appear. Since τ ¼ d − 2 ¼ 0, the total twist will remain
equal to d − 2 no matter how many times the stress tensor
appears in (10). Thus, in d ¼ 2, we can have ΔS < ΔK
even for interacting theories.

III. PROPERTIES OF gðxÞ AND PROOF
OF THE BOUND

In this section, we complete the proof of the Bousso
bound by establishing sufficient properties of the function
gðxÞ in Eq. (13). We begin with a list of simple properties
that are expected on physical grounds. Near each boundary
of the slab, the entanglement structure is like the origin of
Rindler space, and gðxþÞ ¼ xþ is known to hold for
Rindler space from the Bisognano-Wichmann theorem
[24]. Hence g must satisfy

gð0Þ ¼ 0; g0ð0Þ ¼ 1; gð1 − xþÞ ¼ gðxþÞ; ð14Þ

where the last relation arises from CPT symmetry. In the
remainder of this section, we will derive the remaining
property crucial to the proof of the bound: jg0j ≤ 1.
Additional conditions arise from the theory of modular

Hamiltonians. Let us define an operator on the global
Hilbert space which we call the full modular Hamiltonian:

K̂V ¼ KV − KVc; ð15Þ
where Vc is the region complementary to V. For example, if
V is a Rindler wedge, then K̂V is proportional to the boost
generator. It is known that these Hermitian operators are
monotonous under inclusion [25], that is

K̂V − K̂W ≥ 0 ð16Þ
is a positive definite operator for any subregion W⊆V.
This property can be seen as a consequence of monoto-
nicity of relative entropy and strong subadditivity of the
entropy [26]. Let us first recall the definition of relative
entropy Sðρjρ0Þ≡ Trðρ log ρÞ − Trðρ log ρ0Þ. This is pos-
itive for any two density matrices. Relative entropy can
also be rewritten as

Sðρjρ0Þ ¼ ΔK − ΔS ð17Þ
where ΔS and ΔK were defined in the introduction. The
positivity of relative entropy implies that ΔS ≤ ΔK.
Additionally, the relative entropy satisfies a monotonicity
property. Suppose we have two regionsW⊆V and we have
two density matrices for the big region, ρV and ρ0V . We can
consider the restrictions of these density matrices to the
subregion W, calling them ρW and ρ0W . Monotonicity is the
statement that SðρW jρ0WÞ ≤ SðρV jρ0VÞ.
In the present case, we obtain two inequalities, one from

W⊆V and one from Vc⊆Wc,

8In asymptotically free theories, the coupling runs as g2 ∝
1= log μ as a function of the scale μ. The OPE is not given by a
simple power behaviour but we need to integrate the anomalous
dimensions of a range of scales as exp½− R dμ

μ γðμÞ�. Since
γðμÞ ∼ g2ðμÞ ∝ 1= log μ, this integral diverges at short distances.
Therefore, operators with nonzero anomalous dimensions do not
contribute in the null limit, which involves going to very high
scales. So we also expect Eq. (13) to hold.

9In gauge theories, the fundamental fields are not gauge
invariant on their own, and should be supplemented with Wilson
lines as interactions are turned on. These Wilson lines end at the
positions of the defect.
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ΔKV − ΔSV ≥ ΔKW − ΔSW; ð18Þ

ΔKWc − ΔSWc ≥ ΔKVc − ΔSVc; ð19Þ

where we have rewritten the relative entropies using (17).
Now we add these inequalities and separate the terms
corresponding to the vacuum ρ0 and the ones correspond-
ing to a state ρ1 different from the vacuum. The terms
involving entropy are

S0V − S0Vc þ S0Wc − S0W ¼ 0 ð20Þ

the combination of which vanishes by the purity of the
vacuum, and

S1V − S1Vc þ S1Wc − S1W ≥ 0 ð21Þ

which is positive due to strong subadditivity.10 The
terms with modular Hamiltonians can be grouped into
hK̂V − K̂Wi1 and hK̂V − K̂Wi0. This last term is zero since
the full modular Hamiltonian is a symmetry generator
which annihilates the vacuum.11 Hence we end up with the
inequality

hK̂V − K̂Wi1 ≥ S1V − S1Vc þ S1Wc − S1W ≥ 0: ð22Þ

This holds for any global state ρ1 and implies (16).
Going further, Eq. (16) implies the operator inequality

KV − KW ≥ KVc − KWc and hence

hKVi1 − hKWi1 ≥ hKVci1 − hKWci1: ð23Þ

Moreover, K̂V j0i ¼ 0 implies K0
V ¼ K0

Vc , and similarly,
K0

W ¼ K0
Wc . Subtracting both of those equations, we now

have

ΔKV − ΔKW ≥ ΔKVc − ΔKWc: ð24Þ

In the null limit, this property is inherited by the full
modular Hamiltonians of null slabs.
Now, let us consider a state whose stress energy is positive

and highly concentrated near some xþ ¼ x̄þ ∈ W. Such
states can be produced by taking a fixed state and boosting it.
We expect that in this limit the state outside the slab (in the
region Wc, and hence also in Vc) is indistinguishable from
the vacuum, so that ΔKVc → 0, ΔKWc → 0. For such states,
Eq. (24) reduces to ΔKV − ΔKW ≥ 0, and since both
modular energies are positive,

ΔKV

ΔKW
≥ 1: ð25Þ

Now let V be a slab with xþ ∈ ½0; 1þ ϵ� and let W ⊂ V
be a slab with xþ ∈ ½0; 1�. The modular Hamiltonian for
slabs with nonunit affine length Δxþ can be obtained by a
simple coordinate transformation:

ΔK ¼ 2π

ℏ

Z
dd−2y

Z
Δxþ

0

dx̂þ Δxþgðx̂þ=ΔxþÞTþþðx̂þ; yÞ:

ð26Þ

Hence, the modular energies of the highly localized state
satisfy

ΔKV

ΔKW
¼ ð1þ ϵÞgðx̄þ=ð1þ ϵÞÞ

gðx̄þÞ : ð27Þ

In the limit as ϵ → 0, Eq. (25) now implies

dg
dxþ

≤
g
xþ

: ð28Þ

Now we repeat the argument with the region V as the
rindler region with xþ ∈ ½0;þ∞�, and W as the slab with
xþ ∈ ½0; 1�. For this region V the function g ¼ xþ. For a
state with a concentrated stress tensor we obtain

gðxþÞ
xþ

≤ 1: ð29Þ

Finally we conclude that

−1 ≤
dg
dxþ

≤ 1; ð30Þ

where the first inequality is obtained from the gðxÞ ¼
gð1 − xÞ property (14).
To prove the Bousso bound, we consider without loss of

generality the null slab xþ ∈ ð0; 1Þ. We define FðxþÞ≡
xþ þ gðxþÞ, which obeys Fð0Þ ¼ 0 and Fð1Þ ¼ 1 by
Eq. (14). We also have F0 ≥ 0 everywhere, by Eq. (30).
These properties of the modular Hamiltonian suffice to
show that the area difference along the light sheet bounds
the modular energy: ΔA

4GN
≥ ΔK (see the discussion after

Eq. (4.10) in Ref. [1]). As usual, positivity of the relative
entropy implies that ΔS ≤ ΔK (with equality holding for
d > 2 interacting theories). This completes the proof of the
Bousso bound for both free and interacting theories, in the
weakly gravitating limit.

IV. HOLOGRAPHIC COMPUTATION OF
ΔS FOR LIGHT SHEETS

In this section, we consider interacting quantum
field theories that have a gravity dual. In this case, the

10The strong subadditivity statement we are using is
SðAÞ þ SðBÞ ≤ SðA∪CÞ þ SðB∪CÞ where A; B and C are three
disjoint systems. This property is sometimes also called weak
monotonicity.

11This property follows from the definition KV ¼ − logðρ0VÞ
and the Schmidt decomposition of the vacuum state across
HV ⊗ HVc .
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Ryu-Takayanagi formula [14,15] allows us to compute the
entropy ΔS in the null limit. This will confirm our earlier
demonstration that ΔS ¼ ΔK, and will determine gðxþÞ
explicitly for such theories. First, we consider a CFT; later,
we comment on the nonconformal case. Appendix A
discusses the approach to the null limit in greater detail.
We write the boundary metric as ds2 ¼ −dxþdx− þ d~y2.

Let us first consider a spatial strip, extended along the y
directions. One end of the interval is at xþ ¼ x− ¼ 0 and
the other end is at xþ ¼ −x− ¼ Δxþ, a fixed constant. The
bulk metric can be written as

ds2 ¼ −dxþdx− þ dy2 þ dz2

z2
: ð31Þ

The minimal surface solution was found in [27,28]. It is
given by

xþ ¼ −x− ¼ Δxþ

2

udFð1
2
; d
2ðd−1Þ ;

3d−2
2ðd−1Þ ; u

2ðd−1ÞÞ
Fð1

2
; d
2ðd−1Þ ;

3d−2
2ðd−1Þ ; 1Þ

;

z ¼ Δxþ

2

ud
Fð1

2
; d
2ðd−1Þ ;

3d−2
2ðd−1Þ ; 1Þ

¼ zmaxu; ð32Þ

Avacuum ¼ Ay

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−dxþdx− þ dz2

p

zd−1
; ð33Þ

where F is the usual hypergeometric function,12 and u ∈
ð0; 1Þ is a parameter describing the first half of the minimal
surface, which is symmetric around xþ ¼ Δxþ=2. The
maximum zmax of z is achieved for u ¼ 1. Here Ay is the
area in the y directions. The formal expression for the area
is UV divergent, but, as usual, we get a finite remaining
contribution.
We now consider a boosted interval. For that purpose we

apply a combination of a boost in the x� plane and a
dilation that transforms

xþ → xþ; x− → η2x−; z → ηz; with η → 0:

ð34Þ

This transformation takes the original spacelike interval to a
null interval stretched along the xþ direction. The proper
length of the interval approaches zero. We also see that the
surface is approaching the anti–de Sitter (AdS) boundary,
in the sense that the largest value of z is going to zero as
z ∼ η → 0. Under these circumstances we find that the
expression of the renormalized area (after subtracting the
cutoff dependent piece) goes to minus infinity as 1=ηd−2.
This is the expression for the vacuum entanglement entropy
for the interval.

Let us now consider a nonvacuum state. We expect that
the minimal area surface will continue to approach the AdS
boundary as we take the null limit. Near the boundary, the
metric approaches the AdS metric plus some small fluc-
tuations. We can parametrize the metric as

ds2 ¼ dz2 þ dxαdxβðηαβ þ hαβÞ
z2

;

hαβ ∼ tαβðxÞzd þ oðzdþ1Þ: ð35Þ

Now the minimal surface action can be written as

A ¼
Z
dd−2y

1

zd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−dxþdx− þ dz2 þ zdtþþðdxþÞ2

q
þ � � �

ð36Þ

where we wrote the part of the action that does not go to
zero in the large boost limit, η → 0. More precisely, notice
that the first two terms inside the square root scale like η2,
while the last scales like ηd. We will assume that d > 2 and
return to the d ¼ 2 case later.

A. The case of d > 2

For d > 2, the last term in the square root is a small
perturbation and we can therefore expand the action. Due to
the factor of 1=zd−1 ∼ 1=ηd−1, the resulting first order term
gives a finite answer

A ¼ Avacuum þ
Z
dd−2y dxþ

ztþþ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− dx−

dxþ þ dz2

dxþ2

q ; ð37Þ

A − Avac ¼
zmax

2

Z
dd−2y dxþ tþþudðxþÞ; ð38Þ

where the first term is the vacuum contribution in Eq. (33).
We have also used that the vacuum contribution is larger
and determines the equations of motion for the surface to
the order we need in order to evaluate the second term. We
then see that the gþþ component of the metric gives a finite
contribution. By performing a similar expansion, we can
check that all other components of the metric do not
contribute in the null limit either. For this, it is important
to use (34) to see how various terms behave. As an
example, consider a component hyy in the metric. The
component contains a zd ∼ ηd which multiplies the whole
action that scales as η2−d. Since d > 2, such a term does not
contribute. In a similar way, we discard higher orders in the
expansion of the metric around z ¼ 0.
In conclusion, the only part of the metric that matters is

the first nonzero term in the expansion of hþþ. This first
order term is also the term that gives the expectation value
of the stress tensor,

12Its values at 1 can be written in terms of gamma functions:
Fð1

2
; d
2ðd−1Þ ;

3d−2
2ðd−1Þ ; 1Þ ¼

ffiffiffi
π

p
dΓð d

2ðd−1ÞÞ=Γð 1
2ðd−1ÞÞ.
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tþþ ¼ 16πGN

d
hTþþi; ð39Þ

where Tþþ is the value of the stress tensor (we have set the
AdS radius to unity). A similar expansion was performed in
[12].13 Using the solution (32), we can write (38) in the
form

ΔS ¼ ΔA
4GN

¼ 2π

Z
dd−2y

Z
Δxþ

0

dxþΔxþgðxþ=ΔxþÞ

× hTþþðxþ; y; x− ¼ 0Þi ð40Þ

with g defined parametrically by

gðvÞ ¼ ud

2Fð1
2
; d
2ðd−1Þ ;

3d−2
2ðd−1Þ ; 1Þ

;

v ¼
udFð1

2
; d
2ðd−1Þ ;

3d−2
2ðd−1Þ ;u

2ðd−1ÞÞ
2Fð1

2
; d
2ðd−1Þ ;

3d−2
2ðd−1Þ ; 1Þ

: ð41Þ

The function gðvÞ is plotted for several dimensions in
Fig. 2. Explicitly, we find gðvÞ ¼ vð1 − vÞ for d ¼ 2, and
in the limit d → ∞ the function converges to sinðπvÞ=π.
For small v, we obtain the result gðvÞ ¼ vþOðv2Þ.
We have thus obtained ΔS in terms of the expectation

value of an operator, namely a certain integral of Tþþ.
According to the general argument discussed in Sec. II, the
operator in the right-hand side is ΔK; we obtain ΔS ¼ ΔK.

Notice that the relation ΔS ¼ ΔK gives values of the
entropy on the light sheet that are very different from naïve
expectations. For example, consider a thermal state. The
entropy scales with the size of the interval as ðΔxþÞ2, rather
than the naïve (volume-extensive) entropy which grows
likeΔxþ and which applies in the large temperature regime.
Hence in this regime, we find ΔS is actually much greater
than the naïve entropy. To check in detail how the extensive
entropy for spatial regions turns into a term that goes as
ðΔxþÞ2 for null surfaces, we have computed the areas of
minimal surfaces in a black hole background. We find that
there is actually a phase transition into a different class of
extremal surface solutions asΔx− → 0. This is explained in
more detail in Appendix A.
We can now briefly discuss the situation in nonconfor-

mal field theories. If we add a relevant deformation to the
field theory, we are adding a scalar field in the bulk which
has a profile going like ϕ ∼ zΔ for small z. This affects the
metric at quadratic order via terms of the form ϕ2 ∼ z2Δ.
Such terms modify only the diagonal components of the
metric, and we have seen that as long as 2Δ > d − 2, such
terms vanish. The latter is precisely the unitarity condition
for nonfree scalar operators.14

B. The case of d ¼ 2

In two dimensions, it is still true that the minimal
surfaces (geodesics) approach the boundary, but it is no
longer true that we can treat the term involving gþþ in a
perturbative fashion because it scales in the sameway as the
other terms. This implies that the final answer is nonlinear
in Tþþ. This nonlinearity allows for ΔS < ΔK.
For simplicity, consider the special case of the theory at

finite temperature (or in Rindler space). Since it is related
by a conformal transformation to the plane, we can do all
the computations explicitly by a simple coordinate trans-
formation. The two point function of the twist operators is

hΦnðxÞΦnð0Þi ¼
1

½sinhðπ Δxþ
β Þ sinhðπ Δx−

β Þ�2Δn
ð42Þ

with x� ¼ τ � σ. This leads to the entropy [17]

S ¼ c
6
log

�
β2

π2ϵ2
sinh

�
π
Δxþ

β

	
sinh

�
π
Δx−

β

		
: ð43Þ

The vacuum case is given by the β → ∞ limit, or
S ¼ c

6
log ΔxþΔx−

ϵ2
. In the null limit Δx− → 0 we get

ΔSjΔx−¼0 ¼
c
6
log

�
β

πΔxþ
sinh

�
π
Δxþ

β

		
: ð44Þ
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FIG. 2 (color online). The functions gðvÞ in the expression for
the modular Hamiltonian of the null slab, for conformal field
theories with a bulk dual. Here d ¼ 2; 3; 4; 8;∞ from bottom to
top. Near the boundaries (v → 0, v → 1), we find g → 0,
g0 → �1, in agreement with the modular Hamiltonian of a
Rindler wedge. We also note that the functions are concave
(see Sec. IV). In particular, we see that jg0j ≤ 1, in agreement with
our general argument of Sec. III.

13The authors of [12] considered a general surface and then
expanded the metric to first order around the AdS metric. Here,
the argument is simpler because we only need the first order term
in the expansion of the metric near the boundary. Furthermore, we
only need to consider the gþþ component.

14The unitarity condition is 2Δ ≥ d − 2. For equality, we have
a free field in the boundary theory.
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This can be expanded as

ΔS ¼ c
6

�
x2

6
−

x4

180
þ � � �

�
; x ≪ 1; ð45Þ

ΔS ¼ c
6
½xþ constantþ � � ��; x ≫ 1; ð46Þ

where x ¼ πΔxþ=β. The first line is what we expect from
the expansion of terms involving operators of the form
Tþþ; ðTþþÞ2, possibly integrated at different points, replica
copies, etc. The last expression comes from resuming all
these operators. In this case, this agrees with what we
expect from the operator product expansion, since all these
operators have twist zero in d ¼ 2. The important point is
that operators on different replica copies survive the limit;
see Sec. II.
Note that the modular Hamiltonian is

ΔK ¼ 2π

Z
Δxþ

0

du u

�
1 −

u
Δxþ

	
Tþþ ¼ cx2

36
; ð47Þ

since Tþþ ¼ cπ
12β2

. This agrees with the first term of the
small x expansion in (45), but in general it gives something
larger than ΔS. This is particularly clear for x ∼ Δxþ

β ≫ 1,
and it can also be seen from the quartic correction in (45).
Therefore, in d ¼ 2, we get ΔS ≤ ΔK but we do not
get ΔS ¼ ΔK.
Since all these results follow from conformal symmetry,

it is clear that the gravity answer will reproduce them.
This computation was done in [28]; one can check that
the geodesics approach the boundary but Eq. (44) is
reproduced.

V. WHY IS ΔS ¼ ΔK ON NULL SURFACES?

The relationΔK ¼ ΔS is startling at first sight. It implies
that the relative entropy between any state and the vacuum,
SðρV jρ0VÞ ¼ ΔK − ΔS, vanishes in the lightlike limit. The
relative entropy is a statistical measure of how easy is to
differentiate between two states by making measurements.
In general, the probability of confounding two states by
making N measurements falls off exponentially no faster
than e−NSðρV jρ0VÞ (see e.g. [29]). If ΔK ¼ ΔS, then the
vacuum cannot be differentiated from any other state by
making measurements of operators localized to a null
surface. In other words, all states look the same as we
approach this surface.
A related puzzle is the following: it is a general

property of relative entropy that SðρV jρ0VÞ ¼ 0 implies
ρV ¼ ρ0V , but this in turn would give ΔK ¼ ΔS ¼ 0.
However, the prediction ΔS ¼ 0 is not what we have
found holographically.
In this section, we explain both of these puzzles by

noting that the quantities ΔS and ΔK are defined as limits

for vanishing Δx−. At finite Δx−, the states are distinguish-
able by operators included in the algebra AðΔxþ;Δx−Þ on
the causal development of the spatial interval, but as we
take the limitΔx− → 0, any fixed operator eventually drops
out from the algebra. No operator remains in the inter-
section of all algebras, ∩Δx−AðΔxþ;Δx−Þ ¼ 1.15 See
Fig. 3. The same reason explains how ΔS and ΔK can
be nonzero while the relative entropy is zero. This result
cannot be correct for states on a fixed algebra, but it is a
possibility for these quantities defined as limits on vanish-
ing algebras. We describe how this can be accomplished
using a toy model of an infinite chain of qubits in
Appendix B.
In general, the relation ΔK ¼ ΔS ≠ 0 could not have

been possible if the algebras for finite Δx− were not infinite
dimensional. This phenomenon requires the full QFT,
taking the UV cutoff to zero before taking Δx− → 0.
Otherwise, at finite Δx−, we would run out of operators
and find ΔK ¼ ΔS ¼ 0.
Let us briefly describe what is meant by a full quantum

field theory. A quantum field is an operator-valued dis-
tribution. In order to produce an operator acting on Hilbert
space, a quantum field ϕðxÞ has to be averaged by a smooth
function of compact support ϕα ¼

R
ddx αðxÞϕðxÞ. If αðxÞ

is smooth on a d-dimensional spacetime region, we are
guaranteed by the Wightman axioms that ϕα is a well-
defined operator whose domain contains the vacuum state.
The set of these operators where the support of αðxÞ is
included in a spacetime region V generates the algebra of
operators acting in V.16

(a) (c)(b)

FIG. 3 (color online). Operator algebras associated to various
regions. (a) Operator algebra associated to the domain of
dependence (yellow) of a spacelike interval. (b) The domain
of dependence of a boosted interval. (c) In the null limit, the
domain of dependence degenerates to the interval itself.

15Note that the operator Tþþ evaluated on the null interval
should not be considered as part of the algebra because it sends
states into non-normalizable states, even if we smear the operator
along the null interval and the transverse directions. Nevertheless,
the expectation value of this operator can be computed and can be
different in two different states.

16These are von Neumann algebras. There is a technical point
in that these algebras are better described as algebras of bounded
operators. Bounded operators can be obtained from ϕα by taking
the projectors in its spectral decomposition [30].
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We want to see if a fixed localized operator can be
defined for the null plane such that it remains in the
intersection of the algebras ∩Δx−AðΔxþ;Δx−Þ which
implement the null limit. The problem of whether the
domain of the test function α can be reduced to a spatial
region or a region on a null plane, as opposed to a
spacetime region, was studied in the past [31,32], mainly
in attempts to develop a precise mathematical foundation to
the usual canonical formalism of equal time commutation
relations (see also [10]). If ϕα is a well-defined operator, we
should have

∥ϕαj0i∥2 ¼ h0jϕ†
αϕαj0i

¼
Z
dx dy αðxÞ�αðyÞh0jϕðxÞ†ϕðyÞj0i<∞: ð48Þ

This condition on the two point function of the field
constrains its ultraviolet behavior.
The Fourier transform of the two point function with no

time ordering hϕ†ϕi is

θðp0Þθð−p2Þp
2s−2sþ−2s−
y p2sþþ p2s−−

ðpþp− þ p2
yÞd2−Δþs

; ð49Þ

where py is a polynomial in the transverse components.
To evaluate Eq. (48), we take the Fourier transform:

αðxÞ ¼
Z

dpþdp−dd−2py e−iðpþxþþp−x−þpyyÞαðpþ; p−;pyÞ:
ð50Þ

For αðxÞ with support on the surface x− ¼ 0, we have

αðpþ; p−; pyÞ ¼ αðpþ; pyÞ; ð51Þ

with αðpþ; pyÞ being independent of p− and falling off
to zero faster than any polynomial in pþ and py due to the
smoothness of αðxÞ. We have

∥ϕαj0i∥2 ∼
Z
p2<0;p0>0

dpþdp−dd−2py

×
p2s−2sþ−2s−
y p2sþþ p2s−− jαðpþ; pyÞj2

ðpþp− þ p2
yÞd2−Δþs

: ð52Þ

The test function makes the integral convergent for large
pþ and py. However, the integral may not converge for
large p−. The best chance we have for it to converge is
when s− ¼ 0. Power counting gives a convergent integral if

τ ¼ Δ − s <
d − 2

2
; ð53Þ

which is never the case for a unitary theory.

For free fields, we have Δ − s ¼ 1
2
ðd − 2Þ, but the field

obeys the wave equation so that instead of Eq. (49), we
have an expression localized on the mass shell p2 ¼ −p−
pþ þ p2

y ¼ 0. In this case, the denominator in Eq. (49) is
replaced by the delta function δðp2Þ. Eliminating pþ gives

∥ϕαj0i∥2 ∼
Z

dp−dd−2pyΘðp− þ p2
y=p−Þ

×
p2s−2sþ−2s−
y ðp2

y=p−Þ2sþp2s−− jαðp2
y=p−; pyÞj2

p−
:

ð54Þ

This integral in p− is logarithmically divergent for a free
scalar field with sþ ¼ s− ¼ 0, but converges for ∂þϕ and
its derivatives with sþ > s−. For a free spin 1=2 field, it
converges for the ψþ component (and derivatives). For a
Maxwell field tensor Fμν, we must again take the compo-
nent with s− ¼ 0 and sþ ¼ 1, that is, the components Fy;þ.
So only for free fields do we expect to have operators

localized on the null surface and ΔS ≠ ΔK for general
states. The localized operators can be nonlocal in the y
direction so that ΔS does not need to decompose into a
sum of contributions from each of the null lines.
For nonconformal theories with a free UV fixed point,

the localizability of the operators depends on the details of
the approach to the fixed point. Using the spectral repre-
sentation of the two point function for a scalar field in terms
of that of a free massive scalar field

h0jϕðxÞ†ϕð0Þj0i ¼
Z
dm2 ρðm2ÞG0ðx;m2Þ; ð55Þ

the general result [32] is that the derivative ∂þϕ of this
scalar field can be localized only ifZ

dm2 ρðm2Þ < ∞: ð56Þ

This condition gives a finite wave function renormalization,
which is expected to hold for super-renormalizable theories
but not for marginal renormalizable theories [33].

VI. CONCLUSIONS

A. Summary

We explored some properties of the entropy associated to
null slabs in general interacting field theories. We found a
general expression for the modular Hamiltonian in terms of
a local integral of the stress tensor components along the
null slab, Eq. (2). We derived this by considering the light-
cone OPE for the defect operators that compute the Rényi
entropies; general arguments involving the spectrum of
operators then constrain the von Neumann entropy and
show that it is equal to the modular Hamiltonian.
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We also proved certain inequalities obeyed by the
function g that multiplies the stress tensor in the modular
Hamiltonian. These inequalities, Eqs. (28) and (30), were
previously shown [1] to be sufficient for the Bousso bound
[2]. Our work extends our earlier proof of the Bousso
bound to interacting theories.
We computed the entanglement entropy in the null limit

for theories with a gravity dual. In the null limit, the
minimal surface approaches the AdS boundary. The change
in the area can be found from the asymptotic form of the
metric. This asymptotic form of the metric also determines
the stress tensor. Therefore, we get a result that is in line
with our general expectations. We view this as an additional
consistency test on the holographic entanglement entropy
formula [14,15] in a strongly Lorentzian context. Our
analysis fully determines the function g for such theories,
Eq. (41), and it shows that g takes a different form than in
the free theory.
A curious feature of our result is that, for interacting

theories, the change in entropy is exactly given by the
change in the expectation value of the modular
Hamiltonian: ΔS ¼ ΔK. In a finite-dimensional Hilbert
space, this relation would also imply that both ΔS and ΔK
are zero. Here, however, they are nonzero. This is possible
because we are taking a limit that involves infinite dimen-
sional algebras. We also saw that no elements remain in the
algebra after we take the limit. One can still consider
limiting values of expectation values of operators on the
null line, but such operators, or their smeared versions on
the null surface, do not define reasonable operators on the
Hilbert space because their variance is infinite. Physically,
this result means that in interacting theories, one cannot
distinguish between any two states by making measure-
ments purely on the light sheet. Appendix B presents a
simple toy model involving an infinite number of qubits
where similar features are present.

B. Discussion and open problems

The Bousso bound involves the notion of an entropy flux
through the light sheet. Defining a local notion of entropy
current is notoriously difficult in quantum field theory.
Here we have defined it through ΔS, the difference in the
von Neumann entropies of the interval between two
different quantum states. This notion does indeed have
properties that suffice to ensure the validity of the corre-
sponding Bousso bound. Nevertheless, the quantity ΔS has
some counterintuitive properties.
The most surprising aspect of this definition is that we

find ΔS ¼ ΔK, which means that all ordinary states are
indistinguishable by local measurements on the light sheet.
We have not found more familiar-looking definitions for
the entropy flux, to which a Bousso-type bound might
apply. Further research will be needed to better understand
the relation between ΔS and more conventional (spacelike)
definitions for the entropy flux.

Notice that the energy flux is given by a local quantity,
the expectation value of Tþþ. On the other hand, ΔS is
nonlocal since the function g depends on the positions of
the end points of the interval. Thus, it cannot be viewed as
the flux of a local operator.
We expect that ΔS will provide an upper bound to the

more familiar concepts of entropy. For example, in a theory
where we can define an entropy current, as in hydro-
dynamics, we expect that ΔS should be larger than the flux
of the entropy current on the light sheet. In the holographic
computations involving black branes, this is indeed true.
The reason is very simple: the entropy flux scales like the
length of the interval,Δxþ, and on the other handΔS scales
like ðΔxþÞ2. The relative coefficient involves the temper-
ature, T. This means that if Δxþ is somewhat greater than
β ¼ 1=T, then ΔS will be larger than the entropy flux. We
also see this clearly in the two-dimensional results,
Eq. (44). We expect this to be a general feature of thermal
or hydrodynamic states.
An interesting conclusion is that information in interact-

ing theories becomes very delocalized on the light front.
Information that is fairly localized along the longitudinal
direction in free theories spreads once we include inter-
actions. We also expect that the mutual information
between a null interval and any other fixed region should
vanish. This follows from the result ΔS ¼ ΔK. We also see
this in the holographic examples.
In a CFT with a gravity dual, the entropy ΔS for spatial

slabs in a thermal state displays a phase transition as the
null limit is approached (see [34] and Appendix A). This is
likely to hold in general for states which start out with a
nonzero ΔS for a spacelike interval in the large N
approximation.
For free theories, one can prove not only the covariant

bound but the stronger result of monotonicity [1]: ΔA
4GN

− ΔS
never decreases under inclusion in a larger light sheet. This
follows from the concavity of the function g, g00 < 0, which
holds in the free case. Here, we found that this property
continues to hold for interacting theories with a holographic
dual (Fig. 2), so monotonicity of ΔA

4GN
− ΔS follows in these

cases. We leave a general proof of g00 < 0 to future work.
It would also be nice to compute the function g to first order
in perturbation theory for a weakly coupled CFT, such as
N ¼ 4 super Yang-Mills.
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APPENDIX A: EXTREMAL SURFACES
AND PHASE TRANSITIONS ON A BLACK

BRANE BACKGROUND

In this appendix, we consider a thermal state in an
interacting CFTwith a bulk dual, an asymptotically anti–de
Sitter planar black brane spacetime. This allows us to
calculate the entanglement entropy holographically using
the Hubeny-Rangamani-Takayanagi (HRT) prescription of
Ref. [15]. We are able to study the approach to the null limit
in detail, reproducing the result of Narayan et al. [34] that
the entropy on sufficiently large slabs undergoes a phase
transition at large boost. We reproduce the result ΔS ¼ ΔK
for the null slab.
The metric of a black brane in AdS is

ds2 ¼ −fdt2 þ dx2 þ dz2=f þ dy2

z2
;

f ¼ 1 − zd=zd0: ðA1Þ

The inverse black hole temperature is

β ¼ 4πz0
d

; ðA2Þ

and the energy density is given by

T00 ¼
ðd − 1Þ
16πGN

1

zd0
: ðA3Þ

It follows that the null-null component of the stress tensor is

Tþþ ¼ d
4ðd − 1ÞT00 ¼

d
64πGN

1

zd0
: ðA4Þ

The extremal surface action is

I ¼
Z

dz
1

zd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−f_t2 þ _x2 þ 1=f

q
: ðA5Þ

Let the momentum conjugate to x be denoted p. We find

p ¼ 1

zd−1
_xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−f_t2 þ _x2 þ 1=f
p ;

_x ¼ pzd−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=f − f_t2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p2z2ðd−1Þ

p :

ðA6Þ

Define a new effective Lagrangian L0 ≡ L − p_x:

L0 ¼ 1

zd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=f − f_t2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p2z2ðd−1Þ

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

z2ðd−1Þ
− p2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=f − f_t2

q
: ðA7Þ

Writing E for the momentum conjugate to t, we obtain

E ¼ f_tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=f − f_t2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z−2ðd−1Þ − p2

p ; ðA8Þ

_t ¼ E

f3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2=f þ z−2ðd−1Þ − p2

p ; ðA9Þ

_x ¼ pffiffiffi
f

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2=f þ z−2ðd−1Þ − p2

p : ðA10Þ

These are the equations of motion of the extremal surfaces.
We take E; p > 0 and fix scale invariance by setting z0 ¼ 1

in the function fðzÞ, so fðzÞ ¼ 1 − zd. Integrating these
trajectories, we obtain the null coordinates Δx� of the
extremal surface solutions at the boundary,

Δx� ¼ 2

Z
zr

0

dz

�
E
f
� p

	
1ffiffiffi

f
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2=f þ z−2ðd−1Þ − p2
p :

ðA11Þ

We can also rewrite the initial action (i.e. area) from
Eq. (A5) as

I ¼ 2

Z
zr

0

dz
1

z2ðd−1Þ
ffiffiffi
f

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2=f þ z−2ðd−1Þ − p2

p : ðA12Þ

In these integrals, the upper limit zr is the return point of the
trajectory, which is the smallest positive root of the
denominators of Eqs. (A9)–(A10); that is,

E2

1 − zdr
þ 1

z2ðd−1Þr

− p2 ¼ 0: ðA13Þ

The turning point is calculated from the smallest solution
of this equation, with zr ∈ ð0; 1Þ. The first two terms in
Eq. (A13) are positive when z ∈ ð0; 1Þ, and the second is
greater than one. We conclude that an extremal surface
which returns to the boundary exists for all p > 1. As we
increase E from zero with p > 1, there are solutions for zr
only up to a maximum value of E, which we denote by
EmaxðpÞ. This maximum value of E is simultaneously the
solution to Eq. (A13) and

d
dzr

�
E2

1 − zdr
þ 1

z2ðd−1Þr

	
¼ 0: ðA14Þ
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When E > Emax, there are no extremal surface solutions
that return to the AdS boundary.
In Fig. 4, we plot the parameter space ðp;EÞ for d ¼ 3.

In d ¼ 3, the curve E ¼ EmaxðpÞ runs near the line
E ¼ p − 1; the plot looks similar in other dimensions.
The shaded region contains the extremal surface solutions.
Interestingly, the extremal surface for E ¼ EmaxðpÞ

corresponds to a timelike region on the boundary, with
Δt > Δx. This counterintuitive result is possible because
even if the boundary interval is timelike, we are still
considering locally spatial surfaces in the bulk. However,
these extremal surfaces cannot be regulated by vacuum
subtraction, because the extremal surface solutions with
this boundary region in vacuum AdS do not have a well-
defined area. So the parameter space we are interested in is
further reduced to E < EnullðpÞ ≤ EmaxðpÞ, where EnullðpÞ
denotes the energy for which the extremal surface solution
has Δx− ¼ 0.
The separation between EmaxðpÞ and EnullðpÞ in param-

eter space is, however, exponentially small. We show the
relevant contour in Fig. 5 in logarithmic variables (for
d ¼ 3; other dimensions are similar).
Numerical analysis of the solutions shows that, for

Δxþ ∼ 1 and smaller,17 there are no exact solutions with
Δx− ¼ 0, only an asymptotic set of solutions for which
Δxþ is fixed and Δx− approaches but never exactly reaches
zero. The parameters p and E go to infinity in the limit
Δx− → 0, and the extremal surface runs closer to the AdS
boundary. We call this family of solutions the “perturbative
solutions,” because ΔS can be computed perturbatively in
this case (see Sec. IV). For sufficiently large Δxþ (larger
than approximately 15 in d ¼ 3), in addition to the
asymptotic solution, there exist two other solutions with
finite EnullðpÞ such thatΔx− ¼ 0 exactly. Figure 5 gives the
contour plot of Δxþ and Δx− for a region of the parameter

space ðp; EÞ. We plot the solutions in logarithmic param-
eter space in Fig. 5. Following a contour of constant and
sufficiently large Δxþ from left to right in this diagram,
Δxþ ≳ 15, we intersect the contour Δx− ¼ 0 twice, cor-
responding to the two precisely null solutions. The part of
the contour to the left of the first intersection (with p ∼ 1) is
the thermal family of solutions. These solutions have a
thermal character because most of the surface extends near
to the horizon of the black hole. Hence the entropy contains
a term that grows like Δxþ, a volume-extensive term that
goes with the thermal entropy density. By increasing p
along a contour of fixed Δxþ, we again approach the
asymptotic perturbative solution.
Let us see in more detail how the area behaves in these

two solutions. As shown below, there is a third null
solution, but it has greater area than the other two and,
according to the HRT prescription, should not be regarded
as the entropy.

1. Perturbative solution

According to Sec. IV, we expect the limiting value of
the entropy to take the form
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FIG. 5 (color online). Curves of constant Δxþ (black solid
curves) and Δx− (blue dashed curves), in the logarithmic param-
eter space defined by ðlogðp − 1Þ;− logðEmaxðpÞ − EÞ=EmaxðpÞÞ.
The value p ¼ 1 maps to −∞ and p ¼ ∞ maps to þ∞ on the
horizontal axis, while E ¼ 0maps to 0 and E ¼ EmaxðpÞmaps to
þ∞ on the vertical axis. The thick blue contour represents the
null solutions with Δx− ¼ 0. Above this contour, the boundary
interval is timelike. If Δxþ ≳ 15 and we follow a contour of
constant Δxþ, we find two solutions with exact Δx− ¼ 0. For all
contours of fixed Δxþ, there exists an asymptotic null solution in
the limit p → ∞.
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FIG. 4 (color online). The maximum value EmaxðpÞ of E for
getting a surface that returns to the boundary (solid line). For
comparison, we also plotted the line E ¼ p − 1 (dashed line).
The extremal surface solutions of interest appear in the region
p > 1, 0 < E < EmaxðpÞ. Here, we have taken d ¼ 3.

17Recall we have set z0 to unity.
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ΔS ¼ 2πA⊥ðΔxþÞ2Tþþ

Z
1

0

dv gðvÞ: ðA15Þ

The difference between the perturbative extremal surface
area and the vacuum area is

ΔA ¼ 8πGNA⊥ðΔxþÞ2Tþþ

Z
1

0

dv gðvÞ: ðA16Þ

Using Eq. (A4) and the explicit form of the function gðvÞ,
we obtain

ΔA ¼
Γð d

d−1ÞΓð 1
2ðd−1ÞÞ2

32π1=2ðd − 1ÞΓ



3d−1
2ðd−1Þ

�
Γ



d
2ðd−1Þ

�
2

A⊥ðΔxþÞ2
zd0

:

ðA17Þ
Setting A⊥ ¼ z0 ¼ 1, we obtain perfect accord with our
numerical simulation of the extremal surfaces.

2. Thermal solution

This solution captures the thermal entropy. We expect the
difference in extremal surface areas to approach Δxþ=2
asymptotically at large Δxþ.
The thermal solutions track the horizon of the black hole

at z0 ¼ 1. In parameter space, this occurs when E is of the
same order as ðp − 1Þ. When this is the case, most of the
contribution to the integral comes from the region where z
is order z0 ¼ 1, and we can expand the integrand around
that point.
First we perform the substitutions

p ¼ 1þ 2δϵ; z ¼ 1 − uϵ=ðd − 1Þ;

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − σ2

p ffiffiffiffiffiffiffiffiffiffiffi
2d

d − 1

r
ϵ:

ðA18Þ

In this limit, the integrals become

Δx ¼
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

2d

r Z
δþσ

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu − δÞ2 − σ2

p ; ðA19Þ

Δt ¼ ðd − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − σ2

p

d

Z
δþσ

du

u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu − δÞ2 − σ2

p ; ðA20Þ

Aren ¼
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

2d

r Z
δþσ

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu − δÞ2 − σ2

p ¼ Δx ¼ Δxþ=2:

ðA21Þ

The renormalized area is obtained by subtracting the
divergent piece with a UV cutoff ϵ. Note that the zeros
in the denominator occur at u ¼ δ� σ, both of which we
take to be positive. Additionally, there is a zero at u ¼ 0 in
the denominator of the integral for _t. The integral over u

starts at the largest zero, u� ¼ δþ σ, and moves to larger
values of u (which corresponds to smaller values of z).
We can do these integrals and focus on the potentially large
terms at small δ; σ. We obtain

Δx ¼ −
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

2d

r
log σ; ðA22Þ

Δt ¼ −
d − 1

d
log

�
δ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − σ2

p

σ

�
; ðA23Þ

Aren ¼ Δx: ðA24Þ

The last equation implies that the entropy flux is what we
expected. We take the ansatz σ ∼ γδa with a > 1, where γ is
some constant. The expansions become, for small δ,

Δx ¼ −
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

2d

r
a log δ; ðA25Þ

Δt ¼ −
d − 1

d
ða − 1Þ log δ: ðA26Þ

Setting Δx ¼ Δt for the null solution, we find

a ¼ 1

1 −
ffiffiffiffiffiffiffiffiffiffiffi

d
2ðd−1Þ

q : ðA27Þ

This means that thermal solutions with exact Δx− ¼ 0 exist
for large Δxþ.
However, we are interested not in the renormalized area

but in the area difference with respect to the vacuum
solution. Using the area for the vacuum solution [28], the
area difference for large Δxþ is

ΔA≃ Δxþ

2
þ 2d−1πðd−1Þ=2

d − 2

�Γð d
2ðd−1ÞÞ

Γð 1
2ðd−1ÞÞ

	d−1
1

ð−ΔxþΔx−Þd−22 :

ðA28Þ

3. Phase transition for large Δxþ

Comparing Eqs. (A17) and (A28), we see that the
perturbative solution has less area than the thermal one
for sufficiently small Δx−. This occurs because the per-
turbative solution has the same negative and finite term as
the vacuum solution which grows like ðΔx−Þ−d−2

2 . Hence
this term does not appear in the area difference in
Eq. (A17). The thermal solution cannot have this term
because it is an exact solution valid for Δx− ¼ 0; its area
cannot depend on Δx−. Therefore, the area difference,
Eq. (A28), diverges as ðΔx−Þ → 0 for the thermal class of
solutions. However, for finite values of Δx− and suffi-
ciently large values of Δxþ, the thermal solution must have
smaller area, since it increases only linearly withΔxþ while
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the perturbative solutions grow quadratically. The phase
transition occurs when the area of the two solutions
becomes equal, which is approximately given by

ðΔxþÞdþ2
2 ð−Δx−Þd−22 ¼ 2dþ4πd=2ðd − 1Þ

d − 2

Γð 3d−1
2ðd−1ÞÞ

Γð d
d−1Þ

×

"
Γð d

2ðd−1ÞÞ
Γð 1

2ðd−1ÞÞ

#
dþ1

: ðA29Þ

We have numerically evaluated ΔA as a function of Δx−
for fixed Δxþ in d ¼ 3 dimensions. The result is shown in
Fig. 6. We observe that, as predicted, the thermal solution
tends toward infinite area as we take the limit Δx− → 0.
One of the perturbative solutions becomes the minimal area
solution for Δxþ ¼ 20 at some finite Δx−. In every case,
the minimal area plateaus to a finite, nonzero value as
Δx− → 0.

APPENDIX B: TOY MODEL WITH ΔK ¼ ΔS ≠ 0

In this appendix, we present a toy model with a countable
number of degrees of freedom (qubits), which shares the
property we found for interacting theories on a null slab:
ΔK ¼ ΔS ≠ 0. This relation is only possible as a limiting
statement, because zero relative entropy between two states
ρ1 and ρ0 implies that the states are equal. Moreover, the
relation requires an infinite number of degrees of freedom, or
else it would be reached before the limit is taken, in
contradiction with the previous sentence.
To demonstrate the effect in a toy model, we construct

a decreasing sequence of algebras An from which any
fixed bounded operator will disappear as n → ∞; in other
words,∩An only contains multiples of the identity operator.
Consider an infinite sequence of qubits. The algebra
generated by the qubits operators for the qubits at position

n; nþ 1;… will be denoted by An. The algebras are nested:
Am ⊂ An for m > n. The relative entropy of two states
reduced to An will decrease with n; that is, ΔK − ΔS → 0.
Consider states which are formed by tensor products of

two-qubit states for the kth and ðk2Þth qubits. This choice
for the entanglement is arbitrary, but entanglement between
the qubits k and fðkÞ with fðkÞ growing much faster than k
is necessary to generate more entanglement than the
entropy that is lost as we trace over the first n qubits.
Entanglement plays an important role in keeping ΔS

finite while the relative entropy goes to zero. The classical
entropy is monotonous, so without quantum entanglement,
the entropies must tend to zero with increasing n. In the
quantum case, the entropy is no longer monotonous, but the
relative entropy is monotonous and tends to zero instead.
Consider generic states of the form

ρ ¼ ⊗
i

i ≠ k2

ρi;i2 : ðB1Þ

In this tensor product, we omit i if i is already included in
the product by a previous factor of ρk;i with k2 ¼ i. The
global relative entropy of two states both of the form in
Eq. (B1) is

Sðρ1jρ0Þ ¼
X
i

Sðρ1i;i2 jρ0i;i2Þ: ðB2Þ

We want a finite relative entropy, so a convergent series.
We construct a sequence of mixed states ρn by tracing over
the first n − 1 qubits of ρ. As n tends to infinity, the relative
entropy approaches zero:

0 ≤ Sðρ1njρ0nÞ <
X∞
k¼ ffiffi

n
p

Sðρ1k;k2 jρ0k;k2Þ → 0; ðB3Þ

FIG. 6 (color online). The vacuum-subtracted extremal surface area versus Δx− for fixed Δxþ (Δxþ ¼ 20 and Δxþ ¼ 10 for d ¼ 3 is
shown). This numerical simulation demonstrates that, for sufficiently large Δxþ (in d ¼ 3, the condition is Δxþ ≳ 15), there exists a
phase transition at finite Δx− to a different, perturbative class of solutions. At smaller Δxþ, there is no such phase transition.
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where we have used that the positivity of the relative
entropy, and the fact that the relative entropy of two states
on a pair of qubits is greater than that of the states reduced
to the second qubit of the pair.
We want the global ΔS to remain finite as n goes to

infinity:

ΔS ¼
X
k

ΔSðk; k2Þ < ∞: ðB4Þ

For the sequence of entropies ΔSn, we have

ΔSn ¼
X∞
k¼n

ΔSðk; k2Þ þ
Xn
k¼ ffiffi

n
p

ΔSredðk; k2Þ: ðB5Þ

Here, ΔSred denotes the entropy of the reduced states on the
second qubit of the pairs. The pairs of qubits with k <

ffiffiffi
n

p
have been completely traced out, while the pairs with k > n
are still completely included in the state.
Using Eq. (B4), we see that the first sum in Eq. (B5)

tends to zero as n → ∞. For the second sum to have a finite
and positive limit, we demand

ΔSredðk; k2Þ ∼
c

k log k
; ðB6Þ

which gives

Xn
k¼ ffiffi

n
p

ΔSredðk; k2Þ ∼ cðlog log n − log log
ffiffiffi
n

p Þ ¼ c log 2:

ðB7Þ

If ΔSredðk; k2Þ decays much faster, we get limΔSn ¼ 0,
which is not what we want. To get a nonzero answer, the
entropy of the pairsΔSredðk; k2Þmust not be integrable. If it
decays at a slower asymptotic rate than Eq. (B6), the
limiting value of ΔSn is infinity.
Now we choose the two qubit states ρ0

k;k2
and ρ1k;k2 . We

impose three conditions: the relative entropies of these pairs
should be integrable, Eq. (B3); the differential entropiesΔS
of these pairs should also be integrable, Eq. (B4); and the
ΔSred of the states on the second qubit should have the
asymptotic form in Eq. (B6), or slower than this if we want
to obtain limΔSn → ∞.
We choose the pair of states to be

ρ0 ¼ pjψihψ j þ ð1 − pÞjϕihϕj; ðB8Þ

ρ1 ¼ p0jψihψ j þ ð1 − p0Þjϕihϕj; ðB9Þ

with jϕi, jψi being a pair of orthogonal pure states for the
two qubits. (We choose mixed states because the relative

entropy diverges for any two nonidentical pure states.)
Taking δp≡ p0 − p to be small, we find

Sðρ1jρ0Þ≃ δp2

2pð1 − pÞ ; ðB10Þ

ΔS≃ δp log

�
1 − p
p

	
: ðB11Þ

Here, p and δp depend on the pair of qubits ðk; k2Þ, and
the dependence on k is such that these entropies are
integrable.
To evaluate the reduced entropy, we have to specify the

pure states in terms of the qubits. The choice is arbitrary,
but there are some restrictions. We cannot choose two
orthogonal maximally entangled states for jψi and jϕi,
because in this case, the reduced density matrices ρ0 and ρ1

will both equal 1
2
I and we obtain ΔSred ¼ 0. Instead, we

take the two orthogonal states

jψi ¼ aj00i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
j11i; ðB12Þ

jϕi ¼ bj01i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2

p
j10i: ðB13Þ

Then the entropy is

ΔSred≃2ða−bÞðaþbÞarctanhð1−2b2ð1−pÞ−2a2pÞδp:
ðB14Þ

We can tune the dependence of p; δp; a; b on k so that
the entropy goes as Eq. (B6) and both Eqs. (B10) and (B11)
are integrable. We fix a and b and take δp≃ 1=ðk log kÞ.
The relative entropy is integrable because it contains a
higher power of δp. For the total ΔS to be finite, we can
choose p≃ 1=2þ 1=k, to get an additional power of 1=k
from the logarithm term in Eq. (B11). Then the states
converge to a random state in the sub-Hilbert space spanned
by fjϕi; jψig. With this choice, both the total ΔS and the
relative entropy are finite; the relative entropy goes to zero
with n, while the limit of ΔS is

lim
n→∞

ΔSn → 2ða − bÞðaþ bÞarctanhð1 − b2 − a2Þ log 2:
ðB15Þ

It is also clear that we have ΔKn − ΔSn → 0 in the limit, or
equivalently the relative entropy goes to zero.
The limit for ΔSn can be made much larger (or infinite)

by slowing the asymptotic decay of δp. For example,
keeping a, b and p as before but setting δp ¼ 1=k causes
ΔSn to diverge with finite initial ΔS, while the relative
entropy remains constant.
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