
General algorithm for nonrelativistic diffeomorphism invariance

Rabin Banerjee,1,* Arpita Mitra,1,† and Pradip Mukherjee2,‡
1S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700 098, India
2Department of Physics, Barasat Government College, 10 KNC Road, Barasat, Kolkata 700 124, India

(Received 29 January 2015; published 8 April 2015)

An algorithmic approach towards the formulation of nonrelativistic diffeomorphism invariance has been
developed which involves both matter and gauge fields. A step-by-step procedure has been provided which
can accommodate all types of (Abelian) gauge interaction. The algorithm is applied to the problem of a
two-dimensional electron moving under an external field and also under the Chern-Simons dynamics.
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I. INTRODUCTION

The formulation of nonrelativistic theories on a space-
time manifold dates back to the works of Elie Cartan [1],
the corresponding manifold being named Newton-Cartan
spacetime. Subsequently, investigations of different aspects
of Newton-Cartan spacetime have been performed by many
stalwarts [2–9]. The main thrust of these works was to
interpret Newtonian gravity as a spacetime phenomenon.
Recently, nonrelativistic theories and their associated

symmetries based on nonrelativistic diffeomorphism invari-
ance have received renewed attention owing to applications
in mesoscopic physics, especially the theory of the frac-
tional quantum Hall effect. Here the first objective is to
obtain a generally covariant theory in the nonrelativistic
perspective, i.e., which has Galilean invariance in flat
(Euclidean) space and universal time. Naturally, the prob-
lem of nonrelativistic diffeomorphism is being pursued
with renewed vigor in the current literature. Consequently,
various approaches are gradually emerging [10–20].
One approach introduces spatial diffeomorphism by

assuming definite transformation properties of the fields
by inspection so that the theory at hand is generally
covariant [10] in three-dimensional space. The physical
theory is (2þ 1)-dimensional nonrelativistic electrodynam-
ics, where the gauge field is either an external field [10] or
dynamically included in the system [12,13]. For an external
gauge field which transforms as a vector under general
coordinate transformation, only time-independent coordi-
nate transformations are allowed. In this context, time-
dependent transformations may be accommodated, but the
gauge field no longer satisfies the usual transformations
and the transition to flat space is not clear. On the other
hand, when the gauge field dynamics is given by the Chern-
Simons (CS) term, the general covariance is lost [12,13]
and can be regained only by including additional fields.

An algebraic approach to the problem has been advanced
in Ref. [11]. This is based on a contraction of the Poincaré
gauge group to a centrally extended Galilean group. The
well-known procedure of obtaining Riemann-Cartan space-
time from gauging the Poincaré algebra is used to obtain
the Newton-Cartan spacetime. This is thus an algebraic
approach which still leaves the question unanswered—how
to systematically build a diffeomorphism-invariant field
theory that corresponds to a theory invariant under the full
(extended) set of Galilean transformations in the flat limit.
A field theoretic approach is required, therefore.
In a recent paper [16], we have provided a systematic

method of constructing a nonrelativistic diffeomorphism-
invariant field theory that has the appropriate flat limit. This
procedure is inspired by the celebrated Poincaré gauge
theory (PGT) [21–23], which provides an algorithmic
procedure of formulating a field theory in the Riemann-
Cartan spacetime from the corresponding theory in the
Minkowski spacetime, by localizing the symmetry of the
latter under the Poincaré group. We applied similar tech-
niques in the case of nonrelativistic field theories. Of
course, there is a fundamental difference between the
structures of the Minkowski spacetime and the Galileo-
Newton concept of Euclidean space with universal time.
The PGT localizes the global Poincaré symmetry of the
parent theory, where space and time were considered on
equal footing according to the special theory of relativity.
Here, on the contrary, time has to be separated from space
when devising the localization prescription. According to
the Galilean concept, time is not relative, and thus the time
translation parameter can only depend on time [15,24].
Space, on the other hand, is relative. Thus, the spatial
Galilean parameters on localization are functions of both
space and time. Our constructions, when geometrically
interpreted, naturally lead to the Newton-Cartan spacetime
[17]. Interestingly, with a vanishing time translation
parameter, the localization procedure directly leads to a
spatially diffeomorphic theory. The advantage of the
procedure is that the passage to Galilean symmetry in flat
space is inbuilt. The entire approach is systematic without
any ad hoc assumptions.
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Gauging the Galileo symmetry from first principles is an
intricate job. The Minkowski spacetime is naturally a four-
dimensional manifold with a nondegenerate metric that
transforms as a second-rank covariant tensor under Lorentz
transformations. The physical fields constitute specific
representations of the Lorentz group, which include both
spatial rotation and boosts. This facilitates the localization
of Poincaré symmetry of a generic field. In the non-
relativistic case, there is no such luck. The Schrödinger
field Ψðr; tÞ representing scalar particles transforms
according to a projective representation [25,26], whereas
the gauge field transformation law under boost is not
unique [27]. In our previous work [16], only
Schrödinger-like scalar fields were considered. We started
with a free theory with a generic Lagrangian containing
such fields only. The transformation of fields and its
derivatives were worked out under global Galilean trans-
formations. Naturally, the transformations of the temporal
and spatial derivatives do not remain the same when the
transformation parameters are localized. We introduced
additional fields to construct covariant derivatives that
transform under local Galilean transformations just as the
ordinary derivatives do under global Galilean transforma-
tions. Another correction comes from the fact that the
spatial Galilean transformations do not remain unimodular
after localization.1 This is the basic methodology which
will be applied here.
As was mentioned above, an important application of the

formalism is in the theory of the fractional quantum Hall
effect, where the electrons move in two-dimensional space
under the action of a gauge field, the dynamics of which is
dictated externally [10] or dynamically by the Chern-
Simons term [12,13]. It is thus required to extend our
formalism to include gauge fields in the field theory right at
the beginning. This is all the more relevant, as it has been
reported [12,13] that the Chern-Simons term poses a
problem in the formulation of nonrelativistic diffeomor-
phism invariance.
In the present paper, we generalize our earlier approach

to include gauge fields. The nature of the Galilean concept
of spacetime makes this extension nontrivial. We assume
that the theory invariant under global Galilean transforma-
tions contains a complex scalar field and an electromag-
netic field. Usual first-order theories are considered. Due to
the presence of derivatives, these theories cease to be
invariant under local Galilean transformations, i.e., when
the transformation parameters are localized. In order to
recover this invariance, it is pertinent to realize that, after
localization, the transformations carry meaning as Galilean
transformations with respect to local coordinates. Now, as
already enunciated, the crucial point of our algorithm is to

construct covariant derivatives that transform under local
Galilean transformations as ordinary derivatives do under
the corresponding global ones. For the construction of the
covariant derivatives with respect to the local coordinates,
we first define the covariant derivatives with respect to the
global coordinates. The construction for the scalar field
repeats the calculations already reported in Ref. [16],
whereas new compensating fields are introduced corre-
sponding to the gauge fields. The remarkable structural
similarity of the global covariant derivatives is noticed.
Also, the necessity of treating the temporal and spatial
components on different footings is observed. As to the
conversion of the global to local covariant derivatives,
the identical mechanism works for all types of fields.
The transformations of these new fields introduced in the
second step are identical with those obtained in Ref. [16],
which shows that these are connected with the geometry
rather than with the specific fields. No wonder these are
precisely those which were required to link the spacetime
manifold with the Newton-Cartan geometry [17].
The formulation of nonrelativistic theories which will

have diffeomorphism invariance in curved space is then
discussed in full detail. This is achieved by a reinterpre-
tation of the local Galilean symmetry as diffeomorphism
symmetry. We start with vanishing time translation but
keep the time dependence in the spatial transformation
parameters. From the pool of the fields obtained in the
localization process, we are able to construct a metric with
the correct tensorial property in curved spacetime. In this
geometric setting, we view the transformation from local
coordinates to global coordinates as a transformation from
the noncoordinate base to a coordinate base which agrees at
the origin of the nonorthogonal coordinates. The appro-
priate transformation of the geometric objects such as
scalars, vectors, and other tensors are worked out. Note
that though there is no time translation, the dependence of
the spatial transformation parameters on time compels us to
consider the time component of the geometric objects
differently in the different bases. We work out the trans-
formation rules of the covariant derivatives. The fallout is a
step-by-step algorithm of introducing spatial diffeomor-
phism invariance. The passage to a flat limit is manifest in
our algorithm.
We have also made a detailed investigation of the U(1)

gauge symmetry. Contrary to the Galilean symmetry, which
was global to begin with, the gauge symmetry is already
localized. The entire process of the localization of the
spacetime symmetry, eventually leading to a curved-space
interpretation, preserves this local U(1) gauge symmetry.
We have explicitly demonstrated this for the two models
analyzed here.
Our algorithm is then applied to definite problems which

have appeared in the current literature on the fractional
quantum Hall effect [28]. Taking a complex scalar field
interacting with the gauge field in flat space, we localize it

1Interestingly, the same fields which were introduced in
converting the global covariant derivatives to local covariant
derivatives are involved in the measure correction factor.
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by the formalism derived here and formulate the theory in
curved spacetime. To begin with, the gauge field is taken to
be external, and time-independent diffeomorphism is con-
sidered. Applying our algorithm, we construct the corre-
sponding generally invariant theory in curved space. The
resulting theory agrees well with that of Ref. [10], with a
crucial difference: the gauge interaction gets modified due
to the introduction of curvature.
It is the case of time-dependent diffeomorphism where

our theory predicts a completely new feature, namely the
appearance of a new field. This is an auxiliary field that has
no kinetic part. In this sense it can be considered as an
external field acting on the electron which owes its
existence to the curvature of space.
The challenging part is to include the dynamics of the

gauge field. Specifically, a crucial test is the inclusion of the
CS dynamics, as it has been reported [12,13] that spacetime
diffeomorhism invariance is lost when CS dynamics is
included. However, one finds that our systematic approach
is equally applicable for the CS term. Thus, we provide the
complete formulation of the model of an electron moving in
the curved space interacting with the CS gauge field. The
formulation is such that at any stage of application the
passage to the flat (Euclidean) limit is inbuilt.
The paper is organized in six sections. In the following

section, we discuss the general formalism in 2-space
dimensions. Apart from a scalar, a gauge field is also
considered, whose dynamics is kept open at this stage. At
the end of the section, we learn to modify a theory with
global Galilean invariance to one with local Galilean
invariance. In Sec. III, we present a novel way of converting
the formalism to diffeomorphism in curved space.
Applications of our formalism to two models, including
a comparison with existing results, are provided in Sec. IV.
The models involve a Schrödinger field coupled, first, to an
external vector field and, next, to a vector field whose
dynamics is governed by a Chern-Simons term. The issue
of U(1) gauge symmetry is discussed in Sec. V. We have
shown that the original gauge symmetry of the model is
preserved in our localization process. The transformation of
the complex scalar field and the gauge field have been
worked out, both of which are instrumental in demonstrat-
ing the local gauge invariance in the backdrop of curved
space. These ideas are applied to the two models consid-
ered here in Sec. IV. We conclude in Sec. VI.

II. GAUGING THE GALILEAN SYMMETRY OF A
MODEL WITH SCALAR AND VECTOR FIELDS

We start with a theory given by the action

S ¼
Z

dx0d2xLðϕi; ∂0ϕi; ∂kϕiÞ; ð1Þ

where the index 0 stands for time and k ¼ 1; 2 denote
spatial coordinates. Often these will be represented

collectively by μ. The action (1) is assumed to be invariant
under the global Galilean transformation:

xμ ⟶ xμ þ ξμ; ð2Þ

where

ξ0 ¼ −ϵ; ξi ¼ ϵi þ ωi
jxj − vix0: ð3Þ

The time translation, space translation, spatial rotation, and
boost parameters are constants, given by ϵ, ϵi, ωij, and vi,
respectively. The rotation parameter ωij is antisymmetric
under interchange of the indices. ϕi is a collection of fields
which has definite transformation rules under (2) which
leaves the action S unchanged. The problem is to modify
the theory (1) so that the modified theory is invariant under
the localized form of (2). In Ref. [16], we have developed a
systematic method of localization including a complex
scalar field in the action. In this paper, a vector field will be
considered in addition.
A short review of our earlier work [16] is appropriate at

this stage. There we have considered a single scalar field
only. When the Galilean transformations are localized, the
transformation parameters ϵ, ϵi, ωij, and vi are no longer
constants. The nature of nonrelativistic spacetime dictates
that the most general localization of parameters is given by

ϵ0 → ϵ0ðx0Þ; ϵi → ϵiðx0; rÞ;
ωij → ωijðx0; rÞ; vi → viðx0; rÞ: ð4Þ

In order to give the local Galilean transformations a
meaning, we introduce local spatial coordinates xa; a ¼
1; 2 which are trivially connected with the global coor-
dinates xi by

xa ¼ δai x
i: ð5Þ

The action, which was invariant under global Galilean
transformations, ceases to be so under the local version. We
demonstrated that the modified action

S ¼
Z

dx0d2x
M
θ
Lðϕ;∇0̄ϕ;∇aϕÞ ð6Þ

is invariant under the local Galilean transformations.2 The
quantities ∇0̄ϕ and ∇aϕ are covariant derivatives with
respect to the local coordinates. They are related with the
global covariant derivatives D0ϕ and Dkϕ by

2The time component with respect to the local coordinates will
be denoted by an overbar. At this point, there is no distinction
between the time arrows perceived by the local and global
observers.
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∇0̄ϕ ¼ θð ~D0ϕþΨk ~DkϕÞ;
∇aϕ ¼ Σa

k ~Dkϕ; ð7Þ

where the global covariant derivatives D0ϕ and Dkϕ are
defined as

~Dkϕ ¼ ∂kϕþ iBkϕ;

~D0ϕ ¼ ∂0ϕþ iB0ϕ: ð8Þ

The quantity M in (6) is given by

M ¼ detΛk
a; ð9Þ

where Λk
a is the inverse of Σa

k,

Λk
aΣa

l ¼ δlk; Σa
kΛk

b ¼ δba; ð10Þ

and θ, Ψk, Σa
k, B0, and Bk are the new fields, the

transformations of which have been worked out [16] so
as to ensure the symmetry of (6) under the local Galilean
transformations parametrized by (4).
The procedure of getting (6) from (1) can be understood

from the following: From (1) we can write the variation
of the Lagrangian under an arbitrary transformation
xμ → xμ þ ξμ as

ΔL ¼ δ0Lþ ξμ∂μLþ ∂μξ
μL: ð11Þ

Here δ0 denotes the form variation given by

δ0ψ ¼ ψ 0ðr; x0Þ − ψðr; x0Þ ð12Þ

for any function ψðr; x0Þ. For the global Galilean trans-
formations, ∂μξ

μ ¼ 0. Also, the fields and their derivatives
transform in a way so that

δ0Lþ ξμ∂μL ¼ 0:

For the local Galilean transformations, the latter condition
is satisfied when ordinary derivatives are replaced by the
covariant derivatives. But in this case, ∂μξ

μ ≠ 0. The
correction factor for the measure of the volume takes care
of this and ensures that ΔL ¼ 0. Naturally, the action (6) is
invariant.
Now we will use that same localization method with a

more general case where the set of fields ϕi in (1) contains a
gauge field corresponding to electromagnetic interaction in
addition to the scalar (Schrödinger) field. In other words,
we consider the nonrelativistic theory of complex scalar
fields minimally interacting with vector gauge field in
(2þ 1) dimensions, invariant under global Galilean trans-
formations (2). The action is expressed as

S ¼
Z

dx0d2xLðϕ; ∂μϕ; Aμ; ∂μAνÞ: ð13Þ

The action (13) is known to be invariant under the local
Abelian gauge transformations

ϕ → ϕþ iΛϕ;

Aμ → Aμ − ∂μΛ: ð14Þ

Apart from this invariance, the action (13) is invariant under
the global Galilean transformations. We now discuss this
issue in some detail. Under the global Galilean transforma-
tions (2), the complex scalar field ϕ transforms as [16]

δ0ϕ ¼ ϵ∂0ϕ − ηi∂iϕþ x0vi∂iϕ − imvixiϕ; ð15Þ

where ηi ¼ ϵi þ ωi
jxj. Consequently, the derivatives vary as

δ0∂kϕ ¼ ϵ∂0ð∂kϕÞ − ðηi − vix0Þ∂ið∂kϕÞ − imvi∂kðxiϕÞ þ ωk
m∂mϕ;

δ0∂0ϕ ¼ ϵ∂0ð∂0ϕÞ − ðηi − x0viÞ∂ið∂0ϕÞ − imvixi∂0ϕþ vi∂iϕ: ð16Þ

As we have mentioned earlier, due to the intricacies of the nonrelativistic spacetime, the transformation of various fields
(under boost) must be determined from case to case. The transformations of the gauge potential were obtained in Ref. [27].
Of course, Ak transforms as a vector under rotation while A0 transforms as a scalar under the same. Combining these, the
transformations of Aμ under global Galilean transformations are written as

δ0A0 ¼ ϵ∂0A0 − ηl∂lA0 þ tvl∂lA0 þ vlAl;

δ0Ai ¼ ϵ∂0Ai − ηl∂lAi þ tvl∂lAi þ ωi
lAl: ð17Þ

Then the transformations of their derivatives can be shown to be

δ0∂kA0 ¼ ϵ∂0ð∂kA0Þ − ðηl − x0vlÞ∂lð∂kA0Þ þ ωk
l∂lA0 þ vl∂kAl;

δ0∂0A0 ¼ ϵ∂0ð∂0A0Þ − ðηl − x0vlÞ∂lð∂0A0Þ þ vl∂lA0 þ vl∂0Al; ð18Þ

RABIN BANERJEE, ARPITA MITRA, AND PRADIP MUKHERJEE PHYSICAL REVIEW D 91, 084021 (2015)

084021-4



and

δ0∂kAi ¼ ϵ∂0ð∂kAiÞ − ðηl − x0vlÞ∂lð∂kAiÞ þ ωk
l∂lAi þ ωi

l∂kAl;

δ0∂0Ak ¼ ϵ∂0ð∂0AkÞ − ðηl − x0vlÞ∂lð∂0AkÞ þ vl∂lAk þ ωk
l∂0Al: ð19Þ

These are the transformations that ensure

δ0Lþ ξμ∂μL ¼ 0: ð20Þ

Also here ∂μξ
μ ¼ 0. Together they keep δS ¼ 0 under the

global Galilean transformations, where S is given by (13).
Now we make the transformations local:

ξ0 ¼ −ϵðx0Þ; ξi ¼ ηiðx0; rÞ − viðx0; rÞx0; ð21Þ

where ηi ¼ ϵiðx0; rÞ þ ωi
jðx0; rÞxj. Note the functional

dependence of the various parameters of the local trans-
formations. One should remember that after localization,
these transformations can be viewed as Galilean trans-
formations only locally. The final form of the local Galilean
invariant theory will thus refer to the local coordinates.
This explains the introduction of the local coordinates xa

[see Eq. (5)], notwithstanding the fact that in flat Euclidean
space they are trivially connected with the global
coordinates.
Once the parameters of the transformations are local, the

partial derivatives of ϕ; A0; Ai with respect to space and
time will no longer transform as (16), (18), (19). Following
the gauge procedure, one needs to introduce covariant
derivatives which will transform covariantly as (16), (18),
(19) with respect to the local coordinates. As we have
shown in Ref. [16], the first step in the process of
localization is to convert the ordinary derivatives into
covariant derivatives with respect to the global coordinates.
To begin with, we introduce the gauge fields Bμ to define

covariant derivatives of the complex scalar field ϕ with
respect to space and time in global coordinate as

~Dμϕ ¼ ∂μϕþ iBμϕ: ð22Þ

Similarly, new gauge fields Cμ; Fμ will be introduced here
to define the global covariant derivatives for the fields Aμ as

~DμA0 ¼ ∂μA0 þ iCμA0;

~DμAi ¼ ∂μAi þ iFμAi: ð23Þ

Note that different sets of gauge fields are introduced for A0

and Ai, a typical signature of Galilean spacetime. Also note
the structural similarity of the global covariant derivatives
in each case.
In the next step, the global covariant derivatives are

converted to the covariant derivatives with respect to space
and time in local coordinates. For the complex scalar field,
these local covariant derivatives are defined as [16]

∇aϕ ¼ Σa
k ~Dkϕ;

∇0̄ϕ ¼ θð ~D0ϕþΨk ~DkϕÞ; ð24Þ

where a is the local index and k is the global one,
introducing additional fields θðx0Þ;Ψkðx0; rÞ;Σa

kðx0; rÞ
in the process. We found that the local covariant derivative
transforms covariantly:

δ0ð∇aϕÞ ¼ ϵ∂0ð∇aϕÞ − ðηi − x0viÞ∂ið∇aϕÞ − imvi∇aðxiϕÞ þ ωa
b∇bϕ; ð25Þ

provided the additional fields transform as

δ0Bk ¼ ϵ _Bk − ∂kðηi − x0viÞBi − ðηi − x0viÞ∂iBk þm∂kvixi þmðvk − Λk
avaÞ;

δ0Σa
k ¼ ϵ _Σk

a þ Σa
i∂iðηk − x0vkÞ − ðηi − x0viÞ∂iΣa

k þ ωa
bΣb

k: ð26Þ

Here Λk
a is the inverse of Σa

k. For later convenience, we write the transformation of the inverse explicitly:

δ0Λk
a ¼ ϵ _Λk

a − Λl
a∂kðηl − x0vlÞ − ðηi − x0viÞ∂iΛk

a þ ωa
cΛk

c: ð27Þ
Similarly, to get the appropriate expression of δ0ð∇0̄ϕÞ as

δ0ð∇0̄ϕÞ ¼ ϵ∂0ð∇0̄ϕÞ − ðηi − x0viÞ∂ið∇0̄ϕÞ − imvixi∇0̄ϕþ vb∇bϕ; ð28Þ
we require that the introduced gauge fields transform as
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δ0B0 ¼ ϵ _B0 þ _ϵB0 − ðηi − vix0Þ∂iB0 − ð_ηi − _vix0ÞBi þ viBi þmΨkΛk
ava þm _vixi;

δ0θ ¼ −θ_ϵþ ϵ_θ;

δ0Ψk ¼ ϵ _Ψk þ _ϵΨk þ ∂
∂x0 ðη

k − x0vkÞ − ðηi − vix0Þ∂iΨk − x0Ψi∂ivk þΨi∂iη
k þ 1

θ
vbΣb

k: ð29Þ

These transformations have already been reported in Ref. [16]. The new feature of the present model is the inclusion of the
gauge fields Aμ in the original action. We follow a similar procedure to construct the appropriate local covariant derivatives
for these fields:

∇aA0̄ ¼ Σa
k ~DkA0;

∇0̄A0̄ ¼ θð ~D0A0 þΨk ~DkA0Þ;
∇aAb ¼ ðΣa

k ~DkAiÞδib;
∇0̄Ab ¼ θð ~D0Ai þΨk ~DkAiÞδib: ð30Þ

Plugging the expression of δ0Σa
k; δ0Ψk; δ0θ, the local covariant derivative will transform as the global one [see Eqs. (18)

and (19)]:

δ0ð∇aA0̄Þ ¼ ϵ∂0ð∇aA0̄Þ − ðηl − vlx0Þ∂lð∇aA0̄Þ þ ωa
b∇bA0̄ þ vb∇aAb;

δ0ð∇0̄A0̄Þ ¼ ϵ∂0ð∇0̄A0̄Þ − ðηl − vlx0Þ∂lð∇0̄A0̄Þ þ vb∇bA0̄ þ vb∇0̄Ab;

δ0ð∇aAbÞ ¼ ϵ∂0ð∇aAbÞ − ðηl − vlx0Þ∂lð∇aAbÞ þ ωa
c∇cAb þ ωb

c∇aAc;

δ0ð∇0̄AbÞ ¼ ϵ∂0ð∇0̄AbÞ − ðηl − vlx0Þ∂lð∇0̄AbÞ þ va∇aAb þ ωb
c∇0̄Ac; ð31Þ

provided

δ0C0 ¼ ϵ _C0 þ _ϵC0 − ð_ηi − _vix0ÞCi − ðηi − vix0Þ∂iC0 þ vlCl þ iA0
−1 _vlAl;

δ0Ck ¼ ϵ _Ck − ∂kðηi − vix0ÞCi − ðηi − vix0Þ∂iCk þ iA0
−1∂kðvlÞAl;

δ0F0 ¼ ϵ _F0 þ _ϵF0 − ð_ηl − _vlx0ÞFl − ðηl − vlx0Þ∂lF0 þ vlFl;

δ0Fk ¼ ϵ _Fk − ∂kðηl − vlx0ÞFl − ðηl − vlx0Þ∂lFk: ð32Þ

Certain interesting features in the construction of the local
covariant derivatives for the gauge field are to be noted.
First, we assume the same basic structure for constructing
the corresponding global covariant derivatives as was done
for the complex scalar field earlier. Second, it is remarkable
that the same basic fields are employed to convert global to
local covariant derivatives with the same set of trans-
formation rules. This is why these fields are connected with
the geometry of the nonrelativistic spacetime [17].
The first stage of localization of Galilean transformation

for the action is now over. Following the same approach
stated in Ref. [16], the action will be modified, replacing
the partial derivatives with the local covariant derivatives.
But, under the local Galilean transformation, ∂μξ

μ ≠ 0, and
a correction factor is required in the measure of integration
[see Eq. (6)]. This prescription leads to the action

S ¼
Z

dx0d2x

�
M
θ

�
Lðϕ;∇αϕ; Aα;∇αAβÞ; ð33Þ

where α; β≡ 0̄; a. The action (33) is invariant under the
local Galilean transformations (21).
Before closing this section, let us emphasize the follow-

ing points:
(1) The theory (33) is defined in flat (Euclidean) back-

ground space.
(2) The erection of the local coordinate system is to give

meaning to the local Galilean transformations. Oth-
erwise, they are trivially connected with the global
coordinates by (5).

In the following section, we will find that the theory (33)
can be reinterpreted as a geometric theory where the
connection between the global and the local coordinates
will be nontrivial. This will lead naturally to a diffeo-
morphism-invariant theory in space.

III. EMERGENCE OF SPATIAL
DIFFEOMORPHISM

We will now show that our formalism leads to diffeo-
morphism-invariant theory in 2D space. Since the goal is
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2D diffeomorphism in space, we take the time translation in
(21) vanishing:

ϵðx0Þ ¼ 0: ð34Þ
The second equation of (29) with (34) then shows that
θ ¼ constant. Without any loss of generality, it can be taken
to be 1. The local Galilean transformations with ϵ ¼ 0 are
then equivalent to the general coordinate transformation in
space,

xk → xk þ ξk; ð35Þ
where ξk is an arbitrary function of space and time defined
in (21). This indicates the possibility of reinterpreting the
invariance of (33) under (21) as diffeomorphism invariance
in curved space. But the theory (33) is formulated in terms
of locally flat coordinates. When the background space is
curved, the local flat space is just the tangent space at the
point of contact. In this new interpretation, the coordinates
labeled by a define an orthogonal basis with the origin at
the point of contact. The coordinates labeled by x define the
coordinate basis in the curved space. In Cartan’s formalism,
the connection between the two is established by the
vielbeins. The fields Σa

k can be reinterpreted as the
vielbeins, as we will soon observe.
Let us reexamine the structure of the transformation

of Σa
k, which is obtained from (26) under the condition

ϵ ¼ 0 as

δ0Σa
k ¼ Σa

i∂iξ
k − ξi∂iΣa

k þ ωa
bΣb

k: ð36Þ
Note the dual aspects of the transformation. With respect to
the coordinates xi, it satisfies the transformation rules of a
contravariant vector under the general coordinate trans-
formation (35), whereas with respect to the coordinates xb

it is a local rotation. From the transformation ofΛk
a given by

(27), we find to our delight that it transforms as a covariant
vector under diffeomorphism (35) corresponding to its
lower-tier index k, while it transforms as a Euclidean vector
under rotation corresponding to its local index a. It will thus
be reasonable to propose the following connection between
local and global coordinates in the overlapping patch:

dxa ¼ Σa
kdxk: ð37Þ

Note that, contrary to (5), the above connection has become
nontrivial due to the geometric interpretation.
We will next show that we can construct a metric (and its

inverse) for the 2D manifold from the fields Σa
k and its

inverse Λk
a. Let us define

gij ¼ δcdΛi
cΛj

d ð38Þ
as a candidate for the metric. From the transformation rules
for Λi

c, we can prove that under the transformation (35), gij
transform as a covariant tensor:

δ0gij ¼ −ξk∂kgij − gik∂jξ
k − gkj∂iξ

k: ð39Þ

The distance between two points is given by

dxadxa ¼ Σa
kdxkΣa

ldxl

¼ δabΣa
kdxkΣb

ldxl

¼ gkldxkdxl; ð40Þ

where

gkl ¼ δabΣa
kΣb

l: ð41Þ

This gij is the inverse of gij, and it transforms as a
contravariant tensor. It can also be checked explicitly.
Furthermore, M ¼ detΛi

c ¼ ffiffiffi
g

p
, where g is the determi-

nant of gij.
The above developments suggest the replacement

Z
dx0d2x

M
θ
→

Z
dx0d2x

ffiffiffi
g

p ð42Þ

in (33). Note that this replacement is a transformation from
local coordinates to global coordinates that charts 2-dim
curved space. By the reinterpretation of the fields, we get
curved geometry. The idea of spatial diffeomorphism that
has surfaced in the theory of FQHE [10,12] from an
empirical point of view is thus shown to have deep
connection with the localization of Galilean symmetry.
Now, events happen not only in space but at a certain

time instant also. Though we are working with vanishing
time translation, the appearance of time in the diffeo-
morphism parameter ξ makes the time arrow relative at
different points of curved space. The time component of the
vectors in the local coordinate will not be simply equal with
that of the curved space3 To relate the time components, we
will use the remaining field Ψk and its transformation rule
from (29). Naturally, this transformation rule does not show
obvious geometric interpretation (spacetime is not a single
manifold). However, it fits with the emergent spatial
diffeomorphism, as we will see.
From the practical point of view, our theory gives a

structural algorithm of constructing spatially diffeomorphic
theory from the Galilean symmetric theories with the
general structure of (13). To establish this analogy, we
have to see how the transformations of the fields and the
covariant derivatives obtained from the gauge approach in
the previous section can be reinterpreted in the backdrop of
curved space.
The local coordinates map the tangent space at a space

point. Geometric quantities are defined in the tangent
space. Local coordinate basis is noncoordinate and

3That is why we have distinguished the corresponding indices
from the beginning.
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orthogonal. They allow arbitrary rotations.4 We have the
transformations of the physical fields ϕ and A0̄; Aa at our
disposal. Using equations (15) and (17), we can write these
rules in the local coordinates as

δ0ϕ ¼ −ξa∂aϕ − imvaxaϕ;

δ0A0̄ ¼ −ξb∂bA0̄ þ vbAb;

δ0Aa ¼ −ξb∂bAa þ ωa
bAb: ð43Þ

In terms of these, we will define the appropriate fields in the
curved space. Remember in this context that this mapping
can only be achieved in the overlap of the two systems, i.e.,
in the neighborhood of the origin of the local system.
We start with the scalar field ϕ. The transformation of the

scalar field in the curved space is obtained from (43) as

δ0ϕ ¼ −ξi∂iϕ: ð44Þ

Note that in the new interpretation, the two descriptions
match in the neighborhood of the origin of the local
coordinate system. This is why the last term of the
corresponding equation of (43) does not appear in (44).
Components of the vector field A are connected by a

relation similar to (37),

Aa ¼ Σa
kAk: ð45Þ

The transformation of Aa is the Galilean transformation
given in (43), and that of Σa

k is given by (36). The resulting
transformation of Ak in the curved basis is obtained by
equating the form variations of both sides of (45). A
straightforward calculation yields

δ0Ak ¼ −ξi∂iAk − ∂kξ
iAi: ð46Þ

These are the required ones for a covariant vector. In
deriving (46), we have used the following operator relation:

ξa
∂
∂a
x
¼ ξa

∂xi
∂xa

∂
∂xi

¼ Σa
kξkΛi

a ∂
∂xi

¼ ξi
∂
∂i

; ð47Þ

which has been established using (37).
Particular care is required for the time components of the

fields. As has been already emphasized, though there is no
time translation, time is involved in the spatial diffeo-
morphism parameters. The time component with respect to

the local coordinates (denoted by an overbar on zero) is to
be related to the time component in curved coordinates by
the following ansatz:

A0̄ ¼ A0 þΨkAk: ð48Þ

The transformation rule for A0 is then worked out as

δ0A0 ¼ −ξi∂iA0 − _ξiAi: ð49Þ

The structure of the above transformation is to be noted.
The second term is dependent on the time variation of the
diffeomorphism parameter, which can only be avoided if
we consider time-independent transformations. The struc-
ture of (49) is the paradigm of the transformation of time
components in the curved space, as will be subsequently
observed.
After obtaining the transformations for the basic fields,

the geometric interpretation is established on firm ground.
However, the issue of substituting the covariant derivatives
∇0̄ϕ, ∇kϕ, ∇aAb, ∇0̄Aa, ∇aA0̄, and ∇0̄A0̄ with appropriate
derivatives with respect to the curved coordinates still
remains. We denote these, respectively, by D0ϕ, Dkϕ,
DkAl,D0Al,DkA0, andD0A0. The following definitions are
proposed:

∇aϕ ¼ Σa
kDkϕ;

∇0̄ϕ ¼ D0ϕþΨkDkϕ;

∇aAb ¼ Σa
kΣb

lDkAl;

∇0̄Aa ¼ Σa
kðD0Ak þΨlDlAkÞ;

∇aA0̄ ¼ Σa
kðDkA0 þΨlDkAlÞ;

∇0̄A0̄ ¼ D0A0 þΨkDkA0 þΨkD0Ak þΨkΨlDkAl: ð50Þ

Note that the construction of the time component of the
covariant derivatives mimics our prescription (48).
The transformation laws of the new derivatives in curved

space are once again obtained from the transformation rules
(25), (28), and (31). To illustrate our method, we take the
transformation of Dkϕ and show the calculation explicitly.
Taking the form variation of both sides of the first equation
of (50), we get

δ0ð∇aϕÞ ¼ ðδ0Σa
kÞDkϕþ Σa

kðδ0DkϕÞ: ð51Þ

From (25), we write

δ0ð∇aϕÞ ¼ −ξb∂bð∇aϕÞ − imvb∇aðxbϕÞ þ ωa
b∇bϕ:

ð52Þ

The last term of the above expression will have a vanishing
contribution because in the overlap of the two coordinate
systems, xbϕ must be smoothly vanishing. Substituting
this result on the left-hand side of (51) and using the

4The local system is tied to a point in the curved space. So
Galilean boost is now no longer included in the local trans-
formations. It is now absorbed in the spatial diffeomorphism.
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transformation of Σa
k, we get the transformation δ0Dkϕ.

Working in an analogous way, we get the transformation
rules of the other curved-space derivatives. The results are
summarized as

δ0Dkϕ ¼ −ξi∂iðDkϕÞ − ∂kξ
iDiϕ;

δ0D0ϕ ¼ −ξi∂iðD0ϕÞ − _ξkDkϕ;

δ0DkAl ¼ −ξi∂iðDkAlÞ − ∂kξ
mDmAl − ∂lξ

mDkAm;

δ0D0Ak ¼ −ξi∂iðD0AkÞ − ∂kξ
lD0Al − _ξlDlAk;

δ0DkA0 ¼ −ξi∂iðDkA0Þ − ∂kξ
lDlA0 − _ξlDkAl;

δ0D0A0 ¼ −ξi∂iðD0A0Þ − _ξkðDkA0 þD0AkÞ: ð53Þ

Note that all the curved space derivatives defined by (50)
transform canonically, following the transformations cor-
responding to their component labels established for the
field components. For example, the expression for δ0ðDkϕÞ
shows that Dkϕ transforms as Ak [see Eq. (46)]. Similarly,
D0ϕ transforms as A0 [see (49)]. The higher-rank tensors
like DkAl transform appropriately.
For explicit calculations, we will require expressions for

the derivatives Dkϕ, D0ϕ, DkAl, D0Ak, DkA0 in terms of
the basic fields with well-defined transformations. These
expressions are obtained by requiring consistency with
(53). Following this, we define the derivatives D0ϕ and
Dkϕ as

D0ϕ ¼ ∂0ϕþ iB0ϕ;

Dkϕ ¼ ∂kϕþ iBkϕ; ð54Þ

where the transformation rules for the fields B0 and Bk are
given by

δ0B0 ¼ −ξi∂iB0 − _ξiBi;

δ0Bk ¼ −ξi∂iBk − ∂kξ
iBi: ð55Þ

We observe that Bk transforms as a covariant spatial vector
[see (46)], and B0 transforms in the same way as the time
components of vectors are expected to transform in our
formalism [see Eq. (49)]. This shows the internal consis-
tency of our construction.
A word about the introduction of the new field B is

useful. Observe that the set of vector fields A were present
in the original model. The new vector fields B emerge from
the localization prescription that leads to our formulation in
curved space.
Similarly, we define the other derivatives acting on A’s in

the following way:

DiAk ¼ ð∂iAk − ∂kAiÞ þ iðBiAk − BkAiÞ;
D0Ak ¼ ð∂0Ak − ∂kA0Þ þ iðB0Ak − BkA0Þ;
DkA0 ¼ ð∂kA0 − ∂0AkÞ þ iðBkA0 − B0AkÞ; ð56Þ

such that they satisfy the transformation rules (53).
The algorithm for the construction of the spatially

diffeomorphic theories can now be summarized:
(1) Start from a nonrelativistic Galilean-invariant theory.
(2) Gauge the Galilean symmetry by replacing the

derivatives of the field with the corresponding local
covariant derivatives. Also, correct the measure
appropriately as in (33). The resulting theory is
now a locally Galilean-invariant theory.

(3) Take time translation vanishing. The local Galilean
transformations are then equivalent to general coor-
dinate transformations in curved space.

(4) Formulate the theory as a theory invariant under
general coordinate transformations in a curved
space by the substitution (42) and by replacements
of the covariant derivatives in the action (33) by the
covariant derivatives in the curved space. Use the
definitions (50).

(5) The diffeomorphic theory obtained in the above
procedure will contain the fields Σa

k and Ψk. The
fields Σa

k will be grouped to give rise to tensors in
the curved space, e.g. the metric tensor. The fields
Ψk are independent fields in the theory without any
kinetic term.

IV. APPLICATIONS AND COMPARISON
WITH EXISTING RESULTS

In this section, wewill discuss a couple of applications of
our general formalism and make a comparison with
existing results. The first model will be a complex
Schrödinger field theory in the presence of an external
vector field. The other model to be considered will involve
a vector field whose dynamics is generated by a Chern-
Simons term.

A. Complex Schrödinger field theory in the presence
of an external vector field

As we have mentioned in the Introduction, the most
important application of spatial diffeomorphism is in the
theory of fractional quantum Hall effect [10]. It will thus be
useful to start from the example which models a non-
relativistic electron moving in an external gauge field given
by the action:

S¼
Z

dx0
Z

d2xk

�
i
2
ðϕ�Δ0ϕ−ϕΔ0ϕ

�Þ− 1

2m
Δkϕ

�Δkϕ

�
;

ð57Þ
where
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Δ0ϕ ¼ ∂0ϕþ iA0ϕ: Δkϕ ¼ ∂kϕþ iAkϕ; ð58Þ

and Aμ is the external gauge field. The theory (57) is invariant under global Galilean transformations (2), as can be checked
explicitly.
Simplifying (57), we can get

S ¼
Z

dx0
Z

d2xk

�
i
2
ðϕ�∂0ϕ − ϕ∂0ϕ

�Þ − ϕ�ϕA0 − 1

2m
∂kϕ

�∂kϕ − Ak
2

2m
ϕ�ϕþ i

2m
Akðϕ�∂kϕ − ϕ∂kϕ

�Þ
�
: ð59Þ

The corresponding theory invariant under local Galilean transformations (21), according to our algorithm, is

S ¼
Z

dx0̄
Z

d2xa
M
θ

�
i
2
ðϕ�∇0̄ϕ − ϕ∇0̄ϕ

�Þ − 1

2m
∇aϕ

�∇aϕ − ϕ�ϕA0̄ − Aa
2

2m
ϕ�ϕþ i

2m
Aaðϕ�∇aϕ − ϕ∇aϕ

�Þ
�
: ð60Þ

In the following, we will consider spatial diffeomorphism (ϵ ¼ 0) where θ ¼ 1. We can then transform our results in a
geometric setting by following the algorithm given at the end of Sec. III.
Let us first consider the special case when ξ, the spatial diffeomorphism parameter, is time independent. The third

equation of (29) shows that, along with the time independence of ξ, Ψk ¼ 0 may be chosen. Under this condition,
∇0̄ϕ ¼ D0ϕ. After some algebra, the action (60) reduces to

S ¼
Z

dx0
Z

d2xðdetΛk
aÞ
�
i
2
ðϕ�D0ϕ − ϕD0ϕ

�Þ − ϕ�ϕA0 − Σa
kΣa

l

�
1

2m
Dkϕ

�Dlϕ

�

− Σa
kΣa

l

�
1

2m
AkAlϕ

�ϕ
�
þ Σa

kΣa
l

�
i
2m

Akðϕ�Dlϕ − ϕDlϕ
�Þ
��

:

Using the definition of metric (41), this is reduced to a generally covariant theory in the curved space:

S ¼
Z

dx0d2xðdetΛk
aÞ
�
i
2
ðϕ�ðD0 þ iA0Þϕ − ϕðD0 − iA0Þϕ�ÞÞ − gkl

1

2m
ðDk − iAkÞϕ�ðDl þ iAlÞϕ

�
: ð61Þ

The action (61) can now be written as a nonrelativistic diffeomorphism-invariant action,

S ¼
Z

dx0d2x
ffiffiffi
g

p �
i
2
ðϕ�D̄0ϕ − ϕD̄0ϕ

�Þ − gkl
1

2m
D̄kϕ

�D̄lϕ

�
; ð62Þ

where

D̄0ϕ ¼ D0ϕþ iA0ϕ ¼ ∂0ϕþ iðA0 þ B0Þϕ;
D̄kϕ ¼ Dkϕþ iAkϕ ¼ ∂kϕþ iðAk þ BkÞϕ: ð63Þ

So we can interpret from the result that localization of
Galilean symmetry for the nonrelativistic field theoretic
model of complex scalar fields interacting with a vector

field in flat space gives a theory with an action invariant
under general coordinate transformation in curved space.
Note that we have considered the spatial diffeomorphism
parameter as time independent and there is no time
translation.
At this point we can compare our results with that of

Ref. [10]. They obtained spatial diffeomorphism by follow-
ing the minimal coupling prescription as

S ¼
Z

dtdx
ffiffiffi
g

p �
i
2
ðψ†∂tψ − ψ∂tψ

†Þ − A0ψ
†ψ − gij

2m
ð∂iψ

† − iAiψ
†Þð∂jψ þ iAjψÞ

�
; ð64Þ

which is invariant under infinitesimal transformations,
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xi → xi
0 ¼ xi

0 ðxiÞ; ψðt; xÞ → ψðt; x0Þ ¼ ψðt; xÞ;

A0ðt; xÞ → A0
0ðt; x0Þ ¼ A0ðt; xÞ; Aiðt; xÞ → Ai0 ðt; x0Þ ¼

∂xi
∂xi0 Aiðt; xÞ;

gijðt; xÞ → gi0j0 ðt; x0Þ ¼
∂xi
∂xi0

∂xj
∂xj0 gijðt; xÞ; ð65Þ

when the fields transform as5

δψ ¼ −ξk∂kψ ; δA0 ¼ −ξk∂kA0;

δgij ¼ −ξk∂kgij − gik∂jξ
k − gkj∂iξ

k; δAi ¼ −ξk∂kAi − Ak∂iξ
k: ð66Þ

The action (64) agrees with (62) with the proviso that “A” is
replaced by “Aþ B.” In the time-independent case, the
transformations of basic fields given above become iden-
tical with those obtained here in (44), (49), (46), (55).
When the diffeomorphism parameter ξi is time depen-

dent, the real difference comes up. Now Ψk ¼ 0 is not
admissible. Then the diffeomorphism-invariant action in
the curved space becomes

S¼
Z

dx0d2x
ffiffiffi
g

p �
i
2
ðϕ�D̄0ϕ−ϕD̄0ϕ

�Þ− gkl
1

2m
D̄kϕ

�D̄lϕ

þ i
2
Ψkðϕ�D̄kϕ−ϕD̄kϕ

�Þ
�
: ð67Þ

Note that we do not demand any special transformation for
the time-dependent case. Identical transformation laws for
the basic fields ensure the invariance of the action (67). This
is to be contrasted with Ref. [10], where the same action is
retained but the transformation rules of the basic fields
change in a noncanonical way.6 This is not surprising,
because the results of Ref. [10] are obtained in an ad hoc
manner, based on “trial and error”method, as the authors of
Ref. [10] admitted. On the other hand, our analysis does not
distinguish between time-dependent and time-independent
cases, both of which can be obtained in holistic manner
following our localization procedure.
Before finishing this comparison, we would like to draw

attention to a crucial point. In the general case when ξi is
time dependent, a set of noncanonical transformations of
the fields is given in Ref. [10] where the gauge trans-
formations also contribute. To derive the flat limit of these
transformations, they put as usual gij ¼ δij. The surprising
thing is that in the flat limit, the Galilean transformation can
only be recovered if one assumes a particular correlation
between the gauge parameter and the boost parameter. This
can hardly be motivated on any fundamental premises. Also

observe that the passage to flat limit is naturally inbuilt in
our construction. Thus, there is no trouble in recovering
Galilean invariance. It is just required to replace the
covariant derivative with the ordinary derivative and the
metric by δij. A simple inspection of (67) and (57) confirms
the above.7

B. Inclusion of the Chern-Simons term in the action

Another landmark problem is the inclusion of the CS
term in the action [12,13]. The CS action is given by

SCS ¼
Z

d3x
κ

2
ϵμνλAμ∂νAλ ð68Þ

and can be coupled with both relativistic and nonrelativistic
models [29]. It will be convenient to break the action into
spatial and temporal parts:

SCS ¼
Z

dx0
Z

d2xk
κ

2
ϵijðA0∂iAj − Ai∂0Aj þ Ai∂jA0Þ:

ð69Þ

It can be shown that (69) is invariant under the global
Galilean transformation using the variations (17).
Following the method to localize the Galilean transforma-
tion stated in the previous section, we can get the
corresponding action invariant under the local Galilean
transformations as

S ¼
Z
dx0̄

Z
d2xa

M
θ

κ

2
ϵabðA0̄∇aAb − Aa∇0̄Ab þ Aa∇bA0̄Þ:

ð70Þ

By our construction, this action (70) is invariant under (21).
This can also be checked explicitly.
Now our algorithm given above in Sec. III allows us to

construct the spatially diffeomorphic action as follows:5Note that, to make a comparison, we have set the gauge
parameter in Ref. [10] to zero, since we consider only diffeo-
morphism symmetry.

6These are given in Eq. (17) of Ref. [10].

7Note that Ψk vanishes when the covariant derivative is
replaced by the ordinary derivative.
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S¼
Z
dx0d2x

ffiffiffi
g

p κ

2
ϵabΣa

kΣb
l½ðA0DkAl−AkD0AlþAkDlA0Þ

þΨmAmDkAlþΨmAkðDlAm−DmAlÞ�: ð71Þ

Note that ϵab is a tensor under local (orthogonal) trans-
formations. Thus,

Σa
kΣb

lϵab ¼ ~ϵkl; ð72Þ

where ~ϵkl is the Levi-Cività tensor in the curved space. It is
related to the numerical tensor ϵkl by

~ϵkl ¼ 1ffiffiffi
g

p ϵkl: ð73Þ

Then the CS action in curved space is obtained from the
above equations as

S ¼
Z

dx0d2x
κ

2
ϵkl½ðA0DkAl − AkD0Al þ AkDlA0Þ

þΨmAmDkAl þΨmAkðDlAm −DmAlÞ�: ð74Þ

Now the derivatives DμAν are substituted from (56):

S ¼
Z

dx0d2x
κ

2
ϵkl½ðA0ð∂kAl − ∂lAk þ iBkAl − iBlAkÞ − Akð∂0Al − ∂lA0 þ iB0Al − iBlA0Þ

þ Akð∂lA0 − ∂0Al þ iBlA0 − iB0AlÞÞ þΨm½Amð∂kAl − ∂lAk þ iBkAl − iBlAkÞ
þ Akð∂lAm − ∂mAl þ iBlAm − iBmAlÞ − Akð∂mAl − ∂lAm þ iBmAl − iBlAmÞ��: ð75Þ

Exploiting the antisymmetric property of ϵkl, (75) further reduces to

S ¼
Z

dx0d2x
κ

2
ϵkl½2ðA0∂kAl − Ak∂0Al þ Ak∂lA0Þ þ 2Ψm½Am∂kAl þ Akð∂lAm − ∂mAlÞ��

¼
Z

dx0d2xκ½ϵμνλAμ∂νAλ þΨmϵkl½Am∂kAl þ Akð∂lAm − ∂mAlÞ��: ð76Þ

Note that the B field has dropped out from the above
expression. Effectively, therefore, the Chern-Simons inter-
action receives a correction to its original form.
It may be shown that the above action, under the general

coordinate transformations (46), (49), and (53), changes as

δS ¼
Z

dx0d2xκ∂i½ξiϵklðA0∂kAl − Ak∂0Al þ Ak∂lA0Þ�:
ð77Þ

The integrand is a total derivative and drops to zero when
integrated over space. This proves that the action is
invariant under the general coordinate transformations.
The Chern-Simons action has proved to be very useful in

the study of the fractional quantum Hall effect. In this
context, it may be noted that the Chern-Simons action is
reported [12] to break the diffeomorphism symmetry. This
has been a major obstacle in applying theories with the
Chern-Simons term in curved space. To recover the lost
invariance, it is essential to introduce correction terms. In
our opinion, these features are manifestations of the ad hoc
prescription used to achieve nonrelativistic diffeomorphism
invariance from a theory defined in flat space. Our
approach, on the other hand, naturally leads to an appro-
priate Chern-Simons theory in curved space, without any
ad hoc assumptions or corrections.

V. COMMENTS ON U(1) GAUGE SYMMETRY

In this section, we will analyze the issue of “gauge
invariance” in our theory in more detail. First, we will
discuss the gauge invariance of the localized Galileo
symmetric model given in (33). When the Galilean sym-
metry is global, the gauge transformations are given by
(14), in which case the combination ð∂μϕþ iAμϕÞ trans-
forms covariantly as follows:

∂μϕþ iAμϕ → ð1þ iΛÞð∂μϕþ iAμϕÞ: ð78Þ

When the Galilean symmetry is localized, the partial
derivatives ∂μϕ are replaced by ∇aϕ. Now the combination
ð∇aϕþ iAaϕÞ transforms covariantly as

∇aϕþ iAaϕ → ð1þ iΛÞð∇aϕþ iAaϕÞ: ð79Þ

This is achieved for the following transformations of the
basic fields:

ϕ → ϕþ iΛϕ;

Aa → Aa − ∇aΛ; A0̄ → A0̄ − ∇0̄Λ; ð80Þ

where

∇aΛ ¼ Σa
k∂kΛ; ∇0̄Λ ¼ ∂0ΛþΨm∂mΛ: ð81Þ
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From (45), (48), and (81), we can analyze the behavior of
the external gauge field in curved space under the gauge
transformation. It is given by

Ak → Ak − ∂kΛ; A0 → A0 − ∂0Λ ð82Þ

and has the expected form suggested by (14). Now we will
discuss the gauge invariance of two different cases in
Sec. IV explicitly.

A. Gauge invariance for complex Schrödinger field
theory in the presence of an external vector field

An explicit demonstration of the gauge invariance of the
action (67) is straightforward. Let us first consider the
structure of the derivatives appearing in (63). Then, under
the gauge transformation of (81) and (82), it is easy to show
that these derivatives transform covariantly:

D̄0ϕ→ ð1þ iΛÞD̄0ϕ; D̄kϕ→ ð1þ iΛÞD̄kϕ: ð83Þ

Note that the new fields ðBÞ do not transform under the
gauge transformation. Indeed, if B changes under gauge
transformation, then the above covariant property is lost.
The point is that the introduction of B was a consequence of
the localization of spacetime symmetry. So B changes
under the general coordinate transformation but not under
the gauge transformation. It may be recalled that the
original gauge symmetry of the model is already localized.
[See, for instance, the discussion below (13).]
Using the covariant property of the derivatives (83), it is

easy to show that the action (67) is invariant under the
gauge transformation.

B. Gauge invariance in Chern-Simons interaction

Under the gauge transformation (82), the action (76) can
be shown to be invariant. The first piece is identically the
Chern-Simons term whose gauge invariance is well known.
The terms in the second parenthesis give a correction to the
Chern-Simons action which will vary under the gauge
transformation as

δL ¼ 2Ψmϵkl½ð∂mΛÞð∂kAlÞ þ ð∂kΛÞð∂lAm − ∂mAlÞ
¼ 2ϵkl½∂mðΨmΛ∂kAlÞ þ ∂kðΨmΛð∂lAm − ∂mAlÞÞ
− Λ½ð∂mΨmÞð∂kAlÞ þ ð∂kΨmÞð∂lAm − ∂mAlÞ��:

ð84Þ

The second term proportional to Λ vanishes identically.
Thus, δL is a pure boundary so that the action (76) remains
invariant.
Note that Ψm, which appears in the above example, is

actually related to the Newton-Cartan data, as was dis-
cussed in our earlier work [17].

VI. CONCLUSION

The problem of formulating a Galilean-invariant theory
in Euclidean space and universal time into a diffeomor-
phism-invariant theory in curved space has been addressed
in the paper. We have considered a generic theory con-
taining a Schrödinger field and a gauge field. A complete
algorithm was given, and its applications were discussed in
relation to the model of an electron moving in two-
dimensional space under the action of an external electro-
magnetic field as well as under a field whose dynamics was
dictated by the CS term. The flat (Euclidean) limit was
reproduced naturally without any assumptions.
The algorithm given in this paper can be divided into two

steps. In the first step, a theory invariant under the global
Galilean transformations was taken. The symmetry was
localized, following the general notions adopted for con-
structing Poincaré gauge theory [21–23], modulo nontrivial
modifications due to the difference in the concept of time
occurring in relativistic and nonrelativistic theories. The
fundamental difference between the Minkowski spacetime
with Galilean space and universal time makes the problem
highly intricate. The localization process naturally sepa-
rated time from space. Local coordinates had to be assumed
to give local Galilean transformations a meaning, notwith-
standing the fact that at the flat (Euclidean) stage their
relation with the global coordinates was trivial. Ordinary
derivatives were replaced by covariant derivatives with
respect to local coordinates by introducing new fields.
Also, the measure of the integration was corrected appro-
priately. This resulted in a theory in local coordinates
invariant under local Galilean transformation.
Several new fields were introduced in the first step.

These new “gauge” fields can be divided into two classes.
In the first category, we have a group of fields which are
similar for all kinds of parent fields. These fields were
associated with geometry. The new fields in the other class
were specific to the fields of the theory.
In the second step, the resulting theory was geometri-

cally interpreted. The geometric content of the construction
was then studied using the first category of fields. We
reinterpreted the global coordinates as coordinates charting
the curved space, whereas the local coordinates were
identified with locally Euclidean coordinates. A spatial
metric was constructed with all the desired properties,
and the transformations of the various fields were worked
out. The geometric interpretation was thus firmly estab-
lished. An algorithm with step-by-step instructions was
formulated to derive the diffeomorphic theory in the
curved space.
The algorithm derived in the paper was then applied to

the very important problem of an electron moving in 2D
space under an external field. The similarities and points
of departure of our results with those obtained in
Refs. [10,12,13] were emphasized. We then took an
electromagnetic field whose dynamics was dictated by
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the Chern-Simons term. No problem was encountered in
writing the corresponding generally covariant theory in
space. This may be compared with other approaches where
covariantization of the CS term poses problems.
As a final remark, we note that the issue of U(1) gauge

symmetry was also discussed in some detail. The relevant
derivatives that appeared after the localization process
were shown to transform covariantly under this gauge

transformation. This was instrumental in proving the gauge
invariance of the model discussed here, particularly in the
example of a Schrödinger field coupled with an external
field. For the Chern-Simons theory, the additional fields
introduced during localization procedure dropped out. As
happens for CS theory, the gauge variation changed the
Lagrangian by a total derivative so that the action remained
invariant.
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