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Geodesic deviation equation in f(7) gravity
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In this work, we show that it is possible to study the notion of a geodesic deviation equation in f(T)
gravity, in spite of the fact that in teleparallel gravity there is no notion of geodesics, and the torsion is
responsible for the appearance of gravitational interaction. In this regard, we obtain the general relativity
equivalent equations for f(T) gravity, which are in the modified gravity form such as f(R) gravity. Then,
we obtain the geodesic deviation equation within the context of this modified gravity. In this way, the
obtained geodesic deviation equation will correspond to the f(7) gravity. Eventually, we extend the
calculations to obtain the modification of the Mattig relation.
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I. INTRODUCTION

The fundamental equation of Einstein geometrodynam-
ics and other metric theories of gravity is the geodesic
deviation equation (GDE) [1]. It connects the spacetime
curvature described by the Riemann tensor with a meas-
urable physical quantity, namely, the relative acceleration
between two nearby test particles. This equation describes
the tendency of free falling particles to approach or recede
from one another while moving under the influence of a
spatially varying gravitational field. Actually, the presence
of this kind of tidal force will cause the trajectories to bend
towards or away from each other, which produces relative
acceleration [2-3]. Moreover, the important Raychaudhuri
equation and Mattig relation may be obtained by consid-
ering the GDE for timelike and null congruences.

One extended gravity theory beyond general relativity
(GR) is teleparallel gravity (TG). The birth of this gravity
theory refers back to 1928 [4]. At that time Einstein was
trying to redefine the unification of gravity and electro-
magnetism by introducing the notion of tetrad (vierbin)
field together with the suggestion of absolute parallelism.
In this theory the metric g,, is not the dynamical object,
instead we have a set of tetrad fields e, (x*), and instead of
the well-known torsionless Levi-Civita connection of GR
theory, we work with a Weitzenbok connection to introduce
the covariant derivative [5]. Furthermore, the role of
curvature scalar in GR is played by torsion scalar 7 in the
teleparallel gravity.

Although at the background and perturbation levels TG
is completely equivalent to general relativity, f(7) gravity
has new structural and phenomenological features.
Especially, at the cosmological background it has various
cosmological solutions which are consistent with the
observational data [6—12]. In addition, by taking spherical
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geometry one can consider the spherical solutions for f(7')
gravity [13-16]. According to these features, f(7') gravity
is assumed as a viable theory both at cosmological and at
astrophysical aspects. Thus, the cosmological and spherical
solutions in f(T) gravity lead to various viable models that
support cosmological observations [11,17] along with
Solar System tests [12] in which f(7) must be close to
the linear form. In [18-20] the authors have studied the
Noether symmtery approach in the Friedmann-Lemaitre-
Robertson-Walker (FLRW) geometry to construct some
viable f(T) functional forms [21]. Regarding this line of
progress in the context of f(7') gravity, it seems there is still
room to study some motivating and interesting gravitational
and cosmological aspects of f(T) gravity which have not
yet been studied. Following this idea, in this work we
consider GDE in the context of f(7) gravity.

The GDE has been studied in f(R) gravity theory
[22,23], so it is appealing to study the GDE in the context
of f(T) gravity, too. However, there are conceptual
differences between GR and TG. In GR, which is funda-
mentally based on the weak equivalence principle, curva-
ture is used to geometrize the gravitational interaction and
the spinless particles follow the curvature of spacetime. In
other words, the concept of force is replaced by geometry
and the particle trajectories are determined by geodesics,
rather than the force equation. In TG, on the other hand, the
torsion is responsible for the appearance of gravitational
interaction as a real force. Hence, there is no notion of
geodesics in TG. In spite of this conceptual difference, one
can show that the teleparallel description of the gravita-
tional interaction is completely equivalent to that of general
relativity [24]. Therefore, it is possible to cast the force
equation in TG into the form of a geodesic equation in GR
and obtain the corresponding GDE in TG.

In the present work, we use another approach to obtain
the GDE in f(T) gravity. In this regard, first we use the
method introduced in Refs. [25-28] to obtain the GR
equivalent of f(7T') gravity where the field equations are in
the modified gravity form, such as f(R) gravity. Then, we
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can benefit from the approach followed in [22] to obtain the
GDE within the context of f(R) gravity. In this way, we
actually obtain the GDE within the context of f(7') gravity.

II. FIELD EQUATIONS IN f(T) GRAVITY

Instead of using the torsionless Levi-Civita connection in
general relativity, we use the curvatureless Weitzenbdck
connection in teleparallelism [5], whose non-null torsion
17,, and contorsion K”,, are defined, respectively, by

10, = l:",j# - l:fw = (0,6l — Dyen), (1)

~ 1
Kp/w = F;/:y - Fp;w = E (Tﬂp,, + Tupy - Tp/w)v (2)
where I%,, is the Levi-Civita connection. Moreover,
instead of the Ricci scalar R for the Lagrangian density

in general relativity, the teleparallel Lagrangian density is
described by the torsion scalar T as follows:

r=S§m»1",), (3)

where
S H = ! KH T  — LT 4
p = E( p + P a9 a)- ( )

The modified teleparallel action for f(7') gravity is given
by [29]

S—;—K/d4x|e|f(T)+/d4x|e|£M, (5)

where |e| = det(e;) = /=g, 827G = k and ¢ = 1. Varying
the action (1) with respect to the vierbein vector field eﬁ,
we obtain the equation [30]

1
;au(eSAlw)fT(T) - eﬁTpmSp””fT(T) + 84"0,(T) fr(T)
1
e = x4, (©)

where a subscript 7' denotes differentiation with respect to
T and ©% is the matter energy-momentum tensor; mean-
while, all indices on the manifold run over 0,1,2,3, and ¢/
form the tangent vector on the tangent space over which the
metric 7745 is defined.

On the other hand, from the relation between the
Weitzenbock connection and the Levi-Civita connection
given by Eq. (2), one can write the Riemann tensor for the
Levi-Civita connection in the form

prﬂv = aﬂrpuv - aurpyﬂ + Fp(iﬂromx - Fp(n/rgﬂl
= VDK/)/M - vﬁKp;w + Kpm/Ka;M - KptMKp/w’ (7)
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whose associated Ricci tensor can then be written as

R;w = VUK/)/I[) - vpK/)uu + K/)ﬁuKﬂ;tp - Kl}ﬁpKﬁmx' (8)
Now, by using K”,, given by Eq. (2) along with the
relations K¢ = Tr(we) — §u(e) — () and considering that
SH oy = 2K*,, = =2T*,, one has [25-28]

R;w = _v/)Svpu - gﬂuvl)l—wpa - S/mﬂKﬁpw
R=—T-2V'T",,. 9)

and thus obtains

1
G- Eg,,,,T = _vavPM = S7 K povs (10)

where G,, = R, — (1/2)g,,R is the Einstein tensor.

Finally, by using Eq. (10), the field equations for f(7)
gravity in terms of GR quantities, namely, Eq. (6), can be
rewritten in the following form [25-28]:

fTGm/ +%<TfT _f(T))g;w + B;waT(T> = K®/w’ (11)

df(T d
where fr = %, frr(T) = %, B,, =8,°V,T,and ©,,
is the matter energy-momentum tensor. Now, this equation
is in the form of a field equation in modified gravity, such

as f(R) gravity.

ITII. GEODESIC DEVIATION EQUATION IN GR

Here we start with a little discussion about the geodesic
deviation equation in general relativity. The geometrical
meaning of the Riemann tensor is best explained by
examining the behavior of neighborhood geodesics.
Imagine C; and C, are two adjacent geodesics with an
affine parameter v on 2-surface S (see Fig. 1). The vector
field V* = % is the normalized tangent vector of geodesic
C,, and n* = % is the deviation vector of these two
adjacent geodesics. In total we describe these geodesics
with x%(v, s).

FIG. 1.

Geodesic deviation.
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Starting with £,7* = £,V* ([V.,5]* = 0) which leads to
Vvvvna = VVVWV“ and using VXVYZa - vaXZa -
V[X’Y]Z“ = R"‘IM;Z/’XVY‘S in which Y*=#% and X“ =
Z% =V we can obtain the GDE as follows [3]:

D277a
Dv?

= —R% VI VO (12)

As an introduction, here we review briefly the results of
finding GDE in GR. We take the energy-momentum tensor
in the form of a perfect fluid

®;w = (P + p)uauﬂ + pga/)’» (13)

where p is the energy density and p is the pressure.
The trace of the energy-momentum tensor is

®=3p-p. (14)
Now, we are supposed to calculate R and R, by looking at

the standard form of the Einstein field equations in GR
(with cosmological constant)

1
R, — ERgW + Ag,, = k0, (15)

The Ricci scalar and Ricci tensor are obtained as follows:

R =«k(p—3p) +4A, (16)

1
R, = k(p+ plugug + 5 [k(p = p) +2A]g,.  (17)

Considering these expressions and using the following
equation [3]:

1
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(ga}/Rb'/J - ga&Ry/} + gﬁ5R7(1 - g/iyR(Sa)

| =

Ra/}yﬁ =
R
~% (Gay9sp = Gas9yp) + Capyss (18)

the right-hand side of GDE is

1 1
Ry sV Ve = |3 (kp + Ae +3k(p+ p)E? ", (19)

where € = V*V, and E = —V ,u,. This equation is known
as the Pirani equation [2]. It is worth mentioning that one
may derive the Pirani equation for every metric for which
the Weyl tensor vanishes. A great deal of important results
from this equation have been obtained including some
solutions for spacelike, timelike, and null congruences [31].

IV. GEODESICS DEVIATION EQUATION
IN f(T) GRAVITY

In this section, we shall obtain the GDE in the GR
equivalent theory of f(7') gravity. Before going through the
details of the calculations, we extract R by taking the trace
of (11) which results in

R= fi RTF(T) = 2f(T) + f715", VT = x0].  (20)
T

Inserting this Ricci scalar into (11) we obtain
1
R,w — E

- fTTSy”/,V/)T + K®”y:| . (21)

1
[E 9uTfr = f+ frr8",V’T = kO)

By applying Eq. (18) and considering the zero value of the
Weyl tensor C,,s we will find

Raﬂy5 = E [K(gay®5ﬁ - ga6®yﬁ + gﬂzs@ya - gﬂy®6a) + (_f — kO + TfT + SﬂypvafTT)(ga}/géﬂ - gaégyﬁ)

1
+ (gayDéﬂ - gaéDyﬂ + gﬂéDya - gﬂyD504>fT] - F
T

where

[=2f +2Tf7 + frrSu VT = kOl(9ay9sp = GasGyp)»  (22)

D,, =-S,,V'ToOr. (23)

After raising the « index in the Riemann tensor and contracting with V#57V?, we will have

R”‘ﬂyﬁVﬁny V6 = _—
T

1
2F [K(8yOs5 — 550,5 + gpsOF — 95,03) + (=f = kO + Tfp + S*, , VT fr1) (8 gsp — 539,5)

1
+ (0D = 55Dy + 9paDf = Gy D1V VP = o [2f + 2T 1+ 1784, 97T = x6)

X (Gay 955 — Gas9yp) VPN V2.

T
(24)
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Note that Egs. (22) and (24) hold only if the Weyl tensor vanishes. By considering Eq. (13) in Eq. (22) we find

1
RYs = ——
pro sz

|:K(p + p)(gayuﬁu/i - gm?uyu/} + g/)’éuyua - g/)’yuﬁua)

2Kp 2 f
+ (ay95p = Jas9yp) (T +Tfr/3+ gsﬂﬂpvafTT - 3)

+ (gayD(Sﬁ - ga(SDyﬂ + g//’(sDya - gﬁyDﬁa)fT:| . (25)

Under the condition of vector field normalization, we have V*V , = € and

R,4,5V Py =
pyo ZfT

2%p T
_'_(ﬂ fr

U 2

3 3 3

{<p+p><gay<uﬂvﬂ> 2y V)V ity + ettgu,)

up 4 TfTT f) (egay Va Vy)

+ [(9ayDsp — 9asDyp + 9p5Dya — 95y D) 1] VP Va] . (26)

Again, we raise the first index and then contract with #?,

R, sVin'Vo =

1
TR [K(p + ) ((ugVP)2n* — (ugVPYV* () = (ugVP)u(V ") + euqu,n’)

+ (ZEJFT_fTJF St VP TfTT_‘§>(€'7a_Va(V3’I/IY))

3 3 3

+ [(5?D5ﬁ — 5(511)},/; + gﬁéD‘; —

ﬁybz>fr]vﬁv5nr]. @)

By considering £ = -V, u®* and n,u* = 5,V* = 0, Eq. (27) converts into

" 1 2kp  Tf AY
R ﬂy(;VﬂnyV‘s:? |:K(,0+p)E2+€<—+TT+ SWV TfTT_§ n
T
1
o 05Dy = 83D, 935 = g D) VV° 28)

It should be mentioned that all the results obtained in this
section do not require the Friedmann-Robertson-Walker
ansatz, but rather are valid as long as the Weyl tensor
vanishes. In the next section, we will use these results to
obtain the GDE in the GR equivalent of the f(7T) gravity
model for the FLRW metric whose Weyl tensor is zero.
Obviously, our final result will be acceptable provided that
the GR limit of this model is checked.

A. GR equivalent method with FLRW background

We take the standard model line element (FLRW
universe) including a(z) and k, respectively, as the scale
factor and spatial curvature of the Universe, as

d 2
ds? = =di* + @2(1) | T+ A6 + Psin?dg? | (29)
—kr

whose Weyl tensor is zero because of conformal flatness.
According to the second section, the expression for the
torsion scalar for the flat FLRW metric reduces to

T = —6H?, (30)

where H = % is the Hubble parameter. Note that Eq. (30)
holds only if a diagonal Friedmann-Robertson-Walker
tetrad is chosen, since different tetrads giving the same
metric lead to different results in f(7) gravity [32].
Apparently, the torsion scalar is thoroughly time depend-
ant; thus, we are supposed to be concerned just about time
derivatives of T in D,

The vector field normalization implies that V,V* = ¢
and also we have E=-V,u* nu*=n,V*=0,
nou® = 0. Not only these mentioned conditions but also
the nonvanishing components of the S tensor will be used to
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extract the final result for the action of operator D, on fr.
Therefore, after cumbersome calculations we obtain

1
7, ((8yDyp — 83Dy + gpsDy — 95, D§) f) VPV
= —24H*H f77(E* + 2¢)1%, (31)
where have used S}, = $3, = S3, = —2H(t). Thus, we can

write the reduced expression for R* ﬁy(;Vﬁr/”V(S as follows:

1 .
RV v = [<K<p © p) = 24HRiTf ) E?
2o f TS
2L ) 3
+e< 5 ~3t 3 )| (32)

which is the generalized Pirani equation. Now, we can write
the GDE in the f(T) gravity model:

D2 a 1 .
D:Z = _F {(K(ﬂ + p) — 24H*Hf11)E?
2%p f Tfr\] .

Apparently, as a result of homogeneity and isotropy of
the FLRW metric, in this equation only the magnitude of
the deviation vector #* is changed along the geodesics.
Whereas in the anisotropic universe, like Bianchi I, we can
also infer a change in the direction of the deviation vector,
as described in [33].

B. Direct method with a FLRW background

Once we assume a FLRW metric (tetrad), then the
Riemann tensor can be calculated. This means that the
geodesic deviation equation (12) can be straightforwardly
written in terms of H and its derivative. We can then use the
f(T) gravity cosmological equations (43) and (44) (see
below) to connect H and H to the cosmological sources.
Following this way, we can recover Eq. (32) as follows. By
taking a radial spatial part, for a suitable choice of local
coordinates, we can write the lhs of Eq. (32) for @ = r as
follows:

R sVP' Ve =R, Vi V! + R, V' V"
+ R g0V VO + Ry, ) VI v9. (34)
By considering nonvanishing components of the Riemann

tensor for the FLRW metric, we must take y = r. Thus,
Eq. (34) can be written as

PHYSICAL REVIEW D 91, 084023 (2015)
R sVin'Ve =R, V'V + R 9"V, V'
+ R 9,09 VoVon" + R 4y gV VO
= (—HE? + eH?)1", (35)

where We have used V’V’ E?, Vo' =0, R",,, =0,

R’ g9 = r*a*, R' y,y = a*r*sin®6, and R",,, = 4 Note that

similar equations are also obtained for a = @ and a = ¢.
According to Egs. (43) and (44) (see below) we have

1
0= (Kp é) (36)

and

. 1
H == (x(p+ p) + 4HT f17). (37)
fr

By substituting Egs. (36) and (37) into Eq. (35) we can
obtain the generalized Pirani equation (32) by means of the
direct approach as

1 .
Raﬁrévﬂ’?yvé = F {(K(ﬂ + p) — 24H*H fr7)E?
T

which results in the same geodesic deviation equation (33).
This means that we have found the same results by two
different approaches which confirms the validity of the
obtained geodesic deviation equation.

C. Fundamental observers with a FLRW background

Here, we are going to limit ourselves to the fundamental
observers. In this particular case, we interpret V* and v (the
affine parameter) as the four-velocity of the fluid #* and ¢
(the proper time), respectively. Since we are treating with

temporal geodesics we have ¢ = —1 and also we fix the
vector field normalization by £ = 1 which leads to
1 |2xp . f
Ry suPnu® = — | =5 —24H’H = n*
prsn’u 2, |3 +kp fTT+6’1

(38)

We know that if n, = Ze,, where e, is parallel propagated
along ¢, then the isotropy results in

De*
Dr (39)
from which we have
Dz’?" dZLﬂ v
D2 dr ¢ (40)
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By using (12) and (38) we can write

daf 2y

d*¢ 1 |2xp
3

= kp - 24H*Hf 77 + ’é] ¢, (41)

which for the particular case £ = a(t) leads to

A {—@—QJF 12H2HfTT—{—2]. (42)

This equation is nothing but a special case of the gener-
alized Raychaudhuri equation. It is worth mentioning here
that the above generalized Raychaudhuri equation can be
obtained by the standard forms of the modified Friedmann
equations in the f(7') gravity model for a flat universe [30]

H2=§<p+%ﬂﬂYr—f—T0, (43)

2H +3H? = —kp —4HT f7r — 2H f7 + 2H

f T
+Tfr R (44)
The consistency between the modified Friedmann equa-
tions in f(7T) gravity for a flat universe [30] and the
generalized Raychaudhuri equation for a flat universe (42)
confirms the fact that the approach followed here is a
correct one.

D. Null vector fields with a FLRW background

In this section, we consider the null past directed vector
fields, namely, V¢ = k%, k,k* =0, for which Eq. (32)
reduces to

1 .
R, skPnr k® = 7 (k(p+ p) — 24H*Hfr7)E*n®.  (45)
T

Actually, this is Ricci focusing in f(T) gravity as is
explained in the following. By considering #* = ne®,
e =1, e,u* = e,k* =0, and also writing an aligned
base that is parallel propagated £ = kPVze® =0, we
obtain the null GDE (33) new form as follows:

d*n 1 .
a2 2, (k(p+ p) —24H*Hf77)E™.  (46)

According to the GR studied in [2], all classes of past-
directed null geodesics experience focusing if we have
k(p + p) > 0. Therefore, in a particular case with the
equation of state p = —p (cosmological constant) we
cannot recognize any focusing effect. Obviously (46)
shows the focusing condition for the f(7) gravity model
provided that

PHYSICAL REVIEW D 91, 084023 (2015)

k(p+ p) - 24HHf 1y
fr fr

(47)

Now, we have an expression (46) which can be written in
terms of the redshift parameter z. To do this, we may write

d dz d
@ s (48)

which results in

&2 dv\ 2 d\-'d*vd d*
— =\ 7)) = -t+t3| (49)
dv dz dz dz=dz dz

Let us consider the null geodesics for which we have

E
(142 =2 e _ da

a:E—O_)—l—‘,—Z: a. (50)

Choosing ay = 1 (the current day value of the scale factor),
leads to the following result for the past-directed case:

1da a
dz = (1 ——dv = (1 —Edv = EyH(1 2dy.
z(+z)adyz/(+z)au oH(1 + z)*dv
(51)
Thus, we obtain
dv 1
—_—= 52
dz  E H(1+z)? (52)
and so
d’v 1 1 dH
— = | —(1 —+2|, (53
dz? EH(1 +z7)3 {H( +2) dz+ } (53)
where
dH dvdtdH 1 dH
—_— = (54)
dz dzdv dt H(1+z) dt

where use has been made of % = E = Ey(1 + z). From the
definition of the Hubble parameter we can write

H==-—-H>. 55
; (55)

Using (42), H becomes

o L i-kp «p - /
H=—|———+12HH? -2 | —H?, 56
713 > + Sfrr 2 (56)

thus
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d’v 3 1 Kp Kp . f
- = 1 — +——12HH? — . 57
dz?  EyH(1 +z)° [ 387, (3 3 f”+1z)] (57)
Putting this result in (49), we obtain
d*n d’n 3 1 Kp KD . f\|dn
— = EyH(1 S 1 —+——12HH? — . 58
a7 (1+2) Lizz+(1+z)[ +3H2fr<3+2 fTT+12)]dz] (58)
Finally, using (46) the null GDE takes the following form:
dn 3 L (kp kp o : f\]dn  xlp+p)—24H*Hfrr
— 1 — + = —12HH? — |- 0. 59
dz”(lﬂ)[ +3H2fT<3+2 T | P T 9)
Matter and radiation contributions to p and p can be written respectively as
kp = 3H3Q,0(1 + 2)° + 3H3Q,0(1 + 2)*, kp = H3Q,o(1 + 2)4, (60)
where we have used p,, =0 and p, = % p,. By using Eq. (60) the null GDE (59) can be written as
d N .
A P(HH.2) T+ O(H. H.2)n =0, (61)
dz dz
where
. QmO(l + Z)3 +%Qr0<l + Z)4 + 12];-]2 + (3fT + TJ;-]TT)[QMO(I + Z)3 + QrO(l + Z)4 + QDE]
P(H.H,z) = - 3 T . (62)
Fr(1+2)[Quo(1 4 2)° + Qo(1 4 2)* + Qpg]
. 3Q,0(1 +2)* +4Q,0(1 + 2)* + 2122 (Q,0(1 + 2)° + Q01 + 2)* +
ot i1 z) — o012 4 400(1 1 9 + 21 Qa1 +2)" + Qo1 +2)* + Q) .

2fT(1 + Z)Z[Qm()(l

in which we have applied the following new form of (43):

H? = H{[Q,0(1 +2)° + Q1+ 2)* + Qpgl.  (64)
where Qpr has been defined as
1 (Tfr f+T
Qpre=—5(——-[—]) ). 65
(- (50) @

Note that in solving Eq. (61), we must use (30). In order to
check for the agreement of the above results with those of
GR, we take the particular case f(T) = T — 2A. As aresult
of this choice we have f; = 1 and f;7 = 0. Furthermore,

Qp reduces to
T—-2A+T
6

(

which can be written as
in GR

1

1 (T-2A
=

3

J— A f—
_SH%_

QDE QA7
(66)

the Friedmann equation

+2)* + Q(1 + 2)* + Qpg]
|

H? = H}[Q,0(1 +2)° + Q,o(1 +2)* + Q4. (67)

Hence, we find the reduced expressions P and Q as
follows:

1Qu0(1 + 2) +4Q,0(1 + 2)* +2Q,

P(z) = , (68
O T @+ + Qo1+ 40 @
3Q,0(1 4+ 2) +4Q,0(1 + z)?
Q(Z) _ 0( > ) 0( . ) ) (69)
2['(Zm()(l + Z) + Qr()(l + Z) + QA]
Eventually, the GDE for null vector fields becomes
dn | 3Quo(1 +2)° +4Q0(1 +2)* +2Q,  dy
dz? (14 2)[Quo(1 +2)* + Q0(1 +2)* + Q4] dz
3Q,,0(1 4Q,4(1 2
m()( +Z)+ rO( +Z) ’1:0 (70)

2(Qm0(1 + Z)3 + QrO(l + Z)4 + QA)

In order to obtain the Mattig relation in GR [34], we have to
fix Q) =0, Q,+ Q,,0 =1 which leads to

084023-7
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d*n 7Qu0(1 +2)° +4Q(1 +2)*  dp
dz? (14 2)[Qyu0(142)* + Quo(1 +2)*] dz
3Q,0(1 +2) +4Q,0(1 +2)°

2(Ssz(1 + Z)3 + QrO(l + Z)4)

n=0. (71)

So, Eq. (61) gives us an opportunity to generalize the
Mattig relation in f(7) gravity. By considering the last
result, we can infer the following expression for the
observer area distance ry(z) [34]:

‘ dAy(2) :‘ n(2)l
dQ | | dn(2)/dt)._|

ro(z) = (72)

where A is the area of the object and also € is the solid
angle. Equipped with the d/d¢ = E;'(1+ z)7'd/dv =
H(1+ z)d/dz and setting the deviation at z = 0 to zero,
clearly we have

B n(z)
) =g (0)dn(z')/dZ| 0|’ 73)

where H(0) is the evaluated modified Friedmann equa-
tion (66) at z = 0.
|

Quo(1 +2)° +3Q,0(1 + 2)* +1

)+ 37(T0) [ Qo1 +
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V. NUMERICAL SOLUTIONS OF GDE
FOR f(T) GRAVITY

To solve the null GDE (61) in f(T) gravity we should
consider f(7T) functional forms. One simple assumption in
simplifying Eq. (61) is T = 0. However, this reduces our
model to Lambda cold dark matter (ACDM) since
Qpr = Const, as can be seen from Eq. (65). To find
new interesting features of f(7) modified gravity, we
should consider models beyond the T=0 assumption.
Actually, there are a variety of f(7') functional forms in the
literature, each of which has some interesting specific
features. Even, some studies have been done to obtain
viable f(T) functional forms, using the Noether symmetry
approach [18,19].

Following the above discussion, and for simplicity, first
we assume 7' =0 which is equivalent to a constant

T = —6H*> =T,. Thus, Eq. (62) can be rewritten as
follows:
d*n dn
——5+P(H, To,z) -+ QH. To,z)n=0, (74)
dz dz
where

2)* + Q,0(1 4 2)* + Qp(To)]

P(H,Ty,z) =

121‘12
o T+ (1 727 o (1 + 27 + Dop (7o) - (B)
B 3Q,0(1 +2) +4Q,0(1 +2)?
O(H.T0:2) = 3 e ool + 2  Bg(1 1 2 + G (T 76)
|
F(T) = aT + bT" + ¢, (79)

and

Tofr(To) (f(To

() = 5= (245 ) o

To solve Eq. (74), one can choose the functional form of the
f(T,) as follows:

f(Ty) = aT + pT5, (78)

where o and f are constants. We can solve Eq. (74)
numerically which results in 7(z) and ry(z) plotted in
Fig. 2, as a function of z.

Now, we assume T # 0. Since solving the GDE (61) is
not an easy task for any given f(T) functional form, and in
order to benefit from numerical calculations in solving this
complicated equation, we just consider the following power
law form as

which is well suited in most of the cosmological implica-
tions of f(T) gravity [18,19], or in a slightly modified
form as

bT"

f(T) = aT+W

+c, (80)

where a, b, ¢, and n are constants. One can rewrite

Eq. (44) as

T  kp+3H?-

Tfr+4i+1
12H ’

ATfrr +2fr

Thus, by plugging Eq. (81) in Egs. (62) and (63), we can
solve Eq. (61) numerically for suggested f(7) forms (79)
and (80) which results in #(z) and ry(z) plotted, respec-
tively, in Fig. 3 for f( ) =aT + bT" + ¢ and in Fig. 4 for
f(T)=al + —2— 1+T I + ¢, as a function of z.

(81)
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FIG. 2 (color online).
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Plot of the deviation vector magnitude 7(z) (left) and plot of the observer area distance ry(z) (right).

The parameter values chosen are Hy = 80 km/s/Mpc, @, = 0.3, Q,0 =0, Q) = 0.7, and dn(z)/dz|._o = 0.1.
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FIG. 3 (color online).

5

— 7

1 2 3 4 5

Plot of the deviation vector magnitude 7(z) (left) and plot of the observer area distance ry(z) (right).

The parameter values chosen are Hy, = 80 km/s/Mpc, Q,0=0.3, a =09, b =0.2, ¢ =0.7, n = —1 (solid), n = -2 (dotted),

and n = 2 (dashed), Q4 = 0, and dn(z)/dz|,_, = 0.1.
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FIG. 4 (color online).
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Plot of the deviation vector magnitude 7(z) (left) and plot of the observer area distance ry(z) (right).

The parameter values chosen are H, = 80 km/s/Mpc, Q,0=0.3, a=0.9, b =0.2, ¢ =0.7, n =1 (solid), n = 1.2 (dotted),

and n = 1.8 (dashed), Q,0 = 0, and dn(z)/dz|,_y = 0.1.
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For the model T = —6H? = T, the behavior of null
geodesic deviation and observer area distance are the same
as those of the ACDM model. This is expected because for
T = 0 our f(T) model is reduced to the ACDM model. For
the other suggested f(7) models, namely, f(T) = aT +

bT" + ¢ and f(T) = aT + 4 + ¢, the general behav-

ior of null geodesic deviation and observer area distance
are similar to those of ACDM. At small values of z < 0.2,
the relative deviations and relative observer area distance
with respect to the ACDM model are almost ignorable.
However, for redshifts z = 0.2, the geodesic deviation #(z)
and the area distance r((z) corresponding to the suggested
f(T) models are rather larger than those of ACDM model.
This indicates that the suggested f(7) models predict more
acceleration than the ACDM model, for large values of
redshift.

VI. CONCLUSIONS

In this paper, we have considered the GDE in the GR
equivalent of the f(7) gravity model. First, we have
calculated the Ricci tensor and the Ricci scalar with the
modified field equations in f(7') gravity theory. Then, in

PHYSICAL REVIEW D 91, 084023 (2015)

the FLRW universe, the geodesic deviation equation
corresponding to these GR equivalent quantities of f(7)
gravity is obtained. To show the consistency of our
approach in constructing the GR equivalent of f(7') gravity,
the generalized GDE and Pirani equations are recovered for
f(T) =T —2A. We restricted our attention to extract the
GDE for two special cases, namely the fundamental
observers and past directed null vector fields. In these
two cases we have found the Raychaudhuri equation, the
generalized Mattig relation and the diametral angular
distance differential for f(7) gravity theory. We have also
obtained the geodesic deviation 7(z) and the area distance
ro(z) corresponding to two suggested f(7) models and
compared them with those of the ACDM model.
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